Ansprechpartner

Dr. Sebastian Loth
Max-Planck-Forschungsgruppe Dynamik nanoelektrischer Systeme am CFEL, Hamburg
Telefon:+49 40 8998-6273Fax:+49 40 8998-1958

Originalveröffentlichung

Sebastian Loth, Susanne Baumann, Christopher P. Lutz, D. M. Eigler, Andreas J. Heinrich
Bistability in Atomic-Scale Antiferromagnets

Der kleinste Magnetspeicher der Welt

Ein Datenbit lässt sich in einem Antiferromagneten aus zwölf Eisenatomen unterbringen – das könnte die Speicherdichte 100fach erhöhen

12. Januar 2012

Der IT-Industrie könnten sich nun neue Möglichkeiten eröffnen. Wissenschaftler der IBM Forschungsabteilung im kalifornischen San Jose und einer Forschungsgruppe des Max-Planck Instituts für Festkörperforschung am Center for Free-Electron Laser Science in Hamburg haben die Grundlage für einen neuartigen magnetischen Datenspeicher gelegt. Während herkömmliche magnetische Speicher den Ferromagnetismus nutzen, hat das Forscherteam nun erstmals einen antiferromagnetischen Datenspeicher entwickelt. Der Antiferromagnetismus erschien bislang als ungeeignet, um Computern ein Gedächtnis zu geben. Mit seiner Hilfe haben die Wissenschaftler ein Datenbit nun aber in gerade einmal zwölf Atomen untergebracht und Information 100 Mal dichter gepackt, als dies in heute üblichen Festplatten möglich ist. Damit sind sie auch zu der Grenze vorgestoßen, ab der Quanteneffekte berücksichtigt werden müssen.
Ein atomarer Speicher. In gerade mal 12 Atomen bringen Forscher von IBM und der Max-Planck-Gesellschaft ein Datenbit unter. Die abwechselnde Blau und Bild vergrößern
Ein atomarer Speicher. In gerade mal 12 Atomen bringen Forscher von IBM und der Max-Planck-Gesellschaft ein Datenbit unter. Die abwechselnde Blau und Weiß-Färbung verdeutlicht die antiferromagnetische Anordnung. [weniger]

Heute übliche Festplatten sind unglaublich gut, aber sie sollen noch besser werden: 700 Milliarden Datenpunkte speichern sie auf kaum mehr als der Fläche einer Briefmarke. Doch die IT-Industrie möchte, wie in den vergangenen Jahrzehnten, die Speicherdichte auch künftig etwa alle zwei Jahre verdoppeln, damit sich große Datenmengen, wie sie zum Beispiel in der medizinischen Diagnostik anfallen, künftig besser verarbeiten lassen. Das wird zunehmend schwierig, und zwar aus einem prinzipiellen Grund: Heutige Festplatten legen Datenbits in einem ferromagnetischen Material ab. Jeder Datenpunkt gleicht dabei einem winzigen Stabmagneten, der die Null oder Eins eines Bits in zwei verschiedenen Orientierungen seiner Pole speichert.

Damit das magnetische Feld eines Datenpunktes nicht seinen Nachbarn beeinflusst, brauchen die Speicherpunkte einen Mindestabstand zueinander. Der könnte dank der Entdeckung des Forscherteams um Andreas Heinrich, IBM, und Sebastian Loth, seit kurzem Mitarbeiter der Max-Planck-Gesellschaft, künftig deutlich schrumpfen. Den Wissenschaftlern gelang es, Daten in gerade einmal zwölf Atomen eines antiferromagnetischen Materials zu speichern. Auf Speichermedien mit solchen Datenpunkten ließe sich Information 100 Mal dichter packen als auf heutigen Festplatten. Damit würde sich die Speicherdichte ähnlich stark erhöhen wie seit Mitte der 1990er-Jahre, als der heimische PC noch nicht als Bild- oder Filmarchiv diente.

Zwei unterschiedliche antiferromagnetische Zustände in einem Atomensemble

Die Datenpunkte aus einem antiferromagnetischen Material lassen sich deutlich dichter nebeneinander anordnen als die derzeit gebräuchlichen ferromagne Bild vergrößern
Die Datenpunkte aus einem antiferromagnetischen Material lassen sich deutlich dichter nebeneinander anordnen als die derzeit gebräuchlichen ferromagnetischen Bits. Hier sind die acht Bits eines Bytes zu erkennen. Je nachdem, welche von zwei möglichen Antiferromagnetischen Anordnungen die magnetischen Momente eines Bits einnehmen, steht es für eine Null oder eine Eins. [weniger]

Der Clou des neuartigen Speichermaterials liegt darin, dass die magnetischen Momente der einzelnen Atome, die sich ebenfalls als winzige Stabmagnete betrachten lassen, in einer antiferromagnetischen Anordnung abwechselnd in entgegengesetzte Richtungen zeigen und nicht, wie im Ferromagneten, alle in dieselbe. Ein Antiferromagnet ist daher nach außen magnetisch neutral, so dass sich benachbarte Datenpunkte in diesem Zustand nicht spüren und beinahe beliebig dicht anordnen lassen.

„Wir haben jetzt eine Möglichkeit gefunden, in kurzen Reihen von Eisenatomen zwei unterschiedliche antiferromagnetische Zustände zu erzeugen, einen für die Null und einen für die Eins“, sagt Sebastian Loth. Er und seine Kollegen können nun bewusst beeinflussen, ob die antiferromagnetische Kette abwechselnd orientierter Stabmagnete mit einem Nordpol oder einem Südpol startet. Beim Sprung von einem in den anderen Zustand kehrt sich dementsprechend die Orientierung aller Stabmagnete in der Kette um. Gewöhnlich bilden die beiden Ausrichtungen einen quantenmechanischen Mischzustand, einen sogenannten Superpositionszustand, in dem sich das Atomensemble erst im Moment einer Messung zufällig für eine der beiden Anordnungen entscheidet.

Sauber voneinander trennen können die Forscher die beiden Zustände, weil sie die Eisenatome auf einer Kupfernitrid-Oberfläche platzieren. Diese stabilisiert in Eisenketten die als Néel-Zustand bekannte abwechselnde Anordnung der magnetischen Momente und unterbindet die Ausbildung des Mischzustandes. Der Wirkung des Kupfernitrids und dem sorgfältig gewählten Abstand zwischen den Eisenatomen verdanken die Forscher auch, dass sie Antiferromagnete ausgerechnet aus dem Element erzeugen konnten, das den Ferromagneten ihren Namen gegeben hat.

 
loading content