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Abstract

In this thesis, low temperature magnetotransport measurements are performed to explore
the band gap opening and associated interaction e�ects in graphene. Being an ideally 2D
material with carbon atoms hexagonally arranged in two sublattices, graphene comprises
charge carriers that are chiral and mass-less, with the two Dirac cones of the valence and
conduction band touching at the Dirac point. Owing to its extraordinary charge carrier
mobility, superior to that of silicon, graphene is an emerging component of high speed
electronic devices. However, as a semi-metal it does not allow for high on/o� ratios and
hence strategies to introduce a band gap in graphene are highly desirable.
We induce such a gap either in bilayer graphene by application of a vertical electric �eld, or
in graphene antidot lattices (GALs) through spatial con�nement associated with an inter-
connected array of narrow graphene stripes. While for bilayer graphene the gap size scales
with the electric �eld, in case of the GALs the gap size is inversely proportional to the
width of the constrictions. Toward gap tuning, we supply the bilayer �akes with bottom
and top gates in order to achieve independent control over the carrier concentration and
the electric �eld. In addition to the gap emerging above a certain vertical electrical �eld,
also �ngerprints of a spontaneous gap persisting down to zero electric and magnetic �eld
are detected. For the GALs, the strength of spatial con�nement was tuned by changing the
distance between the nanoholes etched into the graphene sheet. Our data reveal that the
charge transport is notably in�uenced by localized states, which are most likely located at
the edges of the nanoholes. This leads to di�erent types of variable range hopping (VRH),
namely Efros-Shklovskii (ES VRH) and 2D Mott VRH, which govern the low magnetic �eld
transport. Upon decreasing the nanohole distance, a strongly localized regime is entered,
wherein Coulomb interactions between the localized states become increasingly important,
as re�ected by the emergence of a soft Coulomb gap. Concomitantly, the charge transport
mechanism changes from ES VRH to 2D Mott VRH. Only under high magnetic �elds the
transport assumes the expected activated behavior, due to the emergence of a fundamental
band gap. The size of this gap depends linearly on the strength of the applied B-�eld.

Besides the gap opening as such, the possibility to tune its size is equally important for the
device implementation of graphene. While for the bilayer devices, such tuning is limited
by the applied top and bottom gate voltages, which determine the electric �eld, the gap in
the GALs is in�uenced not only by the nanohole spacing and the applied magnetic �eld,
but also by the carrier concentration and the doping level.

Another important factor is the device quality, as quanti�ed by the carrier mobility. Com-
pared to graphene bilayers embedded into gate dielectrics, our freely suspended bilayer
devices exhibit increased mobility, which in turn enhances the gap. Similarly, GALs of
improved quality (achieved by suspension or thermal annealing) show enhanced Coulomb
interactions along with stronger localization and a larger fundamental gap. In the quan-
tum Hall regime, a complete degeneracy lifting of the zero-energy Landau level in both
the bilayer and the monolayer devices is observed for high sample quality or strong enough
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magnetic �elds. By comparison, the additional application of a vertical electric �eld in
the bilayer graphene devices leads to Landau level crossings and the emergence of a layer
(valley)-polarized phase. For the GALs, evidence was gained that a band gap separates
electrons and holes, corresponding to a valley-�rst splitting of the quasi-particles, in con-
trast to the behavior of non-structured graphene. Moreover, GALs of highest quality in
addition display signatures of a small spin splitting on top of the valley splitting. Re-
markably, the magnetic �eld dependence of the energy positions of the lowest Landau level
in the GALs cannot be explained by a linear energy dispersion like in pristine graphene.
Instead, the magneto-transport data is consistent with a parabolic dispersion in vicinity of
the gap, while the linear dispersion prevails for higher energies.

Keywords: Graphene
Con�nement
Graphene Bilayer
Electric and Magnetic Fields
Quantum Hall E�ect
Band Gap
Variable Range Hopping
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Zusammenfassung

In dieser Arbeit werden Magnetotransportmessungen bei tiefen Temperaturen durchge-
führt, um die Ö�nung einer Bandlücke und damit verbundene Wechselwirkungen in Gra-
phen zu erforschen. Als ideales 2D Material, in welchem Kohlensto�atome hexagonal in
zwei Untergittern angeordnet sind, enthält Graphen chirale Ladungsträger, die zudem mas-
selos sind. Die kegelförmigen Leitungs- und Valenzbänder im Graphen berühren sich am
Ladungsneutralitäts- (bzw. Dirac-) Punkt. Besonders seine auÿerordentliche Ladungsträ-
gerbeweglichkeit, welche die von Silizium bei weitem übertri�t, macht Graphen vielver-
sprechend als Komponente von zukünftigen Hochfrequenz-Bauelementen. Als Halbmetall
weist es jedoch eine nur geringe An/Aus-Schaltbarkeit auf, weshalb der Entwicklung von
Strategien zur Bandlückenö�nung in Graphen groÿe Bedeutung zukommt.
Wir induzieren eine solche Bandlücke sowohl in Doppellagen-Graphen durch Anlegen ei-
nes senkrechten elektrischen Feldes, als auch in Graphen-Antidotgittern durch laterale
Einschränkung in Form von schmalen Graphenstreifen, welche in Form eines Gitters mit-
einander verbunden sind. Während die Bandlücke im Doppellagen-Graphen mit der Gröÿe
des angelegten elektrischen Feld zunimmt, ist sie in Antidotgittern umgekehrt proportional
zur Breite der Streifen zwischen den Löchern mit Durchmessern im Nanometerbereich. Um
die Gröÿe der Bandlücke zu kontrollieren, statten wir das Doppellagen-Graphen mit einem
darunter und einem darüberliegenden Gate aus, um die Ladungsträgerkonzentration und
das vertikale elektrische Feld unabhängig voneinander kontrollieren zu können. Neben der
Bandlückenö�nung oberhalb eines kritischen, vertikalen elektrischen Felds, ergaben sich
Hinweise auf eine zusätzliche, spontane Bandlücke, welche auch ohne magnetisches und
elektrisches Feld bestehen bleibt. In den Antidotgittern wurde das Ausmaÿ der lateralen
Einschränkung über einen veränderlichen Abstand der ins Graphen geätzten Löcher vari-
iert. Unsere Messungen ergaben, dass der Ladungsträgertransport deutlich von lokalisierten
Zuständen, welche sich vermutlich an den Rändern der Löcher be�nden, beein�usst wird.
Dies führt zu zwei unterschiedlichen Arten von �variable-range hopping"(VRH), nämlich
Efros-Shklovskii (ES)-VRH oder 2D Mott VRH, welche den Ladungsträgertransport bei
niedrigen Magnetfeldstärken bestimmen. Bei Verringerung des Abstands der Graphenlö-
cher erfolgt ein Übertritt in ein Regime starker Lokalisierung, in welchem die Coulomb-
Wechselwirkungen zwischen den lokalisierten Zuständen verstärkt sind, was zum Auftreten
einer weichen Coulomb-Lücke führt. Zugleich ändert sich der Ladungsträgertransportme-
chanismus von ES VRH zu 2D Mott VRH. Nur unter hohen Magnetfeldern zeigt sich das
erwartete Temperaturverhalten für aktivierten Ladungsträgertransport aufgrund der sich
ö�nenden fundamentalen Bandlücke. Für die Gröÿe dieser Lücke stellte sich heraus, dass
sie linear mit dem angelegten Magnetfeld zunimmt.

Neben der Bandlückenö�nung als solche, ist die Möglichkeit deren Gröÿe zu kontrollie-
ren von ebenso groÿer Bedeutung für die Realisierung der viel versprechenden Anwen-
dungen von Graphen. Während die Bandlücke im Doppellagen-Graphen durch die Gate-
Spannungen, welche das elektrische Feld bestimmen, kontrolliert werden konnte, erwies sich
die Bandlücke in den Antidotgittern als abhängig nicht nur vom Lochabstand sowie einem
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von auÿen angelegten Magnetfeld, sondern auch von der Ladungsträgerkonzentration und
der Dotierung.

Ein weiterer, wichtiger Parameter ist die Probenqualität, welche durch die Ladungsträger-
beweglichkeit angezeigt wird. Im Vergleich zu in Gate-Dielektrika eingebetteten Graphen-
Dopellagen zeigen die untersuchten freistehenden Doppellagen eine höhere Ladungsträger-
beweglichkeit, und somit auch eine gröÿere Bandlücke. Ähnlich hierzu weisen Antidotgit-
ter von erhöhter Qualität (erreichbar durch Freilegung oder Ausheizen der Flocke) ver-
stärkte Coulomb-Wechselwirkungen, sowie eine stärkere Lokalisierung und eine Zunahme
der Bandlücke auf. Im Quanten Hall-Regime konnte sowohl für Graphen-Doppellagen, als
auch Graphen-Monolagen ausreichender Qualität, eine vollständige Aufhebung der Ent-
artung des niedrigsten Landau-Niveaus unter ausreichend hohen Magnetfeldern beobach-
tet werden. Demgegenüber führt das Anlegen eines vertikalen elektrischen Feldes in den
Graphen-Doppellagen zum Kreuzen der Landau-Niveaus sowie zum Auftreten einer La-
gen (Pseudospin)-polarisierten Phase. In den Antidotgittern kommt es im Gegensatz zu
unstrukturiertem Graphen zu einer Trennung der Elektronen und Löcher durch die Band-
lückenö�nung, wodurch die Pseudospin-Entartung der Quasiteilchen aufgehoben wird. Zu-
dem weisen Proben höchster Qualität Anzeichen einer schwächer ausgeprägten Aufhebung
der Spin-Entartung zusätzlich zur Pseudospin-Entartung auf. Es ist ferner bemerkens-
wert, dass die Magnetfeldabhängigkeit der Energie des aufgespaltenen niedrigsten Landau-
Niveaus nicht durch eine lineare Dispersion, wie sie in unstrukturierten Graphen-Monolagen
vorliegt, erklärt werden kann. Stattdessen deuten die Magnetotransport-Daten auf eine pa-
rabolische Dispersion in der Nähe der Lücke hin, während die lineare Dispersion für höhere
Energien bestehen bleibt.

Stichwörter: Graphen
Laterale Einschränkung
Graphen Doppellagen
Elektrische und Magnetische Felder
Quanten Hall E�ekt
Variable Range Hopping
Bandlücke
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Chapter 1

Introduction

At the beginning of the 20th century, new physical theories had to be developed since it
became clear that the laws of the classical mechanics and electrodynamics are not su�cient
to explain phenomena occurring when

(i) the physical dimensions approach atomic length scales
or
(ii) the speed of light is approached.

Stimulated by M. Planck, who proposed the quantization of electromagnetic energy when
studying black body radiation in 1900 [1], quantum mechanics emerged as a new theory.
This theory of light quanta - which later became known as photons - was further advanced
by A. Einstein in his work on the photoelectric e�ect in 1905. In the same year he also
published other works including one on special relativity [2], thus reconciling electrody-
namics and classical mechanics by extending it to the speed of light limit. The concept
of quantization was then used by N. Bohr to predict orbital radii and light emission spec-
tra of hydrogen in 1913 [3]. In 1924, the particle-wave dualism was introduced by L. de
Broglie [4]. Subsequently, the theoretical basis of the laws of quantum mechanics was
formulated by a matrix description by W. Heisenberg 1925 [5], and the alternative wave
mechanics by E. Schrödinger 1926 and P.A.M. Dirac [6], the latter of whom formulated
the relativistic equation of motion for the electron wavefunction. These theories provided
the basis for the subsequent experimental research into these phenomena, either by go-
ing to high energies or smaller and smaller dimensions. After the fabrication of the �rst
transistor by W.B. Shockley, J. Bardeen and W.H. Brattain in 1947 [7], improved fabrica-
tion techniques in semiconductor physics such as molecular beam epitaxy (MBE) [8] and
lithography techniques provided access to highly crystalline, defect-free and small struc-
tures. These experimental activities were aided by the development of novel technologies
in vacuum- and low-temperature science and led to the discovery of novel quantum phe-
nomena, like the quantum Hall e�ect (QHE) by K. v. Klitzing in 1980 [9, 10]. These new
theories and technological advances did not only radically change our understanding of the
physical world, but also have an impact on our modern daily life, as exempli�ed by the
development of integrated circuits and fast electronics.
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Chapter 1. Introduction

Graphene is a highly intriguing material which has been studied by theory since 1947 [11].
This interest arises since graphene represents an ultimately thin, truly 2D layer, and at
the same time possesses quasi-particles that behave in a relativistic manner. Thus, it
combines both aforementioned aspects that are incompatible with classical mechanics and
electrodynamics. Furthermore, graphene represents the basic building block of other car-
bon allotropes. Although it is likely to have been encountered already in the stone age in
the form of char coal drawings on cave walls, and even today it is (unwittingly) manipu-
lated by every school child using a pencil, graphene has not been experimentally studied
until 2004 [12�14]. Following the vast research conducted in the decades before on the
other carbon allotropes such as fullerenes [15] and carbon nanotubes [16], the most re-
cently discovered graphene received even greater attention in the scienti�c world. This is
largely due to the fact that it suddenly became possible to study quantum electrodynamics
in a condensed matter system experimentally, a task which previously had been restricted
to high energy physics. Thus new phenomena could be expected and for instance the
QHE in graphene indeed turned out be special compared to conventional 2DEGs. This
di�erence arises from the unique mass-less character of graphene's quasi-particles, which is
imparted by its linear low-energy dispersion. Moreover, due to its hexagonal lattice struc-
ture composed of two sublattices whose carbon atoms are non-equivalent, graphene mono-
and bilayers exhibit, besides the spin degree of freedom (an angular momentum associated
with elementary or quasi-particles, being a pure quantum-mechanical phenomenon), also
a pseudo-spin (valley) degree of freedom, which can alternatively be described as so-called
chirality [17] of the quasi-particles. The resulting Landau level (LL) structure comprises a
unique zero-energy level equally shared between electron and holes, as well as a shift of the
LL structure compared to the usually observed one, giving rise to the so-called half-integer
QHE. Owing to the special nature of its quasi-particles and its extremely high carrier mo-
bility which depends only weakly on temperature, the QHE in graphene can be observed
even at room temperature, much higher than the previous temperatures below ≈ 30 K [18].
The very high carrier mobility of graphene (intrinsic mobility µ ≈ 200, 000 cm2(V s)−1 at
room temperature [19]) compared to silicon (µ ≈ 15, 000 cm2(V s)−1 at room temperature)
renders it not only interesting for fundamental research in physics, but also opens new
application perspectives for high speed electronics. However, to reach this challenging goal
three major obstacles have to be overcome, speci�cally:

(1) introduction of a band gap in the semi-metal graphene, which is required for e�ec-
tive

current switching in �eld-e�ect devices;
(2) development of large-scale, low-cost production methods;
(3) achievement of high carrier mobility after device fabrication, which typically
introduces a signi�cant amount of contamination.

One major focus of the present thesis is to explore the introduction of a band gap in
graphene or its bilayer, the possibility of tuning the gap, and the in�uence of improved
carrier mobility. In addition, novel phenomena such as interaction e�ects of the involved
quasi-particles in such devices are addressed. The topic of graphene devices obtainable by
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large-scale production methods will be touched upon in the outlook section in the form of
graphene on SiC. With the exception of this part, this thesis deals with micrometer-scale
graphene structures obtained by mechanical exfoliation, which most reliably yields sheets
of high carrier mobility. In order to improve the quality of the devices, the sheets are
freely suspended and/or thermally annealed. The experimental studies of the gap opening
characteristics of graphene involve two model systems, namely bilayer graphene (subjected
to a vertical electric �eld) and graphene antidot lattices (GALs).
The �rst possibility to introduce a band gap in graphene, investigated in this thesis, is to
apply an electric potential di�erence between the two layers in bilayer graphene [20]. This
potential di�erence induces a band gap whose magnitude depends on the vertical electric
�eld strength. By suspending the �ake between a top and bottom gate, we are able to
tune the electric �eld and carrier concentration in the sheet independently. Compared
to graphene bilayers embedded into bottom and top gate dielectrics [21], the present sus-
pended bilayers exhibit higher carrier mobility and accordingly larger gap sizes [22]. We are
also able to fabricate high quality multi-terminal suspended devices, for which a complete
splitting of the quasi-particle degrees of freedom can be observed already at low external
magnetic �elds. We show that the vertical electric �eld also in�uences the Landau level
structure, leading to Landau level crossings. Furthermore, at low electric and magnetic
�elds, an unexpected spontaneous gap opening, which manifests itself by an increased re-
sistance, is detected.
For the GALs, theory predicts a fundamental band gap that scales inversely with the neck
width between the nanoholes [23], akin to graphene nanoribbons [24]. While experimental
studies have provided hints for the opening of a band gap in GALs with neck widths of the
order of 20 nm [25], a systematic understanding of the connection between their electronic
structure and the geometry of the antidot lattice has not yet been attained. Moreover,
a direct proof for the presence of a fundamental band gap in such samples has remained
elusive so far. We demonstrate that the electronic transport in our GAL structures is gov-
erned by the presence of localized states within a transport gap. The interactions between
these states lead to a soft Coulomb gap and associated Efros-Shklovskii variable range
hopping (ES-VRH) in case of small nanohole spacing, whereas 2D Mott VRH emerges for
larger nanohole spacing. In the former case, ES VRH is preserved upon application of
magnetic �elds of up to 1 Tesla, above which a transition to Mott VRH occurs due to
decreased Coulomb interaction between the localized states which leads to weaker localiza-
tion. At intermediate magnetic �elds, the hopping exponent assumes a value of 2/3, which
had previously been obscured by the dominance of Mott VRH. The crossover between
the hopping regimes can alternatively be induced at zero magnetic �eld by increasing the
gate-controlled carrier concentration. We observe stronger localization and an enhanced
gap also for suspended or annealed GALs, in which furthermore interference e�ects become
observable as a consequence of the improved quality and larger phase coherence lengths.
At elevated magnetic �elds, we observe a transition from hopping conduction to activated
transport due to the presence of a band gap under these conditions, which in turn can
be traced back to a small zero-�eld gap. In addition, we �nd that the gap formation is
associated with a splitting of electrons and holes in the lowest LL, which in a simple par-

3



Chapter 1. Introduction

ticle picture corresponds to valley-�rst polarization. Hall bar measurements under high
magnetic �elds furthermore indicate that the gap-opening by the spatial con�nement is
accompanied by a band structure modi�cation, involving the transformation from linear
to parabolic dispersion in the vicinity of the gap, while the higher LLs remain una�ected.

The fundamental physics underlying the magnetotransport phenomena, which is essen-
tial for understanding the experimental results in this thesis, is described in chapter 2.
This chapter also gives an overview of graphene's peculiar band structure, complemented
by the basics of low temperature charge transport under applied magnetic �eld in general
and speci�cally for mono- and bilayer graphene. Details on the sample fabrication and
contact con�guration of the investigated devices are provided in chapter 3. Here, also
technical details about the 3He-system that has been set up in the framework of this re-
search are given. The possibility to rotate the sample in an external magnetic �eld enables
to di�erentiate between e�ects depending on the total magnetic �eld vs. the out- or in
plane B-�eld component. This is exploited to identify the origin of interaction e�ects. The
integration of a confocal microscopy setup into a cryostat system, furthermore, enables
scanning photocurrent microscopy (SPCM) measurements which can provide valuable in-
formation about contact e�ects, potential distributions and Landau levels in graphene
devices. First SPCM test measurements on GAL devices are described in the outlook.
The e�ect of a vertical electric �eld on multi-terminal bilayer graphene devices is the topic
of chapter 4. Chapter 5 deals with the gap opening induced by spatial con�nement in
the GALs, and the magnetotransport properties of GALs of di�erent geometries. On this
basis, a detailed understanding of the relationship between the electronic structure and ge-
ometry of the GALs is developed. The e�ect of an applied magnetic �eld provides a more
complete picture of the hopping conduction regimes in the GALs, as discussed in chapter
6. Evidence for the presence of a fundamental band gap, which is associated with valley
splitting and a transformation to a parabolic dispersion in the GALs, is given in chap-
ter 7. Finally, chapter 8 summarizes the obtained results and major conclusions, and
provides an outlook on future possible directions, such as gap opening by hydrogenation
of epitaxial graphene on SiC, or measurements using low temperature SPCM. Moreover,
�rst promising results on the magnetic properties of hydrogenated epitaxial graphene are
presented.
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Chapter 2

Electronic Properties of Graphene in
Magnetic Fields

The electronic properties of graphene are remarkable in many respects [26�28]. One ex-
ample is the anomalous Landau level sequence of the QHE, which is a direct consequence
of the graphene lattice. Owing to the mass-less, chiral Dirac fermions, the quantum Hall
e�ect in graphene displays a shift of the Hall resistance by a half-integer compared to the
conventional integer QHE [29, 30]. This anomalous QHE arises from a Landau level at
zero-energy which is shared equally between electrons and holes [31]. The peculiar lattice
structure of graphene renders its charge carriers chiral [17] and the carriers possess a pseu-
dospin that is directly related to the two di�erent sublattices A and B which correspond
to valleys K and K ′ at the Brillouin zone boundary, where the valence and conduction
band meet. Here, the dispersion relation is linear instead of parabolic as in conventional
semiconductor two-dimensional electron gases (2DEGs). In contrast to conventional semi-
conductors, the QHE in graphene is measurable up to room temperature [18] since the edge
modes are topologically protected. The charge carrier mobility is only weakly dependent
on temperature, and extremely high intrinsic mobilities have been reported [19].
A short introduction to graphene and its experimental discovery is given in section 2.1. Sec-
tion 2.2 deals with the magnetotransport properties in conventional semiconductor 2DEGs
such as the integer quantum Hall e�ect, including the in�uence of disorder and broaden-
ing as well as the edge channel picture. The band structure of graphene along with the
implications for its quasi-particles is discussed in section 2.3. The band structure also has
direct consequences for the LL spectrum, which is described in section 2.4 for monolayer
and bilayer graphene.

2.1 Introduction

Graphene consists of a honeycomb lattice of carbon atoms. It is a purely two-dimensional
material, were the sp2-bonds between the carbon atoms [11] are responsible for the high
mechanical strength of the sheet. The binding between di�erent graphene layers, in mul-
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Chapter 2. Electronic Properties of Graphene in Magnetic Fields

tilayer graphene or graphite is much weaker, since it is mostly due to van der Waals
interactions. The π-conjugate system, constituted by the carbon pz-orbitals, is responsible
for electrical conductivity of the graphene layer. Since it can be seen as the basic building
block for other carbon allotropes such as fullerenes [15], carbon nanotubes [16], or graphite,
its band structure has been intensively studied theoretically [32�36]. Tight binding cal-
culation of graphene's band structure reveals an unusual semi-metallic behavior with a
linear dispersion around the meeting points of the conduction and valance band. Here, the
charge carriers are mass-less and mimic relativistic particles, such as photons. This makes
it possible to study quantum electrodynamics in a solid state material. However, until
2004 [12, 13], studies of graphene were limited to theoretical work. Indeed, since purely
two-dimensional crystals are predicted to be thermodynamically unstable [37], graphene
was for a long time thought not to exist in a freestanding form. Monolayer graphene proved
to be stable even without the support of a substrate due to the formation of ripples and
corrugations [38]. Furthermore, the visualization and identi�cation of monolayer graphene
was a major hurdle for its discovery, since as a single atom-thick layer it is transparent
for visible light. This problem can be overcome by exploiting interference e�ects by de-
positing graphene on a Si substrate with a SiO2 layer of suitable thickness (300 nm). The
optical path contributed by the graphene layer changes the interference color, which can
be detected by an optical microscope [39].

2.2 Low Temperature Magnetotransport in 2D Electron

Gases

2.2.1 Quantum Hall E�ect

If a magnetic �eld B is applied perpendicular to a two-dimensional electron gas (2DEG),
the Lorentz force acts on the charge carriers perpendicular to their direction of motion.
This results in charge accumulation at the edges of the electron gas, perpendicular to the
current direction. Under equilibrium, the electric �eld due to the accumulated charges
exactly balances the Lorentz force, which results in the Hall resistance Rxy = B/en (with
electron density n and electron charge e) that depends linearly on the magnetic �eld.
Figure 2.1(a) shows the contact con�guration for measuring the Hall resistance with a
magnetic �eld applied to the sample in z-direction, while a current is passed from one
main contact (1) to the adjacent contact (4). For a 2DEG patterned in Hall bar geometry,
the Hall voltage Vxy is measured between two adjacent Hall probe contacts, for instance
(3) and (5). The longitudinal voltage Vxx is measured between two neighboring contacts
in x-direction, e.g. (2) and (3).
While the Hall e�ect can be explained semi-classically, the Quantum Hall e�ect can only
be explained by quantization of the charge carrier energy into so-called Landau levels. For
a conventional 2DEG the energy of the electrons

E =
~2

2emeff

(k2
x + k2

y) (2.1)
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2.2. Low Temperature Magnetotransport in 2D Electron Gases

is continuous with a parabolic dispersion if no magnetic �eld is applied. Here, kx,y are
the wavenumbers in reciprocal space and meff is the e�ective electron mass under the
in�uence of the lattice. In an applied magnetic �eld, discrete energy levels of equal spacing
are formed. They can be derived from the Schrödinger equation as

EN = (N +
1

2
)~ωc, N = 0, 1, 2, ... (2.2)

where ωc = eB/meff is the cyclotron frequency and N the Landau level index. Here, the
spin degree of freedom has been neglected.
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Figure 2.1: Quantum Hall e�ect in a classical 2DEG. (a) 2DEG in form of a Hall bar with
an applied current I and measurement of the longitudinal Vxx and Hall voltage Vxy in applied
magnetic �eld ~B. (b) Landau level quantization with three LLs completely �lled at a magnetic
�eld B1.(c) Landau level quantization with the third LL only half �lled at B2 > B1.

Each LL can accommodate a certain number of states and, hence, possesses a degeneracy,
which increases with magnetic �eld nL = eB/h, with Φ0 = h/e the magnetic �ux quantum.
The �lling factor

ν =
n

nL
=
nh

eB
(2.3)
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Chapter 2. Electronic Properties of Graphene in Magnetic Fields

assumes integer values and denotes the number of �lled LLs (ν = 1, 2, 3...). The energy
quantization, correspondingly leads to a quantized Hall resistance

Rxy =
h

νe2
. (2.4)

The condensation of the density of states into LLs is illustrated in �gure 2.1(b) and (c)
for two di�erent magnetic �elds B2 > B1. Without magnetic �eld the energy distribution
is continuous and the density of states (DOS) is constant up to the Fermi energy EF .
In an applied magnetic �eld all states condense into discrete LLs. In a situation, where
the LLs are �lled completely, as depicted in �gure 2.1(b) for three �lled LLs, the Hall
resistance assumes the quantized value. Since the electrons move in cyclotron orbits, the
longitudinal resistance is zero. Upon increasing the magnetic �eld, the highest occupied
LL is depopulated since the LL degeneracy increases with �eld. This situation is shown in
�gure 2.1(c), where the third LL is only half �lled. In this case, charge transport in the
longitudinal direction can occur, and the Hall resistance jumps to the next plateau. In real
samples, however, extended regions of zero longitudinal resistance are observed [40,41]. To
understand this behavior, it is necessary to take disorder and defects into account.

2.2.2 Disorder and Broadening

Disorder and defects in the sample lead to spatial potential �uctuations, which broadens
the LLs in non-ideal samples, as shown in �gure 2.2(a).

(c)(b)(a)

y

EF

E


y

x

B

N=0

N=1

N=2

E

DOS

localized
extended

Figure 2.2: Broadening and potential distribution for non-ideal 2DEGs. (a) Broadening of
the LLs due to scattering generates extended and localized states. (b) Energy pro�le due to
disorder and �nite width in y-direction, resulting in edge channel conduction. (c) Electron
transport in the edge channel picture.

The states can be distinguished into extended states at the LL centers and localized states
in the LL tails. As the localized states do not contribute to the conduction the resistance
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remains constant. Only when the Fermi energy enters the region of the extended states, the
Hall resistance changes and the longitudinal resistance becomes �nite. The energy pro�les
along the y-direction of the sample in �gure 2.2(b) reveals that the energy �uctuates around
the LL energies. The LL energies are bent upwards at the edges of the 2DEG. Intersection
of the Fermi energy with the LLs leads to 1D edge channels at the edges of the 2DEG
(regions indicated by blue circles) [42]. In this edge channel picture, the electrons are
re�ected elastically at the edges, and forced to move along the original direction of motion
by the magnetic �eld [43]. At the opposite edge, the electrons are forced to move in reverse
direction, while electrons circling in the bulk are not available for conduction. The electrons
in the edge channel move quasi-ballistically since back-scattering is suppressed, with each
channel contributing one conductance quantum e2/h to the conduction.

2.2.3 Potential Distribution and Edge State Transport

If the Fermi level is located between two LLs (i.e. within the localized states), only the edge
channels contribute to carrier transport, which is quasi-ballistic. Decreasing or increasing
the Fermi level to coincide with one of the LL energies, where extended states are present,
induces bulk conduction with backscattering rendering the transport non-ballistic. These
two cases are illustrated in �gure 2.3.
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Figure 2.3: Conduction in the quantum Hall regime in a 2DEG Hall bar for two di�er-
ent magnetic �elds (B1 6= B2). (a) Conduction via edge channels (EF between LLs). (b)
Conduction via bulk transport (EF in one of the LLs).

For the former case of edge channel conduction, the potential at each of the contacts µi
(i = 1 − 6) can be used to derive the longitudinal and Hall resistances. For this purpose,
ideal contacts and no re�ection of charge carriers at the 2DEG/contact interfaces are
assumed. Charge carriers injected through contact (1) with potential µ1 move to contact
(4) via (2) and (3). Since no current is extracted at contacts (2) and (3), the potential
remains unchanged (µ1 = µ2 = µ3). The same holds for the other edge of the 2DEG
(µ4 = µ5 = µ6). Thus, there is one high and one low potential edge of the 2DEG, and the

9
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current is given by

I =
e

h
ν(µ1 − µ4), (2.5)

where ν is the �lling factor, which corresponds to the number of edge channels. Since
electrons injected via (1) do not reach (5) or (6), the longitudinal and Hall voltage assume
values of

eVxx = µ3 − µ2 = 0, and eVxy = µ3 − µ5. (2.6)

Hence, the corresponding resistances are

Rxx = 0, and Rxy =
h

e2ν
. (2.7)

2.3 Quantum Electrodynamics in Carbon

Graphene consists of a two-dimensional hexagonal lattice of carbon atoms as shown in �gure
2.4(a). The two sublattices consisting of atoms A and B can be distinguished. Figure
2.4(b) displays the band structure of graphene calculated by a nearest-neighbor tight-
binding approach, which takes only the pz orbitals that are responsible for the delocalized
π-electron system into account. The hexagonal Brillouin zone possesses the high symmetry
points Γ, M , K and K ′, where K and K ′ are inequivalent since they correspond to the
two sublattices A and B. The dispersion relation is given by [33]

E(kx, ky) = ±γ0

(
1 + 4cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4cos2

(
kya

2

))1/2

. (2.8)

Here, γ0 ≈ 3.2 eV is the nearest neighbor interaction. The carbon-carbon bond length of
a′ = 1.42 Å determines the magnitude of the lattice vector a =

√
3a′. Since the valence

and conduction bands form conically shaped valleys that meet at the K and K ′ points,
graphene is a semi-metal and exhibits an ambipolar �eld e�ect. If the Fermi level lies below
the Dirac point, the unoccupied states in the valence band can be described as positively
charged holes that contribute to conduction. For undoped graphene, the Fermi level lies
at E = 0 with a completely �lled valence band and empty conduction band. The charge
carrier concentration thus equals zero. Upon raising the Fermi energy, electrons in the
conduction band become available for conduction (see �gure 2.4(c)). In the vicinity of the
K and K ′ points (displacement from the K and K ′ points in reciprocal space: δ~k), the
dispersion relation can be approximated as [44]

E(δ~k) = ~νF
∣∣∣ ~δk∣∣∣ , (2.9)

with the Fermi velocity νF =
√

3γ0a
2~ ≈ 106 m/s. The Fermi energy depends on the electron

density n according to EF =
√
πn~νF .The K and K ′ points are also called Dirac points

since in the vicinity of these points, at low energies, the dispersion is linear rendering the
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2.3. Quantum Electrodynamics in Carbon

charge carriers mass-less. Due to the linear dispersion, all charge carriers below the Fermi
energy have the same constant velocity in contrast to conventional semiconductors, where
the parabolic dispersion causes a rapid carrier velocity decrease away from the band edge.
The mass-less carriers in graphene are to be described by the 2D-Dirac equation instead
of the Schrödinger equation.

(b)(a)

electron
conduction

(c)

K
K‘

Г

M

hole
conduction

EF

EF

EF

A B
a

Figure 2.4: Electronic structure of monolayer graphene. (a) Hexagonal lattice with atoms A
and B and lattice constant a. (b) Band structure derived from tight binding model with valleys
K and K ′ (adapted from [44]). (b) Ambipolar conduction by electrons or holes, depending
on the Fermi level position.

In the 2D-Dirac equation [32,45]

± νF
(

0 px − ipy
px + ipy 0

)(
ΨA(r)
ΨB(r)

)
= E

(
ΨA(r)
ΨB(r)

)
(2.10)

p is the momentum, while ΨA(r) and ΨB(r) represent the two di�erent carrier wavefunc-
tions on the the sublattices A and B. Thus, instead of using two separate Schrödinger
equations for the two charge carrier types, as common practice for 2DEGs, the Dirac equa-
tion is used for the charge carriers with an additional degree of freedom. In particular,
additionally to the spin, the carriers also posses a so-called valley or pseudo-spin degree
of freedom (associated with the sublattices A and B). Within one band, corresponding to
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Chapter 2. Electronic Properties of Graphene in Magnetic Fields

one of the sublattices, the direction of motion for electrons (positive energy E) is oppo-
site to the direction of motion for holes (negative energy −E). Since the pseudo-spin is
the same for both carrier types in the band, it is parallel to the electron momentum and
antiparallel to the hole momentum in the band. In the other band the opposite applies.
De�ning chirality [17] as the projection of the pseudo-spin onto the direction of motion of
the charge carrier leads to electrons with positive and holes with negative chirality in the
�rst energy band and vice versa in the other band.

2.4 Landau Level Structure in Monolayer and Bilayer

Graphene

The Landau level spectrum of conventional 2DEGs, monolayer and bilayer graphene is
compared in �gure 2.5.

E

DOS

E

DOS

E

DOS

(a) (b) (c)

Figure 2.5: Comparison of the LL spectrum for di�erent 2DEGs. Localized states are indi-
cated by shaded regions, while extended states correspond to �lled regions. (a) Equidistant
LLs for conventional 2DEGs with separated electron (red) and hole (blue) levels. (b) For
monolayer graphene the LL energy follows a square-root behavior. The zero-energy LL is
equally shared between electrons and holes. (b) Bilayer graphene exhibits LLs of approxi-
mately equal spacing, similar to conventional semiconductors, but also the unusual zero-energy
LL as in monolayer graphene.

For conventional semiconductor 2DEGs, separate electron and hole LL form, that are
equally spaced. For monolayer graphene the LL energy follows a square-root behavior and
a zero-energy level appears that is shared equally by electrons and holes. Such a level is
also present in bilayer graphene, although a close to equidistant LL structure is present.
The di�erence between the conventional LL structure and that in monolayer and bilayer
graphene is a direct consequence of the chirality of the charge carriers. Carrier movement
on cyclotron orbits in a magnetic �eld results in an accumulation of a phase shift - the
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2.4. Landau Level Structure in Monolayer and Bilayer Graphene

Berry's phase - of π for the wavefunction of the chiral mass-less quasi-particles in graphene,
and 2π for the wavefunction of the chiral massive quasi-particles in bilayer graphene [30].
This explains the unusual LL at zero energy [46]. Furthermore, backscattering is suppressed
for the chiral charge carriers [47], which leads to protected edge states and the possibility
to observe the quantum Hall e�ect up to room temperature [18].

2.4.1 Monolayer Graphene

As shown above, the charge carriers in graphene can be described by the 2D-Dirac equation
(equation 2.10). In an applied magnetic �eld the resulting Landau level energies are given
by

EN = sgn(N)
√

2e~ν2
FB |N |, (2.11)

with the LL index N = ±0,±1,±2, .... The sign of N refers to the charge carrier type and
is positive for electrons and negative for holes. As a direct consequence of the pseudospin
degree of freedom, a zero-energy LL emerges, which is equally shared between electrons
and holes of opposite pseudospin. Thus, while in the conventional quantum Hall e�ect
the Hall conductivity is quantized to values of σxy = ν e

2

h
with ν = 1, 2, ..., the plateaus in

graphene are shifted by 1/2:

σxy = ν
e2

h
; ν = ±ξ

(
N +

1

2

)
= ±2,±6,±10, ... (2.12)

with LL index N = 0, 1, 2..., and ξ accounting for the valley and spin degeneracy of the
charge carriers (ξ = 4 in monolayer graphene). This is the reason why the quantum
Hall e�ect in graphene is also called the half-integer quantum Hall e�ect, with the �rst
σxy plateau already appearing when the zeroth energy level is half �lled with electrons
or holes. From equation 2.11 it is apparent that in contrast to conventional 2DEGs, the
energy spacing of the LLs is not equidistant due to the linear bandstructure.

2.4.2 Bilayer Graphene

In contrast to monolayer graphene, in bilayer graphene with so-called Bernal (AB) stacking,
the dispersion relation is parabolic at the meeting points of the valence and conduction
band. Thus, the charge carriers are no longer mass-less but possesses a �nite mass of
m ≈ 0.05me, with the electron mass me and the Landau level energy given by

EN = ±~ωc
√
N (N − 1), (2.13)

with LL index N = 0, 1, 2..., and the cyclotron frequency ωc = eB/m. The Hall conduc-
tivity exhibits plateaus at

σxy = ν
e2

h
; ν = ±ξN = ±4,±8,±12, ... (2.14)
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The charge carriers in bilayer graphene possess spin and valley degeneracy which leads to
a 4-fold degeneracy of each LL (ξ = 4) except for the lowest LL. The zero energy LL E0,1

with LL indices N = 0 and 1 exhibits an additional degeneracy due to the orbital degree
of freedom and is thus 8-fold degenerate.
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Chapter 3

Magnetotransport and Confocal
Microscopy

As seen in the previous chapter 2, the features of the QHE are characteristic for the inves-
tigated system. For graphene, it does not only provide unequivocal prove of the number of
layers but also provides information about the sample doping and shape, as well as interac-
tion e�ects of the quasi-particles present. The QHE is commonly investigated in Hall bar
geometry which allows to determine both longitudinal and transverse conductivities. For
simplicity other geometries like lateral two- or four-terminal or van-der-Pauw geometries
can be applied. Sample fabrication (section 3.1) and device aspects such as mobility, clean-
ing and di�erent device geometries (section 3.2) are discussed in this chapter. Besides Hall
bar and lateral contact con�guration, another useful geometry, especially with regard to
the edge modes, is the Corbino geometry, which contains no edges at all. Charge transport
data gained with such structures are presented in section 3.2.
For combined low temperature magnetotransport and scanning confocal microscopy a 3He-
system is built up. It comprises a transport insert with a rotatable sample holder and an
insert with a �ber-based confocal system mounted on a piezo-positioner and scanner stack.
The setup is described in section 3.3.
To establish the function, hold time and base temperature of the rotator insert, monolayer
graphene Hall bar devices are used for low temperature angle-dependent measurements.
The performance of the confocal microscopy (CFM) insert, including the spatial resolu-
tion, hold time and base temperature under scanning and laser illumination, is tested with
a modi�ed marker substrate, speci�cally designed for a search-and-�nd routine for the
navigation between individual nanostructures at �xed, de�ned positions on a macroscopic
chip.

3.1 Sample Fabrication

Depending on the type of device, the fabrication process includes exfoliation, identi�cation
and contacting of graphene bi- or mono-layers, followed by etching of a desired structure
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or pattern into the �ake and �nally suspension with subsequent current annealing or the
structuring of additional air bridge contacts.

Exfoliation and Contacting

In graphene research di�erent methods are pursued to optimize sample production in terms
of quality, scalability and reliability. Besides mechanical exfoliation [12, 13], these meth-
ods range from chemical exfoliation [48, 49], chemical vapor deposition (CVD) [50�54] to
epitaxially grown graphene on SiC [55�57]. Most of these methods, however, have the
disadvantage of notably reducing charge carrier mobility. This is partially due to more
complicated processing or additional fabrication steps such as the transfer onto the desired
substrate in case of CVD graphene on copper or nickel foils [53,54]. For epitaxial graphene
on SiC further treatment is necessary. Here the substrate is conductive if doped, which
is advantageous for scanning tunneling microscopy (STM) or angle-resolved photoemission
spectroscopy (ARPES). For magnetotransport measurements, decoupling from the sub-
strate and further modi�cation such as the addition of gate dielectrics and gates for charge
carrier modulation are necessary. Thus far the most successful and also simplest way to
produce isolated graphene layers of high quality is mechanical exfoliation. This method is
used for the samples in chapters 3-7, whereas in chapter 8 also epitaxially grown graphene
on SiC is investigated and will be discussed more closely there.
Mechanical exfoliation of graphene onto silicon substrates covered with 300 nm of ther-
mally grown SiO2 layer is carried out similar to literature [12,13]. Starting from a crystal
of highly ordered pyrolytic graphite (HOPG), by repetitiously pealing using Scotch tape,
thin graphite layers are gained that stick to the tape. Alternatively, Kish-graphite or nat-
ural graphite may be used for this purpose. The graphite layers can then be transferred
from the tape to a substrate. To improve the yield of monolayers, the substrate is heated
to 160◦C and subsequently cooled down to about 50◦C just before exfoliation. Graphene
is then deposited onto the substrate by gently pressing the Scotch tape onto the substrate.
In general, the deposition temperature determines the deposition yield and can be adjusted
as desired.
After exfoliation onto a Si/SiO2 substrate, monolayer-, bilayer- and multilayer graphene
�akes are located and distinguished by optical microscopy. Although it is only one layer
thick, interference e�ects make monolayer graphene visible on a 300 nm thick SiO2 sur-
face [39]. Flakes with di�erent numbers of layers can be distinguished by their gray scale
contrast with respect to the bare substrate. The layer number and doping can be further
con�rmed by Raman spectroscopy [58�61] or magnetotransport measurements.
In order to improve their quality, the samples can be annealed under argon at 250◦C.
Although this improves the �ake quality through the removal of adsorbates and contami-
nants, the latter are, however, again introduced when the sample is exposed to atmospheric
conditions as well as PMMA resist in the following processing steps. This exposure to the
ambient is avoided if the sample is annealed under vacuum, when already mounted in the
transport setup.
For charge transport measurements, electrical contacts are de�ned on the selected sheets
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via standard e-beam lithography (EBL). This technique makes use of a positive polymer re-
sist, speci�cally a double layer of poly(methyl methacrylate) (PMMA) (≈ 200 nm), which
is spin-coated onto the sample and exposed in the EBL step. Subsequent development
in a 1 : 3 mixture of methyl isobutyl ketone (MIBK) and isopropanol (IPA) dissolves the
exposed parts of the PMMA. The process is stopped by immersing the substrate in pure
IPA. Subsequently, thermal evaporation of the contact metals (Ti/Au or Cr/Au) is per-
formed in vacuum (p ≈ 1 · 10−6 mbar). Subsequent lift-o� in N-methylpyrrolidone (NMP),
removes the resist in the non-exposed areas together with the metal �lm on top. The result
is a graphene �eld-e�ect transistor with ambipolar transfer characteristic (�gure 3.1).
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Figure 3.1: Monolayer graphene FET (sample 8855_D2a).(a) Schematic of the device con-
�guration. The carrier density is induced via the �eld-e�ect by an applied back gate voltage.
(b) Gate sweep characteristic with hole conduction for negative voltages and electron con-
duction for positive voltages. (c) Dependence of mobility on carrier concentration. The high
concentration mobility is about 5, 000 cm2(V s)−1.

The charge carrier density is induced by a gate voltage Vg = Vgate− VCNP and, in a simple
capacitor model, is given by:

q = αVg, (3.1)

with gate coupling factor α:

α =
ε0εr
ed

. (3.2)

Here, the VCNP is the CNP position of the �ake, which is usually shifted to positive gate
voltages Vgate due to unintentional doping of the device. For a d = 300 nm SiO2 gate
dielectric with a permittivity of εr = 3.9, α ≈ 7 · 1014 m−2V −1, such that concentrations of
up to q ≈ 1 · 1017 m−2 can be induced before the break down of the gate dielectric.
For increasing gate voltage (positive or negative), either electrons or holes contribute to
the conduction, which results in typical resistances on the order of 1 kΩ depending on
the contacts and the device dimensions. Upon decreasing the charge carrier densities the

17



Chapter 3. Magnetotransport and Confocal Microscopy

resistance increases and directly at zero carrier density, at the charge neutrality point
(CNP), in�nite resistance would be expected. In reality, however, only the total charge
carrier density is exactly zero at the CNP since electron and hole puddles [62] are still
present and hence the resistance remains �nite. Experimentally, a resistivity of≈ h/4e2 [29]
has been found which deviates from the theoretical predicted value of hπ/4e2 [63�65] by
the factor of π. Due to residues of the e-beam resist and other contaminants the CNP of
the devices is usually not located at zero back gate voltage, but shifted to positive gate
voltages. The carrier mobility is accessible from the gate dependent resistivity ρ and the
electron n or hole p concentration by applying the semi-classical Drude model via

µn,p =
1

(n, p)eρ
, (3.3)

where the resistivity depends on the �ake length l and width w: ρ = Rl/w. Due to the
failure of the Drude model near the CNP, the mobility cannot be reliably determined from
equation 3.3 for low carrier concentration (µ → ∞ for n, p → 0). Instead, it is usually
calculated for the large carrier concentration range, where n, p ∼= 2 · 1016 m−2, or derived
from the conductivity σ: µn,p = 1

e
dσ

d(n,p)
.

After glueing the sample into a chip carrier and bonding of the bond pads to the chip
carrier contacts, the devices can optionally be annealed under argon at ≈ 120◦C in order
to remove doping by adsorbed water molecules. A better method, however, is to anneal
the sample in the measurement setup since in this case exposure to the atmosphere can be
avoided (see chapter 5).

Reactive Ion Etching (RIE)

For structuring the graphene �akes into Hall bar structures, Corbino disks or antidot
lattices, reactive ion etching (RIE) in combination with a PMMA mask pre-structured via
EBL is used. The PMMA etch mask is obtained via EBL as described above. Here, a
single thin layer PMMA (≈ 50 nm) and an increased acceleration voltage (30 kV ) are used
to minimize proximity e�ects and help to pattern small features (≤ 30 nm). To avoid
overheating and hardening of the resist, a low plasma power in the RIE step is necessary.
In general, 46 Watt at 0.05 mbar with 100 sccm Ar and 11 sccm O2 for 5 s is su�cient
to etch exposed monolayer and bilayer graphene completely. The process is completed by
dissolving the resist like in the lift-o� process with NMP, acetone and IPA.

Suspension and Current Annealing

One e�cient way to improve the sample quality of micrometer-size graphene sheets is to
render them freely suspended [66]. This is achievable by partial etching of the underlying
SiO2 dielectric, such that the impact of surface roughness of the SiO2 or trapped charges
between the surface and the �ake is avoided [67,68].
For the suspension the device is contacted as described above and subsequently etched
in bu�ered oxide etch (BOE). A 5 : 1 aqueous dilution etches 150 nm SiO2 in ≈ 90 s
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at room temperature. Since the etching occurs faster for areas which are not covered by
metal contacts, the SiO2 underneath the graphene is fully etched while the contacts remain
supported by a SiO2 column if they are broad enough. To ensure a good stability of the
structures, a contact thickness of ≥ 100 nm and Cr as adhesion layer metal is required.
The etching is stopped with methanol and the sample is dried in a critical point drier using
methanol, acetone or IPA. This step is critical to prevent the sheet from attaching to the
back gate.

(a) (b)

Figure 3.2: SEM images of suspended graphene. The scale bar is 400 nm and the gold
contacts are colorized yellow. (a) Suspended monolayer graphene between two gold contacts
(Inlens detector). (b) The suspended bilayer is pinned to the contacts and falls onto the
substrate unless there is a second nearby contact to hold it up (SE2 detector).

Figure 3.2(a) displays a suspended device supported by gold contacts. The zoom of �gure
3.2(b) highlights the attachment of the graphene �ake in the contact region. On the contact
side where there is no close-by neighboring contact, the �ake falls down on the substrate.
The distance between two neighboring contacts can be maximally a few micrometers for
suspending the �ake in between and maintaining a good mechanical stability of the device.
The gate coupling to the back gate can be estimated by the simple capacitor model with
capacitors in series:

1

α
=

1

α1

+
1

α2

=
e

ε0

(
d1

εr1
+
d2

εr2

)
(3.4)

with d1 = d − a and d2 = a, where d is the original gate dielectric thickness and a the
thickness of the air layer from the substrate to the �ake. With the permittivity of air
being close to the vacuum permittivity (εr2 ≈ 1) and εr1 = 3.9 the gate dielectric of SiO2,
the gate coupling factor for the back gate is around 2.9 · 1014 m−2V −1. However, the
concentration range is limited, since for gate voltages V ≥ 10 V (q ≈ 3.5 · 1015m−2) the
�ake bends towards the gate due to electrostatic attraction, which can lead to the �ake
sticking to the back or top gate, rendering the device useless. Similarly to non-suspended
devices, the CNP of as-fabricated suspended graphene devices is commonly located at
positive gate voltages, and lies outside the accessible gate voltage range if the doping is
too strong. Thus, the charge carrier density is to be calculated as q = α(Vgate − VCNP )
with Vg = Vgate − VCNP . Nonetheless, current annealing [69], a cleaning method especially
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useful for suspended samples, can be used to shift the CNP close to zero back gate voltage
and to improve the device quality substantially. For this purpose, a large current is passed
through the device to induce Joule heating, which similarly to thermal annealing removes
adsorbates [69, 70]. Figure 3.3(a) shows the e�ect of current annealing for a monolayer
graphene �ake at T = 40 K. The initial decrease in resistance upon ramping the bias
voltage can be ascribed to temperature e�ects. Around Isd ≈ 0.3− 0.5 mA the resistance
increases slightly since the CNP is shifted toward zero. When the bias is ramped back to
zero, the low-bias resistance has signi�cantly increased compared to the initial value.
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Figure 3.3: Current annealing procedure for a suspended monolayer graphene device. (a)
Resistance and current of sample 9139_D2b during the up and down ramping of the bias
voltage. (b) Gate sweeps before and after annealing of the sample in panel (a).

Figure 3.3(b) compares gate sweeps of the resistance at T = 40 K before and after current
annealing. Before annealing the �ake is highly doped. Only after current annealing, the
CNP is located in the accessible gate voltage range. Furthermore, the mobility of the
device has been improved, which manifests itself in a decreased width of the CNP-peak.
While suspended graphene can exhibit mobilities up to µ ≈ 200, 000 cm2(V s)−1 at low
temperatures [66, 71], for graphene devices on Si/SiO2 typical values of µ ≈ 5, 000 −
10, 000 cm2(V s)−1 have been found, limited due to scattering by charged impurities [72,73],
substrate roughness [68, 74], SiO2 surface optical phonons [75, 76] and substrate induced
electron-hole puddles [62, 67, 77]. For graphene on hexagonal boron nitride (hBN) similar
high mobilities as for suspended graphene have been reported [78,79].

Air-bridge Contacts

One way of connecting a contact with its lead without a short-circuit to a second underlying
contact is the structuring of air-bridge contacts [80�82]. These are especially relevant for
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micrometer-scale Corbino structures where the inner contact, which is surrounded by an
outer contact, is too small to be contacted via non-lithographic methods.

Figure 3.4: SEM image of an air-bridge (colorized blue) connecting two metal contacts
without short-circuit to the third contact in between. The scale bar is 300 nm.

The electron micrograph in �gure 3.4 depicts such an air-bridge which connects the two
ends of the current leads by bridging a third contact. The air bridge can be de�ned in a
single EBL step following the de�nition of the contacts as described above. To this end, a
double layer PMMA and co-polymer P(MMA-MAA) resist system is used, which possess
di�erent sensitivity to e-beam exposure. A third layer of PMMA improves the undercut.
For de�ning the bridge region, a low exposure dose is used, such that only the upper two
resist layers are developed, while the bottom layer is not a�ected. A higher e-beam dose is
used for the pillar regions (support posts of the bridge) to develop all of the resist layers.
The distance of the bridge region to the substrate is controlled via the thickness of the
�rst PMMA resist layer, which is ≈ 250 nm for the resist system used here. To ensure
a good stability of the bridge 300 nm gold is used as bridge material. No adhesion layer
is necessary, since the pillars of the bridge are de�ned directly on the pre-structured gold
contacts.

3.2 Measurement Geometry

Contact Con�guration

For electrical measurements the arrangement of the contacts on a graphene sheet with
length l (measured between the two voltage probes) and width w determines which trans-
port properties are directly accessible. Figure 3.5 illustrates di�erent, commonly used
device geometries. The current �owing from the source to the drain contact as well as the
measured voltage is indicated. A two- or four-terminal lateral contact con�guration (�gure
3.5(a) and (b)), where the contacts are directly patterned in a single EBL step, is most
straightforward and reliable, due to the low number of contacts and since no etching step
is necessary. In contrast to the two-terminal con�guration, a four-terminal measurement
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eliminates contact resistance contributions. The resistivity ρ of the device

ρ = R
w

l
(3.5)

can be directly calculated from the resistance as well as the conductivity, which is the
inverse resistivity.
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Figure 3.5: Di�erent contact con�gurations for a graphene �ake of width w and length
l. (a) Lateral two-terminal contacts. (b) Lateral four-terminal contacts. (c) Van der Pauw
geometry with either ideal contacts at the edges (left) or at the sides (right) of the �ake.
(d) Hall bar geometry ideally with an etched �ake (left), or alternatively a non-etched �ake
(right). (e) Corbino geometry with inner radius r2 and outer radius r1 of the �ake.

Another widely used contact con�guration in graphene research is the van der Pauw geom-
etry (�gure 3.5(c)) [83,84], where two pairs of opposing contacts are placed on the sample
corners. As an advantage over the lateral con�guration, it enables measurement of the
Hall resistance Rxy = Vxy/I. Since it is applicable to arbitrarily shaped samples, etching of
the sample is avoided. For homogeneous samples, admixtures of the longitudinal voltage
contributions due to non-ideal contact size or con�guration, can be compensated by per-
forming several measurements of the Hall resistance in di�erent contact orientations. As
one possibility, measurements with permuted voltage and current contacts are performed
to measure the voltages: Vij,kl (voltage measurement between contact i and j with a cur-
rent �owing from contact k to l with Vij,kl = −Vij,lk = −Vkl,ij). Alternatively, the magnetic
�eld direction is reversed instead of the current direction. As the Hall voltage is antisym-
metric in magnetic �eld, it changes its sign (but not the absolute value) upon reversal of
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the magnetic �eld (Vij,kl(B) = −Vij,kl(−B) = Vkl,ij(−B)). The longitudinal resistance can
be measured in a separate measurement by using adjacent contacts for the voltage and
current probes, respectively. Similarly to the methods described above, admixtures of the
Hall voltage can be minimized by a combination of several measurements of the longitu-
dinal resistance. In contrast to the Hall voltage, the longitudinal voltage is symmetric in
magnetic �eld and, hence, remains unchanged upon reversal of the magnetic �eld.

3.2.1 Graphene Hall bars

The ideal contact geometry for separate measurements of the longitudinal and transverse
resistivity of a 2DEG as present in graphene is the Hall bar geometry (�gure 3.5(d)). Here,
two contacts serve as source and drain electrodes, while two pairs of adjacent or opposing
contacts between them are used for the voltage measurements (Vxx and Vxy). In �gure 3.6
a graphene Hall bar device is displayed.

Figure 3.6: Scanning electron microscopy (SEM) images of a graphene Hall bar device. The
scale bar is 1 µm and the current contacts are colorized yellow while the Hall probes are
colorized green. The circumference of the graphene �ake is indicated by the white dashed
line.

The longitudinal ρxx and transverse ρxy resistivity are given by the following respective
equations:

ρxx = Rxx
w

l
, ρxy = −Rxy. (3.6)

The corresponding conductivities are accessible via tensor inversion of the resistivity tensor
ρ. Applying the symmetry relations (ρxx = ρyy and ρxy = −ρyx) valid for a uniform
(isotropic) sample, the following relations for the respective conductivities are obtained:

σxx =
ρxx

ρ2
xx + ρ2

xy

, σxy = − ρxy
ρ2
xx + ρ2

xy

. (3.7)

Figure 3.7(a) and (b) display the longitudinal and Hall resistance of a representative
graphene Hall bar device (sample 10268_D2) at T = 1.6 K and magnetic �elds B = 12 T ,
B = 6 T , B = −12 T and B = −6 T . As already mentioned the Hall resistance changes its

23



Chapter 3. Magnetotransport and Confocal Microscopy

sign but not its magnitude upon reversal of the magnetic �eld direction or carrier density
(gate voltage), while the longitudinal resistance remains the same.
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Figure 3.7: Longitudinal and transverse resistances and conductivities of the graphene Hall
bar device 10268_D2 at T = 1.6 K. (a) Longitudinal resistance at B = 12 T , B = 6 T ,
B = −12 T and B = −12 T . (b) Hall resistance at B = 12 T , B = 6 T , B = −12 T and
B = −12 T . (c) Fan diagram of the longitudinal resistance. (d) Fan diagram of the Hall
resistance. (e) Longitudinal and transverse resistances as a function of magnetic �eld at a
carrier density of q = −1.085 · 1012 cm−2. (f) Longitudinal and transverse conductivities at
B = 12 T .

Corresponding fan diagrams of the resistances in panel (a) and (b) are given in �gure 3.7(c)
and (d), respectively, where the resistances are plotted as a function of both magnetic �eld
and gate voltage. In these fan diagrams the B-�eld dependent �lling factor positions are
indicated by dashed red and black lines for �lling factors up to ν = 14 . Shubnikov de
Haas oscillations are observable in panel (e), where the resistances are plotted as a function
of magnetic �eld at carrier density q = −1.085 · 1012 cm−2. The respective conductivities
derived by the tensor inversion (equation 3.7) are shown in �gure 3.7(f). Plateaus in the
Hall conductivity, which are accompanied by zero longitudinal conductivity, occur at the
usual graphene �lling factors ν = ±2,±6, ....
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3.2.2 Graphene Corbino Disks

Another useful measurement con�guration is the Corbino geometry (�gure 3.5(e)). It con-
sists of a central contact that is connected via the actual device with an outer ring contact.
This geometry eliminates any Hall voltage contribution such that only the longitudinal
contribution Vxx is measured. Thus, the longitudinal resistivity is directly accessible and
no tensor inversion, which is only valid for homogeneous 2DEGs (see above), is necessary.
This allows a more accurate measurement of small conductivities and renders the con�g-
uration interesting in view of the edge channel picture. As another advantage the device
comprises no edges but is only framed by the contacts, thus avoiding e�ects due to di�erent
edge con�gurations and chemical terminations.

(a) (b)

Figure 3.8: Top- and side-view SEM images of Corbino devices. The scale bar is 1 µm. (a)
The graphene around the outer and within the inner ring has been etched away so that outer
and inner contact are only connected by the graphene layer in between. (b) The air-bridge
(colorized blue) connects the inner ring to its lead (both colorized yellow). The outer contact
is colorized green.

Figure 3.8(a) shows the top view of a graphene �ake contacted in the above described
Corbino geometry. The graphene in the center of the inner contact and around the outer
contact has been etched away by RIE to avoid short-circuiting. Imaging at an angle pro-
vides a three-dimensional impression of the device (�gure 3.8(b)). The inner contact is
connected to its lead by an air bridge.
The resistivity can be calculated from:

ρxx =
2πRxx

ln
(
r1
r2

) , (3.8)

where r1 is the outer and r2 the inner radius of the graphene disk. Since there is no trans-
verse contribution, the conductivity is the inverse of the resistivity. Figure 3.9 exempli�es
the longitudinal conductivity of a graphene Corbino device (8818_D3), as derived from
the measured resistance via equation 3.8. As expected, the �lling factors ν = ±2,±6, ...
characteristic for monolayer graphene can be observed.
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Figure 3.9: Direct measurement of the longitudinal resistance in Corbino sample 8818_D3.
The outer radius of the �ake is 2.5 µm and the inner radius 1.5 µm. (a) Longitudinal resistance
Rxx at B = 12 T and T = 1.4 K. (b) Corresponding longitudinal conductivity.

3.3 Combined Low Temperature Magnetotransport and

Confocal Microscopy

For combined low temperature magnetotransport and confocal microscopy experiments,
a 3He-system is built up. It comprises two di�erent inserts, one with a rotatable sample
holder (rotator insert), and the other with a �ber-based confocal microscope (CFM insert).
The custom-made chip carrier sockets are equipped with a 20 pin twisted pair electrical
measurement wiring for simultaneous bonding of multiple devices on one chip. One of the
pins is used to apply a back gate voltage to tune the charge carrier density of the device
(equation 3.1).
The common equipment for measurements with the rotator insert and the CFM insert is
shown in �gure 3.10. It consists of the Dewar (�gure 3.10(a)) with a 66 l liquid nitrogen
shield and a 70 l liquid helium main bath. For better isolation the nitrogen shield is
surrounded by an outer vacuum chamber (OVC), which has to be evacuated before cool
down of the Dewar (p < 1 · 10−5 mbar; leakage rate < 1 · 10−8 mbar · l/s). The standard
cool down procedure of the Dewar from room temperature to liquid helium temperature
is described in appendix B. The superconducting magnet consists of a Nb3Sn solenoid,
arranged such that the magnetic �eld is maximal at the sample position (for complete
insertion of the inserts). It can be operated at magnetic �elds up to 15 T with a maximum
B-�eld sweep rate of 1.0 T/min (conversion factor 6.82 A/T ) and a minimum distance of
the Dewar bottom to the ground of 20 cm (necessary to limit the forces from the steel
grid in the �oor on the magnet). Pumping on the main bath via the lambda fridge port
cools it to 2.2 K and allows operation of the magnet up to 17 T with a B-�eld sweep
rate of 0.5 T/min. The rotary pumps for pumping on the 1K-pot line of the insert and
the lambda fridge port of the Dewar are placed in a pump box, and the pump lines are
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embedded in a sand box to minimize vibrational noise. Figure 3.10(b) shows the rack with
the measurement computer as well as the piezo- and temperature control units.

(a) (b) (c) (d)

Figure 3.10: Dewar and auxiliary components of the combined magnetotransport and con-
focal microscopy 3He-cryostat setup. (a) Dewar suspended in a rack by springs. (b) Rack
computer, piezo control unit and temperature control units. (c) Rack with hardware for
electrical transport measurements. (d) Control unit (power supply) for the magnet, lambda
fridge control and stepper motor control for the sample rotation.

For temperature measurement, both the inserts are equipped with sensors at the sorb, the
3He-pot and the 1 K-pot (for a complete list of sensors including their ranges and locations,
see appendix B). The ITC has to be calibrated each time for the respective Cernox sensor,
either of the rotator or the CFM insert (see appendix B). The hardware for the electrical
characterization is shown in �gure 3.10(c). In order to eliminate grounding problems,
the power supplied to the measurement equipment is provided by transformers, and the
connection via GPIB to the measurement computer is made via a galvanic decoupled USB
isolator. A �lter box with low pass �lters (pi-�lters) can be added to the measurement
connection at the top of the insert. The magnet control unit is shown in �gure 3.10(d).
The system furthermore comprises a turbo pump to evacuate the inner vacuum chamber
(IVC) and a crane system for lifting the two inserts. Both inserts are provided with a 3He
reservoir. Upon loading of the insert, the insert is �rst cooled to liquid 4He temperature
followed by operation of the 1 K-pot. Pumping at the 1 K-pot (with open needle valve)
further reduces the temperature of the insert. This initiates the condensation process of
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the 3He gas as soon as the 3He-pot temperature falls below the 1 K-pot temperature.
For this process the sorb is heated by the sorb heater to ≈ 35 K and the needle valve is
gradually closed till the minimum condensation temperature of ≈ 1.4− 1.6 K is reached.
After condensation, the base temperature (≈ 250 mK) can be reached within ≈ 30 min
and kept for the hold time of the insert, which depends on the heat load (introduced by
ramping of the magnet, sample rotation, scanning of the sample, or general movement
of the piezos). The coldest part of the insert at this instance is the 3He-pot, which is
thermally well coupled to the sample. The temperature can be raised by a combination
of the sorb and 3He-pot heater up to 100 K, with the insert completely submerged in
the Dewar. The CFM insert comprises a RuO and PT1000 sensor near the sample space
for accurate measurement of temperatures below 1.4 K and above room temperature,
respectively. A heater coil (d = 0.2 mm manganin with l = 3.5 m, R = 50 Ω; maximum
current I ≤ 0.58 A), triggered by a Lakeshore temperature controller, is used for sample
annealing in vacuum up to 105 ◦C before inserting the CFM insert into the Dewar. The
rotator insert by comparison, can only be heated externally via a heater strip.

3.3.1 Magnetotransport in Tilted Magnetic Fields

The low temperature part of the rotator insert is shown in �gure 3.11(a). It allows out-
of-plane rotation of the sample in an external magnetic �eld. Without any applied heat
load, the base temperature of 225 mK at the 3He-pot can be maintained for t = 140 h.
The sample rotation is tested with a graphene Hall bar device (see �gure 3.11(b) and (c)).
In the longitudinal resistance Shubnikov de Haas oscillations are observed, while plateaus
characteristic of graphene are visible in the Hall resistance. The latter occur at the usual
graphene �lling factors (see chapter 2; �lling factors 6, 10, 14 and 18 are indicated in the
graph). The measurement is performed at a charge carrier density of q = −2.14 ·1012 cm−2.
The signal is strongest at θ = 180◦ (de�ned as the angle between the surface normal and
the magnetic �eld) and decreases upon rotation to 90◦. Here, the sample is in plane with
the applied magnetic �eld and the Hall resistance is zero. Upon further rotation the Hall
resistance changes its sign.

3.3.2 Low Temperature Confocal Microscopy (CFM)

The low temperature part of the CFM insert is shown in �gure 3.12(a). It comprises three
positioners and an x, y-scanner. On top of the piezo stack, the low temperature objective
is mounted and can thus be moved in x, y and z direction to scan and focus the sample.
The optical �ber is coupled into the ferrule on top of the objective. It is optimized for
the laser wavelength of the diode laser (λ = 635 nm). The housing is thermally anchored
at the 3He-pot in order to e�ciently cool the sample on top of the cold �nger. The chip
carrier socket holds the chip carrier with the sample. At room temperature the range of
the piezo voltage is 4 V , while at low temperatures it is 10 V . The voltages are ampli�ed
by a factor of 15, which results in 60 V and 150 V , respectively.
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Figure 3.11: Low temperature part of the rotator insert and measurements of the longi-
tudinal and transverse resistance of graphene Hall bar sample (10268_D2) at T = 1.6 K
and q = −2.14 · 1012 cm−2, recorded by rotating the sample in the magnetic �eld. The an-
gle is measured between the surface normal of the sample and the magnetic �eld direction.
(a) Low temperature part of the rotator insert for out-of-plane rotation of the sample in an
external magnetic �eld. The sample wiring is in the back, which prevents full rotation by
360◦. (b) B-�eld dependent longitudinal resistance, and (c) Hall resistance, both measured
at T = 1.6 K.

For positioning the sample at room temperature the positioners are operated at ≈ 40 V
and 200 Hz. Their capacity in this temperature range is 1.04 µF . At low temperatures,
the operation voltage of the positioners should be increased to ≈ 60 V with a capacity of
180 nF . A nominal laser power of 40 µW gives a good re�ection signal from the Si/SiO2

substrates. How to convert the nominal laser power to the measured power is described
in appendix B. A test sample with a 5 µm grid is used for the �ne calibration of the
lateral dimensions, which yields the output limits at the respective temperature. At room
temperature the maximum scan range corresponds to 40 µm, and at 300 mK (sample
temperature) to 34 µm. The scale in between these temperatures has to be extrapolated.
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For navigation on a substrate a marker system has been developed with numbered mark-
ers spaced 50 µm from each other (see appendix B). The test grid sample can also be
used to determine the lateral resolution. Figure 3.12(b) shows a scan of the test grid at
300 mK sample temperature (20 µm× 20 µm scan range; 1 µm/s scan velocity; 0.04 mW
nominal laser power; t ≈ 18 h hold time). Assuming a rectangular cross-section of the
grid lines, the resolution obtained from the slope between grid bottom and grid top is
FWHM = 505± 51 nm. Under such scanning and laser illumination conditions the hold
time is 18 h.
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Figure 3.12: Low temperature part of the CFM insert (a) and scan of the test grid sample
at 300 mK (b). From a multiple peak �t (dashed green line in lower panel) of the derivative
(solid red line in lower panel) of the line pro�le, the lateral resolution is determined.
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Chapter 4

Bilayer Graphene in Electric and
Magnetic Fields

Introduction

In this chapter, the opening of a band gap in bilayer graphene in magnetic and electric
�elds is investigated. Theoretical studies have shown that an electric potential di�erence
between the upper and lower graphene layer of Bernal stacked bilayer graphene introduces
a gap opening with the gap size depending on the applied electric �eld [20]. The electric
�eld breaks the symmetry of the upper and lower layer, which introduces a polarization
of the valley degree of freedom in the lowest LL, since here the layer degree of freedom
is associated with the valley degree of freedom. At the same time, the band structure at
low energies, close to the opened gap, is transformed from the parabolic dispersion typical
of bilayer graphene to a so-called Mexican hat-shaped dispersion [20, 85, 86]. Experimen-
tally, this band structure modulation has been con�rmed by angle-resolved photoemission
spectroscopy (ARPES) [87], and the expected band gap size could be veri�ed by optical
spectroscopy [88�90]. Electrical transport measurements have also enabled measurement of
the gap size [21]. In such experiments, the electrical �eld can be controlled independently of
the carrier concentration via a top gate in addition to the Si/SiO2 back gate. The top gate
fabrication requires the addition of a gate dielectric on top of the bilayer �ake. Similarly
to the in�uence of the SiO2 back gate dielectric, the quality of the bilayer graphene �ake,
being inferior to monolayer graphene subjected to the same treatment and measurement
conditions [91], is usually further decreased by such a structure. The increased disorder is
likely to prevent the observation of an exponential temperature dependence expected for
a gap opening and results in an experimental gap size that is smaller than expected by
theory. One strategy to overcome this problem is to suspend the �ake between the top and
the bottom gate using the air space between the �ake and the gate as dielectric [22]. This
method enables evaluation of the interdependence of the gap properties and the Landau
level structure, including the gap in�uence on degeneracy-lifted levels in electric and mag-
netic �eld. However, the accessible electric �eld range and the device geometry options are
limited due to the mechanical fragility of the suspended graphene sheets. A too small size
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Chapter 4. Bilayer Graphene in Electric and Magnetic Fields

of the suspended sheets can quench the Quantum Hall e�ect, especially in multi-terminal
devices [66].

Experiment

Here, we investigate the behavior of suspended bilayer graphene in vertical electric and
magnetic �elds. For separate measurement of the longitudinal and Hall resistance, the
contacts of the devices are structured in Hall bar geometry without etching of the �ake.
Figure 4.1(a) displays the device con�guration and measurement setup used for acquisition
of the Hall (Vxy) and the longitudinal (Vxx) voltage. An applied potential di�erence be-
tween the top and the back gate generates an electric �eld ~E between the gates, where the
bilayer graphene device is located as shown in 4.1(b). The induced charge carrier density
depends on Vt = Vtop − VCNP and Vb = Vback − VCNP .

(a) (b) 
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Figure 4.1: Device con�guration for Hall bar measurements on bilayer graphene in electric
and magnetic �elds. (a) SEM image of a Hall bar device with a schematic depiction of
the electrical circuit setup for acquiring lateral and transverse resistances. The source (S)
and drain (D) contacts are colorized yellow, the Hall probes green, the top gate blue and
the graphene bilayer �ake red. (b) Schematic cross-section of a graphene bilayer suspended
between a top- and bottom gate. A potential di�erence between the gates results in an electric
�eld perpendicular to the sheet.

The measurements are performed with standard lock-in ampli�er techniques at tempera-
tures between 50 mK and 4 K under magnetic �elds of up to 12 T and at low enough
currents to prevent heating e�ects. All of the devices have been current-annealed be-
fore measurement (up to ≈ 1 mA). After this cleaning step typical device mobilities are
µ ≈ 15, 000 cm2(V s)−1.
The degeneracy lifting of the lowest LL of the bilayer graphene devices in magnetic �eld
is investigated in section 4.1. In section 4.2, the e�ect of combined magnetic and elec-
tric �eld, as well as the independent control of electric �eld and carrier concentration is
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demonstrated. A discussion of the observed splitting is given in section 4.3, while section
4.4 deals with the emergence of a spontaneous gap at low electric and magnetic �elds.

Devices

The suspended bilayer graphene devices are fabricated from mechanically exfoliated graph-
ene (see chapter 3). The top gate is structured after de�nition of the contacts in Hall bar
geometry. Here, the �ake is not etched into an ideal Hall bar shape, but the contacts are
patterned directly on a bilayer stripe in order to attain su�cient mechanical stability for
the suspension. A spacer layer of 150 nm SiOx is deposited via e-beam evaporation on
top of the device prior to de�nition of the metal top gate (3 nm Cr/ 150 nm Au). This
layer is etched away completely in the suspension step and thus determines the distance
from the �ake to the top gate, while only half of the back gate dielectric is removed (see
chapter 3).

(a) (b)

Figure 4.2: Bilayer graphene devices in Hall bar geometry with and without top gate. The
scale bar is 1 µm. In the side view images the top gate is colorized blue, the graphene bilayer
red, the Hall probes green and the current contacts yellow. (a) Top- (Inlens detector) and
side view (SE2 detector) SEM image of a Hall bar device. (b) Top- (Inlens detector) and side
view (SE2 detector) SEM image of another sample with and without topgate.

Figure 4.2 shows scanning electron microscopy (SEM) images of di�erent graphene bilayer
devices with or without top gate. Detection by the Inlens detector, as shown on the left
side of the panels, reveals the contours of the structured devices. The edges of the bilayer
�ake appear bright near the main current contacts since there the �ake is pinned to the
contacts but lies on the substrate if the neighboring contact is too far away. Detection by
the SE2 detector, as shown on the right side of the panels, provides a three-dimensional
impression of the devices. In these images, the main current contacts are colorized yellow,
the Hall probes green and the top gate blue. The bilayer �ake itself is shown in red. The
device dimensions cannot exceed a few micrometers, since larger �akes bend towards the
substrate and do not remain properly suspended. Care must be taken not to place the
Hall probes closer to the main current contacts than ≈ 500 nm, since this would shorten
the potential lines between the two opposing sides of the �akes (see chapter 2). These
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Chapter 4. Bilayer Graphene in Electric and Magnetic Fields

lines meet meet at points at the current contact, so-called hot spots. If the Hall probes are
patterned in this area, the QHE is quenched [92,93].

4.1 Degeneracy Lifting of the Lowest Landau Level in

Magnetic Field

As described in chapter 2, the LLs of bilayer graphene occur at ν = ±4N = ±4,±8,±12, ...,
where the lowest LL comprises a spin, valley (layer) and orbital degeneracy. Similar to
monolayer graphene, lifting of these degeneracies can be observed for su�cient sample
quality in high magnetic �elds [94,95].
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Figure 4.3: Hall bar measurements on bilayer graphene in a magnetic �eld at T = 70 mK
(sample EP707010a_D5). (a) Fan diagram of the longitudinal resistance. The Landau level
positions are indicated by the red dashed lines. (b) Zoom of the longitudinal resistance within
the hole region. (c) Fan diagram of the Hall resistance. (d) Zoom of the Hall resistance within
the hole region. (e) Longitudinal conductivity under magnetic �elds between 0.72 T and 12 T .

Figure 4.3(a)-(d) shows the longitudinal and Hall resistances of a suspended bilayer graphene
Hall bar device (EP070710a_D5) at 70 mK. The gate coupling factor is determined from
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4.1. Degeneracy Lifting of the Lowest Landau Level in Magnetic Field

the �lling factor positions in the fan diagrams to 3.2 · 1014 m−2V −1. The CNP position
is moved to Vb = 0.55 V after current annealing, which indicates, along with the narrow
peak width, a high quality of the device. Besides the usual bilayer graphene �lling factors,
plateaus (and corresponding zero longitudinal conductivity regions) at additional �lling
factors are observed. For the shown device the longitudinal resistance at the CNP diverges
for increasing magnetic �eld and at �elds as low as ≈ 0.5 T the �lling factors ±2 appear.
Due to the non-ideal Hall bar geometry admixtures of the longitudinal and transverse
voltages are present, which are most pronounced at �lling factor 0 at the CNP, due to the
divergence of the longitudinal resistance. The Hall resistance also increases close to the
CNP and reaches a value of 12.9 kΩ which corresponds to �lling factor 2 (conductivity
2 e2/h). For higher magnetic �elds, the Hall resistance close to the CNP assumes even
higher values of ±25.8 kΩ (corresponding to �lling factor ±1), although, it still crosses
zero at the CNP. The novel �lling factors are best visible in the longitudinal conductivity,
which is derived by tensor inversion of the resistance (see chapter 3). In �gure 4.3(e) this
conductivity is plotted for di�erent magnetic �elds (ranging from 0.72 T to 12 T ). At
low magnetic �elds, the �lling factors for the higher LLs are observed, whereas for higher
B-�elds they are moved out of the accessible carrier concentration range due to their mag-
netic �eld dependence (ν = qh/eB). Figure 4.4(a) and (b) show a zoom into the lowest LL
region of the longitudinal and transverse conductivities, as derived from the fan diagrams
in �gure 4.3 for magnetic �elds between 4.8 T and 12 T . In this magnetic �eld range the
degeneracy lifting of the lowest LL is complete, with all integer �lling factors visible. The
�lling factors ν = ±1 and ν = ±3 start to become observable at ≈ 4 T .

(a)

 

-4 -2 0
-4

-2

0

12T

 

  Filling Factor

 xy
(e

2 /h
)

12T

-4 -2 0 2 4
0

2

4

4.8T

4.8T

 

  Filling Factor

 

 xx
(e

2 /h
)

(b)

Figure 4.4: Longitudinal and Hall conductivity of bilayer graphene at T = 70 mK (sample
EP707010a_D5). (a) Zoom of the longitudinal conductivity in the lowest LL region. (b)
Zoom of the Hall conductivity of the hole side in the lowest LL region.

Similar observations have also been made on monolayer graphene, where �lling factor 0
followed by ±1 appear [96�98]. In this case, the lowest LL, which only possesses spin
and valley degeneracy, also assumes all integer values. In a similar way, the higher LLs

35



Chapter 4. Bilayer Graphene in Electric and Magnetic Fields

can be subject to degeneracy lifting in high magnetic �elds. However, since in this �eld
range, these LLs appear at high carrier concentrations, they are not visible in the limited
concentration range accessible for suspended graphene.

4.2 Independent Control of Electric Field and Carrier

Concentration

The vertical electric �eld within the bilayer device can be controlled by the combination
of top and bottom gate. It depends on the respective gate coupling factors αt and αb [88]
as follows:

E =
eαbVb − eαtVt

2ε0
, (4.1)

based upon the capacitances in the simple capacitor model Ct = eαt and Cb = eαb, and
with ε0 as the vacuum permittivity. The gate coupling to the top gate is similar to the
back gate, if the distance of the �ake to the remaining back gate oxide layer is identical to
the distance to the top gate, since the second term in the sum of equation 3.4 dominates
due to the involved permittivities. The total carrier concentration is given by the sum of
the concentrations induced by the two gates [88]:

q = αbVb + αtVt. (4.2)

Figure 4.5(a) displays the transverse resistance of a suspended bilayer (EP082910a_D6)
as a function of top and bottom gate voltages. The directions of the electric �eld and
density axis are also indicated. The plot evidences that the conversion from gate to electric
�eld and carrier density dependence corresponds to a matrix rotation by an angle θ with
subsequent scaling of the axis. The angle can be derived from the ratio of the two gate
coupling factors, or the electric �eld values in the coordinate system of the gate voltages
Vt(q = 0) and Vb(q = 0) as tan(θ) = |Vb(q=0)|

|Vt(q=0)| = αt

αb
. For the device in �gure 4.5(a)

one obtains θ = 28◦. The back gate coupling factor, determined from the fan diagrams
similarly to monolayer graphene (see chapter 3), is αb = 3.0 ·1014 m−2V −1. With the angle
θ a top gate coupling factor of αb = 1.6 · 1014 m−2V −1 follows. The gate coupling factor
demonstrates that while only slightly less SiO2 (≈ 90 nm) was etched below the �ake than
the targeted 150 nm, the top gate distance from the �ake is around 340 nm for this device.
In �gure 4.5(b), equation 4.1 and 4.2 have been used to plot the transverse resistance in the
coordinate system of electric �eld and carrier concentration. Regions of high resistance are
shown in red and appear on the electric �eld axis for small electric �elds, which is followed
by a minimum and an increase at su�ciently high positive (or negative) electric �elds.
While the exponential resistance increase in the high �eld region is expected due to the
gap opening, the low-�eld, highly resistive region must have a di�erent origin. For more
details on this spontaneous low-�eld gap, see section 4.4. The high �eld gap depends on
the applied electric �eld and has been theoretically predicted to be as large as 10 meV at
electric �elds of ≈ 0.1 V/nm [20]. In experiment, however, even in suspended bilayers with
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4.2. Independent Control of Electric Field and Carrier Concentration

lateral two-terminal contacts, a signi�cantly smaller gap of ≈ 0.6 meV at 80 mV/nm [22]
has been found. This discrepancy might be ascribed to remnant disorder, or non-uniform
and rough edges of the sheet.
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Figure 4.5: Control of electric �eld and carrier density in bilayer graphene (sample
EP082910a_D6). (a) Transverse resistance at B = 0 T as a function of bottom (Vb) and
top (Vt) gate voltage. (b) The potential di�erence between the two layers introduced by the
gates opens a gap and alters the low-energy band structure (adapted from [20]). (c) By a
matrix rotation and scaling, the electric �eld E and charge carrier concentration q axes can
be obtained. The potential di�erence leads to a polarization of the valley degree of freedom
depending on the sign of the electric �eld and the carrier type. The conduction is p-type
for negative concentration (hole conduction) and n-type for positive concentration (electron
conduction).

Figure 4.5(b) illustrates the in�uence of �nite electric �eld on the parabolic low energy band
structure of bilayer graphene. A �nite electric �eld opens up a band gap. Conduction occurs
via holes for negative densities and electrons for positive densities q, respectively. The
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electric �eld furthermore breaks the inversion symmetry by imposing a di�erent potential
on the upper and lower layer of the �ake, and thus separates the charge carriers in valley
K ′ and K in the lowest LL, as the valley degree of freedom can be associated with the two
layers [99]. Furthermore, for the lowest LL the two charge carrier types possess di�erent
chirality (valley degree of freedom). This is highlighted in �gure 4.5(c), where for positive
electric �elds, electrons are assumed to be associated with the upper layer U , and for
negative electric �elds with the lower layer L. Correspondingly, holes are associated with
L for positive electric �elds and with U for negative electric �elds.
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Figure 4.6: Transverse resistance of bilayer graphene as a function of bottom (Vb) and top
(Vt) gate voltage (upper panels) and in electric and magnetic �eld (lower panels) (sample
EP082910a_D6). (a) Transverse resistance at B = 0 T . Before the gap due to the electric
�eld opens up, the resistance drops at both negative and positive electric �eld. (b) The
transverse resistance at B = 0.5 T . It is asymmetric in charge carrier density. (c) At higher
magnetic �elds of B = 1 T the QHE becomes observable in the transverse resistance. Filling
factors ±4, ±8 and ±12 appear. The ±2 �lling factor is devided by a resistance drop on the
electric �eld axis due to LL crossings.
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4.3. Splitting Models

If additionally to the electric �eld, a magnetic �eld is applied, Landau levels are formed.
In �gure 4.6, the transverse resistance is plotted for magnetic �elds B = 0 T , B = 0.5 T
and B = 1.0 T as a function of top and bottom gate in the upper, and as a function of
electric �eld and carrier concentration in the lower panel. At the latter magnetic �eld,
�lling factor ν = ±2 emerges, although it is separated into two regions by a resistance dip
towards zero on the carrier concentration axis (E = 0), such that the region of ν = 0 is
directly connected with the region of ν = ±4 without crossing ν = ±2. On the electric
�eld axis (q = 0), the zeroth �lling factor is separated into one region at small �elds and
one at higher �elds, where ν = 0 reappears, as already observed for the high resistive
regions at zero magnetic �eld. For increasing magnetic �eld, the transition points move to
higher absolute electric �eld. This behavior has been explained by LL crossings in electric
�eld [22] and will be further discussed in the next section.

4.3 Splitting Models

In high quality monolayer and bilayer graphene in elevated magnetic �elds, splitting of the
N = 0 LL is well-documented. While the lowest LL is only 4-fold degenerate in monolayer
graphene with spin and valley degeneracy, in bilayer graphene, it is 8-fold degenerate due
to the additional orbital degeneracy [99]. For both, monolayer and bilayer graphene with
increasing magnetic �eld, the �lling factor ν = 0 appears as the �rst �lling factor that arises
from degeneracy lifting. Similar to monolayer graphene, where it has been ascribed to the
Zeeman e�ect [98], either pure or with a correction due to electron-electron interactions [96],
also for bilayer graphene a spin-related origin has been predicted theoretically [100, 101]
and is in accordance with experiment [94, 95]. Thus, the hierarchy of the degeneracy
lifting should involve �rst lifting of the spin degeneracy, followed by splitting of the valley
degree of freedom. On this basis, the appearance of the �lling factors ±1 is ascribable to
lifting of the valley degeneracy lifting which occurs at higher magnetic �elds compared to
the spin degeneracy lifting. In bilayer graphene, however, the interaction energy due to
Coulomb e�ects is expected to exceed the splitting due to the Zeeman e�ect [100, 102].
Accordingly, interaction e�ects should play a dominant role govern the spin, valley and
orbital degeneracy lifting, which are theoretically predicted to occur in this order with the
exchange energy being largest for the spin degree of freedom, followed by that of the valley
and �nally the orbital degree of freedom [100]. This splitting scenario is summarized in
�gure 4.7(a).
Under applied electric �eld the inversion symmetry of the two layers is broken, which
corresponds to a separation of the charge carriers in the two valleys, which implies lifting
of the valley degeneracy in the lowest LL [99]. As a function of electric �eld, LLs with
di�erent layer (valley) polarization are expected to have slopes of opposite sign, such that
they cross at certain points on the concentration and electric �eld axis. The transition
points of decreased resistance might be interpreted in the framework of this model of
crossing LLs as the crossing points [22]. The LL crossing model is explained as follows:
Figure 4.7(b) shows the situation, where spin degeneracy lifting is present due to a �nite
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magnetic �eld with additional application of an electric �eld (while orbital degeneracy
lifting is neglected). Thus, in both applied electric �eld and magnetic �eld, the ν = 0
region is segregated into three regions. In accordance with theory [101, 103], this can be
rationalized as one state at low electric �eld and two layer (valley) polarized states at higher
positive and negative electric �elds with opposite layer (valley) polarization. Upon crossing
the concentration or electric �eld axis, the layer (valley) polarization changes. On the
concentration axis, additional crossings appear, where a decreased resistance is observed
within �lling factors ν = ±2. Here, LLs with the same spin polarization but opposite
layer polarization cross if the low �eld state is assumed to be spin polarized. Thus, the
ν = 0 region at low concentration enters directly into a ν = ±4 region, without passing
ν = ±2. At the transitions points, a decreased resistance is observed. Recent measurements
indicate, however, that the low electric �eld state is a canted antiferromagnetic (CAF)
state [104], which is dominant for high magnetic �elds with a transition to a spin-polarized
state only at elevated magnetic �elds, while the layer (valley) polarized states are dominant
for high electric �elds.
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Figure 4.7: Models of the Landau level splitting in magnetic and electric �eld applied to
bilayer graphene. (a) Schematic representation of the LL splitting for the lowest LL (adapted
from [95]). With increasing magnetic �eld splitting occurs due to spin degeneracy lifting,
followed by valley and orbital degeneracy lifting. Additional �lling factors appear due to the
splitting. (b) Landau level splitting in electric �eld (adapted from [22]).
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4.4. Spontaneous Low Field Gap

4.4 Spontaneous Low Field Gap

Besides the spin or layer (valley) polarized states of the lowest LL, an additional spon-
taneous gap is observed, which persists down to zero electric and magnetic �eld, but is
quenched by the application of higher �elds. This phase is exempli�ed in �gure 4.8, where
the transverse resistance of a bilayer sample (EP707010a_P5 with gate coupling factor
αb = 3.2 · 1014 1/m2) is plotted as a function of back gate voltage (density) and mag-
netic �eld at zero electric �eld (panel (a)) or as a function of density and electric �eld
at zero magnetic �eld (panel (b)). For B-�elds above Bc = ±50 mT , the spin polarized
ν = 0 state appears. At lower �elds, the resistance drops and rises again towards zero
magnetic �eld. The same trend is observed for low electric �elds with a transition occur-
ring at Ec = ±15 mV/nm at zero magnetic �eld for another sample (082910a_D6 with
αb = 3.0 · 1014 1/m2 and αt = 1.6 · 1014 1/m2). Above these �elds, the gap due to the layer
(valley) polarization occurs.
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Figure 4.8: High resistive phase observed for low magnetic and electric �elds, as well as low
gate voltages (charge carrier densities q). (a) Plot of the transverse resistance measured at
low magnetic �elds and T = 50 mK. The critical magnetic �eld is Bc ≈ 50 mT . (b) Plot
of the transverse resistance measured at low electric �elds and T = 250 mK. The critical
electric �eld is Ec ≈ 15 mT .

Such electric-�eld dependent transition is in accordance with theoretical predictions [101,
103]. However, these models cannot account for the transition observed in magnetic �eld.
The latter signi�es a new phase since neither the spin-polarized nor the layer-polarized
phases persist down to zero magnetic and electric �eld. This new phase is hence di�er-
ent from the spin-polarized phase under higher magnetic �elds and also from the layer
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(valley)-polarized phase under higher electric �elds. Besides its instability to applied ex-
ternal �elds, the highly resistive phase is also unstable towards increased charge carrier
concentration, and is only observed close to the CNP. The observed opening of a spon-
taneous gap at zero electric and magnetic �eld in bilayer graphene may originate from
electron-electron interactions predicted by various theories [17,101,105�110]. One of these
models [101, 107] predicts the formation of an anomalous Hall insulating state in which
time reversal symmetry is spontaneously broken and layer (valley) polarization is present,
while an alternative model attributes the increased resistance to the formation of two Dirac
cones at the CNP due to breaking of rotational symmetry [109, 110]. In accordance with
the �rst model [101, 107], the present devices exhibit a non-divergent, �nite resistance in
the spontaneous gap region, with a transition occurring at lower magnetic �eld (≈ 50 mT )
than predicted (≈ 500 mT ). The second scenario would also be consistent with the exper-
imentally observed conductivity decrease, since it predicts a decreased density of states at
the Dirac point due to the broken rotational symmetry. Since both models are consistent
with the magnetotransport data, further experiments are necessary to con�rm one of these
models. To this end, Kerr e�ect measurements have been suggested [111].
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Chapter 5

Graphene Antidot Lattices

Introduction

In the following three chapters (chapter 5, 6 and 7), spatial con�nement is investigated
as another approach towards band gap-opening in graphene. Since graphene is by de�ni-
tion a material already con�ned to two dimensions, further con�nement results in quasi
1D stripes called graphene nanoribbons (GNRs). Theoretical studies, using tight binding
(TB) theory or density functional theory (DFT) calculations, have predicted that the band
structure of such ribbons depends on the edge structure and the ribbon width [24,112,113].
In particular, TB theory predicts that GNRs with pure zig-zag edges are metallic, while
armchair edges result in either semiconducting or metallic behavior of the GNR depending
on its width. The ribbon width also in�uences the gap size, speci�cally the gap size scales
inversely with the width.
For networks of such GNRs, called graphene antidot lattices (GALs), similar predictions
have been obtained [23,114�116]. These GALs can also be described as an arrangement of
nanoholes. Since in the case of GALs, the band gap depends on the size and separation of
the nanoholes, they represent an interesting platform for band gap engineering in graphene.
Experimentally, hints for the opening of such a band gap have been obtained for GNRs
[117�119] as well as GALs [25], with most of the studies reporting a transport gap. The
latter manifests itself by a high resistive region in the transport characteristics of the de-
vice, which is observable even if localized states exist inside the gap. Such localized states
can originate from impurities or adsorbates and impart hopping conduction of charge car-
riers. In devices structured on Si/SiO2 with standard lithography methods, impurities or
adsorbates are easily introduced by resist residues from the patterning process, imperfec-
tions of the substrate, or contaminations adsorbed from the ambient onto the substrate or
the device surface. Rough edges and varying ribbon width furthermore lead to so-called
Coulomb blockade (CB) behavior. GNR devices [117, 120] have been reported to often
behave like a series of quantum dots connected by tunneling barriers.

Part of this chapter was published in: A. J. M. Giesbers, E. C. Peters et al., Charge transport gap in
graphene antidot lattices. Phys. Rev. B 86, 045445 (2012) and E. C. Peters et al., Variable range hopping
in graphene antidot lattices. Phys. Status Solidi B 249, 2522 (2012).
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Chapter 5. Graphene Antidot Lattices

Experiment

Here, we address the connection between the electronic structure and the geometry of the
GALs by studying the AC and DC charge transport characteristics of samples with dif-
ferent arrangement, size and separation of the nanoholes, as well as di�erent doping level.
The GAL devices investigated consist of d = 50 nm diameter nanoholes with center-to-
center spacings of s = 80, 100, or 200 nm in either a square or a hexagonal nanohole
arrangement (�gure 5.1). This corresponds to a spatial con�nement ("neck width") of 30,
50, and 150 nm, respectively.
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Figure 5.1: Atomic force microscopy (AFM) image of a GAL with nanoholes arranged in a
square pattern. (a) The spacing between the nanoholes is s = 100 nm and their diameter is
d = 50 nm. (b) Height pro�le along the blue line in panel (a).

The measurements are performed with standard lock-in ampli�er techniques at temper-
atures between 1.4 K and 100 K at low enough currents to prevent heating e�ects. A
negligible bias voltage in�uence is con�rmed in complementary DC measurements. In or-
der to investigate doping e�ects, some of the samples are annealed in-situ under vacuum
(p ≈ 1 · 10−5 mbar).
The in�uence of the nanohole pattern on the transport characteristics is investigated in
section 5.1. Section 5.2 provides a closer look on localization and interaction e�ects of
the system and the relevant length and energy scales are discussed. Moreover, the role of
the sample quality and tuning of the charge carrier density by an external back gate is
addressed in section 5.3.

Devices

The GAL devices are fabricated from mechanically exfoliated graphene (see chapter 3).
Figure 5.2 shows a GAL device structured in four-terminal lateral geometry patterned with
a square lattice of nanoholes with 100 nm spacing. As described in chapter 3, this device
geometry o�ers the advantage of eliminating the contact resistance. The Cr/Au contacts
are colorized yellow in the scanning electron micrograph (SEM) image. For patterning the
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GAL devices, graphene �akes are mechanically exfoliated onto a Si substrate covered with
300 nm thick SiO2 layer, as described in chapter 3. Details on the samples investigated
in this thesis are provided in Appendix A. For four-terminal measurements, four Cr/Au
(2/100 nm) electrical contacts are de�ned by standard EBL using a double layer PMMA
resist. The etch mask for the antidot lattice is de�ned in the following EBL step. After
the lift-o� step, the exposed graphene is etched by RIE (see chapter 3). The samples, are
designed to have similar �ake sizes, the same contact material and positions, and the same
antidot lattice dimensions, in order to minimize size e�ects. In general, samples fabricated
on the same chip (undergoing the same treatment and processing) are compared in order
to minimize variations due to the processing conditions.
To improve the sample quality, after completing all lithography steps some of the samples
are annealed at 250◦C in a furnace under Argon �ow to remove surface contaminants.
This shifts the CNP closer towards zero, although, due to subsequent exposure to the
atmosphere, the �nal position of the CNP typically lies around 10 V to 20 V . This exposure
to the ambient can be avoided if the sample is annealed in vacuum, already mounted in the
cryostat insert. It also allows to compare the device behavior before and after annealing
(see sample 9249_D3a/9249_aD3a and 9249_D2/9249_aD2). The �eld-e�ect mobility
of the GAL devices is found to reach values up to 5000 cm2/V s at 4 K even without
annealing.

(a) (b)

Figure 5.2: SEM image (a) and zoom (b) of a GAL device in lateral four-terminal geom-
etry (metal contacts are colorized yellow). Typically, the GAL devices are patterned from
exfoliated monolayer stripes a few micrometers wide and long. The scale bar is 1 µm.
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Chapter 5. Graphene Antidot Lattices

5.1 Transport Behavior depending on Antidot Lattice

Geometry

5.1.1 Transport Mechanisms

For pristine graphene, the transport characteristics are governed by the position of the
CNP. Below this point, p-type conduction with holes as charge carriers occurs, while above
the CNP n-type conduction with electrons as charge carriers dominates. In an idealized
model, no charge carriers exist directly at the CNP, which would imply in�nite resistivity.
However, due to the formation of electron-hole puddles [62], electrons and holes coexist at
the CNP and only the net charge is exactly zero. This leads to a �nite resistance at the
CNP, which has been found to be close to 4 e2/h [29].
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Figure 5.3: Schematic of di�erent scenarios for the density of states (DOS). Blue represents
the hole density of states and red the electrons density of states. The coexistence of charge
carriers around the CNP (E = 0) is indicated by the tail of the DOS of the opposite charge
carriers. The dashed lines indicate the DOS in case no gap is opened. (a) DOS for Mott VRH
with a constant density of localized states (black) in the band gap EG. (b) DOS for ES VRH
with a Coulomb gap (CG) ECG in the localized density of states.

Activated Transport

While pristine graphene is a semi-metal, opening of a band gap EG transforms it into a
semiconductor, and the charge transport can be described by models developed for doped
semiconductors [121]. Accordingly, in order to contribute to conduction charge carriers
need to be activated by the energy eA = T0kB (kB being the Boltzmann constant) to the
nearest mobility edge of the conduction or valence band. This energy corresponds to half
of the gap size EA and is experimentally accessible via the temperature dependence of the
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5.1. Transport Behavior depending on Antidot Lattice Geometry

conductivity. The general law for the temperature-dependent conductivity is given as:

σ = σ0exp

(
−
(
T0

T

)ν)
(5.1)

with σ0 = e2/h [121]. In case of a simple band gap, the exponent for activated transport
is equal to ν = 1 and the exponential law is the Arrhenius equation. For a simple band
gap with electron conduction above the gap and hole conduction below the gap the DOS
would be expected to increase linearly above and below the gap.

2D Mott Variable Range Hopping

As mentioned above, impurities and adsorbates may introduce localized states. These can
contribute to the conduction by hopping of carriers from one localized state to the next.
The simplest case is Mott variable range hopping (VRH), where the hopping probability
between two hopping sites depends on their spatial and energetic separation, with negligible
interactions between the charge carriers. Here, the density of the localized states in the
band gap is constant (see �gure 5.3(a)), and the exponent in equation 5.1 is given as
ν = 1/(d+ 1), where d is the dimensionality of the system. In the case of two-dimensional
(2D) transport in graphene, the exponent becomes ν = 1/3. For 2D Mott VRH the
hopping distance Rhop and energy Ehop [121�123] are given by:

Rhop =
ξ

3

(
T0

T

)1/3

(5.2)

and

Ehop =
1

3
T

2/3
0 T 1/3. (5.3)

In these equations
T0 = TM0 = 27/πg0ξ

2, (5.4)

which contains the constant density of states g0 and the localization length ξ.

Efros-Shklovskii Variable Range Hopping

Correlations between localized charge carriers are especially relevant for strong interactions
and low temperatures. Due to the long-range nature of the Coulomb potential, the density
of localized states vanishes around the Fermi level and a so-called Coulomb gap (CG)
emerges in the single-particle constant density of localized states [121] (see �gure 5.3(b)).
Inclusion of electron-electron interactions changes the exponent in equation 5.1 to ν = 1/2,
and conduction is described by Efros-Shklovskii variable range hopping (ES VRH). In this
case, the hopping distance and the hopping energy [121�123] are given by:

Rhop =
ξ

4

(
T0

T

)1/2

(5.5)
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and

Ehop =
1

2
T

1/2
0 T 1/2. (5.6)

The localization length ξ can be derived directly from

T0 = TES0 =
βe2

4πεε0kBξ
, (5.7)

where β = 2.8 is a constant [121], ε0 is the vacuum permittivity and ε = 2.4 is the dielectric
constant of graphene on SiO2 [124]. The Coulomb gap (CG) can be calculated from:

ECG =
T0

β
√

4π
. (5.8)

5.1.2 Temperature dependence

Figure 5.4(a) shows the gate voltage dependent conductivity around the CNP of a GAL
sample with 100 nm spacing for temperatures between T = 1.4 K and T = 70 K.
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Figure 5.4: Temperature dependent conductivity of a 100 nm spacing sample (8855_D1).
(a) In the gate-sweeps between T = 1.4 K and T = 70 K, a gap opens around the CNP
for low temperatures. The gate coupling factor is 7.2 · 1010 V −1cm−2. (b) The minimum
conductivity shown in panel a) is �tted with equation 5.1. The �t parameters for this sample
are T0 = 55± 7 K and ν = 0.51± 0.02 . σ0 is close to 1 e2/h.

The net charge carrier density is adjusted by varying the back gate voltage Vback and
corresponds to q = α(Vback − VCNP ) with the gate coupling factor α, which is about
7 ·1010 V −1cm−2 for pristine graphene on Si/SiO2 with a 300 nm oxide layer [29]. Around
the CNP, for this sample located at VCNP = 10.6 V , the conductivity closely approaches
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5.1. Transport Behavior depending on Antidot Lattice Geometry

zero at the lowest temperatures in contrast to σ ≈ 4 e2/h for pristine graphene, which
indicates the presence of a transport gap [25, 114�116]. In order to analyze the transport
mechanism the temperature dependence at the CNP can be �tted with equation 5.1 as
shown in �gure 5.4(b).

Dependence on the GAL geometry

For GALs with large spacing (200 nm), the temperature dependent minimum conductivity
reveals a ln(σ) ∝ T−1/3 dependence with an average exponent of ν = 0.26± 0.03, pointing
towards 2D Mott VRH (exponent ν = 1/3) in these samples.
Upon decreasing the lattice spacing, the temperature dependence of the minimum con-
ductivity changes to ln(σ) ∝ T−1/2. The average exponent is ν = 0.50 ± 0.04 and
ν = 0.47 ± 0.04 for samples with 100 nm and 80 nm nanohole spacing, respectively.
This change from ν = 1/3 to ν = 1/2 indicates a transition to ES VRH [121] and signi�es
enhanced electron-electron interactions. The increased exchange energy can be explained
by a smaller separation of the localized states and correspondingly increased overlap of the
wave functions. These states are most likely located at the nanohole edges [115,121].

5.1.3 I/V Curves

Complementary to the AC measurements, DC measurements are performed on the GALs.
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Figure 5.5: I/V curves for di�erent lattice geometries. (a) I/V curves at the CNP of sample
8855_D2b (200 nm spacing), 8855_D1 (100 nm spacing) and 8854_D3a (80 nm spacing)
at T = 1.4 K. (b) Plots of the absolute current on a logarithmic scale show a variation over
5 orders of magnitude and a zero conductance plateau around the CNP. The width of the
plateau increases with decreasing spacing.
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In �gure 5.5 I/V curves for samples with di�erent lattice spacings are shown. The trans-
port gap is re�ected by a zero-bias plateau, which is wider for smaller nanohole spacing. In
fact, for small lattice spacing, the zero-bias conductance of the samples decreases and the
plateau �attens out and broadens. Similar observations have been made on GNRs [119].
For pristine graphene the I/V characteristics are linear even for samples of low quality,
where regions of di�erent doping are likely to introduce pn-junctions. This can be ex-
plained by the fact that transport across pn-junctions in graphene is not impeded due to
Klein tunneling [47].
The width of the plateau in the I/V curves (2∆Vsd) can be used to estimate the size of the
transport gap EG = e2∆Vsd as exempli�ed for the 80 nm spacing sample by the logarith-
mic plot in �gure 5.5b). At T = 1.4 K, this yields an approximate gap size of EG = 29 K
(2.5 meV ) and EG = 394 K (34 meV ) for the 100 nm and 80 nm spacing samples, respec-
tively.
The DC measurements furthermore con�rm that bias voltage e�ects are negligible since
similar results are obtained for the temperature dependent low-bias conductivity at the
CNP as in the AC measurements. The temperature dependence of the I/V curves is exem-
pli�ed by sample 8855_D1 (100_nm spacing) in �gure 5.6(a). With decreasing temper-
ature (�gure 5.6(a)), the plateau becomes more pronounced. The temperature dependent
conductivity at the CNP exhibits the same exponential increase as in the AC measure-
ments (with ν = 0.49 and T0 = 63 K), and yields an exponent of ν = 0.48 and T0 = 58 K
for this sample (�gure 5.6(b)).
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Figure 5.6: Temperature dependence of the I/V curves. (a) I/V curves at the CNP for
di�erent temperatures of sample 8855_D1 (100 nm spacing) at di�erent temperatures. (b)
Fit of equation 5.1 to the conductance derived from the I/V curves in panel (a) at low bias
voltage. The obtained �t parameters are T0 = 58 ± 10 K and ν = 0.48 ± 0.03, while σ0 is
close to 1.
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5.2 Variable Range Hopping Regimes

As shown above (see section 5.1), the transport mechanism, as determined from the tem-
perature dependent resistance behavior, depends on the GAL dimension. It changes from
2D Mott VRH (with an exponent close to ν = 1/3) for large lattice spacing to ES VRH
(with an exponent close to ν = 1/2) for smaller lattice spacing. This trend is reason-
able considering that placing the nanoholes closer together should enhance the Coulomb
interactions such that a Coulomb gap appears in the localized density of states, which
increases further with decreasing lattice spacing. It is noteworthy that a similar transition
has been documented for graphene covalently functionalized with �uorine [125], albeit the
functionalization pattern is quite likely more random compared to the present samples. In
�uorinated graphene, charge transport was found to occur via ES-VRH at higher function-
alization degrees (equivalent to a high density of localized states), whereas at lower �uorine
content the transport was dominated by Mott-VRH. Such transition is in accordance with
theory predicting that for lower densities of localized states, the average hopping distance
increases, and correspondingly the Coulomb gap becomes less relevant and a constant
density of states, g0, prevails [123,125].

Derived VRH Parameters

The �t parameters gained from the temperature dependent measurements provide addi-
tional information such as the hopping distance Rhop and energy Ehop (equations 5.3 and
5.5-5.7), the localization length ξ (equation 5.7) and the Coulomb gap size ECG (equation
5.8).

Spacing (nm) ν T0 (K) ξ (nm) ECG (K) Ehop (K) Rhop (nm)
Regime (meV) (meV)

80 0.47± 0.04 360 54 36.4 30.0 81
ES VRH 3.1 2.6

100 0.50± 0.04 50 345 7.4 13.1 199
ES VRH 0.64 1.1

200 0.26± 0.03 0.5 g0ξ
2 = 17 K−1 - 1.2

Mott VRH - 0.1
no dots - - - - - -

Table 5.1: Average VRH parameters derived from the AC measurements for GALs with
di�erent lattice dimensions. The hopping energies and distances are calculated for T = 10 K.

Table 5.1 summarizes the average values of these parameters for di�erent GAL geometries,
as well as for pristine graphene. For the calculation of the localization length a dielectric
constant of ε = 2.4 for graphene on SiO2 [124] is assumed.

51



Chapter 5. Graphene Antidot Lattices

Localization and Exchange Interactions

A closer look at the parameters in dependence of the GAL geometry underscores the
transition from weaker to stronger localization and enhanced exchange interactions with
decreasing nanohole spacing:
For the nanohole spacing of 200 nm the product of g0ξ

2 is calculated using equation 5.4
to be 17.2 K−1. Since the Coulomb interactions between charge carriers are weak in this
regime, the DOS of the localized states is constant and no Coulomb gap is formed. Hence,
hopping between the weakly interacting localized states occurs with a low hopping energy
of Ehop = 1.2 K (0.1 meV ) at T = 10 K.
It is apparent from the �t parameters in table 5.1 that reducing the nanohole spacing leads
to a strong increase in T0 and therefore a decrease in the product εξ. This change suggests a
corresponding decrease of either the dielectric constant or the localization length, or both.
If one assumes ε to be constant (like in table 5.1), it follows that the localization length
is a�ected by the GAL density. Comparison of the localization length for the 100 nm
and 80 nm spacing samples reveals that by decreasing the lattice spacing, the localization
length decreases, which corresponds to stronger localization. Speci�cally, the obtained
values for the localization length are ξ = 345 nm and ξ = 54 nm for the 100 nm and
80 nm spacing samples, respectively. The stronger localization also in�uences the hopping
energy which is larger compared to the case of 200 nm nanohole spacing (Ehop = 1.2 K
(0.1 meV )),as re�ected by the values of Ehop = 13.1 K (1.1 meV ) and Ehop = 30.0 K
(2.6 meV ) for samples with 100 nm and 80 nm spacing, respectively, at T = 10 K. With
the increase of the hopping energy, the hopping distance decreases from Rhop = 199 nm
(100 nm spacing) to Rhop = 81 nm (80 nm spacing) at T = 10 K. This can be expected
since with decreased lattice spacing, the localized states at the nanohole edges move closer
together. It is noteworthy that in the temperature region used for calculating the hopping
distances and energies, Rhop equals once to twice the respective nanohole separation. This
implies that charge carriers can hop from one nanohole edge to the edge of the nearest or
next-nearest nanohole. With decreasing temperature, the hopping energy increases while
the hopping distance decreases, similar to the e�ect of decreased lattice spacing. With
increasing localization, the CG increases from ECG = 7.4 K (0.6 meV ) for 100 nm spacing
to ECG = 36 K (3.1 meV ) for 80 nm spacing, owing to increased Coulomb interactions in
the latter type of GALs. The CG emerges as a linear gap [126] in the localized density of
states between the two mobility edges at the border of the transport gap (see section 5.3).
Here, the minimum of the localized density of states, which marks the position of the CG,
is de�ned to be always located at the Fermi energy.
Sample-to-sample variations in the obtained values, especially of T0, can be ascribed to
small di�erences in the nanohole dimensions such as a slightly higher or lower andidot
diameter due to the non-ideal graphene etching step and di�erent degrees of unintentional
chemical functionalization of the nanohole edges. As T0 assumes values between 33 K and
140 K for di�erent 100 nm spacing samples, this leads to a localization length between
139 nm and 591 nm, and a CG between 14.1 K and 3.3 K. Also the extend of surface
doping in�uences the T0 value, as described in more detail in section 5.3.
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From the data in table 5.1, it follows that with increasing nanohole spacing the localization
strength is reduced, thus inducing a transition from ES VRH to Mott VRH. For antidot
spacings larger than 200 nm the interactions might become even less important and ac-
cordingly the transport behavior change from strong (ES VRH followed by Mott VRH) to
weak localization.

5.3 In�uence of charge carrier density and sample qual-

ity

Due to residues from the sample fabrication, mainly e-beam resist, as well as adsorbates
from the ambient, the CNP of as-fabricated devices is usually not positioned at Vg = 0 V ,
but shifted toward positive back gate voltages. This results from residues or adsorbates
as well as defects in the SiO2 surface that trap charges near the graphene, which leads
to doping of the device. At the same time, there is a broadening of the gate sweep char-
acteristic, which is a measure for the quality of the graphene sheet. The mobility of the
charge carriers is reduced due to increased scattering by the trapped charges. The present
GAL devices exhibit only small shifts of the CNP to between 10 V and 20 V , which is
indicative of a low doping concentration of trapped charges. Nonetheless, this doping af-
fects the VRH. The trapped charges screen the localized states and thus decrease the CG
due to weaker localization. In �gure 5.7 the CG size is plotted for di�erent samples with
varying CNP positions for devices with 100 nm nanohole spacing. It can be seen that the
localization is stronger for samples with the CNP close to 0 V . In these devices, the CG is
large compared to devices with high CNP positions. For GALs with a CNP at even higher
back gate voltages, localization should become even weaker, thus promoting a transition
to the weak localization regime for su�ciently high doping levels [25].
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Figure 5.7: Dependence of the CG size on the CNP position of the sample. Data of di�erent
100 nm spacing samples (8855_D1, 8855_D4, 8817_D5, 8817_D4, 9249_D3a, 9249_aD3a,
8854_D1) is shown.
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The in�uence of the doping level is also apparent upon annealing of the device, whereupon
the CNP shifts to lower back gate voltages. Likewise, an applied back gate voltage reduces
localization and causes a transition to the weak localization regime due to screening by the
induced charge carriers. In the following section this behavior is described in more detail.

5.3.1 Annealing

In situ thermal annealing of the samples enables determining their properties as a function
of the CNP position. For this purpose, devices are annealed at 125◦ C insitu under vacuum
(p ≈ 1 ·10−5 mbar) for several hours. Figure 5.8(a) shows the shift of the CNP of a 100 nm
and 200 nm spacing sample, respectively. This shift is accompanied by a narrowing of the
gate sweep curve indicating a mobility increase due to the removed surface contaminants.
The evolution of the resistance at zero gate voltage during annealing process of the 100 nm
spacing device is plotted in panel (b). The observed resistance increase is due to the CNP
shift from initially VCNP = 12.5 V to VCNP = 5.5 V .

(a) (b)

0 2 4 6 8
10

15

20

25

0 5 10
0

10

20

100nm
@ 125°C

 

 time (h)

 R
 (k


)

0 5 10 15 20 25
0

5

10

200nm

T=4.2 K

 

 Vback (V)

 R
 (M


)

100nm

 R
 (k


)

Vback (V)

 

Figure 5.8: E�ect of annealing at 125◦ C in vacuum. (a) Annealing at this temperature
removes adsorbed water, thus shifting the CNP of sample 9249_D3a (100 nm spacing) from
12.5 V to 5.5 V , and of sample 9249_D2 (200 nm spacing; inset) from 8.5 V to 5.5 V . (b)
Resistance measured at Vback = 0 V of sample 9249_D3a during the annealing process.

Additionally to the CNP shift and narrowing of the Dirac peak, the annealed GAL devices
exhibit a strong increase of the maximum resistance. Furthermore, there is a strong increase
in T0, implying a decrease in ξ and thus stronger localization. This, in turn, leads to an
enhanced CG, which increases from ECG = 9.9 K (0.85 meV ) to ECG = 14.1 K (1.22 meV )
for the 100 nm sample. Along with the dependence of the CG on the CNP position of the
di�erent samples (�gure 5.7), this observation evidences that the unintentional doping has
a profound in�uence on the localization strength and Coulomb interactions in the devices.
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With an increased amount of surface contaminants, the localization strength decreases, and
it can be expected that for highly doped GALs [25] weak localization behavior emerges
instead of strongly localized VRH.

5.3.2 In�uence of Back Gate

Besides the comparison of devices with di�erent CNP position, or samples before and after
annealing, the in�uence of an increased charge carrier density can be studied via the �eld
e�ect by application of a back gate voltage. Back gate voltage and charge carrier density
are related to each other via the gate coupling factor α: q = αVb (V = Vback − VCNP ).
Figure 5.9 shows I/V curves of sample 8855_D1 (100 nm spacing) in dependence of the
gate-induced charge carrier density. Similarly to an increase in temperature or a decrease
in nanohole spacing, with increasing charge carrier density the zero bias plateau becomes
less pronounced and the curves approach ohmic behavior. At the CNP the measured trans-
port gap is largest and ES VRH is present in the shown 100 nm spacing sample. Outside
the center of the gap region (i.e. away from VCNP = 10.6 V ), the measured gap becomes
smaller.
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Figure 5.9: Gate dependence of the I/V curves. The color plot shows the absolute current
(in nA) of sample 8855_D1 (100 nm spacing) as a function of gate voltage and source-drain
voltage. Line-cuts at gate voltages Vback = VCNP , Vback = 9.0 V , Vback = 6.5 V are plotted in
the graph on the right.

In �gure 5.10(a), the CG for the same 100 nm spacing sample, derived from the tempera-
ture dependence of conductivity, is plotted as a function of charge carrier density. Around
the CNP (at zero net charge carrier density) the measured size of the CG is largest and
decreases linearly with increasing positive or negative charge carrier density. This decrease
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Chapter 5. Graphene Antidot Lattices

can again be ascribed to enhanced screening of the localized states and a resulting smaller
overlap of the wave functions of the localized states, leading to weakened exchange in-
teractions. At moderate concentrations of |q| ≈ 2 · 1011 cm−2 the CG reaches a value of
ECG ≈ 2 K (0.17 meV ). Above this concentration the CG is no longer important, and
the exponent (equation 5.1) changes from 1/2 to 1/3, indicating the transition from ES
VRH to Mott VRH without Coulomb interactions [121]. At even higher concentrations,
the localization length decreases further. The dependence of T0 and the localization length
on q are plotted in panel (b) of �gure 5.10.
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Figure 5.10: In�uence of an applied back gate voltage on the temperature dependence. (a)
Coulomb gap for sample 8855_D1 (100 nm spacing) at di�erent densities. For low concen-
trations charge transport is via ES VRH is the transport regime. In the higher concentration
range of −2.3 · 1011 cm−2 < q < −3 · 1011 cm−2 and 1.6 · 1011 cm−2 < q < 2.7 · 1011 cm−2

the transport regime changes to Mott VRH and at even higher concentrations 4 · 1011 cm−2

(|q| > 4 · 1011 cm−2) the device exhibits weak localization behavior. (b) Fit parameter T0

and localization length ξ of sample 8855_D1 (100 nm spacing) around the CNP. The gate
coupling factor is 7.2 · 1010 V −1cm−2. (c) Weak localization �ts at high carrier densities.
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5.3. In�uence of charge carrier density and sample quality

The above �ndings demonstrate that ES VRH can only be observed at low temperatures,
high GAL densities and low charge carrier concentrations. At highest charge carrier con-
centrations (|n| > 4 · 1011 cm−2), the temperature dependence of conductivity no longer
follows an exponential behavior (equation 5.1). It rather displays a logarithmic dependence,
which is characteristic of weak localization in 2D [127]:

σWL = − p
π
ln

(
TWL

0

T

)
(5.9)

Here it should be mentioned that outside the WL regime, electron-electron interactions
can also lead to a logarithmic dependence on temperature [128].
In the pre-factor of the logarithmic function in equation 5.9, p is the temperature exponent
for the (inverse) phase coherence time (phase breaking rate) in the following equation:

τ−1
φ = αT p. (5.10)

Here, α is a constant and the exponent p is of the order of unity [127]. The phase coherence
length Lφ is connected to the phase coherence time via the di�usion constant D:

L2
φ = Dτφ. (5.11)

Furthermore, the following equation holds:

TWL
0 = (D/αl2)1/p, (5.12)

where l is the charge carrier mean free path.
Figure 5.10(c) shows the weak localization behavior at high charge carrier concentrations.
For concentrations above |q| > 4 · 1011 cm−2, the T0 vs. 1/T curves can be reasonably
well �tted with equation 5.9. For the exponent p, this yields p = 1.07± 0.07, from which
the temperature dependence of the phase coherence length Lφ ∝ τ 1/2 ∝ T−0.5 follows.
This dependency is in good agreement with reports on graphene [129] and heavily doped
GALs [25]. At the lowest temperatures (see �gure 5.10(c) for T < 4 K), there is a small
deviation from the weak localization behavior, which can be attributed to the onset of
VRH.

57



Chapter 5. Graphene Antidot Lattices

58



Chapter 6

Variable Range Hopping in Magnetic
Field

Introduction

As described in the previous chapter, patterning of graphene into GALs imparts a transport
gap and di�erent regimes of hopping conduction, with weaker or stronger localization de-
pending on the GAL dimensions. Correspondingly, especially in magnetic �elds GALs are
expected to exhibit a wide range of intricate properties similar to two-dimensional electron
gases (2DEGs) de�ned within semiconductor heterostructures. For the latter, interaction
e�ects are well-documented to be in�uenced by magnetic �elds involving a change of the
VRH parameters and crossover between di�erent hopping mechanisms [121]. In magnetic
�elds, competing length scales such as the magnetic length, the localization length and
the phase coherence length, lead to extremely rich physics. As the wave functions of the
charge carriers shrink in an applied magnetic �eld (decreasing magnetic length), magne-
toresistance e�ects can be observed even in pristine graphene [130] due to the existence of
electron-hole puddles [62]. In general, the theoretically predicted magnetic �eld dependent
hopping probability of charge carriers [131] gives rise to quantum interference e�ects in the
VRH or weak localization regime, which lead to a resistance correction. Such correction
is usually necessary in the weak localization regime to account for the observation of a
negative magnetoresistance [132]. The situation is similar for the VRH regime [133,134].
Outside the VRH regime, interference between di�erent conduction paths leads to Aharanov-
Bohm type (AB) oscillations in the magnetoresistance, as has been observed for graphene
ring structures [135] and graphene antidot lattices on SiC [136], where a phase di�erence is
accommodated between the charge carriers traveling along the di�erent paths. The Quan-
tum Hall E�ect (QHE) emerges upon condensation of the charge carrier density of states
into Landau levels, in a manner that depends on the charge carrier quasi-particle proper-
ties (see chapter 2). In samples of extremely high mobility, where charge carrier transport
approaches the ballistic regime, additional e�ects are expected upon introduction of an an-

Part of this chapter was published in: A. J. M. Giesbers, E. C. Peters et al., Charge transport gap in
graphene antidot lattices. Phys. Rev. B 86, 045445 (2012).
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tidot lattice. Speci�cally, in high mobility GaAs/AlGaAs antidot lattices [137] anomalous
low-�eld plateaus have been observed.

Experiment and Samples

Here, we analyze the in�uence of an external magnetic �eld on the charge transport mech-
anism in the GAL structures (section 6.1). In section 6.2 the magnetoresistance behavior
of the GALs is evaluated for low to intermediate magnetic �elds up to 12 T . Commensu-
rability e�ects are investigated in in dependence of the applied back gate voltage section
6.3 and the relevant length scales in the respective magnetic �eld regions are derived.
For the experiments under magnetic �elds, the same samples as for the zero-magnetic �eld
measurements (chapter 5) are used, with typical lateral dimensions of a few micrometers
in length and width (see �gure 5.2). In order to evaluate the charge transport mechanism,
the temperature dependence of the conductance is measured as a function of applied back
gate voltage up to B = 12 T in the same temperature range as for the zero-magnetic
�eld measurements (T = 1.4 K to T = 100 K). To investigate magnetoresistance e�ects,
the device is kept at constant charge carrier density and temperature, while sweeping the
magnetic �eld.

6.1 Transport Characteristics under Magnetic Field

6.1.1 Magnetotransport behavior

Just as for zero magnetic �eld, the zero-conductance plateau of the I/V characteristic is
most pronounced for smallest nanohole spacing. Figure 6.1(a) compares I/V curves of
sample 8854_D3a with and without applied magnetic �eld. In the low �eld range, the
plateau becomes smaller with rising magnetic �eld and increases again above B = 6 T .
Above this strength, in the high �eld region the slope of the I/V curves (outside the plateau
regions) steepens. This behavior is best visible when the current is plotted on a logarithmic
scale (inset of �gure 6.1(a)).
A similar behavior is displayed by the AC conductivity of the devices. Figure 6.1(b) shows
gate voltage sweeps of a 100 nm spacing sample under magnetic �eld at T = 1.4 K.
Without B-�eld, the conductance is close to zero around the CNP due to the transport
gap caused by the antidot lattice. For high enough magnetic �elds, the usual quantized
conductance plateaus appear. In the shown gate sweeps for �elds from B = 6 T to
B = 12 T , the �rst plateau σ = 2 e2/h occurs at �lling factor ν = 2. With increasing
magnetic �eld the plateau in the gate sweeps �rst becomes narrower, but then broadens
with increasing magnetic �eld above B = 6 T . This behavior re�ects the interplay of
competing mechanisms. On the one hand the magnetic �eld changes the localization
strength and the data indicate a change in the hopping conduction in the low magnetic
�eld range, which will be the topic in this chapter, but the magnetic �eld also has a strong
in�uence on the gap size itself leading to a di�erent transport mechanism in the high �eld
region which will be the topic of chapter 7. When the device is brought into the Quantum
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6.1. Transport Characteristics under Magnetic Field

Hall (QH) regime, the transport is governed by edge channel conduction. Both factors are
especially relevant for very high �elds, which will be the subject of chapter 7.
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Figure 6.1: B-�eld dependence of gate sweeps and I/V curves. (a) I/V curves of sample
8854_D3a (80 nm spacing) in dependence of an applied magnetic �eld. The inset shows se-
lected I/V curves from the main panel on a logarithmic scale. (b) Gate sweeps of conductivity
of a 100 nm spacing sample (8855_D1) at di�erent magnetic �elds.
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Figure 6.2: Fit parameter T0,B as a function of magnetic �eld for samples of di�erent spacing:
80 nm (sample 8854_D3a), 100 nm (sample 8854_D1), 200 nm (sample 8855_D2b) and
pristine graphene sample 8855_D2a.

The conductivity at the CNP at di�erent temperatures can be �tted with equation 5.1
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Chapter 6. Variable Range Hopping in Magnetic Field

analogous to the analysis in the previous chapter. Thus obtained parameter T0,B for
samples with di�erent GAL spacings is displayed in �gure 6.2. For all GAL devices,
T0,B decreases with increasing magnetic �eld in the low �eld range (B <≈ 6 T for 100 nm
spacing samples). Since T0,B is directly coupled to the localization length (equations 5.4
and 5.7), this trend hints toward weakening of the localization strength with magnetic
�eld, similar to the e�ect of increased lattice spacing or increased charge carrier density.
Thus, for the high nanohole density GALs, a transition from ES to Mott VRH can be
expected. In order to validate this assertion, the exponent in the exponential temperature
dependence has to be evaluated in detail.

6.1.2 Hopping Regimes
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Figure 6.3: B-dependence of the exponent. All of the shown devices are GAL samples with
100 nm spacing. (a) Development of the exponent in the low �eld range. (b) Transition from
Mott VRH to activated transport at higher �elds. (c) Low (blue) and high (red) temperature
regime �ts.
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For samples of high nanohole density the relevant charge transport mechanism is ES VRH,
where Coulomb interactions lead to a soft gap, the Coulomb gap, in the localized density of
states. This conduction type is preserved upon application of magnetic �elds up toB ≈ 1 T ,
as concluded from the exponent of the exponential temperature dependence being close to
1/2. In �gure 6.3 the exponent obtained from the �ts is plotted as a function of magnetic
�eld for di�erent 100 nm spacing samples.

ES VRH in magnetic �eld

Starting from a value around 1/2 the exponent initially rises to 2/3 before decreasing back
to 1/2 (�gure 6.3a)). That at higher magnetic �elds (> 2 Tesla) the exponent of ν = 1/2
is resumed is characteristic of VRH in 2D systems, and has been commonly ascribed to
a transition from ES-VRH to Mott-VRH [123, 138�140], since for 2D Mott VRH under
magnetic �eld the exponent is also expected to be 1/2. The intermediate value of 2/3,
however, has not yet been observed before. Theoretically, such a value is predicted by
percolation theory applied to ES-VRH within a 2D system [138]. According to this theory,
the conductivity under magnetic �eld is given by [138]:

σ = σ0exp

(
−
(
T0,B

T

) 2
3

)
, (6.1)

with the parameter:
T0,B = TES0,B = te2/4πε0εkBlB. (6.2)

In the latter equation, t is a constant. If the dielectric constant is assumed to be magnetic
�eld independent, T0,B only depends on the magnetic length de�ned as:

lB =
√

~/eB. (6.3)

The most likely reason why the transition to the intermediate exponent for ES VRH in
magnetic �eld could not be observed in charge transport studies of semiconductor 2DEGs
is the predominance of the Mott VRH regime under magnetic �eld [121,139,140]. Fitting
equation 6.1 in the relevant magnetic �eld range (B ≈ 1 T for the 100 nm spacing sam-
ples) yields small T0,B values compared to the zero-�eld T0 (�gure 6.2). Speci�cally, T0,B is
around 17 K for the 100 nm samples, and approximately 81 K for 80 nm spacing, where
an exponent close to 2/3 is reached at 4 T .
Alternatively, in equation 6.1 the temperature can be �xed so that the conductivity be-
comes a function of the magnetic �eld instead of the temperature. Fitting this equation in
the magnetic �eld range of 0.5 to 1.5 Tesla at a constant temperature of T = 1.4 K reveals
that the logarithm of the conductance depends linearly on B1/3 (ln(σ) ∝ B1/3), verifying
the exponent of ν = 2/3 in equation 6.1. The �t further yields T0,B ≈ 16 K for 100 nm
spacing in very good agreement with the values obtained from the �ts of the temperature
dependent data.
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Magnetic �eld-induced crossover from ES to Mott VRH

The crossover from ES to Mott VRH in magnetic �eld

σ = σ0exp

−(TMott
0,B

T

)1/2
 , (6.4)

is a direct consequence of shrinking of the wavefunction of the localized states, which re-
duces their overlap and hence the Coulomb interaction. This renders the CG less in�uential
and the charge carriers behave like non-interacting particles. Under these conditions, ES
VRH can only be reestablished by lowering the temperature [121�123]. Alternatively to
an applied magnetic �eld, the crossover from ES to Mott VRH can be induced by either
increasing the nanohole spacing (i.e. from 100 nm to 200 nm spacing) or by increasing the
charge carrier density through an applied back gate voltage (see chapter 5).
At higher magnetic �elds between B = 4 T and B = 12 T , an increasing exponent which
continuously rises from ν = 1/2 to ν = 1 is observed (�gure 6.3(b)). This suggests a tran-
sition from 2D Mott VRH to activated charge carrier transport wherein hopping between
localized states does no further play a role in the conduction process.

Crossover to Activated Transport

Intermediate values between ν = 1/2 and ν = 1 are obtained since activated transport
dominates at high �elds and high temperatures, while Mott VRH is more relevant for small
B-�elds and low temperatures. The conductivity is, however, �tted over the complete
temperature range. Thus, the transport in magnetic �eld can be described by a high
and a low temperature regime with activated transport or VRH as the dominant regime,
respectively. In �gure 6.3(c) the conductivity has been �tted separately for the high and the
low temperature regime, which yields the expected exponents of 1/2 and 1 for low and high
temperatures, respectively. At low B-�elds, VRH is dominant even at high temperatures.

6.2 Magnetoresistance Behavior

In addition to the conductivity detected at constant magnetic �eld, additional measure-
ments with variable magnetic �eld and �xed back gate voltage were performed to study
the magnetoresistance. First, the magnetoresistance behavior at the CNP at su�ciently
low B-�elds to be still within the VRH regime will be addressed. As seen in chapter 5,
weak localization behavior emerges at increased carrier concentrations, which is studied
here under applied magnetic �eld. At higher B-�elds, where the crossover from VRH to
activated transport occurs commensurability e�ects can be observed, which is detailed in
section 6.3. The magnetoresistance under high magnetic �elds, where activated transport
is present, will be discussed in chapter 7.
Figure 6.4(a) depicts the magnetoresistance behavior of di�erent GAL devices as well as
of a non-patterned graphene device in the low magnetic �eld region (between B = 0 T and
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6.2. Magnetoresistance Behavior

B = 4 T ). The observed magnetoresistance behavior furthermore depends on the carrier
concentration (�gure 6.4(b)). The observed negative magnetoresistance, on top of a weak
positive magnetoresistance for large nanohole spacing or non-structured graphene, can be
ascribed to interference e�ects either in the VRH or weak localization regime.
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Figure 6.4: Magnetoresistance of GALs of di�erent geometry. (a) Resistance at the CNP as
a function of magnetic �eld for a bare graphene sample (8855_D2a, black squares), a 200 nm
spacing GAL (8855_D2b, red triangles), and a 100 nm GAL (8855_D4, blue circles). All
curves were measured at T = 1.4 K. The dotted line represents a linear �t to the low �eld
data of sample 8855_D4. The inset shows a zoom into the low resistance region of the main
panel. (b) Magnetic �eld dependent resistance of the 100 nm sample 8817_D4 at di�erent
back gate voltages.

Positive Magnetoresistance (pMR)

Non-patterned graphene exhibits a weak positive magnetoresistance as shown in �gure
6.4(a). The magnetoresistance up to B = 4 T is plotted for GALs with di�erent nanohole
spacings, as well as a non-patterned graphene device. The inset shows a zoom of the
low resistance region. The observed behavior can be explained by the shrinkage of the
electron wave functions with increasing magnetic �eld. When the magnetic length becomes
comparable to the spatial extend of the electron-hole puddles in graphene, the resistance
increases [130]. Samples with 200 nm spacing behave similarly in the low and intermediate
magnetic �eld region. The same is true for smaller nanohole spacing under moderate
magnetic �elds. For these samples, however, another �eld dependent e�ect is dominant at
small �elds.
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Negative Magnetoresistance (nMR) in the VRH Regime

At low magnetic �elds (B < 1 T ), GAL devices with high nanohole density exhibit a
pronounced quasi-linear negative magnetoresistance. This is exempli�ed by �gure 6.4a)
for the 100 nm spacing sample 8855_D4. The same e�ect is observed for other 100 nm
and 80 nm spacing samples, and indicates a strong change in the hopping probability due
to the applied magnetic �eld [133,134].
The hopping probability itself corresponds to the sum over all possible interference paths
of the charge carriers from one hopping site to another. The distance between the two
hopping sites is the hopping distance Rhop. The numerical average of the conductivities
along the di�erent paths leads to a net linear decrease of the resistance with increasing
magnetic �eld, provided that the B-�eld is above the threshold �eld Bc:

Bc = h/(2πeR
3/2
hopξ

1/2). (6.5)

Below Bc, the interference e�ects instead result in a MR depending on B2 [141]. The
threshold �eld can be calculated using the values from chapter 5. For the 100 nm spacing
sample in �gure 6.4(a) with Rhop = 268 nm and ξ = 591 nm, one obtains Bc = 6 mT . This
calculated threshold �eld lies below the magnetic �eld resolution of the measurement. The
same is true for the sample in panel (b). This is why only the linear part of the negative
magnetoresistance is visible. Figure 6.4(b) shows the dependence of the slope of the linear
negative magnetoresistance at di�erent back gate voltages. Similarly to the localization
strength, it is largest at zero charge carrier density at the CNP (VCNP = 18.0 V for this
sample) and for smallest nanohole spacing. For high charge carrier densities, a much weaker
negative magnetoresistance is observed due to a transition to the weak localization regime,
where the negative magnetoresistance can be described by a weak localization correction
of the resistance (see below).
Since, similar to the AB e�ect, the linear negative magnetoresistance depends on inter-
ference of the charge carrier wavefunctions, the phase coherence length is an important
parameter. In contrast to the AB e�ect, however, the negative magnetoresistance appears
in the VRH regime. The latter is related to the �ux penetrating the area AnMR enclosed
by the di�erent hopping paths, which is of the order of R3/2

hopξ
1/2 [133]. In order for the

interference e�ect to be visible, a charge carrier has to travel phase coherently around
half of the circumference of the area AnMR. This corresponds to a phase coherence length
LΦ ≈ 580 nm for the 100 nm spacing sample 8855_D4 and thus lies between three to four
times the circumference of a nanohole with d = 50 nm.

Weak Localization (WL)

As already mentioned, the observed linear negative magnetoresistance is distinguished
from the negative magnetoresistance in the weak localization regime. For higher charge
carrier concentrations, |q| ≥ 4 · 1011 cm−1, the device can be brought into the latter
regime where also a negative magnetoresistance is observed, albeit with considerably
weaker slope. Figure 6.5 shows the conductivity correction as a function of magnetic
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�eld ∆σ = σ(B)−σ(B = 0) for sample 8817_D4 (100 nm spacing) under such conditions
(q = −4.0 · 1011 cm−2).
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Figure 6.5: Weak localization correction in magnetic �eld for sample 8817_D4 (100 nm
spacing) in the Weak Localization regime at a gate voltage of V = 23.5 V which corresponds
to a charge carrier concentration of q = −4.0 · 1011 cm−2. The red line shows the �t of the
weak localization correction (equation 6.6).

The nMR (positive magnetoconductance) can be accounted for by a weak localization
correction to the conductivity, in analogy to highly doped GALs [25]:

∆σ =
e2

2π2~

{
F

(
B

BΦ

)
− F

(
B

BΦ + 2Bi

)
− 2F

(
B

BΦ +B∗

)}
, (6.6)

where a �nite phase coherence length LΦ, intervalley scattering length Li and scattering
length (including intervalley, intravalley scattering and trigonal warping) L∗:

LΦ,i,∗ =
√
DτΦ,i,∗ (6.7)

with a di�usion constant
D = 1/2ν2

F

(
τ−1
i + τ−1

∗
)−1

(6.8)

and corresponding time scales

τ−1
Φ,i,∗ =

4BΦ,i,∗eD

~
(6.9)

lead to a critical magnetic �eld BΦ,i,∗, which would disrupt the localization e�ects, given
by

BΦ,i,∗ =
~

4e(LΦ,i,∗)2
(6.10)

The weak localization correction can be calculated from the function:

F (x) = ln(x) + Ψ(1/2 + 1/x), (6.11)
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where Ψ(z) is the digamma function. For large z the Taylor approximation Ψ(z) ≈ ln(z)−
1/z ≈ ln(1/2 + 1/x)− 1

1/2+1/x
holds, leading to

F (x) = ln(1/2x+ 1)− 1

1 + 2x−1
. (6.12)

The �t based upon this equation is shown in �gure 6.5 (red line). It yields a phase
coherence length in the weak localization regime of LΦ = 20 nm, an intervalley scattering
length of Li = 11 nm, and a scattering length of L∗ = 3 nm. The corresponding time
constants are obtained as τΦ = 1.6 · 10−13 s, τi = 4.4 · 10−14 s, τ∗ = 5.2 · 10−15 s, while
BΦ,i,∗ = 0.4/1.4/18 T and D = 0.00233 m2/s. These values are in reasonable agreement
with weak localization measurements on highly doped GALs with similar dimensions [25].
However, they are smaller than the phase coherence length derived in the VRH regime (see
above). One plausible explanation for this di�erence is the considerably higher density of
induced charge carriers in the weak localization regime. These charges are expected to
screen localized states and thus render long phase coherent hops between them unlikely.
This scenario is in agreement with the fact that in the WL-regime no B-dependent (AB-
type) oscillations, which also require long phase coherence lengths, are observed.

6.3 Aharonov-Bohm E�ect

In section 6.1, it is shown that for su�ciently high magnetic �elds, VRH is no longer the
relevant transport mechanism in the GAL structures. This holds particularly at high tem-
peratures. At su�ciently high magnetic �elds, the device is in the Quantum Hall (QH)
regime, where the conductivity is determined by edge channel conduction. In the magnetic
�eld range between 2 and 10 Tesla the conductance is of the order of e2/h, as the sample
leaves the VRH regime, where a very low conductivity is observed at the CNP. For mag-
netic �elds above B = 10 T the conduction is still governed by activated transport, but the
resistance at the CNP increases again due to the gap opening in magnetic �eld (chapter
7).
In this mid-�eld range, where increased conductivity prevails, one observes commensura-
bility e�ects in the GAL devices. This comprises resistance oscillations as a function of
magnetic �eld (see �gure 6.6(a)), which can be ascribed to Aharonov-Bohm (AB) type os-
cillations around the individual nanoholes [136,142]. Figure 6.6(a) shows the conductivity
(black dashed line) as well as its variation (σ−σ0, red solid line) as a function of magnetic
�eld. Here, σ0 is the smooth background conductivity. Oscillations occur in the region
where the conductivity deviates from zero, whereas they are absent in the low and high
�eld region, where the conductivity approaches zero. In general, the oscillations are most
prominent around the CNP. Moving away from the CNP, the oscillations are less periodic,
as expected since for high carrier densities the conductivity is governed by weak localiza-
tion (see section 6.2). The frequency of the oscillations along with higher harmonics are
visible in the Fourier spectrum in �gure 6.6(b). The AB type oscillations are related to the
magnetic �ux Φ penetrating the enclosed area A between the two paths that the charge
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carriers can take around the individual nanoholes.
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Figure 6.6: Aharonov-Bohm oscillations in GALs. (a) Aharonov-Bohm oscillations in sample
8855_D4 at T = 1.4 K close to the CNP, at Vg = 14.1 V . The smoothly varying background
σ0 is subtracted from the conductivity σ to visualize the oscillations. (b) Corresponding FFT
of the oscillations, clearly displaying maxima at eA/h = 2.1 and 2eA/h ≈ 4.2. Also a third,
weak maximum at 3eA/h ≈ 6.3 can be discerned.

A charge carrier can either move along the upper or lower half of the nanohole. Interference
of the wave functions of the carriers can either be constructive or destructive, depending on
the nanohole size since the charge carrier accumulates a phase di�erence ϕ when moving
along the di�erent paths:

∆ϕ =
2πe

h
Φ. (6.13)

The magnetic �ux is given as a path integral Φ =
∮
~A(~s) · d~s, where ~A(~s) is the vector

potential B = ∇ × ~A(~s). Using Stokes law, Φ can be calculated as the integral over the
enclosed area A: Φ =

∫
A
~B · d ~A. With each �ux quantum ϕ0 = h/e the phase di�erence

between the two paths around the nanoholes varies between 0 and 2π. This leads to an
AB oscillation period of

∆B = ϕ0/A. (6.14)

The area enclosed by the charge carriers moving around the nanohole can be calculated
from the AB diameter dAB: A = 1

4
πd2

AB. Conversely, the AB oscillation period can be
used to determine the diameter of the area enclosed by the charge carrier movement. For
the 100 nm spacing sample an oscillation period of ∆B = 0.48 T is obtained (see �gure
6.6(b)). This corresponds to an AB diameter of dAB = 105 nm, in close correspondence
to a closed path around a nanohole of 50 nm diameter with a center to center distance of
100 nm to the neighboring nanoholes.
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Being caused by interference e�ects, AB oscillations, similar to the weak localization cor-
rection, can only be observed for su�ciently long phase coherence lengths. This is the case
if the phase information is preserved in the transport path around the nanohole. If scat-
tering occurs, phase information is lost and the AB oscillation amplitude is decreased and
�nally vanishes. Thus, the AB oscillations give a measure of the phase coherence length
of the interfering charge carriers. The estimated phase coherence length is determined by
the number of higher harmonics discernible in the Fourier spectrum of the oscillations.
For sample 8855_D4 besides the �rst harmonic, the second and weak third harmonic are
visible at 1/B ≈ 4.2 T−1 and 1/B ≈ 6.3 T−1 (�gure 6.6(b)), respectively. Observation
of the higher harmonics testi�es a high phase coherence, enabling the charge carriers to
move a second and third time phase coherently around half of the nanohole. Thus, the
phase coherence length for sample 8855_D4 can be estimated to be three times half of the
circumference of the closed path, which corresponds to a value of LΦ ≈ 495 nm. Similar
phase coherence lengths are found for the other 100 nm spacing samples. Although the
phase coherence length in the AB regime is determined in a di�erent transport regime and
a di�erent magnetic �eld range than the VRH regime, the extracted phase coherence length
of LΦ ≈ 500 nm for the same sample, is in good agreement with the localization length
derived from the negative magnetoresistance (see section 6.2). Furthermore, comparable
values have been gained from AB oscillations in GALs prepared on SiC (LΦ ≈ 100 nm at
T = 1 K) [136].
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Chapter 7

Fundamental High Field Gap

Introduction

In chapter 5 it is shown that a transport gap can be opened by structuring graphene into
GALs. The transport in such samples is governed by variable range hopping. In an applied
magnetic �eld, a transition to activated behavior occurs for high enough �elds (chapter
6). In the latter region, the QHE dominates the transport characteristics. For pristine
graphene, the linear dispersion leads to the formation of Landau levels, whose energy
exhibits a square-root dependence on the magnetic �eld [29, 30]. Compared to 2DEGs,
the energy positions of the Landau levels are shifted, and a N = 0 LL emerges at zero
energy. This lowest Landau level is equally shared between electrons and holes. Monolayer
graphene displays the integer quantum Hall e�ect (iQHE) with �lling factors ν = 2, 6, 10, ...
due to the four-fold degeneracy originating from the spin and sublattice symmetry (see
chapter 2). At high enough magnetic �elds, or for enhanced sample quality (chapter 4),
distinct levels of the degree of freedom of the charge carriers can be traced. Speci�cally,
in the Landau level spectrum additional levels with �lling factors corresponding to all
possible integers appear. This lifting of the degeneracies has been ascribed to electron-
electron interactions [143, 144] or spin splitting due to the Zeeman e�ect [96, 98, 145, 146].
Which of the involved mechanisms is responsible for the splitting and the sequence in which
the respective �lling factors appear, depends on the strength of the respective interaction.
Recently, the question if the hierarchy of the symmetry breaking in pristine graphene favors
either spin-�rst, valley-later splitting or vice-versa has gained attention [147].
For GALs, just as without magnetic �eld, theory also predicts the presence of a fundamental
band gap under applied magnetic �eld [148,149]. Recently, theoretical work on GALs has
predicted that breaking of the electron-hole symmetry in the individual valleys K and K ′

occurs for an isolated graphene antidot in a magnetic �eld [150]. Thus, electrons would be
associated with one valley and holes with the other valley. Experimentally, it was observed,
that the QHE can be suppressed at low magnetic �elds, where the cyclotron orbit of the
charge carriers is larger than the antidot spacing [25].

Part of this chapter was published in: E. C. Peters et al., Valley-polarized massive charge carriers in
gapped graphene. Phys. Rev. B, Phys. Rev. B 87, 201403(R) (2013) .
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Experiment

Here, we use the GAL structures to address the magnetic �eld behavior of the gap as well
as its in�uence on the QHE states in graphene. For this purpose measurements are con-
ducted in high magnetic �elds up to 30 T . The longitudinal as well as the Hall resistance
are used to evaluate the gap properties. All electrical measurements are performed by
standard AC lock-in techniques at temperatures down to 1.4 K. Like in the measurements
before, su�ciently low currents (I < 10 nA) are used in order to avoid heating e�ects.
Angle dependent measurements are conducted by rotating the sample within the external
magnetic �eld, which allows to distinguish between di�erent Landau level splitting mech-
anisms.
The in�uence on the band gap in high magnetic �elds is investigated in section 7.1. An-
gle dependent measurements, where the sample is rotated in the external magnetic �eld
provide more insight into the nature of the opened gap and the hierarchy of the Landau
level splitting. The conclusions drawn are supported by Hall resistance measurements of
the GALs for di�erent doping levels, temperatures, and magnetic �elds (section 7.2). The
band gap size in dependence of magnetic �eld as well as the implications for the band struc-
ture at low energies are evaluated in section 7.3 by analyzing the Landau level splitting
in the form of fan diagrams. Furthermore, the investigation of samples of highest quality
allows to study additional Landau Level splitting e�ects.

Devices

As an extension of the GAL devices of the previous chapters, devices patterned into Hall
bar structures are studied. Such devices enable separate measurements of the longitudinal
and transverse conductivities (see chapter 3). The fabrication process is similar to the one
for the lateral four-terminal device con�guration, since the Hall bar is de�ned in the same
lithography and etching step as the antidot lattice. A typical GAL device is shown in
�gure 7.1a). To ensure good contacts, the contact width is ≥ 1 µm.

(a) (b)

Figure 7.1: SEM images of a) a Hall bar GAL device (scale bar is 1 µm) and b) a suspended
GAL (scale bar is 500 nm). The current contacts are colorized yellow and the Hall probes
green.
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For the investigation of high quality samples, GAL structures in lateral four-terminal ge-
ometry are rendered free-standing. After contacting, 150 nm of the underlying 300 nm
thick SiO2 layer are etched away by bu�ered hydro�uoric acid (HF), followed by critical
point drying of the sample. During this step, the devices are supported by thick gold
contacts (3/100 nm Cr/Au), which is especially important for monolayer and GAL devices
since they are mechanically more fragile than bilayer graphene. Before current anneal-
ing, the CNP usually occurs out of the accessible gate voltage range, which is limited to
around ±10 V for the suspended devices with a distance of 150 nm between �ake and
gate dielectric. During the current annealing process (see chapter 3), it typically shifts
close to zero gate voltage (VCNP = 0 V ). While for the non-suspended GALs on SiO2 a
maximum carrier mobility of 5.000 cm2/V s is found, the suspended devices reach values
up to 20.000 cm2/V s.

7.1 Fundamental Band Gap

7.1.1 Magnetic Field Dependence

Gap opening by magnetic �eld

In chapter 5 it was shown that for su�ciently high magnetic �elds, activated behavior
dominates the charge transport. In fact, above ≈ 6 T the minimum conductivity in most
of the temperature range can be described by this conduction type.
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Figure 7.2: Magnetic �eld dependence of the activated gap. (a) Arrhenius plot of the
conductivity at the CNP of the 100 nm spacing sample 9249_D3a for magnetic �elds between
6 T and 25 T . (b) Activation gaps EA displayed as a function of magnetic �eld for the
100 nm (black squares) 9249_D3a, 200 nm (red circles) 9249_D2 and 100 nm suspended
(blue triangles) spacing 9139_D2a samples, with the full lines representing linear �ts.

In �gure 7.2(a) the temperature dependence of conductivity at the CNP is shown for a
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100 nm spacing sample in the magnetic �eld range from 6 T to 25 T . Between T = 3.1 K
and 98 K, the minimum conductivity varies by 5 orders of magnitude. The data can be
reasonably �tted by a ln(σ) ∝ T−1 dependence. The extracted �t parameters provide
access to the gap size (see chapter 5) as a function of the applied magnetic �eld. The
result is shown in �gure 7.2(b) for the same 100 nm spacing sample, as well as for a
200 nm spacing sample and a 100 nm spacing suspended sample. For all magnetic �elds,
the extracted gap is larger for the 100 nm than for 200 nm spacing. An even higher gap is
detected after suspension and current annealing of the 100 nm spacing, as a consequence of
reduced doping. The line �ts to the temperature dependent activation gap of the respective
device (�gure 7.2(b)) signify that the gap size increases linearly with magnetic �eld. The
gap determined in this manner is obscured by Landau level broadening Γ due to a �nite
Landau level width. Extended states forming the center of the Landau level contribute
to conduction, while the localized states in the Landau level tails independent of their
occupation do not contribute to the conduction (see chapter 2, �gure 2.2). Increased
scattering in low quality samples causes higher Landau level broadening. Thus, for the
suspended sample the Landau level broadening is expected to be smaller than for the non-
suspended sample. Due to the Landau level broadening, the obtained activation gap EA
is smaller than the Landau level splitting. For the 200 nm sample the activation gap can
only be discerned for magnetic �elds above ≈ 10 T . The gap opening is also visible in the
magnetoresistance behavior of the GALs, as described below.

Diverging Magnetoresistance
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Figure 7.3: Magnetoresistance behavior as a function of temperature and for di�erent
devices. (a) Temperature dependent magnetic �eld sweeps of a 100 nm spacing sample
(9249_D3a). (b) Magnetoresistance at T = 1.4 K for a 100 nm (8855_D4), 200 nm
(8855_D2b) and a non-structured sample (8855_D2a).

Figure 7.3 depicts the temperature dependent magnetoresistance of a 100 nm spacing

74



7.1. Fundamental Band Gap

sample, and the magnetoresistance of di�erent GAL and pristine graphene devices. The
magnetoresistance curves are taken at the CNP of the respective device. As already seen in
chapter 6, pristine graphene and GALs of low spacing exhibit a monotonous positive mag-
netoresistance at low magnetic �elds. If the nanoholes are more closely spaced, a negative
magnetoresistance is observed. Similarly to decreasing the carrier concentration, lowering
of the temperature results in a stronger negative slope of the magnetoresistance at low
magnetic �elds. This trend is expected since the device is brought into a temperature and
doping range where strongly localized VRH prevails.
At high magnetic �elds, in the quantum Hall regime (B ≈ 10 T ), the GAL devices dis-
play a diverging positive magnetoresistance, whose magnitude considerably exceeds that
of pristine graphene (see �gure 7.3(b)). This e�ect is not only observed for the 100 nm
spacing samples, but also for 200 nm nanohole spacing, albeit with a weaker resistance
increase in the latter case. Similar behavior has been found in the high �eld region of
pristine graphene of su�cient quality [96, 98], and has in this case been attributed to a
lifting of the spin degeneracy. The diverging positive magnetoresistance displayed by the
GALs indicates a degeneracy lifting of the zeroth LL [151] by the gap introduced by the
antidot lattice.

Diverging Hall Resistance

In order to further analyze the gap opening and the diverging magnetoresistance, Hall
resistance measurements are performed. The Si back gate is used to tune the charge
carrier concentration. The gate coupling factor links gate voltage Vback with the charge
carrier density according to: q = αVb = α(Vback − VCNP ). Thus, the Hall and longitudinal
resistances can be explored as a function of charge carrier density. In �gure 7.4 the Hall
resistance and longitudinal resistance at B = 20 T and B = 30 T of a 100 nm spacing
GAL is depicted as a function of charge carrier density. From these two quantities the
lateral σxx and the transverse σxy conductivities can be derived by a tensor inversion (see
chapter 3) as a function of the �lling factor ν = qh

eB
.

The resistance plateaus observed at Rxy = 2 h/e2, 6 h/e2,... (dashed gray lines in �gure
7.4(a)) corresponding to �lling factors 2,6,... are characteristic of the LL pattern of pristine
graphene. They are accompanied by minima in the longitudinal resistivity (�gure 7.4(b))
since the Fermi level is located between two Landau levels, where only localized states and
no extended states exist. By comparison, if the Fermi level is positioned at the center of a
Landau level, extended states are available for conduction. This leads to �nite longitudinal
resistivity and the Hall resistance changes from one plateau to the next.
In pristine graphene, the Hall resistance changes its sign and smoothly crosses zero at
zero charge carrier density since the Fermi level is positioned in the zeroth LL which is
shared by electrons and holes. In the GALs, however, with increasing magnetic �eld, the
Hall resistance deviates from this behavior. At small charge carrier densities, the Hall
resistance starts to diverge and does not cross zero anymore above 10 T . Figure 7.4(a)
reveals that ρxy diverges close to the CNP, located at VCNP = 16.0 V for sample 9398_D2,
to either negative or positive values on the p-type and n-type side, respectively. This
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behavior evidences the opening of a fundamental band gap at elevated magnetic �elds.
With increasing B-�eld, the gap region widens and the onset where the resistance starts
to diverge moves to higher absolute voltages |Vback − VCNP |.
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Figure 7.4: Hall resistance measurements at T = 4 K. (a) Hall resistance of sample
9398_D2 at B = 20 T and B = 30 T . The dashed gray lines indicate the position of the usual
graphene resistance plateaus. (b) Corresponding longitudinal resistances. (c) Longitudinal
σxx and transverse σxy conductivities calculated from the data in panels (a) and (b).

Figure 7.4(c) displays the longitudinal and transverse conductivities calculated from the
data in panels (a) and (b). The zeroth LL, which is located at zero �lling factor for pristine
graphene, is split up in two separate levels below and above the gap. Within the gap both,
longitudinal and transverse conductivity, vanish since no conduction is possible.

7.1.2 Angle Dependence

In order to explore the origin of the fundamental band gap opened at elevated magnetic
�elds in more detail, we perform angle dependent measurements of the minimum conduc-
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tivity under magnetic �elds between 0 and 30 Tesla. For these measurements, the sample
is rotated out-of-plane by an angle θ relative to the surface normal. Figure 7.5 shows the
dependence of the resistance at the CNP on perpendicular and in-plane external magnetic
�eld. Measurements are performed at T = 4 K for a 100 nm spacing device and for angles
θ = 0◦ , 15◦, 30◦, 45◦, 60◦ and 75◦.
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Figure 7.5: Tilted magnetic �eld measurements of sample 9249_D3a at T = 4 K. (a)
Measurements under constant total magnetic �eld. (b) In these measurements, the perpen-
dicular �eld is kept constant while the total �eld changes. The resistance remains at the
zero-angle-value (solid lines) within the error bars.

The solid line in �gure 7.5a) represents the resistance at the CNP as a function of perpen-
dicular �eld Bperp = Btotcos(θ) at θ = 0 for a 100 nm spacing GAL device. As observed
before (chapter 6), there emerges a negative magnetoresistance at small �elds and a pro-
nounced positive magnetoresistance at higher �elds. As exempli�ed for constant total �elds
of Btot = 1, 6, 12, and 14 T , the angle-dependent resistance at these �elds coincides with
the values recorded at zero angle, where Btot (θ = 0◦) = Bperp(θ). Since the same resis-
tance values are obtained for constant total �eld and variable perpendicular �eld magnetic
�eld, it follows that the resistance at the CNP depends on the perpendicular magnetic
�eld component Bperp only. Measurements at constant perpendicular magnetic �eld con-
�rm this conclusion, i.e. the resistance remains almost constant for di�erent values of Btot.
The sizable error bars arise due to an uncertainty of the sample rotation angle of 3◦ which
leads to an error in the calculated Bperp component. That the resistance at the CNP (i.e.,
the minimum conductivity) depends only on perpendicular magnetic �eld hints against a
spin-related origin of the opened band gap. If the band gap were related to spin degeneracy
lifting due to the Zeeman e�ect, a dependence of the minimum conductivity on the total
B-�eld would be expected. This has indeed been observed for the zeroth LL splitting for
pristine graphene under high magnetic �elds [96,98].
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7.2 Valley Splitting of the Zeroth Landau Level

7.2.1 Split Electron- and Hole-Conduction

The Hall resistance does not only demonstrate the opening of a fundamental band gap,
but can also be used to determine the electron and hole concentrations.
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Figure 7.6: Insulating gap around the CNP in a 100 nm (9398_D2) spacing GAL device
under high magnetic �elds. (a) Hall resistance measured at T = 4 K and T = 88 K,
respectively, each at magnetic �elds of B = 15 T and B = 30 T . (b) Concentration of
electrons (positive values) and holes (negative values), as determined from the plots in the
�rst panels. The three gray curves (solid bold, solid �ne, and dashed) represent ideal cases of
pure electron or hole conduction outside the gap for the two di�erent gap sizes.

Zeroth Landau Level

Figure 7.6(a) depicts a similar plot of the Hall resistance like in the previous section,
however, with the focus on the zeroth Landau level. The Hall resistance is shown for
T = 88 K (dash-dotted red line B = 15 T ; dashed red line B = 30 T ) and T = 4 K (solid
blue line B = 15 T ; dashed blue line B = 30 T ). The high temperature Hall resistance
di�ers notably from the low temperature data due to the presence of the band gap. For
temperature above 30 K, there is a smooth transition of Rxy between the ν = 2 and ν = −2
plateaus at zero e�ective charge carrier density (q = αV = 0), even at the highest B-�eld
(see data at 88 K). In this respect, GALs behave similarly to pristine graphene, which
also shows a smooth zero transition of the Hall resistance. This �nding testi�es a �nite,
equal density of electrons and holes that is maintained near the CNP [152].
Upon cooling to T = 4 K, however, the GAL samples are distinguished from pristine
graphene by the fact that Rxy starts to diverge at small net charge carrier densities q. In
fact, it does not cross zero anymore for magnetic �elds above 10 T and a temperature of T =
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4 K. Outside the gap region 2∆, which is insulating, the high-�eld Hall resistance exhibits
quantized resistance plateaus at the usual graphene �lling factors as already described in
section 7.1. Since below 30 K the band gap is comparable or larger than the thermal
energy, the Hall resistance follows a (1/q)-dependence away from the quantized ν = ±2
plateaus and diverges toward the asymptote of αVb = ±∆q (indicated by gray lines in �gure
7.6a)). With increasing magnetic �eld the asymptote is shifted to higher absolute voltages
|Vb| = |Vback − VCNP |. Likewise, the longitudinal (σxx) and transverse (σxy) conductivity
are in�uenced by the band gap. Both �atten into a plateau of zero conductivity in the
gap region between �lling factors ν = −2 and ν = +2 (see �gure 7.6(b)). In the insulating
region, the detected current lies below the digitalization limit.

Valley Splitting

The Hall resistance data provides direct access to the electron and hole density. In an
applied magnetic �eld, the inverse Hall coe�cient is given as 1/RH = B/Rxy. For a
semiconductor with two carrier types, the densities are related to the Hall coe�cient by
[153]:

1

RH

=
e(nµn + pµp)

2

nµ2
n − pµ2

p

, (7.1)

where n and p are the electron and hole density, and µn and µp the corresponding mobilities.
In the present samples, the conductance is symmetric in charge carrier density around the
CNP, and hence the condition of equal mobility is ful�lled (µp = µn). Thus equation 7.1
can be simpli�ed to [154]:

1

RH

=
B

Rxy

=
e(n+ p)2

n− p
. (7.2)

For calculating the electron and hole charge carrier densities, the total charge carrier density
q is used. In case of pristine graphene without a band gap or GALs in the high temperature
region, the net charge carrier density is de�ned as q = n − p. It can be determined from
q = αVb, where α is the gate coupling constant. For the shown 100 nm spacing sample,
the latter assumes a value of α = 8.5 · 1010 cm−2V −1 . Thus, the resulting electron density
is:

n =
1

2
((n+ p) + q) (7.3)

and (negative) hole density is:

− p = −1

2
((n+ p)− q). (7.4)

Using equation 7.2 these two quantities are plotted in �gure 7.6(b) around the CNP as a
function of q.
At high temperatures (T = 88 K), electrons are the majority charge carriers in the n-type
regime (positive q, q ≥ 5 · 1015 m2), where the electron density approaches n = q, while
the hole density approaches p = 0. The inverse is true for the p-type regime (negative q),
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where holes are the majority charge carriers. Close to the CNP both charge carrier types
coexist with a charge carrier density of n = p = 2.8 · 1015 m−2 at T = 88 K and B = 15 T .
At higher magnetic �elds, the electron and hole density increases to n = p = 4.5 · 1015 m−2

at B = 30 T . This observation is similar to pristine graphene, where the individual carrier
density increase at the CNP with increasing B-�eld has been explained by the proportional
dependence of the degeneracy of the N = 0 LL on the magnetic �eld [152].
By contrast, at low temperatures (T = 4 K), the gap emerges in the charge carrier density
and the Hall resistance starts to diverge around the CNP. The zero crossing of the Hall
resistance at the CNP vanishes for magnetic �elds B ≥ 15 T , which indicates that there
is no longer a coexisting density of electrons and holes at the CNP (see equation 7.2). If
the magnetic �eld is increased further, Rxy already starts to diverge further away from the
CNP after assuming the characteristic value for the ν = ±2 plateaus Rxy = ±12.9 kΩ.
This behavior evidences a stronger N = 0 Landau level splitting 2∆q in the charge carrier
density at higher magnetic �elds. If Rxy is plotted versus charge carrier density, this trend
can be observed by a shift of the asymptote from αVb = ±∆q = 2.2 ·1015 m−2 at B = 15 T
to ±4.6 · 1015 m−2 at B = 30 T . Below the corresponding values the gap is present
and neither charge carriers exist. The charge carrier plot, thus, comprises three separate
regions, speci�cally one below the gap, one above the gap and the third one the gap region
itself.
Inside the gap region

(I) −∆q ≤ αVb ≤ ∆q,

the equality n = p = q = 0 holds since no charge carriers are present, while in the region
below the gap

(II) αVb ≤ −∆q

the total charge carrier density is q = αVb + ∆q. By comparison, above the gap

(III) αVb ≥ +∆q

and the total charge carrier density is q = αVb −∆q.
The individual charge carrier densities (positive values for electron densities (yellow area)
and negative values for hole densities (green area)) at low temperatures, as derived from
equations 7.2, 7.3 and 7.4 for each of those regions, are plotted in �gure 7.6(b).
It is apparent that above the gap, the conduction is n-type with a hole concentration close
to zero (p = 0 and n = q). In contrast, below the gap there is p-type conduction with
−p = q and an electron density of approximately zero n = 0. The gray lines in �gure 7.6(b)
indicate the ideal cases of no band gap (dashed gray line), with purely hole and electron
conduction below or above zero charge carrier density, respectively. In this case, the Hall
resistance would also diverge but with an asymptote of αVb = 0. The solid gray lines are
the ideal cases with non-zero asymptotes (non-zero band gap) for the respective magnetic
�elds of B = 30 T and B = 15 T .
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7.2. Valley Splitting of the Zeroth Landau Level

Taken together, the above �ndings demonstrate that the fundamental band gap opened un-
der high magnetic �elds separates electrons and holes. Since these two carrier types posses
di�erent chirality in the zeroth Landau level, this corresponds to an e�ective separation
of carriers with opposite chirality above and below the gap. This valley polarization goes
along with a preservation of the spin degree of freedom. The angle-dependent measure-
ments of section 7.1 support this conclusion, since the gap (located around the CNP with
RCNP ) shows a dependence only on the perpendicular B-�eld component, rather than the
total B-�eld.
The splitting hierarchy di�ers from pristine graphene, where valley splitting is observed on
top of spin splitting only for high quality devices and high magnetic �elds [95]. The various
splitting scenarios are contrasted in the following section, and a schematic of the Landau
level structure and the consequences for the dispersion at low energies are presented in
section 7.3.

7.2.2 Splitting Scenarios

Depending on the hierarchy of the degeneracy lifting, di�erent scenarios for the Hall resis-
tance are possible.
From the total density of states D(E) at a given energy E the longitudinal conductivity
σxx can be derived by application of the Kubo-Greenwood formalism [155,156]:

σxx = e

∫ ∞
−∞

µ(E)D(E)
∂f(E)

∂E
dE. (7.5)

In this equation µ(E) is the carrier mobility, which is assumed to be constant for all
energies, and f(E) the Fermi distribution function f(E) = (e(E−EF )/kBT + 1)−1. The Hall
conductivity is obtained through the summation of all states up to the Fermi energy [157]:

σxy =

∫ EF

−∞
D(E)f(E) [1− f(E)] /(kBT )dE. (7.6)

In combination with equation 7.2 and the concentration of electrons n and holes p

n, p =

∫
Dn,p(E)fn,p(E)dE, (7.7)

the Hall resistivity can then be calculated numerically. The above procedure is applied to
the di�erent DOS scenarios in �gure 7.7, as discussed below.

No Degeneracy Lifting of the zeroth LL

Figure 7.7(a) shows the density of states and the resulting Hall resistance for monolayer
graphene with neither valley nor spin degeneracy lifting. The density of states is marked
in red for electrons and blue for holes. At the center of the Landau levels charge carriers
can occupy extended states (shaded regions), while in the Landau level tails (�lled regions)
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Chapter 7. Fundamental High Field Gap

localized states are present. Due to the separation of N = 0 and N = 1 LLs a resistivity
plateau occurs at ν = ±2. The depicted situation holds for pristine graphene at low mag-
netic �elds and low sample quality. The corresponding Hall resistivity assumes quantized
values for the plateau regions which occur when the Fermi level is positioned in between
the LLs. Since in these regions, localized states are �lled or depleted the conductivity
remains constant. Only if the Fermi level EF is moved into a LL center, where extended
states can be occupied, the Hall resistivity changes.
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Figure 7.7: Schematic illustration of the density of states (positive for electrons and negative
for holes) and Hall resistivity for di�erent splitting scenarios in graphene. Partially adapted
from [152] (a) No degeneracy lifting of the zeroth LL. (b) Pure spin splitting. (c) Spin splitting
with additional, weaker valley splitting. (d) Pure valley splitting. (e) Valley splitting with
additional, weaker spin splitting.

The �nite density of electrons n and holes p above and below the CNP (but zero net charge)
leads to a smooth zero crossing of the Hall resistance Rxy, which can be calculated numeri-
cally using equation 7.7 and 7.2. From equation 7.2 it is apparent that Rxy crosses zero for
�nite net charge carrier density n+ p and zero total charge carrier density n− p. This has
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7.2. Valley Splitting of the Zeroth Landau Level

striking consequences for the zeroth LL in graphene, in particular even a band gap opening
or a spin-�rst, valley-latter splitting cannot eliminate the zero crossing of Rxy [152].

Spin-�rst, valley-later splitting

Figure 7.7(b) and (c) depict spin-�rst, valley-later splitting , which has been observed
for pristine graphene of high quality and in high magnetic �elds [98], where the �lling
factor ν = 0 appears due to the spin degeneracy lifting. This manifests itself in a zero-
resistivity plateau, as shown in �gure 7.7(b). In even higher quality graphene, additionally
the degeneracy of the valley degree of freedom is lifted [96] and plateaus with �lling factors
ν = 1 and ν = −1 emerge in the Hall resistivity (�gure 7.7(c)). Thus, in this scenario
describing pristine graphene, the ν = 0 Landau level behaves as a quantum Hall metal.

Valley-�rst, spin-later splitting

Figure 7.7(d) and (e) depict valley-�rst, spin-later splitting scenarios. Here, electrons
and holes are separated above and below the CNP, respectively. Only in this valley-�rst
scenario, the Hall resistivity diverges at the CNP. If only the valley degeneracy is lifted
the Hall resistivity starts to rise from the ν = ±2 plateaus, whereas for the full degeneracy
lifting additional plateaus ν = ±1 appear before the divergence towards the CNP. In this
case, the ν = 0 Landau level behaves like a Quantum Hall insulator. Such behavior has not
yet been experimentally observed for the ν = 0 LL, and identi�es the valley-�rst scenario
to be relevant for the present GALs. A similar splitting sequence has so far only been
observed for higher LL in extremely high quality graphene on hBN [79].

Overview

type of sample / splitting σxx σxy ρxx ρxy

graphene, GALs [25,29][this work]/ 0 f, q 0 f, q
QHE for ν > 0

graphene, GALs at high T [25,29][this work]/ f 0 f 0
ν = 0 LL, no degeneracy lifting

high quality graphene [96,98,145,151]/ 0 0, q ∞ 0, q
ν = 0 LL, spin-�rst, valley-later
GALs at low T [this work]/ 0 0 ∞ ∞

ν = 0 LL, valley-�rst, spin-later

Table 7.1: Di�erent types of graphene samples with their longitudinal and transverse con-
ductivities (σxx and σxy) and corresponding resistivities (ρxx and ρxy). f denotes �nite and
q quantized values, respectively.

Table 7.1 gives an overview of the di�erent possible splitting scenarios for the zeroth LL.
Outside the zeroth LL region, graphene as well as GALs follow the normal QHE behavior
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Chapter 7. Fundamental High Field Gap

with zero longitudinal resistivity and conductivity, but �nite quantized values of the Hall
resistivity and conductivity when moving from one LL to the next. The ν = 0 LL of
graphene is special, since it is shared between electrons and holes and thus at the CNP
the the longitudinal conductivity and resistivity are �nite, while the Hall conductivity and
resistivity are zero. If spin-�rst splitting occurs, the scenario of a QH metal applies with a
Hall resistivity and conductivity of zero. The longitudinal conductivity has been observed
to approach zero and the corresponding resistivity to diverge. However, only for valley-�rst
splitting, a QH insulator behavior at the ν > 0 LL with an in�nite resistivity at the CNP
is present.

7.3 Dispersion Relation

As shown in section 7.1, the activation gap depends linearly on magnetic �eld and at
B = 25 T reaches values of (160± 9) K for the 100 nm nanohole spacing GAL, 234 K for
the freely-suspended 100 nm spacing sample, and (82±8) K for the 200 nm spacing sample.
These gap sizes are, however, much smaller than theoretically expected for GALs [114].
Furthermore, they don't follow a square-root dependence [158] as expected for a linear
dispersion. This is the case because the linear dispersion relation at low energies does not
hold for the GALs. In the following it is argued that the linear dispersion does not apply
to the GALs, and that instead a parabolic dispersion relation exists close to the CNP. The
parabolic dispersion adds a mass term to the charge carriers and thus renders the magnetic
�eld dependence of the splitting linear. Such band structure modi�cation due to the GAL
is not unexpected since also for GNRs, the con�nement has been found to cause deviation
from the linear dispersion of graphene [24].

7.3.1 Linear Dispersion

LL splitting in general is best observed in LL fan diagrams, where the LL position is traced
in dependence of the magnetic �eld and the applied gate voltage. For pristine graphene
with its linear dispersion relation, the LL positions as a function of gate voltage depend
linearly on the applied magnetic �eld. This is also true for the N = 0 LL if the degeneracy
is lifted. If the degeneracy is not lifted due to e.g. low sample quality, however, the zeroth
LL remains at the CNP is independent of the applied magnetic �eld. This behavior can
be deduced by converting the LL position in energy, given as: ELL =

√
2e~ν2

FB |N | (see
chapter 2), to the dependence in the gate voltage positions. The Fermi level in graphene
is given as: EF =

√
qπ~2ν2

F , which yields V = q/α = E2/(π~2ν2
Fα) and further:

V± = ±2eB |N |
π~α

. (7.8)

Therefore, for a linear dispersion, the LL positions in energy show a square-root dependence
on magnetic �eld, while as a function of gate voltage position the dependence is linear. On

84



7.3. Dispersion Relation

this basis, also the energy gap, in analogy to the LL energy positions, exhibits a square-root
dependence on magnetic �eld [158]. Since the dependence is not very strong, a splitting
of the LL positions as observed in the GAL samples (see Hall resistance measurements in
this section and the fan diagrams below) would result in huge hypothetical values of e.g.
1800 K at 20 T for the 100 nm spacing sample 9249_D3a. Furthermore, very large zero-
�eld gap values would be obtained, which stronly exceed the measured activation gaps as
well as the gaps extracted from the I/V measurements (see chapter 5). In the following it
will be shown that although for a parabolic dispersion the magnetic �eld dependence of the
LL energy positions is di�erent, the dependence of the LL gate voltage positions is actually
the same and the measured gap values can be accurately described by the parabolic instead
of the linear dispersion in the GALs for the lowest LL.

7.3.2 Parabolic Dispersion

Since the linear dispersion relation is unable to account for the observed band gap, the
GALs must have an in�uence not only on the band structure but also on the dispersion
relation. Actually, band structure calculations indicate that the gap opening in GALs
is accompanied by the emergence of a parabolic energy dispersion in vicinity of the gap
[114,116,159].

Landau Level Positions and Splitting

In contrast to the linear dispersion relation, the energy positions of the LLs for a parabolic
dispersion depend linearly on the magnetic �eld. This can be seen by application of the
Schrödinger equation to the general parabolic dispersion in two dimensions:

E(k) =
~2k2

2m
=

~2qπ

m
, (7.9)

where m is the mass and q = k2/2π is the charge carrier density. The resulting Landau
level energies are equidistantly separated and given as:

ELL = (N + 1/2)~ωc. (7.10)

Here, ωc = eB/m is the cyclotron frequency, and N the Landau level index. The �nite gap
at zero magnetic �eld in the GALs can be included by an additional zero-�eld gap term
E0
G, which yields:

ELL = (N + 1/2)~eB/m+
E0
G

2
. (7.11)

The conversion to the LL positions as a function of back gate voltage via V = q/α and
equation 7.9, results in V = Em/π~2α. The ambipolar character of graphene (and GALs)
can be accounted for by a plus and minus sign for electrons and holes, respectively, leading
to:

V = ±
(

(|N |+ 1/2)
eB

απ~
+

m

απ~2

E0
G

2

)
, (7.12)
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where V = Vb = Vback − VCNP and m = meffme, with me as the free electron mass. For
the zeroth LL, which is split by the gap, N = 0. Thus, for the two levels, which originate
from the split zeroth LL, the positions in back gate voltage are given by:

V± = ±1

2

(
eB

απ~
+
meffme

απ~2
E0
G

)
. (7.13)

Thus, the LL positions both in energy and as a function of gate voltage depend linearly on
magnetic �eld. This is distinguished from the case of the linear dispersion, where the gate
voltage positions exhibit such linear dependence, but the positions in energy a square-root
dependence.

Parabolic Dispersion of the zeroth LL

To test the above derived equations, the measured Rxy is evaluated as a function of mag-
netic �eld and applied back gate voltage. To make the LL positions better visible, the �rst
derivative of the inverse Hall resistance d(1/Rxy)/dVb is plotted in the fan diagrams, as
exempli�ed in �gure 7.8 for the 100 nm spacing sample 9398_D2. Next to the fan diagram
line-cuts for the inverse Hall resistance as well as its derivative are shown for B = 30 T .
In the displayed gate voltage region, the plateaus at ν = ±2 are well-developed and an
additional plateau at zero conductivity is visible due to the gap opening. The maxima of
d(1/Rxy)/dVb within the green regions, where Rxy changes from one plateau to the next,
correspond to the LL centers and thus enable to trace the LL positions with magnetic �eld.
For low magnetic �eld, the QHE is obscured, most likely because the cyclotron diameter
of the charge carriers approaches the GAL neck width, such that the edge channels impair
each other [25].
The LL positions can now be compared to the values calculated based upon either a linear
or parabolic dispersion (equation 7.8 and 7.12, respectively). The positions of the higher
LLs are consistent with the assumption of usual linear graphene dispersion. The red dashed
lines represent the values calculated for the LLs N = 0, 1, and 2 using the linear disper-
sion. The gate coupling factor can be extracted from the slope of the higher LLs, yielding
α = 8.5 · 1010 cm−2V −1, which is, as observed in chapter 5, slightly larger than for pristine
graphene on 300 nm SiO2 [29]. This di�erence most likely results from inhomogeneous
electric �eld e�ects, analogous to observations made on graphene nanoribbons [160]. This
e�ect is especially relevant for the GALs with high antidot density.
For the zeroth LL, by contrast, the parabolic dispersion is necessary to describe the zeroth
LL splitting. Even without the introduction of a zero-�eld gap, the dependence already
matches the measured positions quite well. Using equation 7.13 to �t the zeroth LL splitting
(black lines in �gure 7.8), perfectly accounts for the observed splitting. As �t parameters
an e�ective mass meff = 0.08 and a zero-�eld gap E0

G = 44.0 K are obtained. The latter
value is in good agreement with the values of E0

G ≈ 30 K derived from the I/V mea-
surements in chapter 5. In the same manner as described above, values of E0

G = 29.0 K,
α = 7.2 · 1010 cm−2V −1 and meff = 0.10 were obtained for the 200 nm spacing sample
9249_D2, as well as E0

G = 66.0 K, α = 5.0 · 1010 cm−2V −1 and meff = 0.08 for the
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suspended 100 nm spacing sample 9139_D2a.
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Figure 7.8: Fan diagram of sample 9398_D2 and extracted gaps. (a) First derivative of
the inverse Hall resistance d(1/Rxy)/dVb as a function of magnetic �eld and gate voltage
at T = 4 K. Line-cuts of 1/Rxy and its derivative at B = 30 T are displayed on the
right. (b) Activation gap EA and band gap EG extracted from the LL fans di�er by the
respective Landau level broadening Γ for samples 9249_D3a (100 nm), 9249_D2 (200 nm)
and 9139_D2a (100 nm suspended).

Combining the extracted values for the �t parameters meff and E0
G with equation 7.13

allows to determine the band gap in dependence of the magnetic �eld. Figure 7.8(b) com-
pares the activation gap derived from the Arrhenius �ts to the temperature dependence of
the minimum conductivity (symbols) with the gaps EG extracted from the LL fans (dashed
lines) for samples of di�erent spacing and quality. The di�erence between the two values is
the Landau level broadening, since the activation gap is the distance between the mobility
edges of the two broadened LLs. The values for EG of a device are shifted with respect to
the activation gaps EA by the LL broadening of the sample. From �gure 7.8(b) it is visible
that this broadening depends on the sample quality. While the LL broadening obscures
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the gap determined by the activation measurements, it has no in�uence on the gap derived
from the LL splitting of the fan diagrams, since here only the LL centers and not their
width are important for the �ts. Furthermore, both EA and EG linearly increase with
magnetic �eld due to the parabolic dispersion near the CNP.
Previous studies have found that the LL broadening depends on the amount of disorder
of the sample [161, 162]. It hence can be expected that for high quality samples such as
suspended devices the broadening is reduced, which is indeed observed for the present
GAL samples. In particular, the broadening extracted from �gure 7.8b) is estimated to be
Γ = (90± 10) K, Γ = (120± 10) K and Γ = (30± 10) K for the 100 nm, 200 nm and sus-
pended 100 nm spacing sample, respectively. The latter value is considerably smaller than
the broadening in the non-suspended GALs and also smaller than 100 K, which has been
reported for Si/SiO2-supported pristine graphene at low temperatures [163], re�ecting the
improved quality of the freely suspended GALs.

Overall Picture of the Splitting Behavior
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Figure 7.9: Schematic illustration of the impact of the nanohole array on the band structure
of graphene under applied B-�eld. Electron levels are drawn red and hole levels blue. The spin
degree of freedom is indicated by the direction of the arrows. The chirality is visualized by
�lled and transparent arrows. On the right, the corresponding Landau level density of states
is depicted, with the actual LL gap EG and the activation gap EA (both in dark green).

As shown above, the GAL introduces a �nite zero-�eld E0
G, such that the two Dirac cones

of pristine graphene connected at the CNP become separated. This gap opening induces
a transition from a linear to a parabolic dispersion of the band structure in the vicinity of
the gap.
In �gure 7.9 the parabolic dispersion scenario is combined with the observed valley splitting
in order to illustrate the LL structure and DOS of the GALs. At low magnetic �elds, the
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activation measurements reveal pure hopping conduction via localized states in the gap.
Only for higher magnetic �elds the band gap is manifested in the temperature dependent
conductivity, with a gap size that increases linearly with magnetic �eld due to the parabolic
dispersion of the lowest LL. Under applied B-�eld, the charge carrier density condenses
into LLs, and the lowest LL splits into an electron level (red arrows) and a hole level
(blue arrows) of opposite chirality (dark and light arrows), which corresponds to valley
polarization in the lowest LL. The divergence of the Hall resistance in the gap region proves
that a valley-�rst split scenario must apply, whereas the spin degeneracy is preserved as
concluded from the absence of plateaus at �lling factors ν = ±1, which can be ascribed
to low quality of the 100 nm spacing GAL sample (�gure 7.8(a)). It will be shown in the
following that for the highest quality samples an additional, although weaker spin splitting
on top of the valley splitting can be observed.
By contrast, the B-�eld behavior of the higher LLs remains una�ected and mirrors the
behavior of pristine graphene. Overall, it follows that only the two levels originating from
the N = 0 LL reside within this parabolic dispersion region, whereas the higher (N 6= 0)
LLs remain in the linear dispersion regime.

Additional Spin Splitting in Highest Quality Samples

Besides the valley splitting of the N = 0 LL, signatures of additional, weak spin splitting
can be detected in the samples of highest quality. Speci�cally, a ν = 1 plateau appears
at h/e2 in the Hall resistance, as discernable in the fan diagrams for sample 9249_D2
(200 nm) and 9139_D2a (100 nm suspended) in �gure 7.10a) and b) respectively. For
the suspended sample, the spin splitting is most pronounced and already appears above
≈ 6 T . Figure 7.10b) shows a zoom into the hole regime of the sample.
This spin splitting can be explained in the framework of the parabolic dispersion close to
the gap upon inclusion of a complementary Zeeman term:

± 1

2
g∗µBB, (7.14)

with g∗ as the e�ective electron g-factor in equation 7.11. The Zeeman energy leads to an
additional term ±gmeffeB/4απ~ in equation 7.13. The additional splitting is exempli�ed
in �gure 7.10, where the red solid lines represent the higher LL with the linear dispersion.
The black lines highlight the behavior of the zeroth LL, in which case either a pure valley-
split gap (solid lines) or also the Zeeman term (equation 7.14) is included.
For each of the devices, both the �ts with the negative and the positive sign of the Zeeman
term yield an identical zero-�eld gap E0

g and meff (see previous section), such that the
only remaining �t parameter is the g-factor. Fitting yields a g-factor of g∗ = 6 for the
200 nm GAL and g∗ = 5 for the 100 nm suspended sample. These values are appreciably
larger than the free electron g-factor (g = 2), which might be explained by electron-electron
exchange interactions, in analogy to the 2D gas in semiconductor heterojunctions [164,165]:

E0
ex =

(
1− g

g∗

)√
2πΓ. (7.15)
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Furthermore, the spin splitting also has an in�uence on the determination of the band gap
from the LL fans. If spin splitting is included, the LL broadening nominally decreases
to Γ = 60 K for the 200 nm spacing sample, and Γ = 20 K in case of the suspended
100 nm spacing sample. These values are derived from the B-�eld at which the spin
splitting becomes comparable to the LL broadening and hence observable. This is the case
at B ≈ 6 T (spin splitting ≈ 20 K) for the 100 nm suspended sample and B ≈ 15 T (spin
splitting ≈ 60 K) for the 200 nm sample. From the LL broadening the respective exchange
energies of E0

ex = 100 K and E0
ex = 30 K can be calculated, which are in good agreement

with E0
ex = 130 K reported for pristine graphene [163].
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Chapter 8

Summary and Outlook

8.1 Band gap opening and interaction e�ects

In summary, two di�erent graphene-based model systems for band gap opening have been
studied, namely bilayer graphene in electric and magnetic �elds, as well as GALs with
di�erent lattice geometries up to high magnetic �elds.
In case of bilayer graphene, besides the band gap opening induced by the out-of-plane
electric �eld, also an unexpected spontaneous gap already present at zero magnetic and
electric �eld is found. By comparison, charge transport in the GAL structures at low
magnetic �elds is governed by di�erent variable range hopping regimes, which arise from
the presence of localized states, while a fundamental band gap becomes observable only
in the high magnetic �eld range. However, the data gained under high B-�eld indicate
that already without applied �eld an energy gap is present, although it is obscured by the
localized states. By studying a set of GALs with di�erent geometry it could be shown
that similar to graphene nanoribbons, the con�nement and thus the GAL geometry plays
a crucial role. In contrast to the GAL geometry, no noticeable in�uence of the geometrical
arrangement of the nanoholes (cubic vs. hexagonal) is observed. The localized states in
the GALs lead to 2D conduction either via Efros-Shklovskii variable range hopping (ES-
VRH) in case of small nanohole spacing or Mott VRH for large nanohole spacing, both
of which are operative at low magnetic �elds. Which hopping mechanism is dominant
depends on the strength of the Coulomb interaction between the localized states. Stronger
Coulomb interactions cause the opening of a soft gap in the localized density of states, the
so-called Coulomb gap. A more complete picture regarding the localization in the samples
could be gained from thermal activation measurements in the VRH regimes, which provide
direct access to the degree of localization in the samples. These data reveal that strong
localization with short localization lengths, implying short hopping distances and large
hopping energies, favors ES-VRH. By contrast, the 2D Mott VRH regime is character-
ized by weaker localization and correspondingly larger localization lengths. In general, the
hopping distance from one localized state to another is found to be 1-2 times larger than
the nanohole distance. Thus, charge carriers hop from one nanohole edge to the nearest
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or next-nearest neighboring nanohole (assuming that the localized states are located at
the nanohole edges). This scenario is consistent with the observation that the localization
increases upon decreasing the nanohole separation.

Besides the gap-opening mechanism, the tuneability of the gap di�ers between the two
model systems. For bilayer graphene, the gap size is determined by the strength of the
vertical electric �eld applied to the suspended sheet. With the aid of opposing bottom
and top gates, we achieve independent control of the vertical electric �eld and the charge
carrier density in the sheet. In the investigated devices, the gap is largest for zero charge
carrier density and the resistance increases exponentially with electric �eld. Although the
maximum observed resistance increase due to the opened band gap is larger than reported
for �akes embedded into dielectrics, the experimental gap size is still considerably smaller
than predicted by theory. This di�erence might be assigned to the disorder potential,
which is signi�cantly reduced in the suspended vs. substrate-supported graphene bilayers,
albeit it does not reach the intrinsic mobility limit. Another contributing factor could be
the random edge termination of the �akes. Tuning of the carrier density by the electric
�eld is limited by the break-through voltage of the dielectric, and for the suspended sheets
also by their mechanical stability, as they are bent toward the gates at high vertical �elds.
For the GALs, it could be demonstrated that in addition to the nanohole separation also
the doping level in�uences the gap. In particular, the size of the Coulomb gap increases
linearly with decreasing charge carrier concentration. With increasing carrier density, �rst
a transition occurs from ES VRH to 2D Mott VRH, followed by a transition to a weak
localization regime. The latter regime lacks an exponential temperature dependence of the
resistance, and also the phase coherence length is notably reduced compared to the VRH
regime. A third possibility to tune the gap, besides adjusting the nanohole separation
and carrier density, is to apply an external magnetic �eld. In GALs with small nanohole
spacing, which without applied B-�eld feature ES VRH, this hopping mechanism prevails
up to moderate magnetic �elds, above which a transition to Mott VRH takes place. The
B-�eld, at which this transition occurs due to decreased Coulomb interactions between the
carriers of the localized states, decreases with increasing nanohole separation. The reason
why an applied B-�eld reduces these interactions is shrinking of the wave functions and the
resulting reduced overlap between them. Conduction via ES-VRH at moderate magnetic
�elds could be observed in the present thesis for the �rst time, most likely because in pre-
vious studies the interactions have been suppressed by the magnetic �eld, such that Mott
VRH dominated. The existence of ES-VRH under these conditions had been expected by
percolation theory. Upon further increasing the magnetic �eld, the transport mechanism
changes from Mott VRH to activated transport with a gap, whose size depends linearly on
the B-�eld. The transition between the two regimes is continuous, since the VRH regime
is dominant in the low temperature range, while the opposite holds in the high temper-
atures range. Accordingly, even at moderate magnetic �elds, almost the entire accessible
temperature range can be described by activated transport.

The device quality, as expressed by the carrier mobility, proved to play a crucial role,
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as re�ected by its signi�cant in�uence on the measured gap size in both systems, i.e.,
bilayer graphene as well as the GALs. Improvement of carrier mobility is of particular
importance for bilayer graphene which is more sensitive against adsorbates and surface
contaminants than monolayer graphene. Here, such improvement was achieved by sus-
pension and subsequent current annealing of the �ake. In contrast to bilayer graphene
embedded in bottom and top gate dielectrics, which deteriorate the carrier mobility, the
suspended sheets displayed the expected exponential resistance increase with electric �eld.
Another bene�t of the increased carrier mobility is that interaction e�ects of the involved
charge carriers become visible already at low magnetic �elds. In bilayer graphene, electron-
electron exchange interaction is enhanced compared to monolayer graphene, which leads to
a degeneracy lifting in the Landau level structure. As a consequence, the unique nature of
the charge carriers becomes directly observable, particularly in the form of a LL splitting
that increases with rising B-�eld. Similar to monolayer graphene, the splitting hierarchy
in bilayer graphene most likely involves �rst the spin, followed by the valley, and - for bi-
layer graphene - additionally the orbital degree of freedom. Along with the magnetic �eld,
also the electric �eld in�uences the LL spectrum of bilayer graphene. In fact, the electric
�eld-induced band gap opening is associated with valley polarization, since the upper and
lower graphene layers are directly correlated to the valley degree of freedom in the lowest
LL, wherein electrons and holes possess opposite chirality. Moreover, the di�erent slopes
of the LL energies in electric �eld for the two valley polarizations lead to crossing of the
LLs, with a canted antiferromagnetic or spin-polarized phase dominating for high magnetic
�elds and a layer (valley)-polarized phase under high electric �elds. Surprisingly, at low
magnetic and electric �elds another high resistance phase could be detected, which even
persists down to zero �elds. The origin of this "spontaneous" gap is still subject to debate.
One plausible explanation might be breaking of the time reversal or rotational symmetry.
In general, symmetry breaking in bilayer graphene is facilitated due to the enhanced ex-
change interactions of its charge carriers.
Like for bilayer graphene, also in GALs exchange interactions a�ect the charge transport
mechanism. In this case, the e�ect of carrier mobility is evidenced by comparing devices
with di�erent doping levels, as controlled either by suspension and subsequent current an-
nealing of the �ake, or by in-situ annealing of the �nished device. These methods also
allow comparing the same device before and after annealing, which demonstrates that an
increased device quality leads to stronger localization with an increased Coulomb gap. The
GAL devices of highest carrier mobility were found to clearly display the Aharanov-Bohm
e�ect that arises to due quantum interference when the devices are brought into the quan-
tum Hall regime. The opening of fundamental band gap under high magnetic �elds hints
back to the presence of a zero-�eld gap that is introduced by the spatial con�nement. The
resulting separation of electrons and holes induces a polarization of the valley degree of
freedom for the lowest LL. Since valley splitting occurs before spin splitting, the splitting
sequence is reverse compared to that in pristine graphene. Such valley-�rst splitting of the
zero energy LL, as consolidated by the observed divergence of the Hall resistance around
the CNP, could be detected in this thesis for the �rst time. The size of the valley-polarized
band gap was found to scale linearly with magnetic �eld. We explain this magnetic �eld
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dependence, as well as the zeroth LL splitting, by a transformation of the band structure
around the Dirac point. While in bilayer graphene, the parabolic dispersion is transformed
into a Mexican hat-shaped dispersion, in the GALs, the originally linear dispersion changes
to a parabolic one. The latter transformation is accompanied by a change of the nature
of the charge carriers, whereupon they assume a mass. In comparison, the higher LLs
remain una�ected and preserve the typical spacing and position like in pristine graphene.
As expected, the determined LL broadening is smallest for the suspended GALs devices
owing to their high carrier mobility. Analogous to the high quality bilayers, a complete
degeneracy lifting can be observed in such samples, together with a weaker spin splitting
on top of the valley-�rst splitting.

8.2 Outlook

The present �ndings demonstrate the opening of a tuneable band gap in both, bilayer
graphene subjected to a vertical electric �eld as well as GAL devices placed within a
magnetic �eld. From an application perspective, an ideal �eld-e�ect transistor would be
operated at room temperature with high charge carrier conductance in the "on" state and
negligible conductance in the "o�" state. Due to its extraordinary charge carrier mobility
which is almost independent of carrier concentration and only weakly decreases with rising
temperature, graphene is a promising component for such devices. The measurements per-
formed in this thesis reveal that enhancing the mobility, for instance by suspending and/or
annealing of the sheet, enhances the opened gap. Especially in the case of bilayer graphene,
where the band gap scales with the external magnetic �eld, further improvement may be
achieved in the future by implementation of a sandwich structure, wherein the �ake is
embedded between two insulating hBN layers. Indeed, it has been shown that graphene on
hBN as underlying substrate can exhibit equally high mobility as suspended �akes which
approach the intrinsic limit given by phonon-scattering [78, 79]. As a further advantage,
such structures o�er higher device stability and thus the possibility to apply high gate volt-
ages and electric �elds. Research in this direction is carried out intensively [104,166,167],
although device fabrication becomes increasingly complicated. Another challenging goal is
to gain better control over the con�nement-induced gap in the GALs. In particular, struc-
turing on the nm scale poses a serious challenge especially with regard to large scale device
fabrication and integration. The top-down patterning of narrow structures is notoriously
accompanied by the introduction of defects and edge roughness, both of which reduce the
mobility. Bottom-up strategies in principle promise well-de�ned edges and strong spatial
con�nement [168], however, they are still in the very early stage of fundamental research
and hence not yet available for integration into devices.
Ideally, switching of the devices should be achievable with only a small energy cost rather
than the need to apply high �elds and voltages. Also in this respect graphene is highly
promising since due to the chiral nature of its charge carriers, ballistic edge channel conduc-
tion is protected and persists up to room temperature. As a consequence, LL formation
becomes accessible even at elevated temperatures. Provided that the device mobility is
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su�ciently high, it should principally also be possible to gain access to the additional
degrees of freedom of graphene's charge carriers under ambient conditions. This perspec-
tive expands the current fundamental research interest in di�erent symmetries, phases and
quasi-particle character toward exploiting the LL splitting not only for conductance switch-
ing, but also to achieve device operation based upon the quasi-particle polarizations, most
prominently in the form of graphene-based spintronic or valleytronic devices such as gate
tuned spin- or valley �lters or beam splitters [169�171]. Graphene's large spin coherence
length renders it into a close-to-ideal component of such devices. Thus, the �ndings of this
thesis may not only open new avenues towards graphene-based devices, but especially the
observed band-structure transformation and alteration of the quasi-particle character in
the GALs might have important implications for the realization of all-graphene semicon-
ductor devices that rely upon a band gap introduced by spatial con�nement.
Another issue for the implementation of graphene into technologically useful devices, which
has not yet been addressed in this work, is device scalability. While devices based on me-
chanically exfoliated graphene are the �rst choice for exploring fundamental aspects and
fabricating proof-of-principle devices as investigated in this work, alternative synthesis
methods for graphene synthesis are needed for large scale production. Especially promis-
ing in this respect is epitaxial graphene on SiC, which reaches mobilities of the order of
20, 000 cm2V −1s−1 [55]. Gap opening in such type of graphene can be achieved on a large
scale by hydrogenation [172�174]. Additionally to gap opening, covalent functionalization
by hydrogenation has been predicted to induce ferromagnetism in graphene [175]. Since the
underlying SiC does not allow for electrostatic gating, we have carried out �rst test mea-
surements by magnetic force microscopy in order to locally probe possible spin alignment
in hydrogenated epitaxial graphene.

8.2.1 Hydrogenated Epitaxial Graphene on SiC

Hydrogenation

Graphene can be produced by thermal decomposition of SiC (at ≈ 1600◦C) under UHV or
inert gas conditions, where the silicon sublimes and carbon-rich regions form that increase
in size and �nally merge into the graphene layer [57]. Although graphene sheets of reason-
able quality can be obtained in this way, it has proven di�cult to grow homogeneous layers
of controllable thickness. Figure 8.1 shows an AFM image of epitaxial graphene grown on
an insulating 6H-SiC substrate following the method in [57]. Several few micrometer wide
terraces are visible due to a slight miss-cut of the SiC substrate [176,177]. At the step edges
a second layer is formed, resulting in a narrow stripe of bilayer graphene [57]. Below the
graphene layer a carbon-rich phase, the insulating, so-called bu�er layer [178, 179], is lo-
cated which decouples the layers from the SiC substrate [180]. After growth, the graphene
�lm in �gure 8.1 is subjected to hydrogen exposure in an UHV chamber. The resulting
hydrogen coverage of the graphene �lm depends on the hydrogenation time, and might
di�er between the monolayer and bilayer graphene regions.
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Figure 8.1: Formation of partially hydrogenated graphene on SiC, probed by tapping mode
AFM. (a) Topographic image revealing a terrace structure with ≈ 10 nm step height. (b)
Line cut along the line in panel (a) and three-dimensional view of the terrace steps. (c) In
the phase image, the areas covered by monolayer and bilayer graphene at the terrace edges
can be distinguished.

Magnetic Properties

Figure 8.2 shows regions of monolayer and bilayer graphene (at the terrace edges of the
SiC substrate) after 30 min of hydrogen treatment. Magnetic force microscopy (MFM)
measurements are performed at a constant lift height of 50 nm using a magnetic Co-Cr
coated tip with force constant k = 2.8 N/m under ambient conditions. The quality factor
of the tip is around 230. The MFM data can be directly correlated with the topography
data taken in tapping mode (�gure 8.2(a)). In the phase shift of the MFM signal (see
�gure 8.2(b) and (c)), the monolayer (ML) and bilayer (BL) graphene areas show a di�erent
contrast, which indicates a di�erent magnetization of the two regions. This might arise from
di�erent hydrogen coverage [181,182]. The sample can be magnetized by placing it on the
north (+B) or south pole (−B) of a permanent magnet before putting it back into the MFM
setup. This leads to inversion of the MFM signal (−14.375±0.175 deg), with the monolayer
always exhibiting larger magnetization than the bilayer regions. Magnetizing the sample in
the opposite direction (+B) re-establishes the original MFM signal (+3.225± 0.175 deg).
The line cuts of the MFM scans are obtained by averaging over the lines in the indicated
region. The dirt particle (circled area) in the center of the images serves as reference
point in the scans. Similar to the step edges, it is also visible in the MFM scans and does
not change sign upon sample magnetization in di�erent directions, indicating that it most
likely arises due to crosstalk with the topography signal.
These �rst test measurements indeed con�rm a magnetic moment of the hydrogenated
graphene on SiC. Furthermore, they reveal a di�erent magnetization for the graphene
monolayer and bilayer regions.
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Figure 8.2: Magnetic force microscopy images of hydrogenated graphene on SiC (sample
GM16) (a) AFM scan in tapping mode, taken before the MFM scan. (b) MFM phase image
recorded after magnetizing the sample by placing it on the south pole of a permanent magnet
(−B ≈ −300 mT ). (c) MFM phase image acquired after reversing the magnetization on the
north pole of a permanent magnet (+B ≈ 300 mT ).

8.2.2 Scanning Photocurrent Microscopy (SPCM) at Low Tem-
peratures

Visualization of the local potential distribution is an important task, since the performance
of graphene devices depends sensitively on the potential distribution as well as edge e�ects
(e.g., their chemical termination or edge channel conduction). To explore these e�ects in fu-
ture experiments, the method of scanning photocurrent microscopy (SPCM) is expanded to
low temperatures by combining scanning confocal microscopy with low-temperature mag-
netotransport measurements. At room temperature and zero B-�eld, SPCM has already
been used to study contact and edge e�ects in graphene transistor devices [183]. At liquid
He temperatures, the technique has proved to be able to spatially resolve the LL struc-
ture [184], as well as hot carrier e�ects (i.e., the Seebeck e�ect) in pristine graphene [185].
Figure 8.3 shows �rst test SPCM measurements performed at low temperature on a 100 nm
spacing GAL contacted in 4-probe con�guration. The re�ection signal (RS) is recorded si-
multaneously with the photocurrent Iphoto, such that the scanning position can be directly
correlated with the photocurrent signal generated. In the measurement, no source-drain
bias and zero magnetic �eld is applied. The photocurrent image displays two main pho-
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tocurrent lobes of opposite sign. Similar signals observed at room temperature have been
attributed to potential steps at the contacts.
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Figure 8.3: Scanning photocurrent microscopy at low temperatures (T = 1.5 K, B = 0 T ,
Vback = 0 V , nominal laser power P = 0.04 mW , sample time t = 25 ms) on a 100 nm spacing
GAL (sample 0216_D4) highlighted by the white dashed line. (a) Schematic illustration of
the measurement setup allowing for simultaneous capturing of the re�ection signal (RS) and
the photocurrent signal (Iphoto). (b) Re�ection image of the inner contacts. (c) Photocurrent
image of the same area as in panel (b).

The �rst SPCM measurements shown here con�rm the proper function of the setup and
underline the potential of this technique for future measurements on graphene devices.
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Appendix A

Sample Catalogue

A.1 List of Samples

The following table lists all samples of which data is shown in this work. The list includes
the sample names, their composition and/or treatment, as well as their charge neutrality
point (CNP) position if applicable.

sample name type description CNP

8855_D2a graphene non-structured VCNP = 8.0 V
on Si/SiO2

9139_D2b suspended graphene non-structured VCNP = 0.0 V
current annealed

9001_D3 suspended graphene non-structured VCNP = 0.0 V
current annealed

10268_D2 graphene Hall bar VCNP = 15.5 V
on Si/SiO2

10265_D1 graphene Hall bar VCNP = 30.0 V
on Si/SiO2

10265_D2 graphene Hall bar VCNP = 33.0 V
on Si/SiO2

8818_D3 graphene Corbino disk VCNP = 5.6 V
on Si/SiO2 Outer diameter do = 2.5 µm

Inner diameter di = 1.5 µm
8851_D1 graphene Corbino disk VCNP = −1.35 V

on Si/SiO2 Outer diameter do = 2.5 µm
Inner diameter di = 1.5 µm
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sample name type description CNP

8851_D7 graphene Corbino disk VCNP = −1.35 V
on Si/SiO2 Outer diameter do = 2.5 µm

Inner diameter di = 1.5 µm
8813_D2 graphene Corbino disk VCNP = −2.0 V

on Si/SiO2 Outer diameter do = 2.5 µm
Inner diameter di = 1.5 µm

EP070710a_D5 suspended bilayer Hall bar VCNP = 0.5 V V
graphene

current annealed
EP082910a_D6 suspended bilayer Hall bar VCNP = 0.55 V

graphene with top gate
current annealed

EP082910a_D11 suspended bilayer Hall bar VCNP = 0.0 V
graphene with top gate

current annealed
8855_D1 GAL 100 nm spacing VCNP = 10.6 V

on Si/SiO2 square lattice
8855_D4 GAL 100 nm spacing VCNP = 13.8 V

on Si/SiO2 square lattice
8855_D2b GAL 200 nm spacing VCNP = 10.0 V

on Si/SiO2 square lattice
8854_D3a GAL 80 nm spacing VCNP = 11.5 V

on Si/SiO2 square lattice
8854_D1 GAL 100 nm spacing VCNP = 12.0 V

on Si/SiO2 hexagonal lattice
8817_D5 GAL 100 nm spacing VCNP = 16.5 V

on Si/SiO2 hexagonal lattice
8817_D4 GAL 100 nm spacing VCNP = 18.0 V

on Si/SiO2 square lattice
9249_D2 GAL 200 nm spacing VCNP = 8.5 V

on Si/SiO2 square lattice
9249_D3a GAL 100 nm spacing VCNP = 12.5 V

on Si/SiO2 square lattice
9249_aD2 GAL 200 nm spacing VCNP = 5.5 V

on Si/SiO2 square lattice
annealed
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sample name type description CNP

9249_aD3a GAL 100 nm spacing VCNP = 5.5 V
on Si/SiO2 square lattice

annealed
9139_D2a suspended GAL 100 nm spacing VCNP = −1.0 V

current annealed square lattice
9398_D2 GAL 100 nm spacing VCNP = 16.0 V

on Si/SiO2 square lattice
Hall bar geometry

9398_D4 GAL 200 nm spacing VCNP = 16.0 V
on Si/SiO2 square lattice

GM16 mono- and bilayer hydrogenated -
graphene on SiC 30 min

GN05 mono- and bilayer hydrogenated -
graphene on SiC 30 min

0216_D4 GAL 100 nm spacing VCNP = 11.0 V
on Si/SiO2 square lattice

Table A.1: Sample catalog. The samples are listed according to the order in which they
appear in this work.
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Appendix B

Combined Heliox VL/ Attocube CFM
Setup Speci�cations

Cool down from room temperature to liquid He temperature

Cool down of the Dewar involves the following steps (see also [186]):

1. Evacuating the OVC with an oil-free roughing pump and subsequent pumping with
a turbomolecular pump to a pressure of p < 1 · 10−5 mbar, and leakage rate <
1 · 10−8 mbar · l/s.

2. Filling of main bath with liquid nitrogen (maintain p ≈ 0.1 bar).

3. Pump liquid nitrogen from the main bath to the nitrogen shield reservoir by con-
necting the main bath with the nitrogen shield, while simultaneously pressurizing the
main bath from the exhaust.

4. Flush the main bath with helium gas when all nitrogen is transferred to the shield
by �lling He up to a pressure of 1000 mbar and subsequent pumping to 500 mbar.
Repeat the �ushing, with reducing the end pressure to 200 mbar, 100 mbar, and
≈ 0 mbar, respectively, in the following �ushing cycles. Repeat the �ushing a few
times with the lambda fridge needle valve open, and close it after the �ushing at
1000 mbar.

5. Fit the main bath exhaust with an 1 bar overpressure valve and then �ll the liquid
nitrogen shield with liquid nitrogen and the main bath with liquid helium.

6. Connect the recovery line.

The helium level in the main bath can be checked by monitoring the resistances at the 12 pin
Fischer connector located at the lambda fridge pumping exit. The important resistances
are summarized in table B.1:
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measured resistance pins @ room temperature @ 77 K @ 4.2 K

magnet magnet leads 49 Ω 39.8 Ω -
magnet isolation magnet ∞ ∞ ∞

to ground
switch heater pin 9,10 120.2 Ω 118.4 Ω -

spare switch heater pin 8,10 120.2 Ω 118.4 Ω -
switch heater isolation pins 8,9,10 ∞ ∞ ∞

to ground
R1 (≈ 10 cm pin 3,4 189.7 Ω 217.2 Ω 1270 Ω

above lambda fridge coil)
R2 (at pin 3,5 192.5 Ω 220.2 Ω 1314 Ω

lambda fridge coil)
R3 (top pin 3,6 187.4 Ω 215 Ω 1300 Ω

of magnet)

Table B.1: Resistances measured at the magnet or the 12 pin �sher connector located at
the lambda fridge pumping exit, measured at three di�erent temperatures.

Temperature Sensors for the two inserts

The di�erent temperature sensors common to the two inserts including their location and
range are given in the following table B.2. Additional temperature sensors of the CFM
insert are listed in table B.3.

location sensor type sensor range

Sorb Allen-Bradley 1.2 K - 240 K
1 K-pot RuO < 7 K
3He pot RuO < 7 K
3He pot Cernox 1.4 K - 300 K

Table B.2: Properties of the temperature sensors of the cryostat inserts.

location sensor type sensor range

cold plate (sample) RuO < 7 K
cold plate (sample) PT1000 300 K - 400 K

Table B.3: Speci�cations for the additional temperature sensors of the CFM insert.

Calibration of the Cernox sensor

The calibration of the Cernox sensor has to be adapted to the respective insert in use (for
a complete description see also The ITC503 RAM SETUP DIALOG in [187]). In principle
the calibration of the sorb sensor (115 Ω and 110 Ω correspond to 240.9 K for the rotator
and the CFM insert, respectively, whereas 1100 Ω is the low temperature reference point at
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4.4 K) should also be adapted to the respective insert used. However, since the latter sensor
is not used for accurate temperature sensing this step is not crucial. A recalibration for the
RuO sensors is not necessary since the CFM insert possesses an additional RuO sensor near
the sample space, which is read out via a Lakeshore temperature controller. The calibration
is done with the ITC503 control using the MMS program . The temperature/resistance
conversion �les for the two inserts are already stored in the ITC. After loading the �les,
the calibration is performed via the following steps:

1. Setup→memory→get→load from table �le (C070 for the rotator insert and C439 for
the CFM insert). Assign range→channel3→ok→put.

2. Storing the settings on the ITC is done in local mode: local→Limit+LOC/REM.
Then switch of the ITC. Change the hardware con�guration of the ITC switches by
removing the top cover and setting the black switch of sensor 3 into the up-position
for the CFM insert, and the down-position for the rotator insert.

3. Switch the ITC back on and use a decade box connected to sensor 3 on the ITC to
adjust the temperature when providing the respective resistance (see X75439.dat for
the CFM insert and X76070.dat for the rotator insert). This should be done for one
low and one high temperature (e.g. 4 K and 300 K) by pressing Calc+Raise/Lower.

4. Store the settings by pressing Limit+LOC/REM and check whether another resis-
tance is consistent with the temperature given in the respective table.

B.1 Rotator Insert

Angle accuracy

(a) (b)

100 150 200

-5

0

T=1.6K

  angle (°)

 R
xy

(k


)

T=1.6K

0 2 4 6 8 10 12

-10

-5

0

  180°
    90°

 

  B (T)

 R
xy

(k


)

Figure B.1: Hall resistance of graphene Hall bar sample 10265_D1 at T = 1.6 K and
q = 1.08 · 1012 cm−2. (a) Hall resistance at angles 90◦ and 180◦. (b) Hall resistance as a
function of angle at q = 1.08 · 1012 cm−2 and B = 10.5 T .
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The angle accuracy can be checked by plotting the Hall resistance of the Hall bar versus the
angle between surface normal of the substrate and the B-�eld direction. In �gure B.1 this
is exempli�ed for a carrier concentration of q = 1.08 · 1012 cm−2. The maximum absolute
Hall resistance occurs at 182.2◦ and the minimum at 89.4◦, indicating angle errors of 2.2◦

and 0.6◦, respectively.

B.2 CFM Insert

Laser Intensity

In table B.4 the nominal power (NP) at the laser module is compared to the measured
laser power (MP) at the objective and the measured re�ection signal (RS).

NP (ACC100) (mW ) MP (nW ) RS gold marker (mV ) RS SiO2 surface (mV )

0 15 -52 -52
0.01 90 -44 -50
0.02 272 -24 -46
0.03 828 23 -36
0.04 2020 139 -10
0.05 4070 346 36
0.06 7700 618 92
0.07 10800 924 148

Table B.4: Laser calibration of the diode laser (635 nm) with a Si/SiO2 marker sample.
The o�set is −52.7 mV .
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Figure B.2: Low temperature scan of a marker performed at T = 1.5 K. The cross size is
9 µm× 9 µm (sample 0216).
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For the navigation from one device to the next on the same substrate a marker system
based on numbers is used. The markers are positioned at a distance of 50 µm. The upper
number counts the markers in the x-direction and the lower number in the y-direction,
with the origin in the upper left corner of the substrate. Figure B.2 shows a scan of an
individual marker acquired at T = 1.6 K. To read out the marker correctly, it has to be
rotated by 90◦ and mirrored. Table B.5 correlates the lever movement of the piezo control
unit with the movement of a scanned feature and the objective.

axis direction1 direction2

x lever ↑ lever ↓
feature ← feature →

y lever ↑ lever ↓
feature ↓ feature ↑

z lever ↑ lever ↓
feature ↓ feature ↑

Table B.5: Lever movement of the piezo control unit, and corresponding movement of the
scanned feature (x and y axis) or the objective (z-axis).

Measurement wiring at connector

Figure B.3 shows a schematic top view of the con�guration at the connector for the sample
wiring. The labels (as shown in panel (b)) have been removed to reach a lower pressure in
the IVC. The pins for the measurement wiring are numbered. The pins for the positioners
are labeled Px,y,z, for the scanners Sx,y,z. While H denotes the heater wiring, TI, TV and
S2, S3 represent the respective sample temperature sensors (PT1000 and RuO).

(a) (b)

Sx Sy TI TV S2 S3 S4 S5 S6 S7

+  + +  +  +  + +  + +  +
- - - - - - - - - -

P
x P

y P
z H

 S
1 nc

+  + +  +  +  +
-

-
-

-
-

-

24 22 20  18  16  14 12  10
23 21 19  17  15  13 11  9

8
6 4  2

7
5 3  1

S
10 S

9

+  +
-

-

connector

Figure B.3: Sample measurement wiring at connector. (a) Schematic sketch of the con�gu-
ration of the pins. (b) Photograph of the connector part.
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