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Summary

Conventional apertureless scanning near-field optical
microscopy uses lock-in demodulation techniques to filter
higher harmonics from the periodically modulated optical
signal. On the one hand, this signal notoriously may contain
contaminating mechanical contributions; on the other, it
reduces the available data to one number per pixel. Realizing
that the vertically oscillating near-field probe actually traverses
a whole volume above the sample surface, we discuss a model
to extend the data analysis in an attempt to better extract
the optical information and to recover its three-dimensional
spatial distribution.

Introduction

Scanning near-field optical microscopy (SNOM) is a powerful
technique that overcomes the spatial resolution limit of
conventional far-field lens or mirror objectives by utilizing
near-field optical interactions (Synge, 1928; Okeefe, 1956;
Ash & Nicholls, 1972; Pohl et al., 1984; Lewis et al., 1984;
Betzig et al., 1991). The scattering type or apertureless SNOM
(aSNOM) is a popular example of SNOM implementations
based on dynamic mode atomic force microscopes (AFMs).
It has been demonstrated to offer local field mapping
(Zenhausern et al., 1994, 1995; Martin et al., 1996;
Hillenbrand & Keilmann 2000) and material contrast (Knoll
& Keilmann 1999, 2000; Ocelic & Hillenbrand 2004). It has
also been used to obtain Raman and fluorescence information
(Hartschuh et al., 2003; Hu et al., 2003; Gerton et al., 2004;
Huang et al., 2005). In this kind of instrument, optical
radiation excites highly localized near fields in the spatial
region between the tip apex and the sample surface resulting
in scattered radiation that carries optical information with a
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spatial resolution given essentially by the effective radius of
curvature of the tip apex.

For the extraction of such information, the AFM is
operated in non-contact mode, i.e. the tip-sample distance d
is modulated. The instantaneous dependence of the scattered
optical field on this distance leads to a corresponding current
signal I(d ) generated in the photodetector used to collect the
scattered radiation. A periodic mechanical oscillation d(t) of
the tip-sample distance with angular frequency � induces a
periodic modulation of the optical interaction in the tip-sample
system. All harmonics k�, (k = 0, 1, 2, . . .) of the temporal
current signal I(d (t)) carry information, which is in general
a non-trivial combination of optical (nonlinear I(d )) and
mechanical (anharmonic d(t)) influences (Bek et al., 2005).

We note that lock-in filtering at one of the harmonics of
� reduces the time traces of the optical signal from each
pixel to a single complex-valued number. It essentially projects
the 3D information from the volume encompassed by the
oscillating AFM tip into a flat surface. An alternative analysis
technique capable of providing the scattered fields for each
location in this volume was recently presented by (Diziain
et al., 2006). It considers a negligible anharmonicity in the
cantilever oscillation, a frequent assumption in aSNOM, which
requires great care in the choice of scanning conditions.
Generally, though, the cantilever motion d(t) is always more
or less anharmonic. Intrinsically, this is because of the
anharmonic potentials describing the mechanical bending of
the cantilever carrying the tip and the non-linear tip-sample
forces (Hillenbrand et al., 2000; Stark et al., 2000; Lee et al.,
2002, 2003; Garcia & Perez, 2002; Stark & Heckl, 2003;
Rodriguez & Garcia 2004; Stark, 2004). Extrinsically, the
AFM feedback control, which is used to ensure a constant
height of the oscillating tip above the sample surface, may
also introduce anharmonicity. These contributions emerge in
the higher harmonics of the temporal current signal I(d (t))
predominantly by a combination with the relatively strong
linear background to I(d ).
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A general connection of the local optical fields and their
localized interaction with the scanning tip apex has long
been appreciated. However, idealized assumptions about
this relation are typically not verified. For example, signals
measured at the kth harmonic of the AFM frequency are
not in general given by kth spatial derivatives but depend
even qualitatively on the chosen tip oscillation amplitude
(Barchiesi & Grosges, 2005). A deeper look into possibilities of
reconstructing the optical nearfields is very much necessary
– also to facilitate comparison with realistic numerical
simulations (Esteban et al., 2007). Here we present a model that
allows obtaing 3D aSNOM information and which includes
the presence of anharmonicities in the cantilever motion. Its
possibilities and limitations to decouple the mechanical and
optical components are discussed.

Analytical framework

In Bek et al. (2005), we introduced a model that allows to
analyze the competing influences on the contrast formation in
aSNOM. At heart, it represents a nested expansion of the spatial
dependence of the optical signal and the cantilever oscillation.
With the goal in mind that a given measured data set should be
analyzed efficiently, the choice of expansions is such that only a
few significant terms contribute to the description of a realistic
scenario. When evaluated algebraically, the resulting model
function is a complex series that is less than ideal for a general
purpose of numerical fitting to measured data. Especially, a
change in the choice of model parameters used is cumbersome
to facilitate. For this purpose, it is better to keep the truncated
nested expansion in its implicit form. Here, we demonstrate a
straightforward procedure to use this expansion with efficient
numerical optimization algorithms such as the Levenberg–
Marquardt algorithm (Press et al., 1992).

We choose a complex-valued version for the Fourier
expansion in harmonics of the fundamental oscillation
frequency for the oscillation of the cantilever position,

d (t) =
Nk∑

k=−Nk

dk exp(i k�t) (1)

because of the conceptional ease of interpretation of
the measured values obtained from a dual-phase lock-in
measurement. Here � = 2π/T is the (angular) oscillation
frequency of the cantilever, Nk is the highest overtone modelled
and dk is the amplitude of the kth overtone. Note that the
requirement d−k = dk for a real-valued d(t) implies that they
can be described by 2Nk + 1 free real-valued parameters.
These are the average location d0 and modulus and phase of all
harmonics included. A purely harmonic mechanical motion is
described by N k = 1, whereas anharmonic contributions are
included if we set Nk > 1.

For the dependence of the photocurrent on the tip-sample
distance we use the Taylor expansion

I(d ) =
Nm∑

m=0

1
m!

(d − dr )mI (m), (2)

where Nm is the highest number Taylor expansion coefficient
included. A purely linear optical signal is described by N m =
1. With Nm > 1 we include contributions to the instantaneous
optical signal, which vary nonlinearly with the tip location.
I (m) is the mth derivative of the photocurrent with respect
to tip-sample distance at a distance dr, typically chosen at
some point of the tip trajectory to minimize the error after
truncation of the series (Bek et al., 2005). It is convenient to
absorb this parameter of the Taylor expansion in the zeroth
Fourier coefficient by renaming (d0 − dr → d0) or equivalently
identifyingthereferencepointof thescalewithzero d r =0.This
is assumed throughout this paper. We obtain a model function
I(d (t)), which we can use to analyze a set of measured data.

Lock-in demodulation

For simplicity, we consider a time series of N photocurrent
values I j , measured at regular intervals t j = j�t. Oftentimes,
one chooses to feed these data to the signal input of a dual-
phase lock-in amplifier, with a reference signal at the nth
harmonic frequency. Assuming the measurements are taken
sufficiently frequently (�t � T) and in sufficient number
(N�t � T), we can express the lock-in filtered value by

Sn = 1
N�t

∑
j

I j exp(−i n�tj )�t. (3)

Note that from the whole time series of measured data
a single complex-valued number is extracted, representing
an amplitude and a phase. This value we compare with a
corresponding idealized model measurement,

Sn = 1
T

∫
t
I(d (t)) exp(−i n�t)d t (4)

= I (0)δ0n

+ I (1)
∑
κ1=n

dκ1

+ 1
2
I (2)

∑
κ1+κ2=n

dκ1 dκ2

+ 1
6
I (3)

∑
κ1+κ2+κ3=n

dκ1 dκ2 dκ3

+ . . . , (5)

where the different κ j can take both positive and negative
integer values. Apparently, Sn is a complicated mixture
of mechanical and optical contributions. Even for purely
harmonic cantilever motion (d (t) = d −1exp(−i�t) + d 0 +
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d 1 exp(i�t)) the resulting expression does not simplify much,

Sn =
∞∑

m=n

1
m!

I (m)
(m−n)/2∑

q=0

(
m

m − n − 2q

)
d m−n−2q

0

×
(

n + 2q
n + q

)
d n+q

1 d q
−1. (6)

In the particular relevant case of a cantilever oscillation just
above the sample surface, we choose the reference point d r =
0 at the surface. Writing d 1 = |d 1| exp(iφ1), we find in this
case |d 1| = |d −1| = d 0/2 and d (t) = 2|d 1| [1 + cos (�t + φ1)].
Under these conditions,

Sn = exp(i nφ1)
∞∑

m=n

1
m!

I (m)|d1|m
(m−n)/2∑

q=0

2m−n−2q

×
(

m
m − n − 2q

)(
n + 2q
n + q

)
. (7)

This is the signal measured by conventional lock-in amplifier
filtering of the aSNOM signal – assuming perfectly harmonic
cantilever motion. Only if we consider infinitesimal oscillation
amplitudes 2|d1| we find that

Sn = exp(i nφ1)
n!

I (n)|d1|n (8)

is essentially given by the nth derivative of the optical signal
along the direction of the motion of the cantilever. As the
oscillation amplitude is increased towards realistic values,
however, higher order terms become non-negligible and
Eq. (7) is not quite straightforward to interpret. In principle
the different I (m) values could be determined from a series
of measurements using different oscillation amplitudes 2|d1|,
ultimately leading to a complete reconstruction of the signal
versus distance curve I(d ). Experimentally, though, this is a
cumbersome approach and it is interesting to explore options
of using the acquired N data points in other ways than the
relatively simple lock-in filtering.

Least squares modelling

If we can disentangle the mechanical and optical contributions
to I(t) using our model, we can extract more than just the
single number Sn for each sample surface location. It should
be possible to obtain the spatial dependence I(d ) for the whole
trajectory of the tip in space, i.e. at each pixel, we obtain a
vertical line of data.

We consider a fitting procedure that determines values for
all the relevant model parameters ({dk} and {I (m)}). We take
as a measure for the quality of a fit the sum of the squares of
error,

ε
({

dk}, {I (m)}) =
∑

j

[I(d (tj )) − I j ]2. (9)

Most efficient numerical optimizing algorithms find minima of
such an error function by evaluating gradients in parameter
space. After obtaining the partial derivatives algebraically, we

may use, for example, the Levenberg–Marquardt algorithm
to find the optimal values for all variable parameters (Press
et al., 1992). Note that certain parameters may conveniently
be excluded from the fitting procedure, if their values are
known with sufficient accuracy from other measurements.
For example, if the mechanical oscillation frequency � and
amplitude of the cantilever motion are set externally, one
may want to leave these parameters fixed for the fitting
process.

Application of the model

As a first test and verification of the fitting procedure, we
consider the non-interferometrically detected free oscillation
of an aSNOM tip in air. Figure 1 displays typical nominal
results for oscillation amplitudes of 80, 159 and 314 nm. The
given amplitude values are directly read from the software
of the AFM used, and can differ from the real amplitude.
The difference will just introduce a scaling I ′(d ) = I(d/a )
and would not affect the quality of the fit or otherwise
the following discussion. It does point to the need for some
additional information (a relationship between the deflection
signal and the amplitude, for example) to correctly scale I(d )
with the fitting procedure described here. A possible scheme
for aSNOM has recently been discussed by Gucciardi et al.
(2005).

When fitting our model function to the data, we find first of
all that the overall level of residual error is lower for higher
amplitudes. This can be attributed to the better signal-to-
noise ratio under these conditions. In addition, we verify also
that an increase in the number of parameters used generally
improves the fit, leading to lower residual errors. For a certain
optimal number of mechanical (Nk) and optical (Nm) degrees
of freedom, however, the residual error reaches a plateau and
a further increase in the number of free parameters does not
improve the fit noticeably. This plateau represents the noise
level of the measurement beyond which additional model
parameters become meaningless. Thus, our model allows to
determine the number of significant optical and/or mechanical
orders present in a given measured data time trace. For
instance, in Fig. 1(a) it is reached for Nk + Nm > 2 and in
Fig. 1(c) for Nk + Nm > 5.

The open question remains, however, how to balance the
distribution of optical and mechanical parameters. Only in
cases when the noise plateau is reached already by a purely
harmonic model can we conclude that neither mechanical
nor optical anharmonicities contribute significantly to the
measured data. Already for the small amplitude oscillation
of Fig. 1(a), for instance, some anharmonicity is present. To
illustrate this point further, Fig. 2 displays two possible optimal
fits to the data of Fig. 1(b). In Fig. 2(a) a predominantly
mechanical origin of the observed anharmonicities is assumed,
whereas in (b) an optical anharmonic influence is assumed.
Both fits represent the measured time traces equally well,
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Fig. 1. Upper panels: time traces of the photo current generated by the backscattered radiation collected from the illuminated apex of an aSNOM tip freely
oscillating in air. The detection is done non-interferometrically. Lower panels: residual errors ε after fitting the nested model expansion I(d (t)) to the
measured time series, allowing for different numbers of degrees of freedom in the mechanical (N k) and optical properties (N m). The read tip oscillation
amplitudes are (a) 80 nm, (b) 159 nm and (c) 314 nm,

Fig. 2. Two possible fits to the experimental I(t) trace of Fig. 1(b): (a)
assuming mostly mechanical anharmonicity (N k = 4, N m = 1), (b)
assuming mostly optical anharmonicity (N k = 1, N m = 4). The upper
left panels display d(t), the lower left I(d ), and the lower right I(t), i.e. the
fit to the experimental data.

i.e. they are indistinguishable within the noise level. We
have to draw the important conclusion that a self-consistent
determination of the relative influence of mechanical and
optical anharmonicities is not possible within the framework
of the present model.

As we are interested in the optical behaviour, a
reasonable general approach is to determine the mechanical
characteristics of the aSNOM tip oscillation independently, for
instance, by recording simultaneously the unfiltered deflection
signal used in the AFM distance control feedback. As a first
step, this signal would then be analyzed to yield all significant
Fouriercoefficients dk enteringEq. (1).Next, theseenteras fixed
values in a regression analysis of the optical signal time trace
with Eq. (9), thus yielding the optical signal versus distance
curve I(d ).

Discussion

We have presented a model for the aSNOM signal that is
in principle able to reconstruct the optical signal versus tip-
sample distance curve. To separate the mechanical from the
optical contributions to the signal in practice, the mechanical
trace d(t) should be determined independently. If not available,
an alternative is to simply ensure harmonic motion as best as
possible. Indeed, this is the true and tested path used in many
reports on aSNOM measurements.

Where available directly from the experiment (e.g. as the
deflection signal of an AFM, if accessible with sufficient
bandwidth for accurate determination), the mechanical
information can be used as input to the fitting procedure
outlined above. In this case the true 3D optical information can
be reconstructed even for anharmonic mechanical motion of
the probe. This will facilitate decoupling mechanical artefacts
(Bek et al., 2005; Billot et al., 2006), which could allow faster
scans and the use of bigger drive for the same free space
amplitude (Hillenbrand, 2001; Bek et al., 2005)– the latter
opening the possibility of stronger near-field interaction at the
lower point of the oscillation (Gerton et al., 2004).

In the version presented here, the model signal is treated
without any further reference as to how it is related to the
actual electromagnetic fields and optical interactions that
are being observed. We focus on the electric photocurrent
I generated in the detection process because different
varieties of aSNOM setups may translate the optical into
electric information quite differently. Linear opto-electronic
detectors, for example, may record I ∝ |Es |2 in direct
non-interferometric or I ∝ Es · Er in homodyne and Es ·
Er exp (i�r t) in heterodyne interferometric detection mode.
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(Here, Es is the scattered electric far field at the detector and
Er is a suitable reference field.) Other detection modes are
also possible. In all cases, extracting the dependence Es(d)
of the scattered far field on tip-sample distance requires a
specifically constructed detection model. Also, an additional
model is required for the near-to-far-field transition to facilitate
conclusions about the near-field optical interactions at the
sample (Esteban et al., 2007).

Any given detection system, though, shares certain general
features with the present analysis: Depending on the noise
in the measurement, the significant number of orders is
found when the residual error cannot be reduced further
by including higher order contributions. A self-consistent
separation of mechanical and optical influences on the signal is
not possible, unless independent input is available such as the
deflection signal of the AFM, which determines the mechanical
contributions.

Finally we note that the present analysis is applicable beyond
the near-field optical microscopic context. Any current or
voltage signal I(d) or V(d) can be modelled, which depends
sensitively on the tip-sample distance. This includes, for
instance, thermo-electric effects, capacitive scanning signals,
Hall- and Kelvin-probes and others. For any of these effects,
our model provides a convenient framework for analysis and
extraction of relevant parameters.
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of a 500 Å spatial resolution light microscope. Ultramicroscopy 13, 227–
232.

Martin, Y., Zenhausern, F. & Wickramasinghe, H.K. (1996) Scattering
spectroscopy of molecules at nanometer resolution. Appl. Phys. Lett. 68,
2475–2477.

Ocelic, N. & Hillenbrand, R. (2004) Subwavelength-scale tailoring of
surface phonon polaritons by focused ion-beam implantation. Nat. Mat.
3, 606–609.

Okeefe, J.A. (1956) Resolving power of visible light. J. Opt. Soc. Am. 46,
359–359.

Pohl, D.W., Denk, W. & Lanz, M. (1984) Optical stethoscopy:
image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–
653.

Press, W.H., Flannery, B., Teukolsky, S.A. & Vetterling, W.T. (1992)
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, Cambridge, New York.

Rodriguez, T.R. & Garcia, R. (2004) Compositional mapping of surfaces in
atomic force microscopy by excitation of the second normal mode of the
microcantilever. App. Phys. Lett. 84, 449–451.

Stark, M., Stark, R.W., Heckl, W.M. & Guckenberger, R. (2000)
Spectroscopy of the anharmonic cantilever oscillations in tapping-mode
atomic-force microscopy. App. Phy. Lett. 77, 3293–3295.

C© 2008 The Authors
Journal compilation C© 2008 The Royal Microscopical Society, Journal of Microscopy, 229, 365–370



3 7 0 R . VO G E L G E S A N G E T A L .

Stark, R.W. (2004) Spectroscopy of higher harmonics in dynamic atomic
force microscopy. Nanotechnology 15, 347–351.

Stark, R.W. & Heckl, W.M. (2003) Higher harmonics imaging in tapping-
mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111–5114.

Synge, E.H. (1928) A suggested method for extending microscopic
resolution into the ultra-microscopic region. Philos. Mag. 6, 356–362.

Zenhausern, F., Martin, Y. & Wickramasinghe, H.K. (1995) Scanning
interferometric apertureless microscopy: Optical imaging at 10
angstrom resolution. Science 269, 1083–1085.

Zenhausern, F., Oboyle, M.P. & Wickramasinghe, H.K. (1994)
Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–
1625.

C© 2008 The Authors
Journal compilation C© 2008 The Royal Microscopical Society, Journal of Microscopy, 229, 365–370


