Electroless Deposition of Metal Nanoislands on Aminothiolate-Functionalized Au(111) Electrodes

Hannes Kind,* Alexander M. Bittner, Ornella Cavalleri, and Klaus Kern

Institut de Physique Expérimentale, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Thomas Greber

Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland

Received: March 30, 1998; In Final Form: June 26, 1998

We show that selective electroless deposition (ELD) can be used as a tool for electrochemical nanostructuring. In a first step, we bound palladium ions to an aminothiolate (AT) layer on an Au(111) surface. Chemical reduction then served for the fabrication of metallic palladium islands of monatomic height that can in turn activate the ELD of cobalt. We studied the growth of cobalt islands as a function of the oxygen concentration in the deposition bath and of the aminothiolate concentration in mixed amino-/alkanethiolate self-assembled monolayers (SAMs). In situ scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) measurements showed that palladium and cobalt form islands of 1–3 nm up to 60 nm diameter, the size being controlled by the oxygen concentration in the bath.

1. Introduction

Electroless deposition (ELD) is an autocatalytic redox process in which metal ions are chemically reduced to metal at a surface in absence of any external current source.1–6 A cation of the metal to be deposited is reduced by receiving electrons from the surface of a metal substrate or from the surface of the catalysts used to initiate the deposition. The reductant in turn delivers electrons to this surface and is thereby oxidized. This redox process generally takes place only on catalytically active metal surfaces: Noncatalytic surfaces first have to be activated with an appropriate catalyst before the metal deposition can take place. The growing metal surface itself has of course to be catalytically active for the process.

The method of ELD has long been used in the electronic industry for the metallization of plastics, ceramics, and other insulating substrates. However, this was based more or less on a trial and error approach. Although several fundamental studies of ELD have been conducted (see, e.g., [refs 2, 3, and 7–9]), the mechanisms of ELD are not fully understood yet. In this paper, we propose ELD on a thiolate surface as model for the metallization of organic substrates.

Our interest in ELD is also related to the patterning of nanometer-sized magnetic objects placed on an organic spacer. The study of ferromagnetism of ultrathin films and small aggregates has shown a very interesting correlation between elastic and magnetic properties.10 A better study of the magnetism as a function of size and geometry of nanostructures on top of a spacer will allow an interesting comparison with systems without spacers. In our case the thiolate layer should help to minimize any electronic and magnetic interaction between the substrate and magnetic objects on top of the spacer. It will also be possible to study the long-range interaction between different objects.

* Corresponding author. E-mail: hannes.kind@epfl.ch. Fax: (++41) 21 693 36 04.
Particularly attractive are functionalized thiols that can bind with the sulfur to metal surfaces and form strongly adsorbed, ordered monolayers. A variety of metal ion ligands such as pyridine, 2,2'-bipyridine, amine, and ethylenediamine can be used as external functional groups. Metal ions such as Pd$^{2+}$ (which upon reduction becomes the catalyst Pd0) can bind to these functional groups. The binding mechanism has been shown to be highly selective for different surface ligands. Hence, the ability to control the strength of the bond between the self-assembled monolayer (SAM) and a catalyst precursor at the molecular level can offer control of the adhesion of the catalyst and hence of metal structures deposited on the catalyst.

We describe here a new method for selective ELD of only one-monolayer thin Pd metal films in which binding of the Pd$^{2+}$ solution species by amine ligands anchors the Pd$^{2+}$ to the organic surface. The reductant (dimethylamine-borane, DMAB) then reduces Pd$^{2+}$ to Pd0. In a second step we focus on the ELD of nanosized islands of Co on these catalytic sites. Our experimental methods are in situ electrochemical scanning tunneling microscopy (STM) at 300 K, UV spectroscopy of the Pd$^{2+}$ solution and X-ray photoelectron spectroscopy (XPS) of emerged samples.

2. Experimental Techniques

Chemicals. Milli-Q water (18 MΩ resistivity; Millipore Systems) was used for all experiments. All reagents were p.a. grade or better and were used as received. Ethanol, NaCl, Na$_2$EDTA, NaOH, NH$_4$Cl, dimethylamine-borane complex (DMAB, (CH$_3$)$_2$NHBH$_3$), decanethiol, H$_2$SO$_4$, and HCl were all from Fluka. Na$_2$PdCl$_4$ and CoCl$_2$ were both from Aldrich Chemical Co. The aminothiol H$_2$N(CH$_2$)$_2$NHCO(CH$_2$)$_{10}$SH was used as received from H. Vogel (Institut de Chimie Physique, École Polytechnique Fédérale de Lausanne). Oxygen and nitrogen (48 res. 50 grade from CarbaGas, CH) gases were purified by passage through H$_2$SO$_4$ and saturated with H$_2$O by bubbling through H$_2$O.

Solutions. Glassware was cleaned with Nochimix solution (Thomas Scientific, U.S.), which reacts violently with many organic materials and should be handled with care. The electroless Co metallization bath was prepared immediately prior to use by mixing three parts of stock Co solution, two parts of stock solution of DMAB, and five parts of H$_2$O. The Co stock solution was prepared by adjusting a solution of 1 g of NH$_4$Cl, 0.6 g of CoCl$_2$, and 0.9 g of Na$_2$EDTA in 100 mL of H$_2$O to pH = 8 using a 2 M NaOH (aquoine) solution. Stock reductant consisted of a solution of 1.7 g of DMAB in 50 mL of H$_2$O. Pd$^{2+}$ catalyst solution was prepared of 10 mg of Na$_2$PdCl$_4$ and 1.75 g of NaCl in 50 mL of H$_2$O adjusting the solution with 37% HCl to pH = 1. This yielded the desired [Pd$^{2+}$]$_{\text{tot}}$ of 0.7 mM and [Cl$^-$_{\text{tot}}] of 0.7 M and showed the typical pale yellow color of dilute PdCl$_2$ solutions. All solutions were used within 4 weeks.

The pH of the EL Co deposition bath measured over 24 h at room temperature showed that the bath is stable at these conditions. Bubbling of clean nitrogen through the EL plating solution and simultaneous scratching of a pipet against the beaker wall started the bath. A Co layer deposited at the beaker wall was visible to the naked eye. The ELD was always accompanied by the formation of small hydrogen bubbles at the solid/liquid interface.

Substrate Preparation and Monolayer Formation. The gold samples were prepared by evaporation of 120–150 nm 99.99% gold (Advent; Halesworth, U.K.) on 570 K-preheated cleaved mica (Balztec; Vaduz, LIE) in a 10$^{-5}$ mbar vacuum chamber. Deposition was performed at room temperature. After deposition the samples were cooled to room temperature and annealed at 150 K. All samples were exposed to air for several hours.

3. Pd$^{2+}$ Catalyst Experiments

Pd$^{2+}$ Catalyst Solution. Understanding of the Pd$^{2+}$ activation is based on knowledge of the chemical composition of the activation bath. The chemistry of Pd$^{2+}$ halogen complexes in aqueous solution is dominated by hydrolysis above pH ~ 4.4. The Cl$^-$ ions are replaced one after another by H$_2$O. Deprotonation of the hydrolyzed species PdCl$_4$(H$_2$O) and PdCl$_2$H$_2$O$_2$ is described by eqs 3 and 4. The resulting hydroxo complexes...
and corresponds to that of Pd2+ during the 2 min of Pd2+-activation experiments. An XPS analysis was performed to investigate the chemical composition of the Pd2+ islands and Co/Pd islands. Pd2+ binds to the amino groups in the thiolate layer. Dimethylamine-borane (DMAB) reduces Pd2+ and Co2+ to the respective metals. Possible configurations of the Pd2+ bonds with the AT-SAM molecules are shown.

Figure 1. Schematic representation of the ELD of Pd islands and Co/Pd islands. Pd2+ binds to the amino groups in the thiolate layer. Dimethylamine-borane (DMAB) reduces Pd2+ and Co2+ to the respective metals. Possible configurations of the Pd2+ bonds with the AT-SAM molecules are shown.

Our purpose was to bind only one layer of Pd2+ ions (see Figure 1) to the amine-terminated surface. This necessitates that the concentration of hydroxido- and/or chloro-bridged oligomers (for simplicity we call them “Pd nodules” from here on) is kept as low as possible. For this reason we calculated from the reaction constants the required concentration of H+ and Cl- to have almost only PdCl\textsubscript{4}2- present in the solution.37,41,44

In Figure 2 the normalized concentrations of the species are shown for pH = 1 and 5 as a function of the Cl- concentration. For our experiments we chose a Pd2+ solution at pH = 1 with [Cl-] = 0.7 M. In this case the solution contains 86.6\% PdCl\textsubscript{4}2-, 12.4\% PdCl\textsubscript{2}(H\textsubscript{2}O)2-, 0.9\% PdCl\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2}, 1.3 \times 10-5\% PdCl\textsubscript{3}(OH)2-, and 5 \times 10-4\% PdCl\textsubscript{2}(H\textsubscript{2}O)(OH)- (calculated). A comparison of the corresponding UV spectra (not shown) with spectra obtained by other groups37,43,47,49,50 provides further support that under these conditions PdCl\textsubscript{4}2- is indeed the majority species.

Pd2+-Activation Experiments. Let us first focus on the chemical composition of the Pd2+-activated aminothiolate SAM (AT-SAM). An XPS analysis was performed to investigate the vertical position of the Pd2+ relative to the monolayer. In Figure 3 Au 4d and Pd 3d XP spectra are shown for grazing (80°) and normal (0°) emission from a Pd2+-activated AT-SAM. The Pd 3d\textsubscript{9/2} peak is clearly visible in grazing emission at \sim 338.2 eV and corresponds to that of Pd2+ bound to nitrogen and/or chlorine.37 A component at 336 eV that should represent the o xo- or hydroxido-bridged Pd sites in the Pd nodules37 was never found. In normal emission the Au signal is substantially increased while the Pd signal has disappeared. This can only be explained by a model in which the Pd resides on top of the aminothiolate film.37

A comparison of the overview spectra (not shown) of pure AT-SAM showed that the samples are clean and not damaged during the 2 min of Pd2+ activation at pH = 1. Furthermore, it was seen from the O 1s detail spectra (not shown) that the untreated as well as the Pd2+-treated samples show only minute amounts of oxygen although the second had been exposed to air for more than 30 s. As described elsewhere39 for alkanethiolate films, we performed X-ray aging experiments for the AT-SAM. Intensity curves for the Au and Pd signal indicate a similar destruction of the AT-SAM with X-ray exposure time. For this reason exposure time was minimized to less than a few minutes.

By varying the Pd2+ activation time between 1 and 15 min, we found in STM measurements that the amount of unwanted Pd nodules (not shown) increases with activation time. These nodules are bigger than 20–30 nm in diameter and more than 5–10 monolayers high. Nevertheless we always found flat areas of more than 2.3 \times 102 nm2 free of these nodules. Rinsing of the Pd2+-activated samples with a solution of [Cl-] = 0.7 M at pH = 1 instead of water reduced the number and size of the remaining Pd nodules further. Pd2+ activation times between 1 and 2 min were finally determined as best compromise for a sufficient activation without too many Pd nodules. In passing we note that careful rinsing should be sufficient to eliminate all excess Pd species that are not chemically bound to the surface.

Pd2+ Reduction Experiments. It is known that only metallic Pd0 can act as the catalyst for the ELD but not Pd2+. This means that prior to ELD of the metal (in our case Co) the Pd2+ species have to be reduced by the reductant (DMAB). We performed in situ STM measurements to estimate the size and the surface density of such Pd0 particles. After the activation with Pd2+, the catalyst solution was removed with a pipette; the samples were then carefully rinsed three times with H\textsubscript{2}O and were immediately covered by a mixture of two parts of the DMAB stock solution and eight parts of H\textsubscript{2}O. A few minutes later the cell was mounted in the STM and measurements were started.
It has been shown by Dressick et al. that Pd$^{2+}$ particles in the presence of DMAB are completely transformed to Pd0. In our work we determined shape and density of such Pd0 particles by STM. Images of the activated surface show that the Pd0 particles form islands that are homogeneously distributed on the surface (see Figure 4). We only found Pd islands of monatomic height. (The interpretation of a Pd island’s height is highly complex since the tunneling mechanism on thiocarbamates and Pd species should be very different. However, a step between a first and a second Pd layer (that we never found) should exhibit the real Pd step height. Further, the steps between the first Pd and the following layers of Co should give an accurate estimate for the Co step height.) The average diameter of the islands was between 1.5 and 6 nm (30–500 Pd atoms per island). Owing to some variability during the Pd$^{2+}$ activation (quality of rinsing with H$_2$O, contact time with Pd$^{2+}$ solution), the coverage of the surface by the islands varied between 1 and 4%. Assuming a thiolate coverage of typically 1/3 on Au(111) the Pd/NH$_2$ ratio is between 3 and 12%.

The reason for the low surface coverage of Pd islands has two origins: First, at pH$^+$ a non-negligible amount of amino groups will be protonated which reduces the capability to bind Pd$^{2+}$. Second, the reduction of the Pd$^{2+}$ species to Pd0 decreases the strength of the bond to the amino group, and some Pd0 is probably lost.

4. Electroless Co Deposition Experiments

A prerequisite to understand the ELD on Pd$^{2+}$-activated AT-SAM is the ELD on a bare metal and a nonactivated AT-SAM surface. After presenting relevant experiments, we focus on Co deposition studies at Pd$^{2+}$-activated AT-SAMs. Finally we discuss the influence of aminothiolate concentration in mixed aminothiolate/alkanethiolate monolayers and show the dependence of the Co plating on the presence of oxygen.

Electroless Co Deposition on Bare Gold. To test the activity of the Co plating bath we performed an experiment on a gold wire. The gold wire (99.99%) was first cleaned in Nochromix solution, rinsed with H$_2$O, and finally immersed in a Co plating bath. After 10–20 min, the Co deposit was visible to the naked eye. The deposition could be accelerated either by bubbling nitrogen through the bath or by increasing the bath particles form islands that are homogeneously distributed on the surface (see Figure 4). We only found Pd islands of monatomic height. (The interpretation of a Pd island’s height is highly complex since the tunneling mechanism on thiocarbamates and Pd species should be very different. However, a step between a first and a second Pd layer (that we never found) should exhibit the real Pd step height. Further, the steps between the first Pd and the following layers of Co should give an accurate estimate for the Co step height.) The average diameter of the islands was between 1.5 and 6 nm (30–500 Pd atoms per island). Owing to some variability during the Pd$^{2+}$ activation (quality of rinsing with H$_2$O, contact time with Pd$^{2+}$ solution), the coverage of the surface by the islands varied between 1 and 4%. Assuming a thiolate coverage of typically 1/3 on Au(111) the Pd/NH$_2$ ratio is between 3 and 12%.

The reason for the low surface coverage of Pd islands has two origins: First, at pH$^+$ a non-negligible amount of amino groups will be protonated which reduces the capability to bind Pd$^{2+}$. Second, the reduction of the Pd$^{2+}$ species to Pd0 decreases the strength of the bond to the amino group, and some Pd0 is probably lost.

4. Electroless Co Deposition Experiments

A prerequisite to understand the ELD on Pd$^{2+}$-activated AT-SAM is the ELD on a bare metal and a nonactivated AT-SAM surface. After presenting relevant experiments, we focus on Co deposition studies at Pd$^{2+}$-activated AT-SAMs. Finally we discuss the influence of aminothiolate concentration in mixed aminothiolate/alkanethiolate monolayers and show the dependence of the Co plating on the presence of oxygen.

Electroless Co Deposition on Bare Gold. To test the activity of the Co plating bath we performed an experiment on a gold wire. The gold wire (99.99%) was first cleaned in Nochromix solution, rinsed with H$_2$O, and finally immersed in a Co plating bath. After 10–20 min, the Co deposit was visible to the naked eye. The deposition could be accelerated either by bubbling nitrogen through the bath or by increasing the bath...
temperature. These Co deposits—a few micrometers thick—could always be dissolved by either HNO₃ or HCl (both of pH 1) within minutes.

Electroless Co Deposition on Nonactivated AT-SAM. To test the quality of our AT-SAM, we performed in situ STM measurements in the Co plating bath without having activated the AT-SAM with Pd²⁺ solution. We never found any Co deposits on these samples. This agrees well with Dressick’s proposition. Furthermore, it proves that we image Co and not contamination. It is important to note that for a Co deposition an activation with the Pd²⁺ solution was absolutely necessary.

Electroless Co Deposition on Pd²⁺-Activated AT-SAM. After the activation with Pd²⁺ solution, the solution was removed by pipet, samples were then carefully rinsed three times with H₂O, and were immediately covered with the Co plating bath. A few minutes later the cell was mounted in the STM and measurements were started. During the induction time of 10–30 min for our system the Faradaic tip current was too high to perform in situ STM measurements. After this period the islands always reached their final size of 1–10 nm diameter and—depending on the sample—one to two (in some rare cases three) Co monolayers height (see Figure 5). Usually the islands were randomly distributed over the terraces and not attached to step edges. In rare cases islands were mainly deposited at step edges. It is very probable that such samples had a lower quality of the SAM. The coverage of the surface by the metallic islands varied between 2 and 20%, again depending on the sample. The variation in island size and surface coverage is mainly attributed to the well-known variability of the SAMs, the activation time, and the contact to air. Measurements after a few hours and even 24 h later never showed any further growth of the islands. Even a strong increase of either Co²⁺ or DMAB concentration in the plating bath did not influence the island size.

We always found structures similar to that of the above-mentioned Pd nodules. We are sure that these nodules are covered with Co, because also here Pd²⁺ is easily reduced to Pd⁰, albeit of unknown structure.

Upon increasing the tunneling current above 2 nA, we could move the islands over the surface, and even downward over steps. Sometimes they coalesced. Such a mobility has never been found for Cu islands electrodeposited on alkanethiolate SAMs, obviously since the latter penetrate into the SAM. This gives us further support that the islands are located on top of the monolayer. However, the adhesion of the islands to the surface was strong enough that rinsing with water after the deposition did not remove the islands.

Influence of the Amine Surface Concentration in the SAM. Further proof that the Pd²⁺ species actually bind to the amine ligands was given in experiments where we changed the amino group concentration in the SAM. For this the freshly annealed Au(111) samples were transferred into different mixtures of a 20 μM ethanolic solution of the aminothiol and a 20 μM ethanolic solution of decanethiol. It is well-known that in this way the amino group concentration in the SAM can be varied. We changed the ratio aminothiol/alkanethiol in the solution between 2/1 and 1/100. Figure 6 shows a typical image of samples with low or medium amine density. It is obvious
that a decreased amine concentration leads to a lower Pd island density and as a consequence also to a lower Co island density. This strongly supports the model of amine-bound Pd$^{2+}$ species. Further we noticed a trend toward smaller islands for decreased amine concentrations (e.g. for aminothiol/alkanethiol). Adding the amine to a solution of [PdX$_4$]$^{2-}$ under either neutral or acid conditions usually produces [PdamX$_2$]; hence, we expect a similar product when am = aminothiol. In contrast [Pdam$_4$]$^{2+}$ is more difficult to prepare.

The inset of Figure 1 shows the different possible configurations of the N-(2-aminoethyl)amide end group of the AT-SAM. Mainly three factors determine the binding process at our interface: chelate effect and steric and electrostatic repulsion. Concentrating on these effects, case b is not very likely because Pd$^{2+}$ would have to penetrate into the layer, which would be followed by a strong increase of steric and electrostatic repulsion between the neighboring Pd$^{2+}$-aminothiolate entities. For this reason it is more likely that complexes in Figure 1d will exist at the interface. This is supported by the fact that a chelate effect occurs and that steric and electrostatic repulsion are minimized.

For a better understanding of the island formation, we want to focus now on the binding energies between Pd and N before and after the reduction of the Pd$^{2+}$ species. First, we calculated approximately the Pd$^{2+}$–N binding energy from thermodynamical data to be ~1.5 eV (the Pd$^{2+}$–Cl binding energy was estimated to be ~2.1 eV).

Pd0–N complexes could not be found in the literature (stable Pd0 complexes can be formed with, e.g., As-, Sb-, or P-containing ligands). The reason can be explained by the ligand-field theory. The electron configuration of Pd0 is d10 and shows very unfavorable energetics compared to the Pd$^{2+}$ configuration which is d8 (the stabilization of ~24.56 $D_{	ext{th}}$ with a ligand field stabilization energy $D_{	ext{th}}$ > 0.15 eV61 is larger than a typical chemical bond energy). Therefore the Pd0–N bond must be much weaker than the Pd$^{2+}$–N bond, and thus the Pd0 species can diffuse over the surface.

Calculating, on the other hand, the Pd–Pd bond energy in bulk metal, we found 3.9 eV for a macroscopic Pd solid. Calculations with an effective medium code estimated the bond energy for a Pd atom in a Pd(111) island containing 16 atoms to be ~3 eV. In both cases (microscopic and macroscopic) the Pd–Pd bond energy is twice as high as the Pd$^{2+}$–N binding energy. This favorable situation allows the formation of stable Pd islands.

We propose here a model where the Pd$^{2+}$ entities are distributed homogeneously over the surface. They are then first reduced by the reductant to Pd atoms. During the reduction, the strength of the Pd–N bond is lowered and Pd atoms can diffuse over the surface. Nucleation and growth of the Pd atoms results in stable islands.

We shall start the discussion with a look at the binding mechanism of the PdCl$_2^{2-}$ ions to the amino groups. PdCl$_2^{2-}$ is the most convenient starting material for many complexes with N ligands and therefore a large collection of chemical and physical data exists. Complexes are of the types [Pdam$_4$]$^{2+}$, [Pdam$_2X_2$] and [PdamX$_2$] with am = NH$_3$, amine, 1/2 diamine and X = Cl$^-$, Br$^-$, I$^-$, SCN$^-$, CN$^-$. For a better understanding of the island formation, we want to focus now on the binding energies between Pd and N before and after the reduction of the Pd$^{2+}$ species. First, we calculated approximately the Pd$^{2+}$–N binding energy from thermodynamical data to be ~1.5 eV (the Pd$^{2+}$–Cl binding energy was estimated to be ~2.1 eV).

Pd0–N complexes could not be found in the literature (stable Pd0 complexes can be formed with, e.g., As-, Sb-, or P-containing ligands). The reason can be explained by the ligand-field theory. The electron configuration of Pd0 is d10 and shows very unfavorable energetics compared to the Pd$^{2+}$ configuration which is d8 (the stabilization of ~24.56 $D_{	ext{th}}$ with a ligand field stabilization energy $D_{	ext{th}}$ > 0.15 eV61 is larger than a typical chemical bond energy). Therefore the Pd0–N bond must be much weaker than the Pd$^{2+}$–N bond, and thus the Pd0 species can diffuse over the surface.

Calculating, on the other hand, the Pd–Pd bond energy in bulk metal, we found 3.9 eV for a macroscopic Pd solid. Calculations with an effective medium code estimated the bond energy for a Pd atom in a Pd(111) island containing 16 atoms to be ~3 eV. In both cases (microscopic and macroscopic) the Pd–Pd bond energy is twice as high as the Pd$^{2+}$–N binding energy. This favorable situation allows the formation of stable Pd islands.

We propose here a model where the Pd$^{2+}$ entities are distributed homogeneously over the surface. They are then first reduced by the reductant to Pd atoms. During the reduction, the strength of the Pd–N bond is lowered and Pd atoms can diffuse over the surface. Nucleation and growth of the Pd atoms results in stable islands.

Let us now concentrate on the discussion of the Co growth stop. It is necessary to consider the oxidation of the reductant.
metal will be deposited. For our system all partial reactions competition between reactions 1 and 3 determines whether the

\[
j_{(\text{Red})}: \text{Red} \leftrightarrow \text{Ox} + me^- \tag{1}
\]

\[
j_{(\text{M}^{n+})}: \text{M}^{n+} + ne^- \leftrightarrow \text{M} \tag{2}
\]

\[
j_{(\text{O}_2)}: \text{O}_2 + 2\text{H}_2\text{O} + 4e^- \leftrightarrow 4\text{OH}^- \tag{3}
\]

The influence of H\(^+\) reduction will be discussed later. The competition between reactions 1 and 3 determines whether the metal will be deposited.\(^{63}\) For our system all partial reactions can take place first at Pd and later at Co. Thus, the overall reaction is highly complex.\(^{64,65}\) (In fact, the partial reactions can take place first at Pd and later at Co. Thus, the overall reaction is highly complex.) \(^{64,65}\) As mentioned above, the islands always reached their final size before the first in situ STM measurement was performed. This means that the growth had stopped within a few minutes. To our knowledge a growth extinction has been found before by two other groups. Jacobs et al. found a lower limit to the size of nuclei below which ELD does not occur or is stopped after a short time.\(^{63}\) They explained the growth stop with an enhanced nonlinear oxygen diffusion under the assumption that the diffusionally limited rate of oxygen reduction \(j_{(\text{O}_2)}\) is larger than that of the kinetically controlled oxidation of the reducing agent \(j_{(\text{Red})}\). A further decrease in the electrode dimensions down to some 10 nm is equivalent to an increase in the mass transport of reactants relative to the rate of electron transfer. Thus, reactions that are limited by diffusion at mesoscopic and macroscopic electrodes can become limited by the rate of the electron transfer as the electrode size is reduced,\(^{63,69}\) but \(j_{(\text{O}_2)} > j_{(\text{Red})}\) will still be assured. For completeness it has to be mentioned that \(j_{(\text{O}_2)}\) at electrodes below 10 nm is no longer controlled by diffusion but by kinetics.\(^{67}\) This can reduce the expected current (calculated for a purely diffusion controlled mechanism) by a factor of 3–5. Nevertheless, this will not change that \(j_{(\text{O}_2)} > j_{(\text{Red})}\).

Van der Putten et al.\(^{21,68}\) showed that—depending on the exact conditions—the nonlinear diffusion can lead both to an enhanced local growth or to no growth at all. The latter is possible if a compound is added that can be reduced at more anodic potentials than the metal ion reduction, e.g., dissolved oxygen in the plating bath. Although Van der Putten’s model was only confirmed for electrodes in the micrometer range, the similarity of the shape of our islands with their pyramid-like structures is striking. We always found very few islands with three monatomic high terraces, some more with two, and a great majority had only one terrace.

Moreover, we estimated \(j_{(\text{O}_2)}\) on Pd and Co.\(^{63,69}\) Both values are of the same order of magnitude and do not explain the growth stop of Co (a reasonable explanation would be \(j_{(\text{O}_2)}\text{Co} > j_{(\text{O}_2)}\text{Pd}: \) After the Pd island is covered with Co, \(j_{(\text{O}_2)}\text{Co}\) would consume all electrons delivered by the reductant and the growth would cease).

Another problem is the hydrogen evolution during the plating. Van der Meerakker stated that hydrogen evolves during almost all electroless reactions and proposed a general mechanism based on the formation of atomic hydrogen during the oxidation of the reducing agents.\(^{65}\) During our experiments we observed small hydrogen bubbles at the liquid/solid interface. This will influence the ELD. It is known that the H\(^+\) reduction is faster on Pd than on Co. That means that the Pd islands may be partly covered by H (or even transformed to Pd hydride), which can influence further metal deposition.

Concentrating on the described effects, we have to conclude that it is very difficult to reach a final conclusion on the stop of the growth. Nevertheless, we want to stress that the oxygen in the deposition bath is the main parameter to control the island size and thus likely to be responsible for the growth stop. We are certain that in our case nonlinear oxygen diffusion controls the deposition at the molecular level.

5. Conclusions

Pd can be grown by electroless deposition (ELD) in nanometer-sized islands on self-assembled aminothiolate layers (AT-SAMs) on Au(111) electrodes. They can be investigated by in situ STM. The most likely place of the Pd is on top of the AT-SAM as proven by normal and grazing emission angle X-ray photoelectron spectroscopy, by the fact that they can be moved by slightly increasing the tunneling current, and finally by the strong correlation with the amine surface concentration in mixed monolayers. The Pd island density can be varied over a large range by changing the amine concentration in a aminothiolate/alkanethiolate SAM.

On these Pd islands nanometer-sized Co islands can be deposited via ELD. The size of such islands can be controlled by the oxygen concentration in the Co plating bath. Processes causing the stop of the island growth were discussed.

Our concept to fabricate nanometer-sized islands of Co and Pd should be applicable to many magnetic and nonmagnetic metals. In combination with microcontact printing to pattern the AT-SAM, it should be possible to fabricate diverse metal cluster arrays.

Acknowledgment. We thank H. Vogel for providing the aminothiol and H. Brune for his help with the effective medium calculation. A.M.B. would like to express his gratitude to the Alexander von Humboldt-Stiftung for a Feodor-Lynen-Stipendium.

References and Notes
