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Abstract

In the present thesis the electrical transport through single-walled carbon nanotubes has been experimen-

tally investigated. The scope of the present work is to shed light on the different conduction properties

of the single-walled carbon nanotubes, showing ballistic transport at room-temperature, Tomonaga-

Luttinger-liquid-like behaviour at low temperatures, as well as what influence is observed from the chiral

character of the nanotube on the charge transport.

To perform the experiments, an appropriate way of contacting single-walled carbon nanotubes has been

developed. Therefore, the first part of the thesis deals with contacting of single-walled carbon nanotubes

with the aid of electron-beam-lithographical techniques: The nanotubes are brought into intimate contact

with metal electrodes defined on top of them. The contact resistance, i.e., the strength of the electrical

coupling between conducting material and single-walled carbon nanotube has been investigated for noble

metals, superconductors and ferromagnets. Alternative approaches as annealing procedures or contacting

via linker molecules between metal and nanotube have been found to be less appropriate. Based on the

findings on the electrical coupling between metal and single-walled carbon nanotubes, in the next parts

of the thesis the following topics have been investigated:

1. Influence on the ballistic transport through single-walled carbon nanotubes at room

temperature of an electrode at floating potential electrically connected to the middle

of the nanotube: The experimental results are supported by application of the Landauer-Büttiker

formalism to an equivalent circuit of the experimental set-up and modeling the single-walled carbon

nanotube as ballistic conductor with two spin-degenerated channels. The experimental data reveal

the phase-randomizing effect of the floating electrode on the charge carriers. The observations allow

to estimate the phase-coherence length at room temperature in single-walled carbon nanotubes and

implicitly indicate the theoretically predicted conductance quantization.

2. Probing the Tomonaga-Luttinger-liquid-like state in single-walled carbon nanotubes

at low temperatures with the aid of superconducting electrodes: In the current/voltage-

characteristics the suppression of quasi-particle tunneling into the single-walled carbon nanotube

is observed. The effect is attributed to the interplay of the superconductor quasi-particle density

of states and the tunneling density of states of the single-walled carbon nanotube in a Tomonaga-

Luttinger-liquid-like state. Comparison of the experimental data with a theoretical model developed

in the present thesis are found to be in qualitatively good agreement supporting this interpretation.

3. Investigation of the influence of the chiral character of the single-walled carbon nan-

otubes on the electrical transport in external magnetic fields parallel to the longitudi-

nal axis of the nanotube: The magnetoresistance measurements at low temperatures reveal the

existence of the electrical Magnetochiral Anisotropy in single-walled carbon nanotubes - an effect
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based on time- and parity-reversal symmetry and only occurring in true chiral conductors. The ob-

servation of the electrical Magnetochiral Anisotropy in single-walled carbon nanotubes, therefore,

clearly indicates their chiral character and thus the existence of a cyclic component of the current

traversing the nanotube. Furthermore, from the data also the conclusion can be drawn that the

production process of the single-walled carbon nanotubes is not enantioselective. In order to obtain

a microscopic insight into the physical origin of the electrical Magnetochiral Anisotropy, the model

of a free electron on a helix in an externally applied magnetic field has been quantum-mechanically

treated for both ballistic and diffusive electrical transport. Comparison of the experimental data

and the theoretical results reveals a reasonable agreement with the diffusive case.



Kurzzusammenfassung

In der vorliegenden Arbeit wird der elektrische Transport in einwandigen kohlenstoffartigen Nanoröhren,

sogenannten ”single-walled carbon nanotubes”, experimentell untersucht. Das Ziel der Arbeit ist, zum

Verständnis der unterschiedlichen Transporteigenschaften (ballistisch bei Raumtemperatur, Tomonaga-

Luttinger-Flüssigkeit-artiges Verhalten bei tiefen Temperaturen) und des Einflusses des chiralen Charak-

ters der single-walled carbon nanotubes auf den elektrischen Transport beizutragen.

Zur Durchführung der Experimente wurde als erstes ein geeignetes Kontaktierungsverfahren entwick-

elt mit Hilfe Elektronen-lithographischer Methoden: die auf einem Substrat liegenden single-walled car-

bon nanotubes werden von oben mit Metall-Elektroden in Kontakt gebracht. Der Kontaktwiderstand,

daß heißt die Stärke der elektrischen Kopplung zwischen einer single-walled carbon nanotube und un-

terschiedlichen Materialien (Edelmetalle, Supraleiter und Ferromagnete) wurde untersucht. Alternative

Kontaktierungen durch versuchtes Einschmelzen von single-walled carbon nanotubes in die Elektroden

oder mit Linker-Molekülen zwischen Metall und single-walled carbon nanotube erwiesen sich als weniger

geeignet. Die darauffolgenden Teile der Arbeit wurden gestützt auf die vorherigen Ergebnissen zur Kon-

taktierung und folgende Untersuchungen wurden durchgeführt:

1. Der Einfluß auf den ballistischen Ladungstransport in single-walled carbon nanotubes

einer auf schwebendem Potential liegenden (mittig zur nanotube kontaktierten) Elek-

trode bei Raumtemperatur: Die experimentellen Ergebnisse werden ergänzt durch Anwendung

des Landauer-Büttiker Formalismus auf einen Äquivalenz-Stromkreis, der dem experimentellen Auf-

bau entspricht. Dabei wurde die single-walled carbon nanotube durch einen ballistischen Leiter

mit zwei Spin-entarteten Kanälen beschrieben. Die experimentellen Daten brachten den phasen-

brechenden Effekt der auf schwebenden Potential liegenden Elektrode auf die Ladungsträger in der

single-walled carbon nanotube hervor. Es konnte die Phasen-Kohärenz-Länge der Ladungsträger

aus den experimentellen Daten bestimmt und implizit auf die theoretisch vorhergesagte Quan-

tisierung des Leitwertes für single-walled carbon nanotubes geschlossen werden.

2. Bei tiefen Temperaturen Untersuchung des Tomonaga-Luttiger-Flüssigkeit-artigen Zu-

standes in single-walled carbon nanotubes unter Zuhilfenahme supraleitender Elektro-

den: In den Strom/Spannungs-Linien konnte eine Unterdrückung des Quasi-Teilchen-Tunnelns in

die single-walled carbon nanotube beobachtet werden. Der Effekt wurde auf das Zusammenspiel

der Quasi-Teilchen Zustandsdichte und der Tunnel-Zustandsdichte einer single-walled carbon nan-

otube im Tomonaga-Luttiger-Flüssigkeit-artigen Zustand zurückgeführt. Der Vergleich der experi-

mentellen Daten mit einem in der vorliegenden Arbeit entwickelten theoretischen Model läßt eine

qualitativ gute Übereinstimmung erkennen und stützt die obige Interpretation.
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3. Untersuchung des Einflusses des chiralen Charakters der single-walled carbon nan-

otubes auf den elektrischen Transport mit Hilfe eines in der Längsachse der nanotube

gerichteten Magnetfeldes: Die Magnetowiderstandsmessungen bei tiefen Temperaturen zeigten

die Existenz der elektrischen Magnetochiralen Anisotropie in single-walled carbon nanotubes -

ein Effekt der auf Zeitumkehr- und Paritätssymmetrie basiert und nur in echten chiralen Leit-

ern auftritt. Die Beobachtung der elektrischen Magnetochiralen Anisotropie impliziert den chiralen

Charakter der single-walled carbon nanotubes und somit auch das Vorhandensein eine zyklischen

Komponente des durch die nanotube fließenden elektrischen Stromes. Ferner, konnte aufgrund der

experimentellen Daten geschlossen werden, daß der Herstellungsprozeß der single-walled carbon

nanotubes nicht enantioselektiv ist. Um ein mikroskopisches Bild des physikalischen Ursprungs der

elektrischen Magnetochiralen Anisotropie zu erhalten, wurde das Problem eines freien Elektrons auf

einer Helix in einem magnetischen Feld quantenmechanisch für ballistischen wie auch diffusen elek-

trischen Transport berechnet. Der Vergleich der theoretischen Resultate mit den experimentellen

Daten weist auf den Fall des diffusen Transports hin.
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Introduction and overview: carbon nanotubes - a carbon-based
molecular structure

Through the centuries, scientists tried to understand and explore the physical and chemical properties of

carbon itself as well as the properties of carbon based structures, either molecular or solid. The ability of

carbon atoms to form single, double or even triple chemical bonds leads to an almost infinite versatility

of carbon-based physical objects in nature, each of them having differing chemical reactivity, optical

activity and transport properties, like heat and electrical conductivity. A special class of these carbon

based structures are molecules and solids that consist only of carbon atoms1. Before the 1990’s, three

such forms (allotropes) of carbon are known to exist: graphite (consisting of stacked graphene layers),

diamond and fullerenes (see Fig. 1.1). Whereas the first two are representing two condensed solid state

phases, fullerenes are regarded as molecular structures. In the early 1990’s a new molecular form only

consisting of carbon atoms was discovered [1], the carbon nanotubes (CNTs).

Principally CNTs can be thought of as a graphene sheet, rolled up to form a seamless tube or cylinder,

of up to some microns in length and a few nanometers in diameter. The ends of the tube are capped by

appropriate fullerene-like half-spheres.

CNTs exist in two configurations. The first one consists of a single rolled up (strip of) graphene

layer, and is called single-walled carbon nanotube (SWNT). The second one, consists of several coaxially

stacked SWNTs (like a Russian doll) and is named multi-walled carbon nanotube (MWNT). Typically the

diameter of the latter is about one order of magnitude larger than for SWNTs. However, generally, CNTs

can be described as carbon-based tubular molecular structures with a high aspect ratio (length/diameter)

and therefore exhibiting from the structural point of view a strong one-dimensional (1D) character

compared to the three other allotropes of carbon. In this sense, CNTs are a modification of carbon which

can be thought of as being located from its structure between a planar graphene layer representing a

2-dimensional (2D) and a fullerene which is a 0-dimensional (0D) system (see Fig.1.1).

CNTs have attracted considerable interest due to their electrical, chemical and mechanical properties.

In particular their electrical properties have initiated a tremendous amount of theoretical works and

experimental studies, supported by the progress in (sub-)micro-fabrication processes of metals and semi-

conductors which started to allow electrical contacting of single molecules or a relatively small number of

molecules. This and the potential use of CNTs for organic based integrated circuits as conducting wires

on a molecular scale or even as an electrically active element itself as well as an almost perfect model

system for fundamental research reflects the fascination of this molecular based structure.

The electrical properties of CNTs are mainly determined by their diameter, their wrapping angle and

the direction in which the graphene sheet is rolled up. The diameter and the wrapping angle determine

1Except for atoms, as for example hydrogen, which saturate dangling bonds at the surface of these solids.
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FIGURE 1.1. The four known forms of carbon: planar graphite (two parallel graphene layers are

shown), diamond, the fullerene C60 (which was first found among all other fullerenes) and a sin-

gle-walled carbon nanotube [2]. Each of them represents a certain dimensionality due to its particular

morphology.

whether a CNT is metallic or semiconducting. Different wrapping angles lead to a variety of helicities

that a CNT can have. These can be either left- or right-handed depending on the direction of rolling

up the graphene sheet. Additionally, CNTs are not only 1D from the structural point of view, but also

their electronic system exhibits strong 1D-character, as the absolute values of diameter and length (nm

and µm, respectively) give rise to quantum size effects. Thus, CNTs are 1D in structure and electronic

properties, but are also helicoidal.

In the course of the investigation of the electrical transport properties of CNTs various effects have

been observed such as single-electron tunneling (Coulomb Blockade) [3],[4], ballistic transport at room

temperature[5], indications of Tomonaga-Luttinger-liquid behaviour [6] as well as the Aharanov-Bohm

effect [7]. The latter was only reported in MWNTs as the typical diameter of SWNTs would require

experimentally hardly achievable magnetic fields of about 100 T and more.

The large variety of observable effects in CNTs also gave rise to a lot of questions which lead to the

necessity to study the electrical transport properties of SWNTs and MWNTs in more detail. The aim

of the present thesis is to contribute to the answering of some of these open questions for SWNTs.

Towards this, an introduction to the (electronic) structure and the electrical transport properties of

CNTs are given in chapter 1, 2 and 3. The preparation of samples, using different approaches and



1. Introduction and overview: carbon nanotubes - a carbon-based molecular structure 3

electrode materials for contacting the SWNTs, is described in chapter 4. Then the thesis deals with the

experimental investigation of the following open questions:

1. SWNTs are ballistic conductors at room temperature where the charge carriers keep their phase

relationship. In chapter 5 the influence of electrically strongly coupled electrodes on the electrical

transport through the SWNT is investigated, which is of particular interest in view of the design

of electrical devices for electronics utilizing CNTs. Within these investigations, the effect of phase-

breaking of charge carriers propagation is observed. This effect is known in mesoscopic electron

systems and can be treated in the frame of the Landauer-Büttiker formalism.

2. At low temperatures SWNTs seem to exhibit Tomonaga-Luttinger-liquid behaviour. The use of

superconductors instead of noble metals as contacting material in the present thesis should then

show differences in the electrical transport through the device, which is tested in chapter 6. If the

electrical coupling to the SWNTs is weak, proximity effect and Andreev reflection are suppressed,

but single-electron effects are observable. Within the experiments the interplay of the quasi-particle

density of states of the superconductor and the tunneling density of states into the SWNT turned

out to play a key role in the qualitative understanding of the experimental data.

3. Up to now the chiral character of SWNTs has not been addressed in electrical transport experi-

ments. Recently a new effect in optics was discovered on chiral objects, theMagnetochiral Anisotropy

[8],[9]. The effect depends on the relative orientation of an external magnetic field and the momen-

tum of an incident electromagnetic wave. Its analogous effect in electrical transport, the so-called

electrical Magnetochiral Anisotropy, was observed in macroscopic chiral conductors [10]. As the

SWNTs are chiral objects, potentially the electrical Magnetochiral Anisotropy could be observ-

able which is investigated in chapter 7. The model of a free electron on a helix is used to give

a simple, analytical quantum-mechanical description of this effect and is then compared with the

experimental data.

After the experimental part, a summary of the thesis is given, followed by appendices providing details

on several points of the thesis. Finally, the references are listed.
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Structure and electronic properties of carbon nanotubes

In this chapter the relationship between the molecular structure of CNTs and their electronic properties is

discussed. First the morphology of CNTs is analyzed based on the graphene-sheet model [11]. It is shown

that each CNT can be principally characterized by a pair of indices (n,m). Within this discussion, the

difference of helicity and chirality of CNTs is stressed, in particular with regard to chapter 7. Consequences

of this analysis on the CNT’s electronic density of states and therefore on the electronic properties will

be exposed in the second part.

2.1 Geometric description: chirality and helicity

As discussed in the introduction, a CNT can be qualitatively thought of as a seamlessly rolled up

graphene sheet which is capped at the ends by halves of a fullerene. In order to describe a CNT more

quantitatively, the so-called graphene-sheet model [11] is used, which is a two-dimensional model. Within

this model, a CNT is described by a planar graphene sheet with periodic boundary conditions that

take the translational symmetry along the circumference into account. Although the neglect of curvature

effects is a drawback of this model, it provides the main features of the CNTs.

Fig. 2.1 shows a graphene sheet in which the real-space unit lattice vectors −→a 1, −→a 2, the so-called chiral
vector

−→
C n,m and the wrapping angle θ are illustrated. The vectors −→a 1and −→a 2 have the same length√

3ac−c ≈ 2.461Å where ac−c is the distance between neighbouring carbon atoms. With the aid of the
lattice vectors the planar graphene-sheet lattice can be formed which exhibits a sixfold symmetry.

A CNT can now be obtained by rolling up the graphene sheet seamlessly along a certain direction.

For this it is of importance to define at least two lattice sites which have to be brought into overlap. All

others are then determined due to the sixfold symmetry of the graphene lattice and by the condition

that a CNT has a cylindrical configuration. These two points can be connected by the chiral vector

−→
C n,m = n

−→a 1 +m−→a 2 (2.1)

which is just a linear combination of −→a 1and −→a 2 and where n, m are integer numbers. The line along
−→
C n,m points, defines the direction in which the graphene sheet has to be wrapped in such a way that the

two points which are connected by
−→
C n,m are overlapping. Consequently, the length of the chiral vector

defines the circumference 2πrt of the CNT where rt is the CNT radius. The diameter of the tube can

then be easily determined to be

dt =

¯̄̄−→
C n,m

¯̄̄
π

=

√
3ac−c
π

p
m2 +mn+ n2. (2.2)

Apparently, according to the values of the integers n and m, i.e., depending on the chiral vector
−→
C n,m,

various types of CNTs with a different structural order of the carbon atoms can be constructed. Due to
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FIGURE 2.1. Graphene sheet showing the sixfold-symmetry. Shown are the unit lattice vectors −→a 1,
−→a 2, a chiral vector

−→
C n,m corresponding to the pair of indices (4,2), the chiral angle θ and the (n,0)-

and the (n,n)-line. Due to the sixfold-symmetry of the honeycomb lattice, any θ > 30◦ can be mapped

back on a θ between 0◦ and 30◦, i.e., these CNTs are identical. The black full circles denote chiral

vectors corresponding to metallic CNTs.

the sixfold symmetry of the graphene lattice, all possible structures can be classified by three general

configurations: armchair CNTs, for which n = m, zigzag CNTs that have m = 0 and all other CNTs,

which are called chiral. However, in literature CNTs are generally stated to be chiral, which is to some

point misleading and misleadingly used as will be discussed later in the text. In Fig. 2.2 examples for the

three classes of CNTs are given. As the integers n and m are defining the structure of a CNT completely,

CNTs can be classified simply by its pair of integers (n,m). The sixfold symmetry of the graphene lattice

has yet the consequence that some CNTs, although having different (n,m), are identical. This can be

illustrated by utilizing the wrapping angle

θ = arctan

Ã √
3m

m+ 2n

!
. (2.3)

The wrapping angle θ is measured from the (n,0)-line and is related to
−→
C n,m, as shown in Fig. 2.1.

Every CNT with θ0 > 30◦ can be mapped back on a CNT with 0 ≤ θ ≤ 30◦ as can be easily seen rotating
the drawn in chiral vector

−→
C n,m by 30◦ in Fig. 2.1.

The structural order of the carbon atoms forming a CNT reveals also a helicoidal character (see Fig.

2.2). Therefore, a variety of helicities can be found for the CNTs which are from a more theoretical point

of view sub-sets of the three classes ”armchair”, ”zigzag” and ”chiral”. For example, two so-called chiral

CNTs can have different helicities. The particular helicoidal character is again expressed by the pair of

integers (n,m) which determines the CNT structure as discussed above.
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FIGURE 2.2. The three types of CNTs are shown [2]. The upper is a so-called armchair (n = m),

the middle a zigzag (m = 0) and the lower a chiral (n 6= m) CNT. The particular values of the pair

of indices (n,m) is addressed to each tube. The helicoidal character of the CNTs are indicated by the

black lines.

In nature many helicoidal structures, as for example a screw, a DNA-strand1, screw-dislocations in

solids or simply a helix can be found. All these structures are chiral objects, i.e., exist in each others

”mirror-images”.

But there are also huge amounts of examples for chiral objects that are not helicoidal, as the left and

the right human hand, sugar, the limone-molecule or pheromones. From this examples one can already

deduce that helicity is not identical to chirality as for example the human hand is chiral, but obviously

not helicoidal.

At first glance, thus, the helicoidal character of CNTs suggests that all CNTs exist in each others

”mirror-images”, i.e., are real chiral molecules. But the situation for CNTs is more complex as will be

discussed in the following.

Consider for simplicity the example of a helix. A helix exists in two forms: left- and right-handed.

More precisely, one obtains one form from the other by performing a parity-operation, denoted by the

parity-operator bP . The parity-operation is a spatial inversion of an object in reference to some arbitrary
point in the three-dimensional space (see Fig. 2.3). In contrast to a helix, a simple cylinder does not

change under bP and is therefore achiral.
1DNA exists in nature mainly in right-handed configuration.
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FIGURE 2.3. Parity operation on a helix. The helices are generated by taking the spatial inversion

of one of these (indicated by the thin black lines). The two helices do not match each other, that

is, by no other symmetry operation than the spatial inversion the two objects can be mapped onto

each other. This in turn means, that the helix is chiral. Apparently, chirality in 3D space involves all

three dimensions and is therefore a 3D property.

It is noteworthy to stress again that in 3D space chirality is a symmetry involving all three dimensions:

in 3D space the two mirror-images of lower dimensional objects can be mapped onto each other either by

a rotation or a translation, that is, these objects are not chiral2. Therefore, in order to find out whether

a certain object is chiral, simply bP has to be applied on the object and the initial and the final form to

be compared in 3D space.

However, the situation is more complicated when the object under consideration is assembled from

subunits which have themselves certain symmetries. In particular the subunits may be arranged in a such

a way, that the arrangement, which is forming the assembled object, has different symmetry properties

than the subunits. Therefore to derive the symmetry properties of an assembled object, the details of

the symmetries of the subunits have to be taken into account. In turn, these considerations have also to

be done in order to determine whether an assembled object is chiral or not.

A possible way to do this is the following consideration: the assembled object, seems to have some

symmetry property. In detail, the isolated subunits may also have a certain symmetry. By ”mixing” of

these two symmetries the real symmetry properties of the assembled object can be derived. In particular

some symmetry properties may be lost or new may be found for the assembled object.

2The appearance of chirality in 2D objects is also possible under certain conditions. First one dimension of the 3D space

has to be completely suppressed and second the spectator has to be also a 2D object. In the 3D space this situation is

approximated by for example a surface of a solid.
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FIGURE 2.4. The parity operation transforms the chiral vector
−→
C n,m into -

−→
C n,m. Applied to the

graphene-sheet model this implies also that the wrapping direction, up or down with respect to the

graphene-sheet plane, has to be changed in order to obtain the CNT enantiomers.

In the case of CNTs it is therefore not obvious to decide whether they and which of them are really

chiral molecular objects: both, tubular helicoidal symmetry and sixfold symmetry of the graphene lattice,

have to be taken into account. In this sense, the first symmetry represents the symmetry of the assembled

object, whereas the latter is the subunit symmetry.

First start considering the wrapping vector
−→
C n,m as it defines the tubular, helicoidal symmetry of a

particular CNT.
−→
C n,m transforms under bP as bP−→C n,m = −−→C n,m. However,

−→
C n,m is defined on the basis

of the two-dimensional graphene-sheet model. Therefore a third dimension in space has to be introduced

in order to be able to describe chiral effects. The third dimension is naturally given by the wrapping-

direction perpendicular to the graphene layer: without loss of generality, +
−→
C n,m may define a wrapping

downwards and −−→C n,m upwards with respect to the graphene sheet plane as depicted in Fig. 2.4. That

is, in this extended graphene-sheet model,
−→
C n,m represents therefore three things: circumference of the

CNT, wrapping direction in and perpendicular to the graphene plane.

After extension of the two-dimensional graphene-sheet model to three dimensions, the subunit sym-

metry, that is the sixfold symmetry of the graphene lattice can be incorporated in the symmetry consid-

erations for all three classes of CNTs.

First inspect armchair CNTs like the one depicted in Fig. 2.2. Although
−→
C n,m and −−→C n,m in this

case point into opposite directions, there is no difference in wrapping the sheet upwards or downwards

due to the six-fold symmetry of the graphene (follow (n, n)-line in Fig. 2.1). The two resulting CNTs are

identical and thus all armchair CNTs are achiral. This is somewhat intuitive since armchair CNTs have

already no helicoidal character.

Following the same arguments and taking a view on the (n, 0)-line in Fig. 2.1 one is led to the conclusion

that also all zigzag CNTs are achiral although being helicoidal. The reason for this is the sixfold symmetry

of the graphene sheet.
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In contrast, the wrapping direction in the case of (n,m) CNTs, that is n 6= m 6= 0, is not affected by
the sixfold-symmetry of the graphene. The two possible forms are not identical any more and therefore

the so-termed chiral CNTs are real chiral molecular objects.

The above discussion shows, that neglecting the six-fold symmetry of the graphene lattice, the erroneous

conclusion may be drawn that all CNTs are chiral. In particular, the example of the CNTs shows that a

helicoidal character of an object is not necessarily sufficient to make the object chiral.

2.2 Conducting channels and electronic density of states

In order to describe the electronic properties of the CNTs, consider first the carbon atoms of which the

graphene-sheet lattice consists. Each carbon atom has four outer electrons sometimes termed valence

electrons. From a chemical point of view the electrons are in an orbital which is just another expression

for the probability density |ψ(−→r )|2 of the stationary eigen-wavefunction ψ(−→r ) of the electron.
In the case of carbon, two of the valence electrons with opposite spin, according to Pauli’s exclusion

principle, are in the so-called s-orbital which has spherical shape. On time average each of the other two

are in one of the energy degenerated px-, py- and pz-orbital, according to Hund’s rule, which have the

shape of a rotation-symmetric dumb-bell (see Fig. 2.5).

The p-orbitals are perpendicular to each other and therefore point in each of the three spatial directions.

The angular-momentum quantum number of the s-orbital is 0 whereas the other three have the angular-

momentum quantum number 1, that is, have non-vanishing angular momentum.

In order to build up a planar graphene lattice, i.e., to form a chemical bond between the carbon atoms,

in each of the carbon atoms two of the p-orbitals (without loss of generality px- and py-orbital) hybridize

with the s-orbital to form three so-called sp2-orbitals (see Fig 2.5). These have the form of a dragged-on

rotation-symmetric dumb-bell where one half is considerably smaller than the other. The sp2-orbitals are

all arranged in one plane (in the present example the x/y-plane) and exhibit an angle of 120◦ between

each other and are therefore strongly oriented in space. The remaining pz-orbital is located perpendicular

to this plane. Each of the four orbitals carries now on time average one electron. Chemical bonding is

now achieved by the overlap of orbitals of neighbouring atoms as illustrated in Fig. 2.5. The neighbouring

sp2-orbitals create a strongly oriented and localized (covalent) bond whereas the pz-orbitals form a so-

called π-π-bond. The angle between the sp2-orbitals then defines the well-known honeycomb lattice of

the graphene with its sixfold symmetry.

As the binding direction of the sp2-orbitals are oriented the electrons in these orbitals are strongly

localized. In contrast, the electrons forming the π-π-bond, also termed π-electrons, are delocalized over

the entire graphene lattice. The reason for this is that each pz-orbital can principally interact (overlap)

with all its surrounding pz-orbitals from the neighbouring atoms. Systems that exhibit such delocalized

π-electrons are also called π-conjugated.

For the electronic transport in such π-conjugated systems the electrons in the sp2-orbitals are negligible

as they are strongly localized. Therefore the electronic properties of the graphene sheet (and thus of the
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FIGURE 2.5. s- and p-orbitals of the carbon atom. Below to carbon atoms with three sp2-orbitals and

the remaining pz -orbital. The chemical bond is created by the overlap of neighbouring sp2-orbitals

and pz -orbitals (π-π-bonding, indicated by dotted lines.)

CNTs) are mainly determined by the π-electrons. In particular, the interaction between the pz-orbitals

on one graphene leads to (i) the delocalization of the π-electrons and (ii) the formation of energy bands

which are the bonding π-bands and the antibonding π∗-bands.

On the other hand, the relatively weak van-der-Waals interaction [13] between neighbouring graphene

layers, which is mediated by the delocalized π-electrons, results in a strong anisotropy in the electrical

conductivity of graphite: perpendicular to the graphene layers the conductivity is by a factor of 1000

smaller than the in-plane conductivity [12].

For a further description of the CNTs, periodic boundary conditions have to be introduced to the planar

two-dimensional graphene-sheet model. The boundary conditions arise naturally from the translational

symmetry along the chiral vector
−→
C n,m, that is along the circumference of the CNT. In view of treating

the electronic properties of a CNT with these boundary conditions it is convenient to shift to reciprocal

space.

The reciprocal lattice of a graphene layer is again a honeycomb-lattice with vectors
−→
b 1 and

−→
b 2 which

are defined by the relation
−→
b i ·−→a j = 2πδij describing again a honeycomb-lattice.

A three-dimensional graph of the energy dispersion of graphene of the two lowest subbands in the first

Brioullion Zone (BZ) is given in Fig 2.6b derived by tight binding calculations [14]. The points denoted

by K are the crossing points of the π- and π∗-band. The π-band is the highest occupied energy band of

the π-electrons, whereas the π∗-band is the lowest unoccupied one. The six corresponding
−→
k -vectors to

the K-points in reciprocal space are

−→
k K = ±

1

3

³−→
b 1 −−→b 2

´
, ± 1

3

³
2
−→
b 1 +

−→
b 2

´
, ± 1

3

³−→
b 1 + 2

−→
b 2

´
. (2.4)
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FIGURE 2.6. a) Reduced Brioullion zone (BZ) scheme of the graphene. The lines denote allowed

k -states for a CNT with the diameter |−→C n,m |/π. At the K -points, the π- and π∗-band touch. b)

3D-plot of the dispersion relation of the π- and π∗-band from a tight-binding calculation. c) Extended

BZ-scheme.

The influence of the additional 2π/
¯̄̄−→
C n,m

¯̄̄
-periodicity on the wavevectors

−→
k = (kx, ky) is now the

following: The wavefunction ψ(x, y) of a π-electron can be written in first order approximation as

ψ(x, y) = ϕ(x) · χ(y), where ϕ(x) and χ(y) are plane waves and the parameter y yields the position

on the circumference of the tube, that is 0 < y < 2πrt. The periodic boundary condition for a CNT reads

therefore ψ(x, y) = ψ
³
x, y +

¯̄̄−→
C n,m

¯̄̄´
= ϕ(x) · χ

³
y +

¯̄̄−→
C n,m

¯̄̄´
.

From this, it immediately follows a continuous range of kx-values. In contrast, only a certain discrete

number of ky-values are allowed, i.e., the kinetic energy along the circumference is quantized. The ky-

values are determined by the quantum number m = 0,±1,±2, ...which denotes the angular momentum
of a particular state. Accordingly, a phase factor of the form exp(im y

rt
) contributes to χ(y) which then

leads to the total wave-function ψ(x, y) = ϕ(x) · χ(y) · exp(im y
rt
).

Apparently, for each m, perpendicular to
−→
C n,m no restriction to the electron wavevectors is present

which leads to a one-dimensional motion of the electron along the CNT symmetry axis. The number

of allowed electron wavevectors in direction of the vector
−→
C n,m denote one-dimensional subbands of a

CNT, either π-band or π∗-band, characterized by the quantum number m.

In the reduced BZ-scheme (see Fig. 2.6a) the allowed states are now lying on parallel lines which are

2π/
¯̄̄−→
C n,m

¯̄̄
apart from each other revealing the periodic boundary conditions. In Fig. 2.6c the situation

is plotted in the extended BZ-scheme. In terms of the π- and π∗-energy bands, pictorially, a CNT

band structure is just a slice of the graphene sheet energy-band structure (without periodic boundary
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conditions) along a certain direction. Intuitively it is clear then, that slices which cross the K-points are

describing metallic CNTs, as at these points the π- and π∗-energy band overlap. This in turn leads to

a finite density of states (DOS) at the Fermi energy EF . Other directions correspond to CNTs with a

vanishing DOS at EF , resulting in an energy-gap of typically less than 1 eV. These CNTs are therefore

semiconducting. The information whether a CNT is metallic or semiconducting can be again extracted

from the pair of integers (n,m) that has been shown to classify each CNT. Combining (2.1) and (2.4),

one can easily derive that the condition n−m = 3l (l being an integer) has to be fulfilled for a CNT to

be metallic. As a consequence, all armchair tubes are metallic whereas zigzag and chiral nanotubes can

exist as either metallic or semiconducting molecular structures.

From the previous discussion it is apparent that, in principle, electrons are only able to move along

the CNT within the subbands (one-dimensionality of CNTs) characterized by the quantum number m.

These subbands are also called conducting channels. As excitations of angular momentum states, that

is states with m 6= 0 cost a huge energy of the order 1 eV, in general all subbands with m 6= 0 can be
omitted for charge transport [15]. That is, only the π- and π∗-energy bands with m = 0 contribute to the

electrical transport and, therefore, CNTs can be regarded to have just two spin-degenerated conducting

channels.

In the case of a semiconducting tube, all states in the π-band are occupied and only the π∗-band has

free states. Without doping or applying a gate-voltage or sufficiently high source-drain voltage none of

the two channels is accessible. Depending on the adjustment of these parameters, either the π- or the

π∗-band can be available for charge transport. Therefore, for these types of CNTs, solely one conducting

channel is apparent. For metallic CNTs, π- and π∗-band are crossing at the Fermi-energy, thus both

bands are able to contribute to the charge transport. Resulting in the maximum number of conducting

channels for charge transport in CNTs being two.

For the electronic density of states (DOS) of the CNTs, the strong one-dimensional character has to

be taken into account. In order to do so, consider for simplicity, a one-dimensional free electron gas

confined to the length L with infinitely high potential walls. The energy eigenvalues are given by Eν =

(~2/2m)k2ν with m the effective mass of the electrons, ~ the reduced Planck’s constant and kν = (2π/L)ν
the corresponding wave-vector (ν an integer). The DOS D(E) of the system is then simply given by

D(E) =
P

ν δ(E −Eν) where δ denotes the delta-distribution. In the limit of a very large system where

the number of energy eigenvalues is large and the energy difference between adjacent energies Eν is small,

D(E) can be written as

D(E) =
dN

dE
=

√
2mL

π~
E−1/2 (2.5)

where dN is the number of energy states in the energy interval dE. A factor of two for the spin-degeneracy

has been considered in the calculation. The DOS shows a divergence as the energy E approaches zero

which is known as van-Hove singularity.

The E−1/2-dependence in the DOS of CNTs could be confirmed in bandstructure calculations [16] and

experimentally with the aid of scanning tunneling microscopy. In Fig. 2.7a and 2.7b, the theoretically
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FIGURE 2.7. a) Calculated DOS of a (9,0) CNT [16]. At the Fermi energy (here set to zero) a finite

density of states can be found indicating that the CNT is metallic. b) DOS of a semiconducting (10,0)

CNT with vanishing density of states at the Fermi energy [16]. Note that the energy difference between

the van-Hove-singularities is considerably smaller than for the metallic CNT. For comparison, the

theoretically calculated DOS of the 2D graphene sheet is also plotted in both panels (dotted line).

c) Derivative dI/dV of the tunneling current, which is proportional to the density of states, taken

from the STM [17]. The CNTs numbered from #1-#4 are semiconducting, whereas the others are

metallic. Van-Hove singularities are apparent, confirming the theoretical considerations.

calculated DOS of a metallic (9,0) and a semiconducting (10,0) tube, respectively, is shown [16]. Several

van-Hove-singularities are visible, each of them corresponding to a certain subband of the CNT. In

Fig. 2.7c experimental spectroscopy data taken by the scanning tunneling microscope (STM) at room

temperature are depicted [17].

The figures show the differential conductance dI/dV for several SWNTs plotted versus the applied

voltage V between STM tip and the CNT under investigation. The differential conductance reflects

the (local) DOS of the CNT as the tunneling current I is proportional to
R EF+eV
EF

Ds(E)Dtip(E −
eV ) dE where Ds(E) and Dtip(E − eV ) are the DOS of the sample at the STM tip position and the

tip, respectively [18]. Therefore, the derivative of I with respect to V yields dI/dV ∼ Ds(EF + eV ).
Apparently, singularities are observed in the experimental data confirming the theoretical predictions.
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Theoretical description and experiments to charge transport in
carbon nanotubes

The unique electronic and structural properties of CNTs are also reflected in their electrical transport

properties. In this chapter, the two main characteristic features of the electrical transport through CNTs

are presented. First, it will be shown that carbon nanotubes are ballistic conductors at room temperature

which mainly originates from the absence of a strong electron-phonon coupling within the tubes. At

low temperatures, however, when the thermal energy is sufficiently small such that also low-energy

phenomena gain relevance, the electron-electron interaction becomes important. Therefore, due to its

strong 1D character CNTs are optimal candidates to exhibit Tomonaga—Luttinger-liquid-like behaviour.

Signatures in electrical transport for this behaviour were observed in SWNTs as well as MWNTs.

3.1 ballistic transport and conductance quantization

In this section the case of strongly (almost perfectly) coupled electron reservoirs to single-walled carbon

nanotubes is considered. First a introduction to ballistic conductors in terms of the Landauer-Büttiker

formalism is given. In the second part experiments, indicating that single-walled carbon nanotubes are

ballistic conductors at room-temperature, are reviewed and commented based on own considerations.

3.1.1 ballistic conductors and Landauer-Büttiker formalism

Various types of electrical transport exists. For example, charge transport processes which occur via

localized states of the charge carriers in the conductor like variable range hopping [19] or polaron hopping

[20], are known as hopping conduction. In the case, where the charges are not localized, but scattered on

dislocations, phonons or magnetic impurities (Kondo effect [21]) or even among one another along their

way in the conductor, the conduction process is called diffusive. If the charge carriers do not suffer any

scattering, the charge transport is called ballistic.

From the quantum mechanical point of view, the absence of inelastic scattering leads to the phase

preservation of the charge carrier wavefunction. Within this context the charge carriers traversing the

ballistic conductor are called phase coherent. Related to this, the so-called phase-coherence length can

be defined which is the length over which the charge carriers preserve their phase-coherence. The phase-

coherence length is not necessarily identical with the mean free path, which is the length a charge carrier

can move without being scattered. In particular elastically scattered charge carriers preserve their phase-

relationship (see Appendix A).

Diffusive conductors are known to give rise to Joule’s heating. Microscopically the heating arises from

the inelastic scattering of charge carriers in the conductor. The loss of kinetic energy is transferred to
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FIGURE 3.1. Four terminal configuration for a ballistic conductor (horizontal parallel black lines).

The voltage probes a and b are positioned on the ballistic conductor. The voltage V 0 is applied to

the reservoirs with the electrochemical potentials µ1 and µ2.

the atomic lattice of the conductor in the form of lattice vibrations (phonons) which in turn leads to

an increase of the lattice heat. Since within a ballistic conductor no mechanism to transfer energy is

available, no Joule heating is observed within such a conductor itself.

What about the resistance of a ballistic conductor? In the diffusive case the resistance arises from the

scattering of the charge carriers on the local scale. Therefore, in a four-terminal configuration, a difference

in the electrochemical potential µi between any two points a and b on the conductor is apparent. Hence,

their difference eVab = µa − µb can be observed as voltage drop. Combining Vab with the current I
through the conductor, the four-terminal resistance R4T ≡ Vab/I can be defined.
Now, consider a four-terminal configuration as in Fig. 3.1 for a ballistic conductor. A voltage V0

is applied and two voltage-probes (a and b) are attached at arbitrary positions along the conductor.

The current through the system is Ibal. Due to the absence of scattering there is no change in the

electrochemical potential along the conductor, that is eVab = µa − µb = 0 and therefore the four-

terminal resistance yields R4T = Vab/Ibal = 0/Ibal = 0, which has also been experimentally confirmed by

measurements on a ballistic wire by de Picciotto et al. [22].

The situation is considerably different if the measurement is performed on the same device in a two-

terminal configuration. Then, the two-terminal resistance can be defined as R2T ≡ V0/Ibal. As V0 6= 0 it
immediately follows R2T 6= 0 although R4T = 0. The reason for this pretended contradiction is found in
the circumstance that in the two-terminal configuration the connecting leads and the so-called contact

resistance Rc are measured, too, to which will be referred later again.

The preceding discussion also indicates where the actual voltage drop occurs which is necessary to drive

a current through the ballistic conductor. As there is no voltage drop within the ballistic conductor, it

has to be in (or at least close to) the contacts. In turn, referring to Joule’s heating, this leads to the

heating of the contacts.

Consider now, for simplicity and without loss of generality, that a ballistic conductor is electrically

strong connected in two-terminal configuration to diffusive, infinitely large electron reservoirs. Also for

convenience, in the following, the two-terminal conductance G = R−12T is considered instead of R2T . As

in a ballistic conductor the electrons do not suffer from any scattering, the situation is analogous to
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electromagnetic waves in a wave-guide. In the latter a certain number of transverse modes can propagate

the wave-guide depending on the actual shape of the wave-guide. In the case of electrical transport the

number of transverse modes, that is the contributing subbands (c.f. section 2.2), originate mainly from

the confinement of the electrons in the conductor (for a more detailed description see Appendix A). Of

course, also boundary conditions as the translational symmetry along the circumference of a CNT can

influence the number of subbands contributing to electrical transport, which was discussed in section

2.2. However, as the charge carriers are only able to move in the subbands it is intuitively clear that the

conductance G is proportional to the number Nsub of subbands available in the ballistic conductor

G = 2G0Nsub (3.1)

where the factor 2 arises from the spin-degeneracy of each subband i. The number of subbands can be

roughly estimated by the Fermi-wave-length λF of the electrons or charge carriers traversing the ballistic

conductor. The absence of scattering may be interpreted in the sense that the charges carriers do not

affect each other mutually, that is the overlap of their wavefunction is negligibly small. Thus, each charge

carrier has a certain place available which may be estimated by λF /2. If W is some characteristic width

of the ballistic conductor, then Nsub may be approximated as [23]

Nsub = int

µ
W

λF/2

¶
, (3.2)

which could, alternatively, be also estimated utilizing the model of an electron in a box with infinitely

high potential walls.

The proportionality constant G0 can be derived in the frame of the so-termed Landauer-Büttiker

formalism [24]. Within this formalism G0 is derived (see also Appendix A) to be G0 = e2/h ≈ 38.8

µΩ−1and is called the conductance quantum. That is, each subband contributes 2G0 to the total conduc-

tance, a circumstance sometimes also termed conductance quantization. The conductance quantization

as a function of width could be shown on a ballistic wire realized by a split-gate configuration on top of

a hetero-structure [25]. Well pronounced steps of 2e2/h in the conductance were observed as the width

of the wire was increased or decreased.

However, (3.1) is only valid for perfect transmission of the incident electron wave-function into the

ballistic conductor. In the case there is a finite probability of the wave-function to be reflected from the

conductor/reservoir interface (3.1) has to be modified (c.f. Appendix A). Instead of Nsub one has to sum

over all transmission coefficients Ti which give the probability that an electron from the reservoir enters

in the subband i of the conductor. Thus (3.1) changes to

G = 2G0
X
i

Ti =
2e2

h

X
i

Ti. (3.4)

It is noteworthy to stress, that
¡
(2e2/h)

P
i Ti
¢−1

is the contact resistance of a ballistic conductor

connected to two reservoirs and is sometimes misleadingly called the resistance of the ballistic conductor.

From a different point of view, the origin of this resistance is a geometrical one: the width of the ballistic
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conductor is that small that only a certain, finite number of electron modes from the reservoirs can

enter the conductor. As each electron mode can at most contribute 2e/h to the current, the conductance

quantization is naturally found.

3.1.2 Experimental evidence for ballistic transport in carbon nanotubes

Several theoretical works [26],[27] suggested that CNTs are ballistic conductors showing conductance

quantization. Experimentally, in the case of MWNTs, ballistic transport and conductance quantization

at room-temperature (RT) could be shown with the aid of a STM [28]. For this, a MWNT (2.2 µm

in length, 14 nm in width) was attached to the conducting tip of an STM. The tip was connected via

a voltage source to a heatable reservoir containing mercury (Tmelting ≈ −38.84◦C). Thus the MWNT
could be dipped with high accuracy with respect to the horizontal direction in the liquid metal bath. In

the inset of Fig. 3.2 a schematic description of the experimental set-up is shown. A maximum voltage

of 6 V was applied, corresponding to a current density higher than 107 Acm−2 without damaging the

MWNT [28]. In comparison the current density of a typical superconductor below the critical one is of

the order 105 Acm−2 which is two orders of magnitude less. If charge transport in the MWNT is assumed

to be diffusive [28], Joule’s heating would lead to an increase of the conductor temperature up to 20000

K assuming a thermal conductivity of 10 Wcm−1K−1. This in turn would destroy the MWNT - the

typical temperature range for burning CNTs in air is around or somewhat less than 400 ◦C. Therefore

the experimental results strongly suggest that ballistic charge transport is present, since in this case the

heat dissipates in the contacts and not in the ballistic conductor.

The conductance G of the MWNT in units of 2G0 = 2e2/h vs. the depth to which it was submerged

in the mercury is plotted in Fig. 3.2 [28]. Clearly, steps can be seen in G, yet not only of magnitude

2G0 but also fractions of it. The observation of steps as well as their heights could be attributed to

interwall interaction between the shells of a MWNT [29] when the MWNT is submerged in the mercury

at different heights. The theoretical considerations in Ref. [29] have shown that quantum conductance

channels may be blocked and/or the current traversing the MWNT redistributed nonuniformly leading

to the experimentally observed effect. Thus the presently discussed experiment strongly indicates the

existence of ballistic transport and conductance quantization in MWNTs.

In the case of SWNTs, the ballistic conductance at RT could be shown again with the aid of a scanning

probe microscope [5]. Here the microscope was used to measure the electrostatic force between a tip at

potential Vtip and a metallic SWNT connected in two-terminal configuration to metallic leads with a

small source-drain voltage applied [5]. This technique allows to measure the differences of a the local

potential on a surface. Thus, if the potential along the SWNT varies, then the electrostatic force is

changing accordingly.

In Fig. 3.3a an electrostatic force image from Ref. [5] obtained by the latter technique is shown. Clearly

no potential drop along the SWNT is observed. In the side panel (Fig. 3.3b) the electrostatic force signal

along the SWNT is shown with 100 mV applied across. The signal is flat in between the electrodes,

whereas a change is found at the contacts [5]. The absence of a potential drop along the SWNT is a
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FIGURE 3.2. Conductance G vs. dipping depth (z-position) of the MWNT in the mercury bath

measured in Ref. [28]. Clearly steps can be seen indicating the conductance quantization in MWNTs.

Also fractions of the conductance quanta 2G0 are apparent, which are attributed to the coupling of

the individual shells of the MWNT. Inset: Schematic setup of the experiment [28].

clear indicator for the existence of ballistic transport in metallic SWNTs. In the case of semiconducting

SWNTs the same experimental technique could also show the presence of ballistic charge transport at

RT [30]. Although the presented experiment proved the existence of ballistic charge transport in SWNTs,

no experiment allowing the observation of the conductance quantization has been realized which is one

of the aims of the present thesis.

Finally, it is noteworthy to stress the fact that the described experiments in this chapter here are

all performed at RT. That is, CNTs are ballistic conductors at fairly high temperatures compared to

typical inorganic semiconductor devices which become ballistic at low temperatures mainly due to the

freeze out of phonons. However, an isolated CNT has a 1D phonon structure [31], similar to its electronic

structure. Principally three types of phonons exist in CNTs [31],[32]: long-wavelength acoustic phonons,

optical phonons and in plane zone-boundary phonons. The latter have a wavevector connecting two Fermi

points in the graphene-sheet model and are therefore of relatively short wavelength [32]. This in turn

means that these are high energetic phonons and should only be of relevance at high kinetic energies of

the electrons. Indeed it could be shown that scattering at zone-boundary phonons only occurs at high

source-drain voltages (≥ 50 mV) at RT [32]. The same holds for optical phonons which are in the same
range of energy [32]. Thus only the long-wavelength acoustic phonons are left, similar as it is known

from solids, where the dominant backscattering process is the interaction of low-energy, long-wavelength

acoustic modes of the lattice [33] with the conducting electrons. In CNTs four acoustic branches are

apparent [31]: one longitudinal, two transverse and one torsional. Experimentally [34], it could be shown
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FIGURE 3.3. a) Electrostatic-force image of a SWNT connected in two-terminal configuration with

an AC bias voltage of 100 mV applied to the drain electrode (dark). The source electrode is indicated

by the dotted line for clarity. The brightness of a point in the picture corresponds to a certain

electrostatic force and therefore to a certain potential at this point [5]. Apparently, the greyscale

along the SWNT is not changing indicating the absence of a potential drop. This in turn strongly

indicates the existence of ballistic transport in SWNTs. b) Trace of the potential along the SWNT

in a). The signal is flat between the electrodes, and only a potential drop in the electrodes can be

observed.

that the electron-phonon coupling of the acoustic modes is very weak, implying a scattering time of about

18 ps at RT. Assuming a typical Fermi-velocity of 8 · 105 m/s of the electrons at the Fermi-energy in a
CNT, a mean free path of about 14 µm is found [34]. This length is far beyond the typical distances in

a conductance experiment and underlines the exceptional charge transport properties of CNTs.

3.2 Electron correlation at low temperatures: Tomonaga-Luttinger liquid

CNTs, in particular SWNTs, exhibit a strong one-dimensional (1D) character. The reduction of dimen-

sionality of a system from 3D to 1D has considerable consequences on its physical properties as inter-

actions as well as fluctuations gain more importance [35]. For carbon nanotubes at room temperature,

the electron-electron and electron-phonon interactions have been shown to be of minor influence on the

charge transport leading to mean free paths of about 14 µm (c.f. section 2.2) [34]. However, towards low

temperatures the electron-electron interaction becomes more relevant such that the ballistic character of

the carbon nanotubes vanishes. Instead a correlated electron state is forming, which in the low-energy

limit can be described by the so-called Tomonaga-Luttinger liquid.

In this section, first the 1D free electron gas is considered in order to exemplify the sensitivity of

1D systems to external perturbations. Then the Tomonaga-Luttinger-liquid model applied to a CNT is

presented and the main general features of the electrical transport properties are illustrated. Finally, a
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survey is given on transport experiments in which fingerprints of the Tomonaga-Luttinger liquid in CNTs

are found, including a discussion of the results.

3.2.1 The one-dimensional free electron system

A 1D solid may be represented by a linear chain of atoms, each of them providing one electron to the

lattice such that a 1D free electron gas is formed of length L. The 1D-topology leads to a considerable

difference in the response of the free electron gas to any kind of external perturbation, compared to 2D-

or 3D-electron systems [35]. For exemplification, consider an external, time-independent potential φ(x)

acting on the 1D free electron gas and let φ(q) be its Fourier-transform [35]. The perturbing potential

leads to a rearrangement of the electron density which may be described by an induced charge density

ρind(x).

The Fourier transform of the induced charge density ρind(q) and φ(q) are connected through the

so-called Lindhard-response function χ(q, T ) (see Fig. 3.4) [35],

ρind(q) = χ(q, T )φ(q). (3.5)

The Lindhard-response function χ(q, T ) is given by [35]

χ(q, T ) =

Z
(2π)−2

f(E(k))− f(E(k + q))
E(k)−E(k + q) dk (3.6)

and f(E(k)) is the Fermi-distribution. χ(q, T ) can be determined for wave-vectors q close to 2kF by

assuming a linear dispersion relation around the Fermi-energy EF , E(k)−EF = ~υF (k − kF ) [35]. The
latter allows to readily evaluate the integral in (3.6) leading to

χ(q, T ) =

¡−e2¢
π~υF

ln

¯̄̄̄
q + 2kF
q − 2kF

¯̄̄̄
(3.7)

For q = 2kF , (3.7) has a logarithmic divergence (see Fig. 3.4) which is due to the particular topology of

the Fermi surface, also called perfect nesting of wave-vectors [35]. The most significant contribution to the

divergence arises from pairs of states, one occupied, the other unoccupied, which are 2kF apart from each

other [35]. In contrast, in higher dimensions the amount of these kinds of states is significantly reduced

such that the singularity vanishes. The behaviour of the response-function has important consequences

as can be deduced from (3.5): an external perturbation leads to divergent charge redistributions of the

1D electron system [35] and at T = 0 K the electron gas is unstable with respect to the formation of

a periodically varying electron charge density (long-range interaction) [35]. In consequence, such an 1D

electron system cannot form a stable Fermi liquid as it is known for 3D metals since the interaction

cannot be ”hidden” in the effective mass of fermionic single particles. Further, instead of single particle

excitations, only collective excitations are possible [35].
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FIGURE 3.4. Lindhard function χ(q, T ) for a 1D, 2D and 3D electron system at zero temperature

(T=0) [35]. In contrast to the 2D and 3D case, the 1D electron system exhibits a divergent response

to excitations with the wavevector 2kF . This is due to the perfect nesting property of the electronic

states in reciprocal space.

3.2.2 Tomonaga-Luttinger liquid in carbon nanotubes

It was discussed that an 1D free electron gas is unstable against any kind of perturbation such that if

electron-electron Coulomb interactions are present no Fermi-liquid state can form in which the electrons

can be still regarded as single (quasi-)particles with modified mass and/or charge [35]. The groundstate

of such an interacting 1D electron system in the absence of any scattering potentials is called a clean

Tomonaga-Luttinger or shorter Luttinger liquid (LL) [36]. The LL is characterized by a gapless collective

state whose physical correlation functions depend exponentially on the interaction strength between the

electrons [36]. The lowest excitations of the LL state are soundlike, long-wavelengths collective modes,

sometimes also called plasmon-modes [36]. These in principal propagate as any electromagnetic wave

through the system. Thus the LL formalism is a description of an interacting fermion system in the

low-energy limit [36]. From the theoretical point of view the LL-description is universal in the sense that

it does not depend on the details of the model or the interaction potential. Instead its physical properties

are only characterized by a few parameters sometimes termed critical exponents [36].

To describe electrons in a CNT in the frame of the LL theory it is easier to shift from a fermionic

to a bosonic description of the interacting electrons which is sometimes called ”bosonization” [37]. For

this, first the Hamiltonian of interacting electron system bH has to be written down in bosonized form

by introducing bosonic phase-fields θk(x) [15],[37], which are related to the local density of the electrons,

and their canonical momenta Πk(x). Four of such bosonic phase-fields are obtained by the combination of
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charge- and spin-degrees of freedom and symmetric and asymmetric linear combinations of the states at

the Fermi points of the 1D system [15]. The phase-fields θk(x) are denoted by the indices c+, c−, s+, s−.

The +(−) -sign denotes symmetric (asymmetric) linear combinations and c or s whether a charge- or
a spin-mode is excited [15]. It is noteworthy that only the c+-mode is carrying a charge and therefore

mainly determines the electrical transport properties of the system whereas the other modes describe

neutral excitations [15]. With the aid of the phase-fields bH can now be written as [15],

bH =
~υF
2

X
k

Z h
Π2k + g

−2
k (∂xθk)

2
i
dx (3.8)

where the argument of the fields have been omitted for simplicity and υF is the Fermi-velocity of the

system. In this expression one can already see a particular property of the LL state, as by the introduction

of the phase-fields spin and charge are separated from each other. This, however, has no critical influence

on the further description of the electrical properties of a CNT in a LL state (see also Appendix B).

The parameter gk in (3.8) is in the case that there are no interactions present equal to 1 for all k [15].

Introducing now the Coulomb-interaction V (x− x0) which in general may also include the effects of an
insulating substrate with dielectric constant κ (κ = 1 in vacuum), an additional contribution to bH has

to be considered which is of the form [15],

bHint = 2

π

Z £
∂xθc+(x)

¤
V (x− x0)[∂x0 θc+(x0)] dxdx0. (3.9)

Note that as the Coulomb-interaction only acts between charged objects, only the phase-field θc+(x)

is affected. In the long-wavelength limit, that is in the low-energy limit, the bosonized description allows

to incorporate the Coulomb interaction in bH by the renormalization of gc+ [15],[37],

gc+ ≡ g =
·
1 +

4

π~υF
V (q)

¸−1/2
(3.10)

where V (q) is the Fourier transform of the Coulomb-interaction and the wave-vector q is close to zero as

the long-wavelength limit is assumed. As the Coulomb-interaction is a long-ranged interaction, V (q) has

a logarithmic singularity, requiring a infrared cutoff wavevector kcut = 2π/L [15],[38] which is determined

by the finite length L of the CNT [15]. Therefore the parameter g can be written for CNTs as

g =

·
1 +

8e2

πκ~υF
ln

µ
L

2πrt

¶¸−1/2
(3.11)

where rt is the radius of the tube. It is noteworthy that although the phase-fields θk 6=c+(x) are not affected

by the Coulomb-interaction, the parameters gk 6=c+ are also suffering from a tiny renormalization as the

bosonic fields are by construction to some degree entangled (c.f. Appendix B). However, the corrections

are << 1 such that only at temperatures T ≈ 0.1 mK these would start to have an influence [15], which
is far below the temperatures used in the experimental part of the present thesis.

From (3.11) it is apparent that g incorporates the interaction between the electrons in the CNT and

is therefore a direct measure of the interaction strength. Thus g is also called interaction parameter
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[36]. For a typical CNT with L/rt ≈ 103 and υF ≈ 8 · 105 m/s, g can be estimated to be in the range
0.2 to 0.3, that is g < 1, which corresponds in general to 1D systems with repulsive interactions [15].

The cases g > 1 and g = 1 correspond to attractive interactions (e.g. electron-electron coupling via

bosons) and no interactions [36], that is to Fermi-liquids or -gases, respectively. In the case of repulsive

Coulomb-interaction g can be also estimated by [36]

g ≈
µ
1 +

VC
2EF

¶−1/2
(3.12)

where VC is the Coulomb interaction and EF the Fermi energy of the non-interacting electron system.

VC is then of the order e2/²0κa where ²0 is the dielectric constant in vacuum, κ an appropriate dielectric

constant for the system and a the mean electron separation. For example, using a ≈ 1.5 Å, κ ≈ 3, as for
graphite, one obtains g ≈ 0.2 in agreement with the predictions by (3.11).
At the present state, the question comes to mind, as the LL-picture is a description of a 1D interaction

electron system in the low-energy limit, in which energy regime this model is applicable for CNTs. The

model is usually valid for energies much smaller than a critical energy ²crit [15] which is some electronic

bandwidth parameter and can be estimated for CNTs [15] to be ²crit ≈ ~υF/rt ≈ 1 eV for rt = 0.6 nm.
As 1 eV corresponds to temperatures of about 104 K this principally implies that at room temperature

one could observe LL-like effects in CNTs. However, this has not been observed as will be shown in section

3.2.4. On the other hand, the voltage applied to a CNT is also an energy scale which has to be taken

into account. The critical energy of 1 eV implies that only voltages in the mV regime are commensurable

with the application of the LL-model.

3.2.3 Charge transport signatures due to electron-electron interactions in
carbon nanotubes

Usually, the electrical transport properties of CNTs are investigated by contacting them with normal

metal leads like gold or platinum. The electrical coupling between CNT and the leads is in most cases

not perfect, that is a potential barrier may form in between. Particularly, if the CNT may be in a LL-like

state in contrast to the electrons in the leads which form a Fermi-liquid. Therefore, the conductance of

the device is limited by the tunneling process of electrons in the lead into the CNT. For the tunneling

process the so-termed tunneling density of states (TDOS) τ(E) is of importance [36] which reflects the

excitation spectrum of the LL groundstate, that is the density of states of the charged collective modes

in the LL. The TDOS can be derived from the single-electron Green’s function [15],[36] and has a power

law behaviour

τ(E) ∼ Eγ (3.13)

where the exponent γ is mainly determined by the interaction parameter g [36].

Considering the tunneling of an electron into a finite length LL, as a CNT, two possibilities are

apparent: (i) tunneling into the end and (ii) tunneling into the middle of the LL. In the first case, the

electrons in the LL can only move in one direction to accommodate the additional electron, in the second
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FIGURE 3.5. τ (E ) for g = 0.28 and g = 0.75 corresponding to tunneling in the middle and in the

end, respectively, of a CNT in a LL-state. Both curves are vanishing as E = 0 is approached.

case they can move into two directions. This leads to a difference in the exponent γ [15] depending at

which position of the LL the tunneling event occurs

γmid =
¡
g + g−1 − 2¢ /8 (3.14)

γend =
¡
g−1 − 1¢ /4 .

Apparently, γend > γmid in general for repulsive interactions. In the case of a Fermi-liquid, that is

g = 1, γend = γmid = 0 and therefore τ(E) = const. For g ≈ 0.25, which would be a typical value for a
CNT one finds γmid ≈ 0.28 and γend ≈ 0.75. The corresponding TDOS τmid(E) and τend(E) are plotted
in Fig. 3.5. It is noteworthy that the introduction of strong (high energy barrier) or weak (low energy

barrier) scatterers [36] in the LL resembles the same behaviour as tunneling into the end or the middle,

respectively, of a LL [36]. The strong scatterer, in contrast to the weak scatterer, ”cuts” the LL into two

distinct parts, which then in the sense of electrical transport leads to tunneling into the end of a LL

when passing the scatterer [36].

As the TDOS describes the available states in which an electron can tunnel into the LL it is intuitively

clear that the conductance G(E) of this device is proportional to τ(E) and has therefore the same energy

dependence, that is G(E) ∼ Eγ . Experimentally, the energy E is tuned via the applied voltage V . In

a more rigorous theoretical treatment [36],[38] also the temperature dependency and the dependence of

the current on the applied voltage can be derived, leading to

G(V ) ∼ V γ (3.15)

G(T ) ∼ T γ

I(V ) ∼ V γ
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where for the exponent γ either γend or γmid has to be taken depending on the actual experimental

configuration.

The discussion here obviously shows that the way how and ”where” a CNT is electrically contacted

is a crucial (geometric) parameter for electrical transport measurements and should therefore be always

considered for interpretation of the experimental data.

3.2.4 Experimental fingerprints of the Tomonaga-Luttinger liquid in carbon

nanotubes

Experimental indications for the LL state was found in both, MWNTs [39] as well as SWNTs [6]. In the

case of MWNTs, the differential conductance dI/dV was measured as function of source-drain voltage

V and temperature T (Fig. 3.6) [39]. The MWNT investigated was connected from top with electrodes

(up-left inset Fig. 3.6). In this experiment reported in Ref. [39] the contact to which bias was applied was

high-ohmic (about 300 kΩ), implying a high tunneling barrier, although the metal and the MWNT are

in intimate contact. Local defects in the MWNT, orientation differences of the metal grains and similar

effects may be reasons for this.

FIGURE 3.6. Conductance vs. source-drain voltage of a MWNT in two terminal configuration mea-

sured (upper left inset) for different temperatures [39]. The decrease of the conductance around zero

bias voltage is attributed to the tunneling density of states τ(E) of the MWNT which implies the

existence of a Luttinger-liquid-like electron state. This phenomenon is termed zero-bias anomaly.

lower right inset: temperature dependence of the zero-bias anomaly in a log/log-scale. A straight line

with the slope 0.36 can be extracted. The dotted line in the main figure is a theoretical fit with G ∼
V 0.36.
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However, as the TDOS is proportional to dI/dV , the measurements shown in Fig. 3.6 are a direct

measure of the first one. The dotted line is a theoretical fit [39]: dI/dV ∼ V 0.36 and the value of

the exponent was drawn from the temperature dependence of the differential conductance [39] (down-

right inset Fig. 3.6) at zero source-drain voltage. Theoretical fit and experimental data at 2 K show

a good agreement indicating the existence of the LL-state in MWNTs. The decrease of the differential

conductance in the vicinity of the zero source-drain voltage is termed zero-bias anomaly (ZBA) [39] and is

attributed to the power-law dependence in energy of the TDOS, which is one of the main characteristics

of a LL.

As the contacting configuration in the experiment reported in Ref. [39] is middle-contacted, the inter-

action parameter can be extracted to be about 0.22 from the data shown in Fig. 3.6 which is in good

agreement with the theoretical predicted range of values in the previous sections. However, although

the results are indicating a LL state in MWNTs, other measurements [7],[40] point towards a diffusive

type of transport. Indeed theoretical considerations on disordered (non-LL) multi-channel wires [41] show

also a ZBA. Additionally, calculations including shell-shell interactions in MWNTs [42] may be also of

importance. Therefore at the present state it is not clear whether MWNTs really represent a LL-like

electron system.

Turn now to the experiments on SWNTs [6]. In Ref. [6] metallic SWNTs have been contacted in two

ways: (i) electrodes are deposited on top and (ii) SWNTs are adsorbed on in SiO2-buried metal electrodes.

In the first case the two-terminal resistance at room-temperature is relatively low (. 30 kΩ) and in the
second higher (& 67 kΩ) [6]. In Fig. 3.7 the differential conductance vs. the temperature is plotted in a
log-log-scale for the two types of devices, showing again a power-law dependence [6].

The left graph corresponds to SWNTs on top of electrodes, the right one to SWNTs buried under

electrodes. The respective exponents can be extracted from the slope of the curves in Fig. 3.7, γtop ≈
0.3 and γunder ≈ 0.6 [6]. Apparently, the two values differ significantly, yet the interaction strength

(parameter) should be roughly the same for each SWNT and both samples can be regarded as middle-

contacted as illustrated in the insets of Fig. 3.7. In order to clarify the situation, refer to the comment

in section 3.2.3, stating that the two limits, end- and middle-tunneling can also be achieved via the

introduction of weak and strong scatterers [36] in the LL.

Consider first the case, when the SWNTs are lying on top of electrodes. Obviously, as can be drawn

from the room-temperature two-terminal resistance, the coupling between metal and SWNT is relatively

small, such that only a weak perturbation on the electronic system of the SWNT can be expected. This

situation maps with the case of a weak scatterer in a LL and therefore γtop = γmid =
¡
g + g−1 − 2¢/8.

The situation is different for the SWNTs lying under the electrodes. The metal and the SWNT are in

much more intimate contact then in the other case. Therefore the electron system in the SWNT should

be considerably perturbed in contrast to a electrically weak coupling. If the perturbation is strong enough

then the sensitive LL-state in the SWNT can be locally lifted in the sense of ”cutting” the electron system

into pieces. This in turn would lead to an end-tunneling-like configuration, although the electrodes are

placed in the middle of the SWNT and thus γunder = γend =
¡
g−1ρ − 1

¢
/4. Extracting from the SWNT
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FIGURE 3.7. a) Conductance G vs. temperature T in a log/log-scale for SWNTs on top of metal

electrodes. The dotted lines are correction taking the effect of Coulomb-Blockade into account [6]. b)

Conductance vs. temperature for SWNTs buried under metal electrodes. Inset of a): from the slopes

of the corrected conductance the exponent γ has been extracted. For SWNTs on top of electrodes γ

has been found in average to be about 0.3, and for the other case 0.6 [6].

experiment the interaction parameters from γtop ≈ 0.3 and γunder ≈ 0.6, one finds g(top) ≈ 0.24 and
g(under) ≈ 0.29, which is in quite good agreement with the theoretically estimated value of 0.2 to 0.3. The
variation in the interaction parameters might be due to differences in total length, diameter or helicity

of the current carrying CNT. Similar conclusion have also been drawn recently in Ref. [15].

Apparently, the existence of a LL-state in SWNTs at low temperatures is supported by the experimental

data shown. In the case of MWNTs the situations is yet questionable and has to be further investigated.

It it is noteworthy again to stress, that the way of contacting the CNTs is of considerable influence on

the charge transport properties. The question how the influence of the electrodes is at room-temperature

is discussed in chapter 5 in which the phenomenon of phase-breaking in SWNTs is investigated.
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Sample preparation

In this chapter the contacting of SWNTs by metal electrodes is described. For this, at first SWNT raw-

material has to be purified which is described in the first section of this chapter. Then conventional

electron-beam lithography is used to pattern an electrode structure. As contacting material gold (Au)

and gold palladium (AuPd), the superconductors lead (Pb), indium (In), aluminium (Al) and rhenium

(Re) and the ferromagnetic cobalt (Co) have been investigated. In addition the alloy gold germanium

(AuGe) and an approach utilizing azido-molecules have been tried.

With the experimental set-up described in the third section, the two-terminal resistance of all of these

samples contacting SWNTs is measured which is indicative for the electrical coupling between SWNT

and metal.

In view of the requirements of the experiments in the present thesis, the noble alloy AuPd and the

superconductor Re, both contacting SWNTs from top, were found to be the optimum choice of contacting

material and way of contacting.

4.1 Purification of carbon nanotubes and adsorption on substrates: surface
treatment

CNTs can be produced by various methods. Historically, at first the arc-discharge method [43] was used.

Herein, a voltage is applied between two graphitic rods in a closed volume. The ends are then successively

drawn nearer until the electric field is high enough to ignite a plasma. After several minutes a black,

fibrous soot can be found within the device containing CNT material. The method described so far only

produces MWNTs. If in addition small amounts of catalyst, e.g. yttrium, nickel or iron, are provided

within the graphitic rods, SWNTs also can be obtained.

In contrast to the arc-discharge method, the laser-ablation method [44] is restricted to a smaller reaction

area (diameter of laser beam . 1 µm). A laser beam is pointed onto a piece of bulk graphite which itself
is in a relatively long (quartz) tube. At the other end of the tube a (sometimes cooled) metal rod is

inserted. Due to the temperature gradient between the bulk graphite and the metal rod, the produced

particles diffuse to and disengage at the latter. Again, a black soot containing MWNTs is found, yet

not as fibrous as in the case of the arc-discharge method. Analogously, addition of catalyst allows the

production of SWNTs.

Another method is based on the catalytic decomposition of molecules in gas phase like acetylene [45].

A bulk catalyst is placed in the middle of a quartz tube which itself again is placed in a furnace. The

gas of the molecules to be decomposed is flowing continuously through the quartz tube leaving a black

powder on the catalyst. Depending on the catalyst used, and also the size of the catalyst particle, either

MWNT or SWNT material can be produced. In the first case, the MWNTs are not as well graphitized
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as obtained by other methods. In contrast, the SWNTs seem to contain less defects relative to the other

SWNTs materials but only small quantities are obtained.

A more recent method utilizes the reaction of gaseous CO with a catalyst precursor [46]. Hot and cold

CO is mixed together in the presence of the catalyst, here Fe. The process is performed at approximately

900◦C and yields SWNTs and CO2-gas. In contrast to the previous methods an extension to large scale

production of CNTs is possible, since there is no principle restriction to space for the reaction to take

place and the product is relatively pure with respect to undesired side-products. On the other hand, a

MWNT production is not achieved with this process.

All of the shortly described production methods provide raw material consisting of MWNTs or SWNTs

and other forms of carbon: fullerenes, graphite and amorphous carbon. The composition of the raw-

material varies depending on production method and the growth parameters employed (temperature,

catalyst, pressure,...) during the production process. However in all processes, except for the catalytic-

decomposition-process, undesired side-products are contained in the raw-material.

In the present thesis mainly SWNT raw-material obtained by the arc-discharge and the laser-ablation

method has been used. Therefore purification of the raw-material is necessary in order to get access

to individual or thin bundles of SWNTs. For this, the methods described in references [47] and [48]

are followed. The basic idea of these approaches is to disperse the raw-material in an aqueous solution

containing surfactant. The surfactant molecules form a shell called micelle around the particles in the

raw-material allowing them to form a stable dispersion. The principle is depicted in Fig. 4.1a.

FIGURE 4.1. a) Schematic view of a SWNT and a particle enclosed by a surfactant shell (micelle).

The surfactant has negatively charged headgroups. The molecular structure of the surfactant is

depicted on the right. b) Silanization process of a SiO2 surface. After silanization, the negatively

charged micelle and the positively charged amino groups attract each other, promoting the adsorbtion

on the surface.
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FIGURE 4.2. Scanning force microscopy image of SWNTs and SWNT bundles adsorbed from a

purified surfactant-stabilized aqueous dispersion onto a silanized SiO2 surface.

In order to obtain a dispersion, SWNT raw-material produced by the arc-discharge or laser-ablation

method was used containing approximately 40 to 60% SWNTs. About 0.2 mg of the raw-material was

added to 275 µl of an aqueous 1 wt% lithium dodecyl sulfate (LDS; purchased from Fluka) solution

and then subjected to ultrasonic agitation for 2 min (KLN-Ultraschall-Generator 281/101). During this

treatment, the entangled SWNT-network is disintegrated into SWNT bundles and individual SWNTs,

which are surrounded by a surfactant shell. LDS mainly consists of a negatively charged ionic headgroup

and a hydrophobic tail (see Fig. 4.1a), such that the micelle surrounding the SWNT, or other particle is

negatively charged. Thus prepared dispersions are stable for several days. Centrifugation of the disper-

sions for 30 min at 8000 rpm (Eppendorf - Centrifuge 5417 C) was performed in order to collect larger

aggregates in the sediment. The supernatant is then removed and stored into another vessel.

In order to obtain information as to whether the purification process was successful, particles are

adsorbed from the supernatant onto a substrate and then investigated by scanning force microscopy.

A silicon (Si)-wafer with thermally grown SiO2 layer is used as substrate. For adsorption on the SiO2
surface, the negatively charged micelle is utilized. By silanization, the OH-groups of the SiO2 surface are

exchanged by ammonium-groups (see Fig. 4.1b) which exhibit a positive charge in protonic (i.e. containing

H+ ions) solvents. Thus, a droplet of aqueous supernatant leads to a positively charged surface and

the electrostatic interaction with the negatively charged micelle promotes the adsorption. Mainly three

silanes have been used, 3-aminopropyltriethoxysilane, N-[3-(Trimethoxysilyl)propyl]-ethylenediamine and

3-aminopropyldimethyl-ethoxysilane. During the studies, no qualitative or quantitative difference could

be found for these three silanes with respect to the adsorption of particles. The silanization procedure

can be generalized as follows: the substrate is first cleaned successively 10 min in acetone and 10 min in
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propanol in an ultrasonic bath. In the second step the wafer is dipped for 2 min in a solution of 10 ml

pure water containing 10 µl of silane and the substrate is thoroughly rinsed with water and blown dry

leaving a positively charged surface (see Fig. 4.1b). Then, a droplet of supernatant is put on the silanized

surface for 20 to 30 min, depending on the desired degree of density of adsorbed particles. Finally, the

droplet is dried and the surface again intensively cleaned with water in order to remove all surfactant

molecules from the surface.

In Fig. 4.2 a scanning force microscopy image (Nanoscope IIIa, Digital Instruments, Tapping Mode) of

an representative as-prepared substrate is shown (silane: 3-aminopropyltriethoxysilane). Predominantly

clean, individual SWNTs, SWNT bundles and only a small number of catalytic particles are observed.

Thus, the purification and adsorption process yields clean and (relatively) dense individual SWNTs

(or thin bundles) on a modified SiO2 surface, sufficient for electrical contacting using the electron beam

technique as it is described in the next section.

4.2 Contacting carbon nanotubes via electron beam lithography

The electrode arrays were produced by conventional electron beam lithography (EBL) using a modified

scanning electron microscope (Hitachi 2300) and a two-layer poly(methyl methacrylate) (PMMA) resist

system. Each of the layers has been successively spin-coated and heated (each layer for 1 h at 160◦C)

onto the substrate on which the SWNTs are already adsorbed. The thickness of the first PMMA layer is

typically between 75 to 100 nm and of the second 40 to 80 nm.

FIGURE 4.3. a) Sample after exposure and removal of cracked PMMA molecules. An under-cut is

formed since layer 1 is more sensitive to electron irradiation than layer 2. b) Principle sketch of the

exposed structure from top. Four lines converge into an inner structure (dimensions in the text). c)

Metal evaporated on top of the sample. The tube is partially covered with metal. d) Sample after

lift-off process. The undercut promotes the removal of undesired resist and metal from the substrate.

Only the tube and the deposited metal directly in contact with the surface remain.
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The first layer is more sensitive with respect to the irradiation of electrons. Thus, in the lower layer more

PMMA-molecules are cracked than in the second layer during the exposure process. After exposure, the

cracked PMMA molecules are removed with a solution consisting of 15 ml isopropanol and 5 ml isobutyl-

methylketone leading to a so-called under-cut (see Fig. 4.3a) resulting from the different sensitivities of

the two PMMA layers used.

The electrode geometry used in order to contact the SWNTs (see Fig. 4.3b) consist of four lines,

converging in an inner finger-structure, each of them 2 µl long, about 100 nm wide and approximately

100 to 200 nm apart. These dimensions are sufficiently small to contact the SWNTs which have been

adsorbed previously.

In the next step, metal is evaporated on top of the sample under vacuum (p . 1 ·10−6 to 1 ·10−9 mbar,
see section 4.4), resulting in the SWNTs being electrically contacted on top (see Fig. 4.3c). The evapora-

tion rate varies from metal to metal. In the case of a non-noble metal being evaporated, the rate is usually

higher (about 7 to 10 Å/sec) in order to avoid contaminations picked up on the way from evaporation

source to substrate. As the vacuum is never completely clean, small amounts of water, hydrocarbons

and other gases are present. Noble metals are much less sensitive to this type of contamination, allowing

considerably lower evaporation rates (about 1 Å/sec).

Finally, the undesired metal and PMMA is removed during the lift-off process. For this, the substrate

is submerged for 2 h in an acetone bath at approximately 55◦C. Afterwards, the sample is thoroughly

rinsed in acetone and isopropanol and blown dry (see Fig. 4.3d) leaving only the metal which is in

direct contact with the substrate’s surface and the SWNTs. Note that in Fig. 4.3c an idealized picture is

shown. In reality still connections between the metal film on top of the PMMA layers and the metal on

the substrate are found. This can lead to residues of metal on the electrodes and the substrate surface

if the lift-off process has not optimally occurred. In particular, the more ductile a metal is, the more

difficult the lift-off process is. This is also the case when the thickness of the evaporated metal increases

with respect to the total PMMA-layer thickness.

4.3 Experimental set-up for electrical transport measurements

The electrical transport measurements in the present thesis have been performed on two cooling systems:

a simple liquid 4He bath for measurements down to 4.2 K and a 3He/4He dilution refrigerator (TLM

400, Oxford Instruments) which has a minimum base temperature around 25 mK. The latter system is

of particular necessity for samples in which SWNTs have been contacted with superconducting electrode

materials (c.f. chapter 6).

In both cases the principle experimental set-up was the same as it is depicted in Fig. 4.4. The main

components of the system consist of a voltage adder, a voltage divider and a current-voltage converter

(Ithaco 1211). High- and low-pass filters have also been used in order to avoid undesired frequency signals

from voltage sources or the environment.
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FIGURE 4.4. Principle experimental set-up for electrical transport measurements. The main elements

of the set-up are denoted in the figure. Their principal function is given in the text.

In the case of the liquid 4He bath, the electrical reference point ”ground” was defined by the pump that

was used to evacuate the sample storage space. In the other system, the 3He/4He dilution refrigerator has

been appropriately connected to ground. All devices in the set-up are disconnected from each other and

the external power supply via transformators such that no ”ground—to-ground” slope has been possible.

The current-voltage converter was used as its input is at constant potential and thus allowing an

accurate measurement of the current Isd. In addition effects resulting from a possible non-linear behaviour

of measurement devices are diminished. The output signal Voutput of the current-voltage converter is given

in V. In particular the conversion factor µ of Isd into a voltage can be varied. For example, consider a

current Isd ∼ 10−9 A passing through the sample. If µ = 10−8 A/V is chosen then the output voltage

is Voutput = Isd/µ ∼ 10−1 V. That is, instead of measuring a current in the nA range, a voltage of some
hundreds of mV is measured.

The voltage adder is used in order to reduce offset voltages from the current-voltage converter. For

this, an additional voltage source Vadd was connected to the voltage adder which is already connected to

the source-drain-voltage source Vsd.

The voltage divider (1:10 to 1:1000) was mainly used to protect the sample from accidently occurring

high voltage peaks, to some extent reducing noise and to minimize the fluctuations of Vsd which can in

particular occur in long term measurements.

As indicated in Fig. 4.4, the whole experimental set-up is outside the cooling system, such that prin-

cipally it can be exchanged or modified without altering the sample. In order to electrically protect the

sample during changes in the set-up and during introduction and removal of the sample in and out of the

cooling system, all electrodes are grounded simultaneously. Thus, no electrical pulse or electrostatic fluc-

tuation can lead to the destruction of the sample. This electrical shielding turned out to be particularly

vital for the SWNT-samples investigated in the present thesis.
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4.4 Increase of electrical coupling between metal and SWNT: room

temperature measurements

Experimental studies in order to find the most suitable metal for a strong electrical coupling to the

SWNT, that is, minimization of the contact resistance between metal and SWNT, are presented in this

section. Various metals as contacting materials as well as different approaches for contacting are described.

The topology of the samples is investigated utilizing scanning force microscopy (SFM) and the electrical

coupling is tested by measuring the two-terminal room-temperature resistance of a contacted SWNT.

4.4.1 Testing different metals

In this section different metals have been used to electrically contact SWNTs adsorbed in a previous

step on a substrate. Two-terminal current/voltage characteristics of these structures are presented and

several reasons for the observed electrical behaviour are suggested.

Noble metals: Au and AuPd

The easiest metals to handle are noble metals: they do not oxidize in air, can be easily evaporated (in

most cases) and are chemically stable. Thus, the first metals that have been used to electrically contact

FIGURE 4.5. SFM image of a Au electrode structure on a 3-aminopropyltriethoxysilane treated

SiO2 surface. The adhesion of the Au to the surface is sufficiently strong due to the silanization. The

particles in between and around the electrodes are lift-off residues. Their presence indicates also the

affinity of the Au to the silanized surface.
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FIGURE 4.6. Au-electrode structure with one completely detached electrode. Some residues allow to

observe the contour of the former position where the electrode has been. Before detachment a SWNT

bundle has been buried under it. The image illustrates that the adhesion of SWNTs to the silanized

surface is of similar strength or stronger than the adhesion of Au (for AuPd similar observations have

been done) to this surfaces.

CNTs are Au [49] and platinum [4]. In the present thesis Au and AuPd (40 wt%/ 60 wt%) have been

chosen to contact SWNTs for charge transport measurements. AuPd has the advantage that its grain

size (2 to 3 nm) is about half of that of Au leading to a smother surface when evaporated on a substrate.

Later, it is shown that this also has an influence on the lift-off process.

As substrates commercially available n+-doped Si (dopant: arsenic) were used with a thermally grown

SiO2 surface (thickness: 100 nm) on which the SWNTs are adsorbed. The highly doped Si can therefore be

used as a backgate in the measurements. The samples have been produced in the way previously described

in sections 4.1 and 4.2 where 3-aminopropyltriethoxysilane has been used as silane. The evaporation has

been carried out at p . 1 · 10−6 mbar and metal-deposition rates of 1 Å/s for both Au and AuPd were
used.

Fig. 4.5 shows a typical SFM image Au-electrode structure for contacting SWNTs. The electrode lines

are about 24 nm in height, 2 µm in length (inner structure) and the distance between two neighbouring

lines is approximately 150 nm. On the substrate only some smaller particles (most probably catalyst)

are observed. Between the electrode lines more particles are found which are residues from the lift-off

process. It is remarkable that the adhesion of Au to the SiO2 surface is sufficiently strong. Usually Au

has only a poor adhesion to SiO2 such that it is removed during the lift-off process. To overcome this

problem, titanium (Ti) or chromium (Cr) is used as an adhesion promoter. In this case, a thin Ti or Cr
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layer (3 to 5 nm’s usually) is evaporated before the final Au layer. However, Fig. 4.5 demonstrates that

the silanized SiO2 surface leads to a sufficiently strong adhesion of Au such that the lift-off process can

be performed.

Occasionally, partially detached electrode lines are observed (see Fig. 4.6) after lift-off, indicating that

the adhesion of SWNTs on the silanized SiO2 surface is of similar strength or stronger than the adhesion

of Au to this surface. During the experiments it was found that the amount of detached electrode lines

increases the longer the time between adsorbtion and spin-coating is. Presumably, the silanization of the

SiO2 surface is passivated when exposed to air for long periods, leading to these observations. By closer

inspection of the outer right hand electrode in Fig. 4.7, the contour of the SWNT buried under the metal

seems to press through the metal. This indicates that the structural integrity of the SWNTs does not

suffer from the evaporation process.

Fig. 4.7 shows an electrode array connecting several SWNTs, using AuPd (15 nm thickness) instead

of Au as the evaporation material. In the area between the electrodes considerably less particles are

observed than in the case of Au and also the edges of the electrode lines are smoother. Since the grain

size of AuPd (about 20 Å) is smaller than the one of Au (about 40 Å) and it is less ductile, the lift-off

process is easier to perform (c.f. section 4.2) and no residues are apparent.

FIGURE 4.7. AuPd-electrodes connecting two (presumably) individual SWNTs (electrode pair (I))

and a thin bundle (. 3 nm in height; electrode pair (II)). The SWNTs connected by electrode pair

(I) are denoted by arrows. The contour of the SWNTs clearly presses through the metal.
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FIGURE 4.8. a) I/V -characteristic of electrode pair (I) in Fig. 4.7. The resistance of the two

in parallel contacted SWNTs is approximately 50 kΩ. Current fluctuations are observable at

higher source-drain voltages which are attributed to thermal instabilities of the contact region. b)

I/V -characteristic of electrode pair (II). The curve is over the same voltage range, almost free of

fluctuations and the resistance is only 10 kΩ.

Electrode pair (I) is connected through two (presumably) single SWNTs (indicated by arrows) whereas

electrode pair (II) electrically connects a thin bundle (diameter . 3 nm). Interestingly, the contour of

the SWNTs and the SWNT bundle is clearly observable in the metal profile. Thus, as in the case of Au

already suggested, the structural integrity of the SWNTs is preserved during the evaporation process.

Electrical transport measurements at room temperature in helium atmosphere of the sample in Fig.

4.7 are depicted in Fig. 4.8. In Fig. 4.8a the data for electrode pair (I) is shown. The resistance of the

two in parallel contacted SWNTs is approximately 50 kΩ > h/2e2 and at higher source-drain voltage,

current fluctuations are observable. Assuming that both SWNTs carry the same amount of current, each

of them has a two-terminal resistance of about 100 kΩ, indicating that at lower temperatures, single-

electron effects may be observable. In contrast the room-temperature resistance of electrode pair (II)

(Fig. 4.8b) is only about 10 kΩ. This quite close to the theoretically expected value of h/4e2 ≈ 6.45 kΩ
for a metallic SWNT (c.f. section 3.2), in case of ballistic transport (c.f. chapter 5). In addition, compared

to the current/voltage (I/V ) -characteristic of electrode pair (I), no current fluctuations occur at higher

source drain voltages. The fluctuations are therefore attributed to thermal instabilities of the contact

region.

The electrical room-temperature properties in the present sample are representative for all samples

contacted with AuPd or Au: some SWNTs exhibit very low (. 10 kΩ) two-terminal resistances, others
up to a few hundreds of kΩ. Several reasons are to be considered for this observed behaviour:

(i) In the case of low resistances, a metallic SWNT is electrically coupled well to the leads, such that

the transmission coefficient between lead and SWNT is almost unity. Then the two-terminal resistance

is comparable with the lowest possible value of h/4e2 ≈ 6.45 kΩ. If the two-terminal resistance is a few
hundreds of kΩ, then a semiconducting SWNT may be contacted. In this case a Schottky barrier would
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form at the interface where semiconducting SWNT and metal touch. This scenario is supported by the

experiments using electrostatic force microscopy by Bachthold et al.[5] and Fuhrer et al.[30].

(ii) The adhesion properties of the evaporated metal on the silanized SiO2 surface may be of importance.

If the adhesion is not strong enough, the lift-off process may detach the metal from the SWNT and a

mechanically induced contact barrier is introduced. The detachment can be local and in the range of sub-

nm’s and is therefore not resolvable by SFM measurements. The extreme case is the complete detachment

of a electrode line as it is shown in Fig. 4.6.

(iii) For contacting SWNTs by electrodes on top, the adsorbed SWNTs have to be spin-coated with

PMMA and then heated in total for 2 h at 160◦C (c.f. section 4.2). After electron irradiation and removal

of cracked PMMA molecules, it may be possible that residual PMMA molecules are covering the SWNT.

Principally, the covering can be either complete or only local. The evaporated metal would not be in

direct contact with the SWNT at these positions where a PMMA-molecule layer is apparent. Depending

on the degree of coverage, a SWNT may be in good electrical contact or not. In particular, the diffusion

properties of the metal atoms through the coverage layer have to be considered. If the atoms can easily

diffuse, then the layer is of minor importance, since a good physical connection between SWNT and the

metal electrode is created always.

In principle, all of the described processes can occur simultaneously. The formation of a Schottky

barrier does not depend on whether the points (ii) and (iii) are apparent. From this point of view, point

(i) describes a physical origin of the observed room-temperature resistances and points (ii) and (iii) a

technological one. The latter two are hard to control such that in the interpretation of experimental data

these have always to be taken into account.

Superconductors: Pb, In, Al and Re

The interest of using superconductors as a contacting material for SWNTs is threefold. First, the principle

try to minimize the contact resistance to the SWNT, which is primarily independent on the supercon-

ducting properties of the material.

Second, if the electrical coupling is sufficiently strong the proximity effect is possible to study. That

is, the ability of a CNT to transport BCS Cooper-pairs [50], which in turn means the CNT to be in

a superconducting-like state. Works by Kasumov et al. [51] and Morpurgo et al. [52] have shown that

indeed the proximity effect is observable in SWNTs. The influence of a gate is observed to act as a switch

from superconducting-like state to the normal state of the SWNT [52], however, the mechanism is not

understood.

And third, if the electrical coupling between superconductor and SWNT is weak, i.e., the contact resis-

tance could not be sufficiently reduced, then the Coulomb-Blockade effect is likely to be observed. In this

case, the quasi-particle properties of the superconductor, in particular their density of states (c.f. section

6.1.2), can be utilized to explore the energy- or excitation spectrum of a SWNT at low temperatures,

thus yielding direct insight as to what the actual electronic state of a SWNT is. In particular, as SWNTs
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FIGURE 4.9. Pb-electrode structure of approximately 30 nm in height. Several SWNTs and SWNT

bundles are lying under the electrodes. The Pb film is not continuous such that voids between the

Pb islands prevent the charge transport.

are believed to behave as a Luttinger liquid, the power-law dependence on the tunneling density of states

(c.f. section 3.2.3) is expected to have a severe influence on the charge transport.

In the present thesis mainly the well-known superconductors Pb, In, Al and Re have been investigated

as contact material. Pure Re is not an often utilized superconductor, although it has the advantage to

be a noble metal and therefore to be less sensitive to oxidation processes (at least in bulk).

First turn to Pb and In. Bulk Pb is known to have a critical temperature Tc ≈ 7.2 K and In of about
3.4 K [53] which would at least allow for the Pb to perform measurements in the He-bath cryostat. Since

the superconducting energy gap is temperature dependent (c.f. section 6.1.2) the dilution refrigerator is a

better choice, as the temperature therein (mK range) is sufficiently below the critical temperature. In this

case the energy gap is almost reaching its maximum value 2∆0 (c.f. section 6.1.2) and the quasi-particle

states as well as the superconducting condensate are well developed.

In Fig. 4.9 a Pb-electrode structure produced as it was discussed in the preceding sections is shown

(imaged via SFM). The metal has been thermally evaporated at pressures about 1 · 10−6 mbar and rates
of 6 to 7 Å/s in order to avoid the pick up of contaminates of the Pb-atoms on their way from evaporation

source to the substrate (c.f. section 4.2).

In contrast to Au and AuPd, Pb does not form a closed metal layer at comparable evaporated metal

thicknesses (here 30 nm). Thus charge transport along the lines is not possible. A simple increase of
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FIGURE 4.10. Au/Pb double-structure. The thin layer (7 nm) on top of the Pb film (40 nm) seems

to fill the vacancies between the Pb-islands. However, the oxidation of these types of samples could

not be prevented by the covering Au film.

the layer thickness in order to get continuous lines is prohibited by the height of the total PMMA layer,

leading to considerable problems during the lift-off process as already discussed in section 4.2. In addition,

the thin Pb layers oxidize too fast and completely in air, such that even if the layers are continuous, a

traversing current could not be observed.

In order to overcome these problems, instead of pure Pb a double-structure Au/Pb was evaporated

with thicknesses 7 nm and 40 nm, respectively. Au was chosen as an additional material, since thin Au

films on top of Pb become superconducting due to the proximity effect [50]. Fig. 4.10 shows the inner

part of a Au/Pb-electrode structure. The voids between the Pb particles seem to be filled by Au. The

lift-off process in this type of structure is almost as clean as before. However, the starting resistance of

some MΩ of samples contacting SWNTs increased within a few minutes, such that no current could be

driven any more through the device. Thus, the oxidation of the Pb layer could only hardly be prevented

by the additional covering Au layer.

The metal In is much less oxidizing in air than Pb [54], which was the second superconducting material

investigated. Fig. 4.11 shows an SFM image of a In-electrode structure (thickness 28 nm). The In was

thermally evaporated at about 1 · 10−6 mbar at about 2 to 3 Å/s. Similar to Pb, the lift-off process is
not too dirty and the metal layer is not continuous. In comparison, the metal islands formed by In are

approximately half of the size of the Pb islands in Fig. 4.9 and tend to a more circular shape.
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FIGURE 4.11. SFM image of 28 nm high In-electrode structure. The structure of the In electrode

lines is comparable to the Pb case, but the island size is roughly halved. Also the lines are not

continuous as required for electrical transport.

To achieve a coherent layer, a thin silver (Ag) film (8 nm) was evaporated before the In (25 nm)

as Ag/In systems are also known to be superconducting due to the proximity effect [50]. An electrode

structure performed in this way is shown in Fig. 4.12. Apparently, the lift-off process did not deteriorate.

The In behaves different on a surface of the Ag layer than on the silanized SiO2 surface in Fig. 4.11. On

the Ag surface, the In seems to build up a continuous-like layer.

For charge transport measurements, SWNTs have been adsorbed on top of the Ag/In electrodes. The

resistance of connected SWNTs were of the order of GΩ, probably due to a thin oxidation layer on the

In [54].

In order to achieve a better electrical contact, it was tried to increase the contact area between metal

and SWNTs. For this, the samples have been annealed in a H2/N2 atmosphere at temperatures up to

125 ◦C (Tmelting = 156.61 ◦C for In and 961.93 ◦C for Ag) for 1 to 2 min with the intent to submerge

the SWNTs into the In. In Fig. 4.13 scanning electron microscopy images of a structure annealed at 125
◦C are shown.

After annealing, the In organizes in a network-like structure (Fig. 4.13b). From the inner structure

(Fig. 4.13a) the In is in great parts removed, but the Ag remained. As no additional particles between

the electrodes are observable, it seems that during annealing the In is that mobile on the Ag that it was

drawn to the outer parts of the electrodes due to the reorganizations of the In under heating. Thus no

suitable electrode structure could be developed on that basis.
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FIGURE 4.12. A Ag/In double-structure. Clearly the Ag layer can be observed on the edges of the

electrode lines. Ag has a similar behaviour as Au and does not tend to form rough layers with voids

as for example Pb and In. In contrast, the In film behaves differently on a Ag surface than on the

silanized SiO2 surface. Instead of separated islands as observed in the latter case, a continuous-like

layer has formed on the Ag surface.

FIGURE 4.13. a) Scanning electron microscope image of a Ag/In double-structure annealed at 125
◦C for 1.5 min. From the inner electrode structure great parts of the In have vanished, probably

drawn to the outer parts of the electrode structure or due to sputtering during the annealing process.

b) Closer view on the outer part of the electrode structure taken by the scanning electron microscope.

The In has after the annealing process a network-like structure.
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FIGURE 4.14. Al electrode-lines on top of several SWNTs. At the edges of the lines some residues can

be found probably due to the height of the Al layer (45 nm). The lines are smooth and continuous.

However, no current could be driven through the SWNTs.

Another candidate as a superconducting electrode material is Al with a critical temperature of about

1.2 K. Al is known to oxidize very fast, yet only forming a thin oxide layer (about 2 nm). However,

properly evaporated on a substrate, the interface of Al and substrate should remain free of oxidation.

In contrast to Pb and In, to obtain sufficiently clean layers, Al has to be evaporated at lower pressures

of the order 1 · 10−9 mbar or even less. Evaporation was done by an electron beam (Tboiling ≈ 2467
◦C of Al). Similar to Pb the evaporation rate was chosen to be relatively high (7 to 8 Å/s) in order to

avoid undesired contamination and oxidation of the Al. Fig. 4.14 shows an SFM image of a Al-electrode

structure (45 nm in height) on top of a SWNT. The electrodes are smooth, similar to Au and AuPd.

The substrate’s surface is free of residual particles, indicating that the lift-off process works sufficiently

well. Some residue, probably due to the height of the Al layer, can be found on the edges of the electrode

lines. A disadvantage though is that the adhesion properties have been found to be worse than for Au

and AuPd, which is attributed to the silanization of the SiO2 surface. After processing, the samples have

been stored in a glove-box in Ar atmosphere. However, in none of the produced samples a current could

be driven through the contacted SWNTs at room temperature up to a few volts. It could be verified that

the electrodes are still conducting (less than 2 kΩ), even after exposure to air after several days, such

that a complete oxidation of the Al can be excluded.

As Al is very sensitive to oxidation, the observation was assumed to originate from an oxidation layer

between the SWNT and the Al which may have formed due to a residual water film on the substrate. In
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FIGURE 4.15. Sandwich-structure Au/Al/Au with a total height of about 74 nm. At the edges of the

electrode lines large residues from an imperfect lift-off process are apparent. The residues partially

short-circuit the structure.

order to remove this film, the substrate was sputtered with argon (Ar) ions in the evaporation chamber

before the evaporation of Al. But, also in these types of samples no current could be measured indicating

that if there is an oxide layer, it does not originate from residual water on the substrate. As already

mentioned, the adhesion of the Al to the surface was weaker than in the case of Au and AuPd, such that

locally and in particular in the regions where the nanotubes are lying under the Al, an oxidation film

may have formed due to a geometrical gap (c.f. section 4.4.2).

To counteract this possible problem, similar to Pb and In, a sandwich structure Au/Al/Au was trialled.

The thicknesses were 7 nm for Au and 60 nm for Al (Fig. 4.15). The thickness of the Al was increased as

within this type of structures the Al is covered on two sides by Au. Due to the proximity effect the critical

temperature of the normal metal/superconductor structure decreases with increased Au thickness. The

aim of the increased Al thickness, therefore, was to prevent the critical temperature of the structure

not to decrease significantly below the critical temperature of pure Al. The lift-off process for these

structures is not as clean as it was before, and short-circuits have been observed. This behaviour is likely

to originate from the huge height of the metal sandwich layer (approximately 74 nm) in contrast to

the PMMA layer (c.f. section 4.2). However, surprisingly, again no current could be driven through the

SWNTs in these structures, which was also observed by Buitelaar et al. for MWNTs [55] under similar

conditions. According to these results, a possible explanation may be that a pressure of 1 · 10−9 mbar is
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not low enough to prevent the Al from oxidizing when evaporated, although it was found that the Al is

not completely oxidized. On the other hand, difficulties in contacting Lagmuir-Blodgett films consisting

of aromatic molecules with Al have been reported, suggesting a possible chemical reaction (formation of

Al carbides) at the SWNT/Al interface [56]. Thus, this approach using Al as the contact material for

SWNTs was found not to be suitable.

In contrast to the previously studied materials, Re is a noble metal (at least in bulk). The critical

temperature Tc of bulk Re is about 1.7 K. In thin films down to 50 nm thickness pure Re exhibits a Tc of

about 6.7 K [57]. In order to obtain such a high Tc the substrate has to be cooled down to liquid nitrogen

temperature during Re evaporation [57]. In Fig. 4.16 an SFM image of a typical Re-electrode structure

is shown produced as described previously at a rate of 1.2 to 1.5 Å/s and a pressure of about 1 · 10−6
mbar. A thin SWNT bundle is connected. Due to its relatively high boiling temperature of about 5627
◦C, Re has to be evaporated with an electron beam similar to Al. The thickness of the electrodes is about

25 nm and lift-off residues are observable on the electrodes and on the surface, as expected for the more

ductile Re in comparison to Au and AuPd.

FIGURE 4.16. Re-electrode structure connecting a SWNT bundles. The height of the Re layer is

about 25 nm. At the edges and on the metal lift-off, residues are clearly observable, as Re is much more

ductile than, for example, Au or AuPd. The middle and the outside left electrode are short-circuited

by lift-off residues.
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FIGURE 4.17. I/V -characteristics of the continuous line and the two in parallel connected SWNT

bundles shown in Fig. 4.16.

During the studies it was further found, that Re has a high affinity to the silanized SiO2 surface also

in the lift-off acetone bath (c.f. section 4.2). The problem of residues could be diminished by hanging the

samples freely in the middle of the vessel for the lift-off process with the Re structure pointing to the

vessel’s bottom. By this procedure, the amount of residues on the substrate’s surface could be reduced.

The observed adhesion properties are comparable to, yet better than those of Al. During the studies

it was found that the thin Re-layer is more sensitive to exposure to air than the bulk material. This was

indicated by change of colour of the thin Re layers from metallic yellow to a dim blue and the considerable

increase of the resistance of the continuous electrode lines of the Re-electrode structures (see also in the

discussion below).

Therefore, after processing, the samples have been stored in a glove-box in Ar atmosphere. However,

the oxidation process turned out to be relevant after several days only, so that the samples could be

easily handled compared to Pb or Al.

In Fig. 4.17 the I/V -characteristics in 4He atmosphere of the middle and outer-right electrode contacted

SWNT bundle in Fig. 4.16 is shown. The other pair is short-circuited due to lift-off residues. The two-

terminal resistance of the SWNT bundle was found to be about 8 MΩ, whereas the continuous line shows

a resistance of 8 kΩ. In samples exposed to air longer than several days, the resistance of the continuous

Re-line was found to increase up to orders of magnitude.

In almost all investigated Re-electrode structures, the resistance of the contacted SWNTs was be-

tween one and a few MΩs. Only a few samples (non-oxidized) were found to exhibit significantly higher

resistances (c.f. section 6.3).

In order to investigate the origin of this relatively high resistance range, Re samples have been prepared

without cooling the substrate. The reason for this is the circumstance that as the substrate is cooled

before the Re evaporation, it acts as a cold trap. Thus, residual contaminations in the evaporation

chamber may be attracted to the substrate’s surface. This in turn can influence the contact area between
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SWNT and Re and lead to additional tunneling barriers, leading to a high resistance, as it was observed.

It was found that the two-terminal resistances for cooled and non-cooled samples are of the same range

indicating that the high resistance originates from a different effect. As in all samples the same range

of resistance was observed it can be excluded that only semiconducting SWNTs have been contacted.

Therefore, Schottky barriers can be at least for a part of samples excluded, whereas as discussed for

Au, AuPd and also for Al the possible existence of a residual PMMA layer as well as the creation of

locally induced gaps between SWNT and metal due to the adhesion properties of the Re are still to be

considered.

Although a reduction of the contact resistance between SWNT and Re could not be achieved and thus

the proximity effect is unlikely to be observed in these structures at low temperatures, the properties of

the quasi-particles of the Re in its superconducting state can be utilized, as discussed in the beginning

of this chapter. In chapter 6, the charge transport of SWNTs contacted by Re-electrodes structures, as

described in the present section, has been investigated in order to explore the excitation spectrum of a

SWNT at low temperatures.

Ferromagnets: Co

The use of ferromagnets for contacting SWNTs was aimed for two things: minimization of the contact re-

sistance and investigation of spin transport as it was performed by Tsukagoshi et al. [58]. The ferromagnet

Co has been chosen due to its relatively slow oxidation rate compared to for example iron. Additionally,

Co can be readily thermally evaporated (rate 1 to 2 Å/s) at pressures . 10−6 mbar. Samples have been
stored after preparation in a glove-box (Ar-atmosphere) in order to avoid oxidation. In Fig. 4.18 a SFM

image of a Co-electrode structure (35 nm in height) with a continuous line is shown. The Co has been

evaporated on top of the SWNTs. No severe residues from lift-off processes are apparent and the metal

layer is neatly closed in contrast to Pb or In. During the studies, the adhesion of Co to the silanized SiO2
surface was found to be stronger than in the case of Al, but weaker compared to Au or AuPd.

The resistance range of this type of contacted SWNT structure is of the order of a few 100 kΩ, similar to

other groups [58], that prepared samples under similar conditions. In contrast to the SWNTs, in the case

of MWNTs resistances down to 8 kΩ could be found. This suggests that the origin of the resistance does

not originate solely from the formation of a Schottky barrier, or in other words, that only semiconducting

SWNTs have been contacted. Thus, a more general effect is determining the barrier between the Co and

the SWNT and therefore the contact properties. Adhesion and/or a residual PMMA layer may play a

role as already discussed. Of course, possible oxidation of the Co after removing it from the evaporation

chamber may also be considered, as well as the existence of an oxidation layer between the metal and

the SWNT due to residual water on the substrate’s surface. The latter process is not likely in view of the

similarities in the production process, to those that resulted in resistances down to 8 kΩ being observed

for MWNTs [58]. However, a further reduction of the two-terminal resistance of SWNTs could not be

achieved using Co in the present thesis and further investigations towards this have not been carried on

in this field.
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FIGURE 4.18. SFM image of a typical 35 nm thick Co-electrode structure on top of the SWNTs. The

electrode lines are continuous and smooth and only small amounts of lift-off residues are observed.

4.4.2 Alternative approaches: linker molecules and annealing

In this section, two alternative approaches are briefly described which have been tried in the framework

of this thesis, attempting to increase the electrical coupling between SWNTs and metal electrodes.

Contacting via azido molecules

This approach is based on the idea that thiol groups (-SH) have strong affinity to noble metal surfaces.

The coupling of the sulphur atom of the thiol group mediates this affinity. The electrical coupling of the

sulfur atom to the noble metal is relatively good such that charge transport is possible through this link

as it was demonstrated previously on several molecules with thiol groups [59].

In the present work, the molecule that has been chosen was 4-azidophenyl disulfide (see Fig. 4.19a)

which consists mainly of two aromatic rings (with a N3-group) which are connected via a disulfide

bridge. In contact with a noble metal the molecule dissociates into two identical parts, each of them

then chemisorbing to the metal surface via one sulfur atom (see Fig. 4.19a). The electrical connection

to the SWNT was tried to achieve via the N3-group: in ultra-violet (UV) light, a N2-molecule separates,

leaving a positively charged N-group at the aromatic ring (Fig. 4.19b). This positively charged group is

highly reactive with respect to conjugated bonding to C-C-double bonds. Thus, when a SWNT is brought

into contact with the positively charged group, locally a C-C-double bond will split and form a covalent

bonding to the SWNT as illustrated in Fig. 4.19c.

Experimentally, the described procedure has been performed on predefined electrode patterns in Ar-

atmosphere in order to avoid any undesired side products during UV-light exposure. After the chemisorp-
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FIGURE 4.19. Principle of connecting CNTs to noble metal surfaces via azido-molecules. a) the

molecule 4-azidophenyl disulfide dissociates at the metal surface and bonds chemically via the thiol

group (substrate: dark grey). b) After CNT adsorption, the sample is irradiated with UV light, such

that the N3-groups separate a N2 molecule. c) The remaining amino-group after N2 separation is

extremely active to C-C-double bonds and allows therefore a covalent bonding to the CNT π-system.

tion of the 4-azidophenyl disulfide from an ethylacetate solution for 24 h, SWNTs are adsorbed (15 min)

on top of the electrodes from aqueous dispersion (c.f. section 4.1). Finally the sample is exposed for 20

min to UV-light. During the studies it was found that the amount of SWNTs adsorbed in a given time

interval was considerably larger than without the chemisorption of the 4-azidophenyl disulfide. After

SWNT adsorption the sample was exposed for 2 h to UV-light. However, the two-terminal resistances

found in all samples have been in the range of a few MΩ, similar to simply adsorbed SWNTs on top of

predefined electrodes.

As the flexibility of SWNTs is rather high, most likely bending defects during the nestling against

the electrodes have formed. These lead to local gaps in the electronic structure of the SWNTs [71] and

thus to a high contact resistance (see section 6.1.1 for more details). Therefore it was not possible to

distinguish whether, the coupling to the SWNT via the N-atom was successful or not.

Annealing

The principle idea of this approach is to ”melt” SWNTs into metal electrodes as it was also shown for the

case of Ag/In electrodes. The increased contact area should lead to a reduction of the contact resistance,
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FIGURE 4.20. a) AuGe-electrode structure connecting several SWNTs before the annealing process.

The electrodes are about 20 nm in height. No severe lift-off residues are observed and the metal layer

is flat. b) After the annealing process, the structure of the AuGe electrodes has changed. Instead of

a smooth metal surface, a granular-like structure is apparent. Whether the SWNTs have melted into

the metal contact could not be determined.

that is, an increased electrical coupling. In addition the contact between metal and SWNT should be

more intimate after annealing, also supporting an increased electrical coupling.

AuGe was chosen as electrode material because in thin films AuGe melts at considerably lower tem-

peratures than in bulk (937.4 ◦C and 1064.43 ◦C for Au and Ge, respectively). In addition AuGe does

not sputter during the annealing process in same amounts as pure Au, which could destroy the inner

electrode structure as it was observed for the Ag/In-structures (see Fig. 4.13).

The predefined AuGe electrodes have been produced in the same way as described in section 4.2.

After adsorbtion of SWNTs on top of the electrodes, the sample was annealed in a two step process in

N2/H2-atmosphere at 300 mbar. The first step lasted for a period of 120 s at 380 ◦C, the second at 450
◦C for 50 s. In Fig. 4.20a and b, SFM images before and after the annealing process, respectively, of the

same electrode structure are shown. After annealing the roughness of AuGe layer increased considerably.

On the basis of the SFM-images it was not possible to resolve whether the SWNTs are ”melted” into

the electrodes. However, the two-terminal resistances of all investigated devices of this type turned out

to be in the MΩ regime. Similar to the case of the azido molecules, it remained unclear whether the high

resistance originates from tube bending or unsuccessful annealing.

4.5 Optimum choice of method for sample preparation

In this chapter various metals and methods have been presented in order to increase the electrical

coupling to the SWNTs. It was found that the contacting of SWNTs from top by AuPd and Au was best

in achieving this goal.
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For the requirements of the experimental investigation in the present thesis on the influence of con-

tacting electrodes on the ballistic transport (chapter 5) at room temperature and the electrical transport

in magnetic field parallel to the SWNT symmetry axis (chapter 7) at low temperatures, contacting with

AuPd is therefore most suitable.

The experiments on the superconductors revealed that the use of Re does not lead to strong electrical

coupling to the SWNT. At low temperatures therefore single-electron effects are likely. Yet, due to its

superconductor properties, Re is also well suitable: the density of states of the single-particle excitations

of the superconductor groundstate can be used as a probe for investigating the excitation spectrum of

the SWNTs (chapter 6).
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Phase-breaking in single-walled carbon nanotubes

In this chapter the three-terminal electrical transport through SWNT bundles with low resistive metal

contacts is investigated at room temperature. After correcting for the lead resistance, two-probe resis-

tances close to the value expected for a ballistically behaving metallic SWNT are found. Analysis of

the experimental data in the frame of the Landauer-Büttiker formalism reveals the phase-randomizing

effect of the third electrode at floating potential on the ballistic transport. Within this model, the phase-

coherence length of the charge carriers is estimated at room temperature.

5.1 Carbon nanotubes contacted in three-terminal configuration

As discussed in section 3.1, SWNTs are found to be ballistic conductors at room temperature. Accord-

ingly, the electrical transport through them can be described in the terms of the Landauer-Büttiker

formalism. Consider now a SWNT which is along its length at three points electrically well-coupled to

diffusive (or alternatively with a very large number of conducting channels) terminals where the outer

two terminals act as source and drain contact and the middle terminal is at floating potential. As the

electrons in the terminals strongly couple to the electron system of the SWNT the influence of the floating

middle terminal on the electrical transport is of interest.

Principally, the middle electrode can act in two ways. Either it ”cuts” the SWNT electron system

in two distinct halves or a local perturbation is created, which does not influence the electron system

of the SWNT in the same sever way. In the first case a usual series resistor model can be applied to

describe the device. In the second case the ballistic nature of the electrical transport in SWNTs at room

temperature has to be taken into account. From this point of view, the middle terminal represents a probe

at floating potential which acts as a phase-randomizing (dynamic) scatterer [60],[62]. As a consequence,

the current consists of a phase-coherent and an incoherent part [60],[63]. According to this, charge carriers

transmitted directly from source- to drain-reservoir are not phase randomized, since these charge carriers

never enter the scattering reservoir [24]. On the other hand, charge carriers which have entered the

scattering reservoir have a unrelated phase with respect to its point of time of injection [63] into the

SWNT. The situation is schematically depicted in Fig. 5.1. The overall current may flow from left to

right.

Charge carriers traversing the SWNT directly from left to right represent the coherent part of the

current, that is at any point in time there is a definite phase-relationship for the charge carrier to the

point in time injected into the SWNT. The remaining charge carriers are phase-randomized upon being

scattered into the middle terminal [63], and then emitted back in the SWNT. In addition, the carriers

are not necessarily emitted back into the same conduction channel from which they originated. Thus,

the middle electrode impedes the propagation of charge carriers [60] along the SWNT. The current
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FIGURE 5.1. Schematic illustration of the action of the middle electrode at floating potential (trian-

gle). The current may flow from left to right. The black lines within the SWNT and indicated for the

middle electrode represent conducting channels. The transmission coefficients directly from left to

right lead T LR and between neighbouring leads T SL and T SR are denoted by arrows. Due to the scat-

tering process, coherently passing charge (solid arrow within triangle) as well as non-coherent charge

carriers are apparent. µj (j = L,R) and µS are the electrochemical potentials of the source-drain

terminals and the floating terminal, respectively. The voltage applied is (µL - µR)/e.

through such kind of device can be derived following the line of references [61] and [60]: in Fig. 5.1

there are two channels present at the left side of the floating electrode, two channels at the right and N

channels (N >> 1) in the floating electrode itself. The current in each channel n is denoted by in and

the electrochemical potentials are given as µL, µR and µS for the left, right and the scattering charge

carrier reservoir, respectively. As the scatterer is at floating potential, the current in it is zero [24]

IS =
X
n∈S

in = 0 (5.1)

and for the currents attributed to left and right lead IL and IR, respectively, it follows |IL| = |IR| .
Electrons incident, say, from the left lead into the SWNT, principally have a certain probability to

be reflected at the metal/SWNT interface. As the SWNT provides two conducting channels, there exist

also a probability rL,mn that an incident electron is not reflected back into the channel m from where

it originates, but into the other channel n (m,n = 1, 2). Therefore the total probability of an electron

being reflected into the left lead is given by [61]

RL =
X
m,n

RL,mn. (5.2)

Similarly, the total reflection probability for the right lead and the floating electrode is given by

RR =
P
m,nRR,mn and RS =

P
m,nRS,mn, respectively. In the same way, the total probability for an
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incident electron to be transmitted from lead i to lead j yields

Tij =
X
m,n

Tij,mn (5.3)

where Tij,mn describes the probability of an electron in channel m in lead i to be transmitted to channel

n in lead j.

Now, let µref be some reference potential which is smaller than or equal to the lowest of the three

potentials µL, µR and µS [61]. Physically, µref indicates the electrochemical potential up to which the

same amount of positive and negative wave-vectors are present in a lead. That is, all states together

have a zero net velocity, which in turn implies a zero net current for these states in each of the leads

[61]. Thus, only the energy range δµi ≡ µi − µref , i = L,R, S, is contributing to the current and to be
considered.

The current in each of the leads i, and thus in this part of the SWNT connected to it, consist of two

parts [60],[61]: (i) the reflected current for each of the channels (2e/h)(1 − Ri)δµi. All these currents
sum up to (2e/h)(Ni−Ri)δµi, where Ni is the number of conducting channels. And (ii) the transmitted
current for each of the channels −(2e/h)Tijδµj (the minus sign indicates the opposite direction of the
currents). Therefore the total current flowing in lead i is given by [61]

Ii =
2e

h

(Ni −Ri)δµi −X
i6=j
Tijδµj

 = 2e

h

(Ni −Ri)µi −X
i 6=j

Tijµj

 (5.4)

where the second equality is due to the cancellation of all terms multiplied with µref .

From the boundary condition (5.1) and (5.4) it follows for the electrochemical potential of the floating

electrode

0 =
2e

h

(NS −RS)µS − X
j=L,R

TSjµj

 (5.5)

⇔ µS =
TSLµL + TSRµR
(NS −RS) =

TSLµL + TSRµR
TSL + TSR

.

With the aid of (5.4), (5.5) and recalling that |IL| = |IR|, the resistance in a two-terminal configuration,
where the source-drain-voltage Vsd = (µL − µR)/e is applied between left and right reservoir and the
middle electrode is at floating potential, can be calculated to

R3-terminal =
Vsd
|IL| (5.6)

=
h

2e2
(µL − µR)

·
TLRTSL + TLRTSR + TSLTSR

TSL + TSR
(µL − µR)

¸−1
=

h

2e2
TSL + TSR

TLRTSL + TLRTSR + TSLTSR

≡ h

2e2
T−1eff

for which the identity NL −RL = TSL + TLR has been used.
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FIGURE 5.2. Au-electrode structure connecting two bundles ((1) and (2)) in parallel with three

electrodes. The resistances R(I), R(II) and R(III) obey the relation R(I)+R(II)≥ R(III), in contrast
to normal series resistor configurations.

In the limit that the middle-electrode is ”cutting” the SWNT electronically into two pieces, i.e., all

electrons enter the middle electrode and are therefore phase-randomized, the transmission probability

TLR to get directly from left to right lead is zero and (5.6) reduces to

R3-terminal =
h

2e2

µ
1

TSR
+

1

TSL

¶
(5.7)

which is just the expression for a usual series resistor model. Assuming now that the transmission from

one lead to the neighbouring are perfect, one finds TSR = TSL = 2, as a metallic ballistically conducting

SWNT has two conducting channels, and thus R3-terminal = h/2e2 ≈ 12.9 kΩ and Teff = 1. Otherwise,
if the middle electrode at floating potential is not dividing the SWNT into two electrically distinct parts,

R3-terminal < h/2e2 and Teff > 1.

5.2 Experimental data and discussion

SWNTs were contacted with electrodes on top as described in section 4.2 and as electrode material Au

and AuPd has been used. An SFM image of a Au-electrode structure (20 nm in height) is shown in Fig.

5.2. The electrodes are about 100 nm apart from each other and approximately 100 nm in width.

Two SWNT bundles (1) and (2) are contacted in parallel to the same three electrode lines. The height

of the bundles is about 3 nm and 5 nm for bundle (1) and (2), respectively. The two-terminal resistances
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FIGURE 5.3. SFM image of three AuPd electrode lines contacting a thin SWNT bundle (height ≈
3 nm). Inset: cross-sectional analysis along the outright electrode stripe. The profile of the bundle

clearly presses through the electrodes, revealing a height of about 3 nm (see triangles).

measured at room temperature in vacuum for the three possible combination of electrodes as source

and drain (see Fig. 5.2) are R(I) = (6.5± 0.2) kΩ, R(II) = (6.1± 0.2) kΩ and R(III) = (10.3± 0.3)
kΩ, where in the last case the middle electrode Φ was floating. The resistances R(I) and R(II) are

low such that a good electrical coupling between each metal electrode and SWNT can be assumed.

However, R(III) < R(I) + R(II) is not in agreement with normal conductors/resistors in series where

R(III) ≥ R(I) + R(II) is expected. In view of the discussion in section 5.1, if the SWNTs investigated
here are ballistic then the relation R(III) < R(I) +R(II) points towards the phase-randomizing effect of

a probe attached.

In order to explore the influence of the floating middle electrode in more detail, instead of four separate

electrode fingers, electrode arrays consisting of three equidistant stripes were prepared using AuPd (see

Fig. 5.3) as electrode material for the better lift-off process. A continuous electrode line which can be

electrically connected at both ends has also been generated and allows to seek for corrections due to the

lead resistance.

An SFM image of a typical sample investigated is shown in Fig. 5.3. A thin SWNT bundle is connected

to three AuPd electrodes (about 17 nm in height). The electrode stripes are separated by 100 nm, and

are approximately 100 nm in width. The electrical transport measurements were performed under the

same conditions as the previously described measurements. In the upper inset of Fig. 5.3, the SFM
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FIGURE 5.4. I/V -characteristics at room temperature. The resistances Ri (i = I,II,III ) are assigned

to the respective electrode pair. Bottom right: schematic drawing of the electrode array.

height-profile across electrode stripe 2 is shown. The contour of the bundle can be clearly detected in the

profile, revealing a height that coincides with the height of the uncovered parts of the bundle (≈ 3 nm).
This result indicates that its structural integrity is preserved during metal evaporation due to the high

mechanical stability of the SWNTs. The difference in work-functions of the SWNT and the AuPd may

shift locally the Fermi energy of the SWNT, but energy gaps in the local density of states due to tube

bending which would disturb the charge carrier transport, are unlikely in this configuration (c.f. section

4.4).

The I/V -characteristics at room temperature of the SWNT bundle are presented in Fig. 5.4. The

measured resistances obey the following relations: RI = RII , {RI ,RII} < RIII and in particular RI +
RII > RIII , as also observed in the sample in Fig. 5.2.

Between two neighbouring electrodes, the two-terminal resistances Ri = (10.5± 0.1) kΩ (i = I, II) at
room temperature are slightly larger than the values reported by other groups (around 8.6 kΩ, [6],[64]

which was identified as (1/3)h/e2). To account for the lead geometry and to further analyze the data

applying an appropriate model, the resistanceRΛ of the continuous two-terminal electrode 2 is determined

to be (4.1± 0.1) kΩ. A substraction of this value should be performed from the total measured resistance.
Since the electrode structure is symmetric, the measured resistances Ri (i = I, II, III) are thus changed

to R(c)I = R
(c)
II = (6.4± 0.2) kΩ and R(c)III = (11.5± 0.3) kΩ, which is attributed to the two-terminal

resistance of the SWNT bundle. In view of the identity R(c)I = R
(c)
II and R

(c)
I + R

(c)
II > R

(c)
III the charge

transport can be assumed to occur through only a single SWNT in the bundle [65] as only the best

contacted SWNT in a bundle will dominate the charge transport. This restriction is not unlikely taking
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FIGURE 5.5. a) Room-temperature resistance of the SWNT in Fig. 5.2 in the configuration measured

as depicted in the lower right inset. b) The equivalent circuit of this configuration.

into account the very sensitive nature of the contacting process as illustrated in the discussions in section

4.2 an 4.4.

In order to support the conclusions drawn above, electrical transport on the same device is measured

in a different contacting configuration. The equivalent circuit of this configuration is depicted in Fig.

5.5b. In this configuration, the middle electrode is set at varying potential and the current to the outer

two electrodes is measured. The lead resistances are estimated roughly to be R1 ≈ 2 kΩ, R2 ≈R3 ≈ 3
kΩ. According to this, and assuming a resistance of 6.45 kΩ for each SWNT segment between two

neighbouring electrodes, the total resistance of the equivalent circuit is about 6.73 kΩ. This is in good

agreement with the experimental value of (7.0± 0.2) kΩ (Fig. 5.5a), recalling that only rough values for
the lead resistances R1, R2 and R3 in this configuration could be taken. Therefore, the correction for

the lead resistance as done above is a reliable analysis, and supports the corrected values R(c)I , R
(c)
II and

R
(c)
III of the measured resistances.

As for SWNTs the maximum number of spin-degenerated conducting channels is two, the traversing

current is given by

I =
2e

h

X
i=1,2

Ti (µ1 − µ2) (5.6)

where µj = eVj is the electrochemical potential of electrode j (j = 1, 2). Thus the two-terminal resistance

in the case of perfect transmission, that is T1 = T2 = 1, yields

R
(SWNT )
2T =

h

2e2

X
i=1,2

Ti

−1 = h

4e2
≈ 6.45kΩ. (5.7)

This theoretical value is in very good agreement with the corrected values of R(c)I and R(c)II , both

found to be (6.4± 0.2) kΩ in the here presented measurements, indicating that a metallic SWNT with
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two conducting channels is contacted. At this point it has to be noted, that possible reflective potential

barriers for the conducting channels at the SWNT/AuPd interface, which might originate from the

difference in the respective work-functions, are unlikely. Otherwise higher values than (6.4± 0.2) kΩ for
R
(c)
I and R(c)II should be observed in the here presented experiments.

In addition, the conductance quantization of SWNTs is implicitly indicated by the data presented

as R(c)I and R(c)II coincide nicely with the theoretical value of R
(SWNT )
2T ≈ 6.45 kΩ. The conductance

quantization has up to now only been shown for the case of MWNTs [28], but neither directly nor

indirectly for SWNTs.

The identification of the investigated SWNT as being metallic and ballistically conducting, together

with the observation of the relation R(c)III < R
(c)
I + R

(c)
II = (12.8 ± 0.2) kΩ (c.f. section 5.1), is a strong

indicator for a phase-breaking process on the charge carriers in the SWNT, which is due to the mid-

dle electrode at floating potential [63]. Therefore (5.6) for the three-terminal resistance R3-terminal is

applicable. Thus, R(c)III = R3-terminal = (h/2e2)T−1eff and leads to the effective transmission coefficient

Teff ≈ 1.2 > 1 in agreement with the discussion in section 5.1.
On the basis of the experimental observations the phase-coherence length l(exp )φ for the contacted SWNT

can now be estimated. The phase-coherence length is a measure for the length, at which a definite phase-

relationship of a charge carrier is preserved (see Appendix A). As the geometrical distance between the

two outer electrodes contacting the SWNT are 300 nm, l(exp)φ can be estimated to be at least of the

same order. This magnitude coincides with other experimental works, as reported at low temperatures

for MWNTs (at T ≈ 3 K) [66] and SWNT rings (at T ≈ 3 K) [67].
The phase-coherence length l(exp )φ estimated from the experimental data of about 300 nm is only a

lower border of the actual phase-coherence length l(SWNT )
φ of the SWNT investigated. This can be seen

as follows: in Ref. [34] the mean free time at room-temperature for electron-phonon scattering τe−ph
in SWNTs was found to be approximately 18 ps. This time period corresponds to a mean free path

le−phm ≈ 14 µm for an electron before it is scattered by a phonon. As phonons are dynamic (inelastic)

scatterers [24], it immediately follows that this process limits the phase-coherence length l(SWNT )
φ to be

not more than le−phm .

Beside the electron-phonon scattering, electron-electron scattering is also a dynamic process which

destroys the phase-relationship between the current carrying electrons [63]. If for the mean free time

for electron-electron scattering τe−e at room-temperature in SWNTs τe−e & τe−ph is valid, then the

phase-coherence length l(SWNT )
φ is again determined by le−phm as le−em & le−phm where le−em is the mean fee

path of an electron before it is scattered by another electron.

In case τe−e < τe−ph, it follows le−em < le−phm and le−em can be determined by le−em = υF τe−e. From

the here presented experiments, the phase-coherence length l(exp )φ was found to be about 300 nm. As 300

nm << le−phm ≈ 14 µm, only the magnitude of le−em can be the limiting value for l(SWNT )
φ . Therefore

setting le−em ≈ l(exp )φ , from l
(exp)
φ ≈ le−em = υF τe−e the mean free time τe−e can be determined to be

approximately 3.75 ms, where for the Fermi velocity υF ≈ 8 · 10−5 m/s [34] has been used. That is,
τe−e >> τe−ph, which is in contradiction to the starting assumption τe−e < τe−ph. In consequence le−em
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is of similar magnitude as le−phm and therefore l(SWNT )
φ has to be of the same order of magnitude as le−em

and le−phm . That is, l(SWNT )
φ >> l

(exp )
φ .

Finally it is noteworthy to recall that scattering due to structural defects in the C-atom lattice of a

CNT does not affect the phase-relationship between the conducting electrons, as these types of scatterer

are static (elastic) and therefore do not have an influence on l(SWNT )
φ .

5.3 Concluding remarks

In conclusion the experimental investigations presented here implicitly indicated the conductance quan-

tization for SWNTs. Further from the experimental data it could be deduced that in SWNTs at room

temperature the mean free path for electron-electron scattering le−em is comparable to the mean free

path for electron-phonon scattering le−phm ≈ 14 µm [34]. In consequence, the magnitude of le−em implies

a relatively weak electron-electron interaction in this temperature regime. From the magnitudes of le−em

and le−phm the phase-coherence length l(SWNT )
φ at room temperature could be deduced to be of the same

order of magnitude.
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6

Single-electron charging and quantum wires: suppression of
quasi-particle tunneling

Single-electron charging was one of the first effects observed and investigated in electrical transport in

SWNTs [3],[4]. It could be demonstrated that SWNTs weakly connected to metal electrodes can be

used as molecular transistors [4] and the transport spectroscopies on SWNTs gave a first insight in the

electronic excitation spectrum. The experimental data have been interpreted in the framework of the

constant interaction model [68]. In particular, visible excitations were attributed to quantization effects

due to the finite length of the SWNTs under investigation. However, for most of these results of transport

spectroscopy, it has been apparent that the excitation spectrum of the SWNTs is much more complex

than predicted by the constant interaction model. It was assumed that the deviations originate from the

strong 1D character of the SWNTs but later on neither theoretical nor experimental investigations on

this type of devices in this direction have been reported. The stated assumption is only supported by the

observation of LL-like signatures in the current/voltage-characteristics of electrically strongly contacted

SWNTs towards low temperatures.

In order to seek for more evidences of the LL-like state in SWNTs, in the present chapter SWNTs

electrically weakly connected to superconducting leads are investigated at temperatures in the mK-

regime.

Due to the singular behaviour of the superconductor (SC) quasi-particle’s density of states and the LL-

like nature of SWNTs, differences in the current/voltage-characteristics are likely compared to tunneling

from Fermi-liquid (FL) -like leads into the SWNT. From the data conclusions on the excitation spectrum

of the SWNT should be allowed.

Before showing the experimental data, the general concept of a single-electron charging of an island

is introduced. The corresponding electrical transport regions for different contacting materials (FL-like

and superconducting) and islands, FL- or LL-like, are derived and then combined to the arrangement

SC/LL(SWNT)/SC. Then the experimental data is presented and qualitatively compared with the pre-

vious theoretical considerations.

6.1 Energetical situation and electrical transport regions: normal metal
and superconductor leads

In this section the effects of single-electron charging on the electrical transport is presented. For this the

general energetical situation and the electrical transport regions are discussed for the case of FL-like and

SC reservoirs connected to a metallic (FL-like) island.
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6.1.1 Normal metal reservoirs

Consider an FL-like or metallic island which can be both inorganic or organic, at a potential V0 surrounded

by a number of electrodes (El: l = 1, ...,m), each at a potential Vl (see Fig. 6.1a). Further let the electrodes

be capacitively (electrically weakly) coupled to the island. In this case the tunneling barriers between the

island and each of the electrodes are that high that an electron is confined long enough onto the island

such that between tunnel events the electron is considered as being completely localized on the island1.

Therefore, the number of charges on an island in such an arrangement is quantized and the phenomenon

of single-electron charging is observable in electrical transport through the device.

If now an electron −e is added to the island, image charges δe(i) are influenced on the surrounding
electrodes, such that

P
i δe

(i) = +e. Therefore a charge polarization between the island and the electrodes

has occurred. In order to enable the polarization to form, that is, to charge the island, energy from outside

the system has to be provided. This energy is also called the charging energy of the island. Apparently,

the charging energy represents an energy barrier for the addition of an electron on the island. However,

by changing the potentials of the surrounding electrodes the charging energy can be lowered. Of course,

the same amount of energy (if Vg = 0) is necessary in order to remove an electron from the island.

In order to describe the situation from an energetical point of view, let E(n, 0; {Vl}) denote the ground-
state energy of the n-electron system on the island for the respective potentials {Vl} ≡ {V1, ..., Vm}. In a
realistic experimentm = 3, that is, {Vl} ≡ {Vg, Vs, Vd} where Vg is the potential of the gate-electrode and
Vs(d) the potential of the source (drain) electrode. Then the energy difference between two groundstates

energies of the n- and the n+ 1-electron system on the island can be defined as [69]

µ(n+ 1; {Vl}) ≡ E(n+ 1, 0; {Vl})−E(n, 0; {Vl}). (6.1)

An excited state on the island with n electrons is denoted by the index i > 0 and has the energy

E(n, i; {Vl}). The index i stands for a whole set of quantum numbers characterizing the state uniquely

(i = 0 denotes for the groundstate). Transitions to excited states of systems with different number of

electrons require therefore the energy E(n+1, j; {Vl})−E(n, i; {Vl}) , i, j ≥ 0 (i = 0, j = 0 for transitions
between groundstates).

The energetical situation of an island connected capacitively to two FL-like reservoirs and a gate

electrode in thermal equilibrium is depicted in Fig. 6.1b. In the situation depicted the charging energy

does not allow a current to flow through the island, and the number of electrons on the island is stable.

This effect is sometimes also termed Coulomb-Blockade. In order to enable a single electron to tunnel on

the island, the energy barrier, that is the charging energy has to be overcome by applying a finite source-

drain voltage Vsd ≡ Vs − Vd. Now, applying a finite source-drain voltage is achieved by changing the
potentials of source- and drain-electrodes. As these electrodes are capacitively coupled to the island, the

action on the island by changing these potentials is described by the corresponding capacitive couplings

1Expressed in terms of resistance, the contact resistance between the island and each of the electrodes has to be (at

least) larger than the quantum resistance RK = h/e2 ≈ 25.8 kΩ.
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FIGURE 6.1. a) Island (white) in some dielectric matrix (denoted by #) surrounded by electrodes

(grey-shaded) at fixed potential. The electrodes are capacitively coupled to the island. Two of them

are denoted as source- and drain-electrode. The other electrodes act as gate-electrode. b) Energetical

situation of the system at thermal equilibrium. In between the reservoirs the relative position of the

long horizontal beams are denoting the energy difference µ(n ;{V l}) for different n and the short

beams are the corresponding energy differences for transitions to excited states of the electron system

on the island. Occupied charge states on the island are denoted by a black full circle. µs and µd are

the electrochemical potentials of source and drain-electrode, respectively. In the situation depicted

no current can flow through the island, i.e., the number of charges on the island is stable.

αs and αd to the island. Similarly, the action of the gate-electrode on the island by varying Vg is given

by the capacitive coupling αg. In other words, the capacitive couplings give a measure for how much the

charging energy is lowered if the corresponding electrode potentials are varied.

In Fig. 6.2a a tunneling event is indicated using the j-th excited state of the n + 1 electron system.

From this energy scheme the expected transport regions within the (Vsd vs. Vg)-plane can be derived.

This is shown in Fig. 6.2b, using the general case of asymmetric (but constant) capacitive couplings αs
and αd of source- and drain electrodes, respectively. The situation depicted in Fig 6.2a is indicated in

Fig 6.2b by the white circle in the (Vsd vs. Vg)-plane (black arrow). Note, that µ(n+1; {Vl})−µ(n; {Vl})
is constant for all possible charge states for a FL-like, metallic islands (c.f Appendix C). In general

this energy difference varies with n, leading to non-equally sized transport regions which corresponding

to groundstate transitions (grey-coloured in Fig. 6.2b). However, the simplification does not alter the

conclusions drawn in this and the following sections qualitatively.

The current/voltage (I/Vsd)-characteristic for a fixed Vg can be principally deduced by taking a cross-

section of the (Vsd vs. Vg)-plane perpendicular to the Vg-axis. As the electrons tunnel one after the other

through the island due to the weak electrical coupling, with increasing |Vsd| the current is increasing
step-like when crossing a line in Fig. 6.2b: a solid black line describes transitions between groundstates

of the electron system whereat crossing a solid line allows energetically an additional charge state on the

island. A dotted line gives an additional contribution to the current by excited states. In Fig. 6.2c the
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FIGURE 6.2. a) Energy scheme for a FL/island/FL arrangement at finite bias voltage. µs = EF

(EF , the Fermi energy)and µd are the electrochemical potentials of the reservoirs left and right, re-

spectively. Starting from n electrons on the island in the groundstate, a tunneling process is indicated

using the j -th excited state of the n+1 electron system. The energy difference between µ(n ;{V l})

and µ(n+1;{V l}) is denoted. b) In the (V sd vs. V g )-plane, transport regions are derived from the

energy scheme in (a), showing the familiar regular diamond-like pattern (grey-coloured) as known

from systems exhibiting single-electron tunneling for asymmetric capacitive couplings. White regions

correspond to situations where no current is flowing through the island and the number of charges

n on the island remains stable. Grey regions denote configurations of the system where current flow

is enabled, i.e., the number of charges on the island fluctuates. The grey scale indicates the con-

tribution of more possible charge states on the island to the current. For example the light grey

regions fluctuate between two charge states of the island, e.g. n and n+1. The next darker region

indicates fluctuations between three charge states, e.g. n, n+1 and n+2 and so forth. The solid black

lines denote the onset of tunneling channels between groundstates of the island with increasing |Vsd |
at fixed V g . The dotted lines in the grey regions indicate the onset from which on excited states

contribute to the electrical transport for sufficiently high bias voltages. The slopes of the lines are

determined by the capacitive couplings, as these are a measure for the change of the energy barrier

when varying the corresponding potentials. The full white circle (black arrow) indicates the position

of the situation depicted in (a). c) Current step how it will occur in a I/V sd -characteristics of the

FL/island/FL system at the position of the white circle in the (V sd vs. V g )-plane for asymmetric

tunneling barriers. Each current-step indicates an additional electron state of the island contributing

to the current. Generally, the current steps are not necessarily equal in height.
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FIGURE 6.3. I/V sd -characteristics of a SWNT bundle deposited over platinum electrode lines mea-

sured at 4.2 K from Ref. [4]. Three curves are shown with a clear step-formation indicating that

charge transport is dominated by single-electron tunneling. The curves differ from each other as

they are measured at different backgate-voltages (A: 88.2 mV, B: 104.1 mV, C: 120 mV). Inset:

I/V sd -characteristics with a broader range of backgate-voltages. A diamond-like structure around

zero source-drain voltage is apparent, typical for the Coulomb-Blockade effect. The additional steps

are due to tunneling utilizing excited states of some groundstate.

current-step in a typical I/Vsd-characteristic for the situation in Fig. 6.2a is depicted. The height of the

current step is determined by the transition rate (see section 6.2 for more details on transition rates)

for this tunnel event, which usually varies in magnitude. Note, that the effect of single-electron charging

is observable at temperatures for which the thermal broadening of energy states of the island is smaller

than the energy difference µ(n+ 1; {Vl})− µ(n; {Vl})/2.
Step-like features in the I/Vsd-characteristics exemplarily depicted in Fig. 6.2c were also observed in

electrical transport measurements on SWNTs adsorbed on top of predefined electrodes (Au, platinum or

AuPd) [3],[4],[70]. Two terminal room-temperature resistances for such arrangements are found to be in

the MΩ regime under ambient atmosphere. The origin of such high resistances are bending defects [71]

and native hydrocarbon adsorbate layers on the metal electrodes [72]. In consequence, before a CNT is

deposited on top of a predefined electrode structure, the electrodes are already covered by a thin (≈ 0.5
nm) hydrocarbon layer which represents an additional tunneling barrier between the CNT and electrode.

In Fig. 6.3 a typical electrical transport measurement on a thin SWNT bundle in the above described

configuration at temperature T = 4.2 K at different Vg is shown [4]. Apparently, clear steps are observable

indicating that the transport along the tube is dominated by single-electron charging. The shape of the

curves change as the gate voltage is varied leading to a rhomb-like structure in the (Vsd vs. Vg)-plane

(inset Fig. 6.3). The experimental data have been interpreted in the constant interacting model (CIM)
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[68] where the steps outside the Coulomb-Blockade region (diamond-like structure in the middle of

the inset) were attributed to the existence of a discrete energy spectrum in the SWNTs. The CIM

assumes that the interactions between the electrons in the island are constant. This in turn leads to

µ(n + 1; {Vl}) − µ(n; {Vl}) = e2/C where C is a constant capacitance (see Appendix C). However,

for most results on this type of electrical transport measurements, deviations from the CIM have been

apparent. In particular, the excitation spectrum of the SWNTs is observed to be much more complex

than predicted by the CIM.

6.1.2 Superconducting reservoirs

With respect to CNTs, in literature only investigations on SWNTs electrically strongly coupled to super-

conductor leads have been reported. In these experiments indeed the proximity-effect could be observed

[51],[52], however, no additional indicators for the LL-like nature of the SWNTs nor information on their

excitation spectrum could be drawn from the data.

In the limit of weak electrical coupling of SC leads to CNTs, the tunneling barriers are that high, that

no Andreev reflection or proximity effect can occur, but only quasi-particle (QP)-tunneling. QPs are the

single-particle excitations of the superconducting groundstate and behave generally like electrons [73].

This contacting arrangement allows to utilize the properties of the QP density of states DQP (ε) as will

be shown in this and section 6.2 in combination with a LL and thus serves as a tool for probing the

excitation spectrum of a SWNT.

In case of BCS-like [73] SC instead of FL-like reservoirs for source- and drain-electrode, the energetical

situation described in section 6.1.1 changes due to the special properties of the SC. Contrary to FL-like

reservoirs DQP (ε) cannot be regarded as constant at low temperatures. Instead it is of the form [73]

DQP (ε) ∝ |ε|p
ε2 −∆2(T ) for |ε| > ∆(T ) (6.1)

and zero for |ε| ≤ ∆(T ). The QP energy ε is measured relatively to the electrochemical potential of the SC
reservoirs and can be positive or negative. In Fig. 6.4a the DQP (ε) as a function of ε is shown: occupied

(shaded) QP energy levels are separated from the unoccupied ones by the temperature-dependent SC

energy gap 2∆(T ).

In Fig. 6.4b the energetic situation of the system for a finite source-drain voltage Vsd = (µs − µd)/e
applied at some fixed gate-voltage Vg is depicted. Without loss of generality, in this figure 2∆(T ) is chosen

to be smaller than the energy level distance µ(n+ 1; {Vl}) − µ(n; {Vl}). A tunneling event is indicated
utilizing the j-th excited state of the n+ 1 electron system.

The influence of the SC gap on the electrical transport regions is shown in Fig. 6.4c. In contrast to

islands which are connected to FL-like electrodes, for |Vsd| < 2∆(T )/e no current can flow for any value
of Vg. Along the Vg-axis a ”currentless band” of width 4∆(T )/e is formed. For comparison, additional

rhombs (dotted line) in the white regions of the (Vsd vs. Vg)-plane are shown, which corresponds to the

case of FL-like reservoirs connected to the island as described in section 6.1.1.
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FIGURE 6.4. a) QP density of states DQP(ε) as a function of QP energy ε. Occupied QP states

(grey-shaded) are separated from unoccupied states by the SC energy gap 2∆(T ). Towards the edge

of the SC energy gap the DQP(ε) shows a singular behaviour. b) Energetical situation for a QP tunnel

event through an excited state of the n+1groundstate of a metallic (FL-like) island. The transition

rates (more details in section 6.2) for the tunneling process are indicated by the black curved arrows.

c) (V sd vs. V g )-plane for the SC/metallic island (FL)/SC arrangement. The full white circle is the

position at which the energetical situation depicted in (a) is located (grey arrow). In contrast to

FL/metallic island/FL arrangements, a ”currentless band” of width 4∆(T ) has formed along the

V g -axis. For comparison the diamonds for which the number of electrons on the island is stable in

the FL/metallic island/FL arrangement (c.f. Fig. 6.2b) are denoted by the dotted (black) lines.

The I/Vsd-characteristic for a fixed Vg can again be extracted from the (Vsd vs. Vg)-plane by taking

a cross-section perpendicular to the Vg-axis. A step-like increase of the current with increasing |Vsd| is
expected as in the case of FL-like reservoirs, where the height of the steps is again determined by the

corresponding transition rates (c.f. section 6.1.2).

In Fig. 6.5a experimentally observed I/Vsd-characteristics for an inorganic, metallic island connected

to superconducting Al leads are shown [74]. Well-developed steps in the current with increasing |Vsd|
are visible. However, in contrast to FL/island/FL arrangements at the onset of each current step a

pronounced peak is observed. The peaks originate from the singular behaviour of DQP (ε) for energies ε

close to the SC energy gap (see Fig. 6.4a). In Fig 6.5b an enlarged view of one of the current peaks is

plotted.
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FIGURE 6.5. a) I/V sd -characteristics of a metallic spherical island connected to superconducting Al

leads from Ref. [74]. When the Al is not superconducting due to an externally applied magnetic field,

the normal shape of the current steps as shown in section 6.1.1 is recovered. In the superconducting

state, clear peaks at the onset of each current step are observable. b) Closer view of one of a current

step for normal and superconducting electrodes. The continuous line is a theoretical fit taking the

QP density of states into account. Note that the current step in the superconducting state is shifted

relative to the same step in the normal state due to the formation of the currentless band.

In total a SC/island/SC differs from a FL/island/FL arrangement in two points: (i) development of a

currentless band along the Vg-axis in the (Vsd vs. Vg)-plane and (ii) QP tunneling induced peaks at the

onset of each current-step in the I/Vsd-characteristic, directly reflecting the DQP (ε).

6.2 Electrical transport involving the Tomonaga-Luttinger liquid

In section 6.1 the general concept of single-electron charging was discussed for FL-like and superconductor

reservoirs. In both cases a FL-like island as for example a spherical metallic particle was assumed.

However, SWNTs are by no means comparable to such an island as they exhibit a strong 1D-character

and also showed LL-like signatures in electrical transport in case of electrically strongly coupled FL-like

leads. Thus in the following instead of a FL-like island a LL-like island is discussed in view of single-

electron tunneling dominating the electrical transport.

Towards this, first the general transition rates for a tunneling process are determined from which then

the stationary current through the device can be derived. The transition rates depend on the following

physical quantities: (i) changes of the total energy for rearranging electrons in the system as a tunnel

event occurs under energy conservation, (ii) the matrix element
¯̄̄
t
(r)
i→j(ε)

¯̄̄
for the tunneling of a single

electron or QP onto the island with energy ε and (iii) the number of electrons or QPs at a given energy

ε which is given by the product of the electron/QP density of states De/QP (ε) in the reservoirs and the

Fermi distribution f(ε, µr) (µr electrochemical potential of reservoir r).
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The transition rate for tunneling from the reservoir r onto the LL-like island inducing a transition

from the island state [n, i] to [n+ 1, j] is therefore [75],[76]

Γ
(r)
[n,i]→[n+1,j],e/QP =

2π

~

Z ∞
−∞

¯̄̄
t
(r)
i→j(ε)

¯̄̄2
·De/QP (ε) · f(ε, µr) (6.2)

×δ(E(n+ 1, j; {Vl})−E(n, i; {Vl})− (µr + ε)) dε

where the delta distribution δ(E(n+ 1, j; {Vl})− E(n, i; {Vl})− (µr + ε)) accounts for the energy con-

servation of the tunneling process. The stationary current through the island is directly proportional to

Γ
(r)
[n,i]→[n+1,j],e/QP [75],[76],

I
(e/QP )
stat = e

X
n

X
i

X
j

n
Γ
(1)
[n,i]→[n+1,j],e/QP − Γ(2)[n,i]→[n+1,j],e/QP

o
· P[n,i] (6.3)

where the sums are over all charge states n of the island and over all excited states i and j of the n and

the n+ 1 electron system on the island, respectively. P[n,i] is the probability of finding the island in the

i-th excited n-electron state for given {Vl}. The latter is constrained by the condition
P
n

P
i P[n,i] = 1,

but this is not vital for the following discussion. (6.3) can be simplified assuming that the system is

before each tunneling event in the groundstate of the respective electron number: the sum over i can be

cancelled except for i = 0, and for a dense excitation spectrum it is more convenient to convert the sum

over j into an integral form. For this the density of states τn+1(²) of the excitations of the n+ 1 state

has to be introduced transforming (6.2) to

Γ
(r)
[n,0]→[n+1,²],e/QP = [τn+1(²) d²] (6.4)

×2π
~

Z ∞
−∞

¯̄̄
t(r)(ε)

¯̄̄2
·De/QP (ε) · f(ε, µr)

×δ(µ(n+ 1; {Vl}) + ²− (µr + ε)) dε

where the definition E(n+ 1, ²; {Vl}) ≡ E(n+ 1, 0; {Vl}) + ² has been used and τn+1(²) d² describes the

degeneracy of the n+1-electron state at the excitation ². Carrying out the integral in (6.4) with the aid

of the delta distribution the transition rate is found to depend on the product τn+1(²) · De/QP (µ(n +
1; {Vl}) + ²).
In the case of a metallic island at low temperatures, τn+1(²) varies only slightly such that it can

be assumed to be constant. If FL-like leads are assumed then also De(ε) ≈ const which resembles the
situation described in section 6.1.1. For SC reservoirs De(ε) is replaced by DQP (ε) and the dependence of

DQP (ε) on ε mainly determines the transition rate and thus I(QP )stat . As DQP (ε) ∝ |ε| /
p
ε2 −∆2(T ) for

|ε| > ∆(T ), I(QP )stat is strongly enhanced for QP energies |ε| close to ∆(T ). In contrast, for |ε| >> ∆(T ),
I
(QP )
stat is smaller which in total leads to the formation of peaks at the onset of each step in the I/Vsd-

characteristic which is caused by allowing an additional charge state on the island (see Fig. 6.5). This

result is in agreement with experimental data on spherical metallic islands [74] and also coincides with

other theoretical works [77].

In the case of a LL-like state, τn+1(²) ∼ ²γ (c.f. also section 3.2) [36],[38]. The exponent γ is a measure
for the interaction strength between the electrons and thus τn+1(²) cannot be regarded as constant in
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FIGURE 6.6. a) (V sd vs.V g)-plane for the case of a FL/LL/FL arrangement. V sd - and V g -axis are

shifted for clarity. The superior division of the plane is lost as for LLs transitions to groundstates of

the electron system are suppressed. Consequently, only the contribution due to excited states (dotted

lines) are left over leaving a more complex diamond-like structure. The darker the dotted lines the

higher is the charge groundstate to which they belong (c.f. also Fig. 6.2). In particular unclosed

diamond-like structures along the V g -axis are forming. b) Current step for a LL-like island (solid

line). Due to the τn+1(ε) the step is suppressed and not as sharp as for a FL-like island (dotted line,

see also Fig. 6.2c). The full black circle and the arrow denote the position where the sketched current

step occurs.

contrast to the metallic, FL-like system. Therefore, for a LL-like island and FL-like reservoirs I(e)stat is

determined mainly by the dependence of τn+1(²) on ².

The here presented simple model implies that at ² = 0, which corresponds to tunneling into the

groundstate of the n+1 electron system, the current is completely suppressed as τn+1(²) vanishes. This

is consistent with the fact that the basic charged excitation of a LL-like state is a plasmon mode in

agreement with other theoretical considerations [36],[38]. In consequence, the tunneling of electrons due

to the transition between groundstates of the island (the solid black lines in Fig. 6.2b) is suppressed as ²

is small and no relevant contribution to the tunneling processes and therefore to the current is apparent

until ² increases towards higher values. Therefore, in the (Vsd vs. Vg)-plane of such an arrangement the

regular diamond-like pattern (grey-coloured) in Fig. 6.2b vanishes and only the contributions due to the

excited states (dotted lines) remain as shown in Fig. 6.6a. In Fig 6.6b the shape of a current step is

qualitatively shown for a LL-like island. In contrast to the relatively sharp current steps when a FL-like

island is contacted, the current steps for a LL-like island tend to increase smoothly due to the suppression

by τn+1(²).
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FIGURE 6.7. a) (V sd vs.V g)-plane for the case of a SC/LL/SC arrangement. No superior division of

the plane is apparent due to the suppression of transitions to LL groundstates of the electron system.

Only the contribution due to excited states (dotted lines) are left over. The darkness/brightness

of the dotted lines indicates the charge groundstate to which they belong (c.f. also Fig. 6.2). The

dotted lines along the V g -axis indicate for comparison the regions for which no current is flowing in

the SC/FL/SC arrangement. b) Current step for a SC/LL/SC arrangement (solid line). Due to the

counterbalance of DQP(ε) and τn+1(ε) the QP induced current peak is suppressed. For comparison

the dashed line shows the situation for a SC/FL/SC arrangement. The dotted line indicates the

smooth increase of the current step in case the connecting reservoirs are FL-like. The full black circle

and the arrow denote the position where the sketched current step occurs.

Note that a LL-like island as discussed in section 6.1.1 is not a FL-like metallic island where the energy

difference µ(n+ 1; {Vl})− µ(n; {Vl}) is constant with respect to n (c.f. also Appendix C), such that Fig
6.6a is a simplified picture.

Apparently, a view on the regions where no current is flowing reveals that the dotted lines do not form

closed diamond in contrast to the FL/metallic island/FL case discussed in section 6.1.1. In particular

the diamond-like pattern has gained a higher complexity: as the regular diamond-like pattern due to

tunneling utilizing groundstate transitions are missing, a superior division of the (Vsd vs. Vg)-plane is

lost. Experimentally, this type of behaviour has been observed in SWNTs in several works as for example

in Ref. [30].

If instead of FL-like reservoirs SC reservoirs are used for contacting the LL-like island, the (Vsd vs.

Vg)-plane changes as depicted in Fig. 6.7a. As the properties of the SC reservoirs and the LL-like state

of the island are not affected by each other (at least in the limit of an electrically weak coupling) a

combination of the Fig. 6.4c and Fig. 6.6a is found.

Again the regular diamond-like pattern has vanished and in addition the currentless band of width

4∆(T )/e is apparent in the (Vsd vs. Vg)-plane (Fig 6.7a). The shape of the current steps are depicted in
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Fig. 6.7b. They are shifted due to the SC energy gap and increase smoothly instead of abruptly rising as

for the SC/FL/SC arrangement (dashed grey line). The most striking feature, however, is the suppression

of the QP induced current peak due to the counterbalance of the QP density of states DQP (ε) and the

tunneling density of states τn+1(²) in the LL-like island.

The reason for this counterbalance is found in the dependence of the transition rates for a tunnel event

for each arrangement discussed above. In contrast to the three cases FL/metallic island/FL, SC/metallic

island/SC and FL/LL/FL in which only one factor of the product τn+1(²)·De/QP (µ(n+1; {Vl})−µr+²) in
(6.4) is dominating the transition rates and therefore the shape of the steps in the I/Vsd-characteristics, for

a SC/LL/SC arrangement both factors τn+1(²) and DQP (µ(n+1; {Vl})−µr+²) are equally contributing
to the transition rates.

As for energies ² close to zero, i.e., for lowest charged collective excitations (plasmons), τn+1(²) is

a decreasing and DQP (µ(n + 1; {Vl}) − µr + ²) an increasing finite valued function it follows that the
effect of the high density of states of the QPs is counterbalanced by the vanishing tunneling density of

states approaching the ground state of the LL. According to (6.3), therefore, the current at the onset of

a current-step in the I/Vsd-characteristics of this system is suppressed, at least in its height, in contrast

to metallic/FL-like islands [74],[77].

In order to stress the differences between all four arrangements discussed in this section, on the following

two pages in Fig. 6.8a and Fig. 6.8b the situation for the arrangements FL/metallic island/FL and

SC/metallic island/SC, respectively, are shown. In Fig. 6.9a and Fig. 6.9b the arrangement FL/LL/FL

and SC/FL/SC are depicted again.

Experimentally the suppression of QP-induced current-steps in the I/Vsd-characteristics for a SC/LL/

SC arrangement has not been reported yet, but contacting capacitively (electrically weakly) a 1D conduc-

tor like a SWNT to superconductor reservoirs, as it is done in the next section, should allow to observe

this effect.
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FIGURE 6.8. a) Energetical situation, (V sd vs. V g )-plane and shape of a current step for the

arrangement FL/metallic island/FL. b) Energetical situation, (V sd vs. V g )-plane and shape of a

current step for the arrangement SC/metallic island/SC. The appearance of the step for SC/metallic

island/SC and FL/metallic island/FL are shifted due to the SC energy gap. The transition rates for

the tunnel events in the SC/metallic island/SC arrangement mainly depend on DQP (ε). The singular

behaviour of DQP (ε) generates a peak at the onset of each current step for the SC/metallic island/SC

arrangement.



76 6. Single-electron charging and quantum wires: suppression of quasi-particle tunneling

FIGURE 6.9. a) On the left, (V sd vs.V g)-plane for a FL/LL/FL arrangement. The transition rates

for a tunnel event in this case are mainly determined τn+1(ε) which leads to the suppression of

transitions to groundstates of the island. On the left, qualitative shape of the current step in the

I/V sd-characteristics. In contrast to the FL/metallic island/FL arrangement a smooth increase of

the step height is apparent. b) On the left, (V sd vs.V g)-plane for a SC/LL/SC arrangement. Similar

to the SC/FL/SC case a currentless band of width 4∆(T )/e is forming along the V g -axis. For com-

parison, the black dashed lines indicate the regular diamonds visible for the arrangement SC/FL/SC

(c.f. Fig. 6.7b). On the right, the shape of the steps in the I/V sd-characteristics. The transition rates

for the SC/LL/SC arrangement depend on both DQP (ε) and τn+1(ε). This leads to a (not necessarily

complete) suppression of the current peak which would occur for a SC/FL/SC arrangement (c.f. Fig.

6.7b). The dotted line indicates the shape of the step for the FL/LL/FL case in (a).
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6.3 Single-walled carbon nanotubes connected to superconducting leads:

experimental data

The predictions of the model discussed in section 6.2 are tested on SWNTs by connecting them electrically

weakly to superconducting Re-electrodes from top as described in section 4.2 and 4.4.1. For the electrical

transport measurements the experimental setup described in section 4.3 has been utilized and cooling

of the samples was performed in both, a liquid helium bath cryostat as well as a 3He/4He-dilution

refrigerator.

In Fig. 6.10 a typical Re electrode structure is shown contacting one individual SWNT bundle. The

room-temperature two-terminal resistance is about 7.9 MΩ, which is in the typical value range of these

types of structures as already stated in section 4.4.1.2.

The electrode lines for all samples were prepared in such a way that also a continuous electrode line

was generated. Electrically contacted at both ends the latter serves as test-line in order to determine the

resistance of the leads to the contacted SWNT and whether the electrodes are still superconducting. At

room-temperature the resistance of the continuous line was measured to be approximately 9.8 kΩ 2.

FIGURE 6.10. SFM image of a Re-electrode structure connecting a thin SWNT bundle (left- and

middle-electrode). Residuals from the lift-off process are visible indicating the more ductile nature of

Re compared to Au or AuPd. Inset: two-terminal resistance vs. temperature of the right continuous

line. At 6.6 K a sharp drop is observed indicating that the electrode lines are indeed superconducting

despite their reduced dimensions.

2The resistivity of Re (19.3 µΩcm) is approximately ten times larger than that of Au (2.24 µΩcm).
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FIGURE 6.11. I/V sd -characteristics of three different samples at 4.2 K with differing electrical cou-

pling between SWNT and Re: a) 7.9 MΩ, b) 80 MΩ and c) 100 MΩ room-temperature resistance.

Although step-like features are visible, in none of the curves a well-pronounced peak is observed

which should be due to QP tunneling (c.f. section 6.1.2 and 6.2).

As discussed in section 4.4.1.2 Re in thin films down to 50 nm thickness exhibits a superconducting

transition temperature Tc of about 6.7 K [57]. However, the here generated electrode structures are

only 25 nm in height and considerably reduced in one additional dimension compared to the thin films.

That is, the electrode lines have to be regarded more as thin wires than thin films. Accordingly, if

the electrodes are still superconducting, their critical temperature may be lower due to their reduced

geometric dimensions.

In the inset of Fig. 6.10 the temperature dependence of the resistance of the continuous line is plotted.

At 6.6 K an abrupt drop in the resistance is observed. This significant reduction of the resistance at

a temperature close to the critical temperature of thin films of Re clearly indicates that the electrode

lines are indeed still superconducting in spite of their reduced geometrical dimensions. Remarkably,

the difference to T (film)c is rather small and the superconducting gap at zero temperature is 2∆0 =

3.5kBTc ≈ 1.99 meV [73]. The slight increase of the resistance before Tc is probably due to the enhanced
polycrystalline structure of the Re when evaporated on a cooled surface, as the incident atoms are

immobilized.

The I/Vsd-characteristic at 4.2 K of the sample is plotted in Fig. 6.11a. For comparison, in Fig. 6.11b

and 6.11c the I/Vsd-characteristics of two other samples connecting SWNTs with Re electrodes with

considerably higher room-temperature resistances are shown. The room-temperature resistances are all

considerably higher than the quantum resistance, in particular for the latter two samples, such that

single-electron tunneling is expected at low temperatures. Indeed a step-formation in all three samples

is observed. From the discussion in section 6.2, a peak should accompany the onset of each step in the

I/Vsd-characteristic if the SWNT is in a FL-like state. Apparently, in none of the samples peaks at the

onset of a step can be observed. In particular the high room-temperature resistances of the samples in

Fig. 6.11b and 6.11c, indicate that the absence of the peaks is not due to a insufficiently pronounced

electrically weak coupling of the SWNT and the surrounding electrodes.
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FIGURE 6.12. Another Re-electrode structure connecting a thin SWNT bundle over three electrode

lines. On the substrate some residuals from the fabrication process are observed. Inset: temperature

dependence of the resistance of the continuous line. At T = 6.2 K a sharp drop is observed, indicative

for the superconducting transition of the Re-electrodes.

In order to rule out effects from the temperature dependence of the superconducting gap, other samples

similar to the one in Fig. 6.10 have been cooled down in a 3He/4He-dilution refrigerator with a nominal

basis temperature of 25 mK. In praxis the temperature achieved was in the range of 30 to 100 mK, which

is considerably lower than the critical temperature of the electrodes. Thus, the superconducting gap

should be close to its maximum value 2∆0 [73] and also the superconducting state of the Re electrodes

should be fully developed. Also the single-particle excitations of the superconductor, that is the QPs,

should be well-defined.

In the inset of Fig. 6.12 the two-terminal resistance as a function of temperature of the continuous line

of the electrode structure depicted in the same figure is shown. The critical temperature of this electrode

structure was found to be approximately 6.2 K corresponding to a SC energy gap 2∆(T ) ≈ 2∆0 of about
1.8 meV for T in the mK regime. A SWNT bundle (. 3 nm in diameter from SFM) is buried under the

three electrodes.

In Fig. 6.13 the I/Vsd-characteristics at about 50 mK of the pair of electrodes (I), (II) and (III)

connected to the SWNT bundle, respectively, are shown. Step-formation is observed, indicative for single-

electron tunneling to dominate the electrical transport through the device. In agreement with the above

discussion on SC/LL/SC arrangements, no peaks at the onset of steps are observed.

In order to gain further insight into this observation, the backgate-voltage Vg has been varied. Fig.

6.14 shows the I/Vsd-characteristics at different Vg, step size 100 mV, as a grey-scale plot for the pair of
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FIGURE 6.13. I/V sd -characteristics of the electrode pairs (I), (II) and (III) in Fig. 6.12. In all curves

step-like features are observed but no peaks at the onset of the steps are visible.

FIGURE 6.14. Grey-scale plot of the I/V sd -characteristics for different V g of electrode pair (III) in

Fig. 6.12. The stepsize for V g was 100 mV. A currentless band similar to the other two electrode pairs

is observed. Some diamond-like structures are appreciably visible and are indicated by dotted lines

(only some vertical lines are drawn in order to keep clarity). Apparently the diamond-like structures

are not as regular as predicted by the model discussed in section 6.1.2 and 6.2. For better contrast the

”current-height” lines are also plotted. (Dark grey denotes increasing negative, bright grey increasing

positive current.)
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FIGURE 6.15. Re-electrode structure connecting a thin SWNT bundle. On the substrate some resid-

uals from the lift-off process are visible. The superconducting transition temperature of the electrodes

was determined to be about 6.8 K.

contacts (III). Positive current is dark, negative current is bright. Well-pronounced peaks in the current

should be visible as significant dark or white spots within the grey-scale plot.

Apparently, no prominent dark or white spots are observable, indicative for QP tunneling induced

current peaks. Yet, a currentless band of approximately 3.8 mV is visible in the data which coincides

reasonably good to the theoretically predicted width of 4∆0/e ≈ 3.6 mV for the currentless band by the
model discussed in sections 6.1 and 6.2. Also, a diamond-like structure (see white dotted lines as guide

for the eye) is observed which is of relatively irregular shape in both of their ”width” measured relatively

to the Vsd- and the Vg-axis.

A possible reason for this observation could be the likely differences of the LL-like state in the SWNT

compared to a ”pure” LL state of, for example, a linear chain of atoms. The tubular geometry and the

helicity as well as the actual length of the SWNT might lead to these differences.

The data depicted in Fig. 6.14 exemplifies the general qualitative behaviour found for all three pairs

of contacts when varying Vg. The data for the pair of contacts (I) and (II), respectively, are depicted in

Appendix D for completeness.

In order to confirm the observed data so far, another SWNT was measured (Fig. 6.15). The room-

temperature two-terminal resistance of this sample was found to be 1.2 MΩ and Tc to be approximately

6.8 K. Therefore, for this electrode structure 2∆0 = 3.5kBTc ≈ 2.0 meV.



82 6. Single-electron charging and quantum wires: suppression of quasi-particle tunneling

FIGURE 6.16. Grey-scale plot of the I/V sd -characteristics for different V g of the sample shown in

Fig. 6.15. The stepsize for V g was 25 mV. A currentless band of width 3.8 mV coincides quite well

with the predicted value of 4 mV. Some diamond-like structures are indicated by white dotted lines.

Not all vertical white dotted lines have been drawn for clarity. Again the diamond-like structures are

not as regular as predicted by the model discussed in section 6.1.2 and 6.2. The current height-lines

are also plotted for better contrast. In the plot dark grey denotes increasing negative, bright grey

increasing positive current.

In Fig. 6.16 the measured data is depicted in a grey-scale plot. The axis are the source-drain voltage Vsd
and the backgate-voltage Vg (step size 25 mV). The currentless band around zero Vsd can be estimated

from the data to be about 3.8 meV which coincidences well with the predicted width of 4∆0/e ≈ 4 mV.
As in the data for the other samples, no pronounced current peaks, that is significant dark or white

spots, are apparent within the grey-scale plot. Also the irregular diamond-like structure as found in the

previously presented data is observed. In this sample these patterns happen to be similarly irregular as

the ones shown Fig. 6.14.

In the grey-scale plots depicted, the currentless band was shown to exist. Its appearance and the widths

found in the data are in agreement with the theoretically predictions of the model discussed in section

6.2. Yet, no well-pronounced current peaks, that is dark or white spots in the plot, are observable at any

Vg. This was already indicated by the I/Vsd-characteristics in Fig. 6.11 and 6.13.
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FIGURE 6.17. Output characteristics of electrode pair (II) at backgate-voltages from -3 V to +3 V

in steps of 200 mV. At some V g weakly pronounced peaks (some are indicated by arrow and circle)

are observed at the onset of a current-step. Inset: enlarged view of one of the shallow peaks.

Closer inspection of the I/Vsd-characteristics of the samples, reveals that the I/Vsd-characteristics of all

samples exhibit the same general behaviour. This is exemplified in Fig. 6.17 on the I/Vsd-characteristics

of electrode pair (II) of the sample depicted in Fig. 6.12. The I/Vsd-characteristics are shifted for clarity

with respect to each other and some of the curves show towards higher Vsd current fluctuations which are

attributed to instabilities of the contact region versus time. Further it is observed that at some Vsd and

Vg weakly pronounced peaks (some are indicated by circles and arrows) at the onset of the current-steps

are apparent. In the inset of Fig. 6.17 an enlarged view of one of the shallow peaks is plotted. The

observation of only some shallow current peaks is consistent with the prediction in section 6.2 that if

they are not completely suppressed, at least their height should be considerably lowered. As apparent

from Fig. 6.17, the peaks are that small in height that they are hardly visible in the grey-scale plots

shown above. That the weakly pronounced peaks seem to appear irregularly depending on Vsd and Vg,

coincides with the irregularities observed in the diamond-like structures.

6.4 Qualitative comparison of experimental data and model

In the experimental data shown in section 6.3, the two main features of the SC/LL/SC model discussed in

section 6.2 are observed: a currentless band of a width twice the SC energy gap along the Vg-axis is visible

and suppression, at least in height, of QP tunneling induced current peaks in the I/Vsd-characteristics.
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The experimentally observed diamond-like structures in the (Vsd vs. Vg)-plane show irregularities

compared to the theoretical model discussed in section 6.2. The ”width” with respect the Vsd-axis and

the the Vg-axis of the diamond-like structures are varying. Also a variation of the slopes of the border

lines of the these patterns is observed.

In the model the energy difference µ(n+1; {Vl})−µ(n; {Vl}) was assumed to be constant (for simplicity)
for all n which generates transport regions of equal widths with respect the Vsd-axis and the the Vg-axis.

However, this condition is usually only quite well fulfilled for metallic-like islands. But in the case of a

correlated 1D electron system, as represented here by the investigated SWNTs, µ(n+1; {Vl})−µ(n; {Vl})
are most likely to vary with the number of electrons on the island and therefore leading to the variation in

the size of the diamond-like structures. Additionally, due to the lack of a superior division of the (Vsd vs.

Vg)-plane for SC/LL/SC-arrangements a higher complexity is introduced already to the pattern which

is observed. The dependence of the electrical transport through the island on the number of charges n,

may in particular lead to the irregular appearance of weakly developed current peaks depending on Vsd
and Vg as apparent in Fig. 6.17.

The change of the slopes of the border lines of the transport regions, that is the diamond-like struc-

tures, implies a change in the capacitive couplings (c.f. Fig 6.2). Physically this observation points

towards strong charge redistributions whenever an electron tunnels into the SWNT. Although this seems

reasonable as the SWNT is in a LL-like state, the capacitive coupling to the backgate is not expected

at first sight to be severely affected by these charge redistributions due to its infinite ”size” compared

to the SWNT. At the present stage it is not possible to give simple, qualitative arguments leading to

this behaviour. Further insight could only be provided by a rigorous theoretical treatment which takes

all microscopic parameters of the SWNT (as for example diameter and helicity) and the backgate, e.g.,

details on the crystallinity of the insulating SiO2-layer or the interactions between the SiO2-surface and

the SWNT, which is beyond the scope of the present thesis but should be subject to future investigations.

However, the experimentally observed suppression of QP tunneling induced current peaks in the I/Vsd-

characteristic due to the LL-like properties of the SWNT and the development of a currentless band of

width 2∆(T ) along the Vg-axis, are not affected by the above discussed deviations of the model proposed

in this chapter.

6.5 Concluding remarks

In conclusion, the comparison of the experimental data with the proposed theoretical model, points

towards the principle necessity to consider whether a low-dimensional island (here the SWNT), which is

capacitively (electrically weak) coupled to reservoirs, is in a FL-like or in a LL-like state. Therefore no

suppression of QP tunneling induced current peaks are observed in the measurements in Ref. [74], where

the island is formed by a spherical metal grain with FL-like behaviour.

In contrast, if the island is in a LL-like state, a counterbalance of the QP density of states DQP (ε)

in the superconducting leads and the tunneling density of states τ(²) in the LL can occur. This was
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observed in the experimental data presented in section 6.3 for the Re/SWNT/Re devices. Therefore, in

total, the experimental observations presented are consistent with the expectation of a LL-like state in

SWNTs at low temperatures. It is noteworthy, that SWNTs may exhibit differences in their excitation

spectrum compared to a ”pure” LL, which is likely to be due to parameters like diameter and/or the

actual structure (helicity).

Within this context, it follows also that the degree of suppression of the current peaks in the I/Vsd-

characteristics depends on how strong the LL-like character of the island is developed. For example, for

MWNTs also signatures of a LL-like state have been observed [39]. However, as MWNTs have a typically

one order of magnitude larger diameter than SWNTs their 1D character is much less pronounced. There-

fore, the development of a LL-like state should be hindered which is supported by other experimental

works [7],[78] and also by theoretical considerations [41] (c.f. also section 3.2.4). In view of the here

presented experiments, the degree of suppression of the QP tunneling induced current peaks, is therefore

likely to be smaller in MWNTs.
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7

Electrical Magnetochiral Anisotropy

As discussed in section 2.1, certain CNTs are chiral molecular objects and therefore exist in two forms

that are each other’s mirror image. Many aspects of the CNTs have been explored but their chirality has

hardly been addressed. The main reasons for this are the lack of an enantioselective production process

and the experimental difficulties in addressing the chirality of an individual nanotube and not only its

helicity, which is determined by the pair of integers (n,m).

In this chapter, the charge transport through SWNTs in the presence of a magnetic field parallel to

the tube axis is investigated. A dependence of the resistance that is odd in both the magnetic field and

in the current through the tube is observed in several samples. This effect is ascribed to the chirality of

the nanotube and is called electrical Magnetochiral Anisotropy (eMChA).

Before the discussion of the experimental electrical transport data, a short introduction to the optical

Magnetochiral Anisotropy, the analogy of the eMChA, is given. This is followed by a theoretical consid-

eration proving the principal existence of the eMChA in chiral conductors. Finally, after the discussion of

the experimental data, a simple theoretical model is proposed, which recovers the eMChA on a quantum

mechanical basis.

7.1 Optical Magnetochiral Anisotropy in chiral molecules

The phenomenon of chirality is well known in optics. Chiral molecules, as for example cane sugar, are

(naturally) optically active: the polarization plane of linearly polarized monochromatic light traversing

an aqueous cane sugar solution is rotated perpendicular to its direction of propagation [79], that is, per-

pendicular to its wave vector
−→
k . Depending on whether the rotation is positive (clock-wise) or negative

(anti-clock-wise) to the incident polarization plane, the optically active material is called dextrorotatory

(D) or levorotatory (L)1, respectively. Similarly, the effect of optical rotation is also observed in crystals

like quartz (SiO2) [80]. In its lattice a kind of corkscrew arrangement can be seen. Therefore, quartz is

a chiral material and exists in two mirror-image forms. The two forms are also called right-handed or

left-handed, depending whether the material is dextrorotatory or levorotatory, respectively. This nomen-

clature has been generalized to all chiral objects, as the two mirror-forms are connected via a parity

operation (c.f. section 2.1). The two forms of the chiral material are termed enantiomers.

Beside the optical activity there is also the magneto-optical activity of materials. This effect occurs

in all materials that have a magnetization, either intrinsic, like ferromagnets, or induced by an external

magnetic field. Examples are transparent iron films (about 10 µm thickness) or gaseous CO2 [81]. Er-

1The expressions dextrorotatory and levorotatory are derived from the Greek words δεξια (dexia) = right, δεξιoς (dexios)

= (to be) right and λαυoς (layos) = wrong, λαθoς (lathos) = error.
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roneously, one could describe magneto-optical activity as the result of magnetically induced chirality of

the material [82]. The Faraday effect is one of the oldest known effects of this type. A linearly polarized

electromagnetic wave experiences a rotation of the polarization vector when traversing a transparent

medium along the direction of a magnetic field. The magnitude of the angle of rotation is proportional

to the magnetic field strength.

In the time period from 1962 to 1984, in several publications [83] a cross-effect between the natural

optical activity and the magneto-optical activity has been predicted which has the ability to distinguish

between the two enantiomeric forms of a chiral material. This cross-effect has been called (optical)

Magnetochiral Anisotropy (MChA). The existence of the MChA can be derived by the expansion of the

dielectric tensor ² of a chiral medium to first order in the
−→
k -vector of the propagating electromagnetic

wave and the externally applied magnetic field
−→
B . For gases, liquids, cubic or uniaxial crystals, that is

high symmetry media, the dielectric tensor can be described by [84],[85]

²±(ω) = ²(ω)± αD/L(ω)k ± β(ω)B + γD/L(ω)
−→
k ·−→B (7.1)

where the +(−)-sign denotes right-(left-) handed circularly polarized electromagnetic waves, which are
the optical eigen-modes of the media. The indices D and L describe right- and left-handed media,

respectively, as already mentioned at the beginning of this chapter. k and B are the absolute values of−→
k and

−→
B , respectively. The term αD/L(ω)k denotes the natural optical activity and β(ω)B represents

the Faraday effect. The term

γD/L(ω)
−→
k ·−→B (7.2)

describes the optical MChA. Now it is also apparent why the MChA is an anisotropic effect: the scalar

product
−→
k ·−→B makes the space anisotropic. The main features of the MChA are (i) the dependence on

the relative orientation of
−→
k and

−→
B , (ii) the dependence on the handedness of the chiral material (enan-

tioselectivity) and (iii) the independence on the polarization state of the propagating electromagnetic

wave.

7.2 Electrical Magnetochiral Anisotropy: symmetry arguments

One of the fundamentals in physics in the microscopic world is the so-called particle-wave dualism. Getting

from macroscopic, bulk materials down to smaller geometric dimensions, the object under investigation

looses its corpuscular and simultaneously gains wave-like character. This dualism is expressed in the

de-Broglie wave-length of any physical object or particle

λdeBroglie =
h

p
(7.3)

where h is the Planck’s constant and p = |−→p | the total momentum of the particle. Originally, L. de Broglie
introduced (7.3) in 1924 in the way, that with each corpuscular particle of mass m and with momentum
−→p = m−→υ a plane wave is classed, which propagates with the velocity −→υ and has the wave length
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λdeBroglie. However, (7.3) also holds for the relativistic case, in particular also for massless particles.

Therefore (7.3) is of more general validity as initially introduced by L. de Broglie. In consequence, not

only each corpuscular particle is classed with a wave, but also each wave is classed with a corpuscular

particle. For example, an electron can be regarded as a wave and the energy quanta of an electromagnetic

wave (photons) can be regarded to exhibit particle-like properties. Another example is a phonon which

is the energy quantum of the oscillations of for example a crystal lattice.

The dualism leads to the assumption that physical phenomena existing in optics should also exist for

mass-carrying particles. This is in agreement with the fact that the concept of chirality is very general

and by no means restricted to optics. Principally, also thermal or electrical conductors can be chiral.

Chiral electrical conductors are conductors exhibiting a chiral current path. The reason for this can be

of various types: the material may crystallize in a chiral space group, like tellurium, or be composed of

chiral subunits like chiral conducting polymers [86]. Even if the material under consideration is achiral,

it may be formed into a chiral shape as for example a helix. In all these cases, as well as in general, the

physical quantities describing the object must reflect the chiral character. Such kind of physical quantities

ξD/L are defined by changing its sign under a parity operation bP . In other words, the chiral quantity can
represent either the left-handed (L) or the other the right-handed (D) form of the chiral system which

it is describing: bP ξD = ξL with ξD = −ξL. (7.4)

From a mathematical point of view, if ξD/L is a scalar (function), it is called a pseudo-scalar, if it is a

vectorial quantity it is termed an axial vector.

In the following two sections 7.2.1 and 7.2.2 it will be shown that the existence of the eMChA can be

derived from time- and parity-reversal symmetry. Both, ballistic as well as diffusive charge transport in

chiral objects will be considered.

7.2.1 Ballistic charge transport

In the case of a ballistic conductor, the charge carriers do not suffer from any scattering process. Consid-

ering that the ballistic current density
−→
j is directly connected to the expectation value of the momentum

vectors
−→
k of the charge carriers, the following parity and time-reversal symmetries hold, where bP and bT

are the parity and time-reversal operators, respectively,

bP−→B =
−→
B ; bP−→j = −−→j (7.5)bT−→B = −−→B ; bT−→j = −−→j .

Obviously, an asymmetry regarding these symmetry operations is apparent with respect to the magnetic

field
−→
B and the current density

−→
j . First consider that the resistance R only depends on the magnetic

field. Then, application of (7.5) leads to

bTR³−→B´ = R
³
−−→B

´
= R

³−→
B
´

(7.6)

bPR³−→B´ = R
³−→
B
´



90 7. Electrical Magnetochiral Anisotropy

where the condition that R is a scalar quantity and therefore invariant under bP and bT has to be taken
into account. Therefore, if the resistance solely depends on the magnetic field, by symmetry only even

powers in
−→
B are allowed and R

³−→
B
´
may be written as

R
³−→
B
´
= R0 + α1

−→
B 2 + o

³
αn
−→
B 2n+1

´
(7.7)

consisting of the terms R0 which is some invariant part, α1
−→
B 2 the usual diamagnetism that exists in

any conductor and higher order contributions o
³
αn
−→
B 2n+1

´
where n is an integer number. The αn’s are

appropriate coefficients.

In contrast to a simple, achiral conductor, as discussed above, in chiral conductors principally all

microscopic transport properties are allowed to depend on the wavevectors
−→
k of the according particles

[87]. Therefore, the resistance of a ballistic chiral conductor in general depends on
−→
B and

−→
j . Time and

parity-reversal symmetry and invariance of scalar quantities under these symmetry operations require

then for the resistance R
³−→
B,
−→
j
´

bTR³−→B,−→j ´ = R
³
−−→B,−−→j

´
= R

³−→
B,
−→
j
´

(7.8)

bPR³−→B,−→j ´ = R
³−→
B,−−→j

´
= R

³−→
B,
−→
j
´
.

Based on these symmetry considerations R
³−→
B,
−→
j
´
may be written as

R
³−→
B,
−→
j
´

= R0 + α1
−→
B 2 + β1

−→
j 2 + γ11

−→
j 2 ·−→B 2 + χ

D/L
00

−→
j ·−→B (7.9)

+o
³−→
j 2k ·−→B 2r

´
+ o

³−→
j 2p+1 ·−→B 2q+1

´
.

where k, r, p and q are integer numbers. Note that the coefficients of all terms in (7.9) are not necessarily

simple constants, but have no internal dependences on
−→
j or

−→
B .

The linear term χ
D/L
00

−→
j ·−→B and the higher order terms o

³−→
j 2p+1 ·−→B 2q+1

´
with odd power in

−→
j and

−→
B seem to be not compatible with the requirement of the equalities (7.9) as they are of odd power in

−→
j

and
−→
B . This pretended contradiction is lifted taking the chiral character of the conductor into account:

the corresponding coefficients of the product
−→
j ·−→B and the higher order terms

−→
j 2p+1 ·−→B 2q+1 are chiral

quantities which change sign under bP according to (7.4). Therefore the last term does not contradict the
requirement bPR³−→B,−→j ´ = R³−→B,−→j ´ (for a more detailed derivation see Appendix E). The terms

χ
D/L
00

−→
j ·−→B + o

³−→
j 2p+1 ·−→B 2q+1

´
(7.10)

are describing the eMChA. Note the resemblance of this expression with the optical MChA. As for a bal-

listic conductor the situation is equivalent to an electromagnetic wave propagating in an electromagnetic

wave-guide or some transparent dielectric medium, the above symmetry-based derivation could also be

applied in complete analogy to the dielectric tensor instead of the resistance. Apparently, the features of

eMChA are similar to those of the optical MChA: (i) the dependence on the relative orientation of
−→
j

and
−→
B , (ii) the dependence on the handedness of the chiral material, that is, enantioselectivity and (iii)
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the independence of the polarization state of the conducting electrons (e.g. spin-polarized electrons with

their spin parallel to their
−→
k -vector are analogous to circularly polarized light).

7.2.2 Diffusive charge transport: the Onsager relation

In contrast to the ballistic case, time-reversal symmetry cannot be directly applied to diffusive charge

transport. Diffusion involves elastic and/or inelastic scattering processes of the charge carriers where

the latter leads to Joule’s heating of the conductor. In both cases the current traversing the diffusive

conductor cannot be simply inverted by a time-reversal operation bT as the second law of thermodynamics
would be violated. Therefore diffusion breaks the time-reversal symmetry and one has to use the Onsager

relation [88]. The Onsager relation describes the generalized time-reversal operation for any transport

coefficient σij , as for example electrical or thermal conductivity, close to thermal equilibrium

σik = σ†ki (7.11)

where † denotes the time reversal and the indices i, k the spatial axis. In case the conductor only has
elastic scatterers, alternatively the reciprocity relation Rpq,kl= Rkl,pq for the resistance can be used

[61]. The pair of indices p and q denote the contacts used to supply and draw current, k and l denote

the probes used to measure the potential difference. However, this is just a special case of the Onsager

relation and can be derived from the same [89].

Let σik’s represent the coefficients of the electrical conductivity tensor σ and assume first a simple

diffusive conductor, that is σik = σik

³−→
B
´
. Then applying Onsager’s relation yields (the index † is

dropped for simplicity),

σik
³−→
B
´
= σki

³
−−→B

´
. (7.12)

As σ is a tensor, it can be written as the sum of a symmetric tensor s and an asymmetric tensor a.

Therefore, in terms of tensor coefficients it follows

σik
³−→
B
´
= sik

³−→
B
´
+ aik

³−→
B
´
. (7.13)

Applying Onsager’s relation to sik
³−→
B
´
, one finds sik

³−→
B
´
= sik

³
−−→B

´
for all i, k due to the symmetry

property of s. Consequently, sik
³−→
B
´
has to be an even function in the magnetic field, i.e., only terms

of even power in
−→
B are allowed. In contrast aik

³−→
B
´
is an asymmetric quantity, such that aik

³−→
B
´
=

−aik
³
−−→B

´
for all i, k which implies that aii

³−→
B
´
= 0 and only off-diagonal elements of a are non-zero.

Therefore, aik
³−→
B
´
can only depend on odd powers of

−→
B . The parity-reversal operation bPσik ³−→B´ =

σik

³ bP−→B´ = σik

³−→
B
´
leaves sik

³−→
B
´
and aik

³−→
B
´
unaltered and thus σik

³−→
B
´
contains even as well as

odd powers in
−→
B . But the diagonal elements σii

³−→
B
´
, which describe the longitudinal conductivity, are

only determined by the symmetric part of the conductivity tensor (see Appendix E for more details).

This is equivalent with the statement, that any two-terminal resistance of an achiral conductor can only
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have an even magnetic field dependence. The off-diagonal elements are determined by both, symmetric

and asymmetric part. For example, the Hall-effect can be deduced from aik
³−→
B
´
[90].

In the case of a chiral conductor the components of the conductivity tensor read

σik
³−→
j ,
−→
B
´
= sik

³−→
j ,
−→
B
´
+ aik

³−→
j ,
−→
B
´
. (7.14)

Then the Onsager relation and the symmetry properties of the components lead to sik
³−→
j ,
−→
B
´
=

sik
³
−−→j ,−−→B

´
and aik

³−→
j ,
−→
B
´
= −aik

³
−−→j ,−−→B

´
. As the parity operation requires bPσik ³−→j ,−→B´ =

σik

³
−−→j ,−→B

´
= σik

³−→
j ,
−→
B
´
, the allowed dependences of the symmetric and asymmetric part of the

conductivity tensor in
−→
B and

−→
j reduces to

aik
³−→
j ,
−→
B
´

= a
(0)
ik + ²

(0)
ik

¯̄̄−→
B
¯̄̄
+ ε

(0)
ik

¯̄̄−→
j
¯̄̄

(7.15)

+o
³−→
j 2k ·−→B 2r+1

´
+ o

³−→
j 2p+1 ·−→B 2q

´
,

sik

³−→
j ,
−→
B
´

= s
(0)
ik + α

(1)
ik

−→
B 2 + β

(1)
ik

−→
j 2 + κD/Lik,00

−→
j ·−→B (7.16)

+o
³−→
j 2p+1 ·−→B 2q+1

´
+ o

³−→
j 2k ·−→B 2r

´
.

The terms of odd power in
−→
B and

−→
j in the symmetric part seem to contradict the requirement of the

parity operation. As the conductor is chiral, the coefficients of these terms are chiral quantities and have

to transform under parity as given in (7.4) (see also Appendix E). That is for the linear term in
−→
B and

−→
j in (7.16): bPκDik,00 = κLik,00 with κDik,00 = −κLik,00.
In the last expression the eMChA κD/Lik,00

−→
j · −→B + o

³−→
j 2p+1 ·−→B 2q+1

´
is recovered, similar to the case

of ballistic charge transport. The first term on the right hand side of (7.16) represents some constant

contribution to the conductivity, which in terms of resistivity would be for example lattice-defects, grain

boundaries etc.. The second term is just the diamagnetic contribution which occurs in all materials.

It is interesting to note that the eMChA is found only in the symmetric part of the conductivity tensor.

In a two-terminal electrical transport measurement, where the longitudinal conductivity is measured, only

the diagonal elements sii
³−→
j ,
−→
B
´
are thus contributing to σii

³−→
j ,
−→
B
´
(as aii

³−→
j ,
−→
B
´
= 0). Therefore,

in contrast to a achiral conductor, an odd power dependence in
−→
B and

−→
j is apparent.

Finally, it has to be noted that the above derivation also holds for the resistivity tensor of a chiral

conductor, since ρ = σ−1. In terms of components ρik
³−→
j ,
−→
B
´
≡
³
σ
³−→
j ,
−→
B
´´−1

ik
and in complete analogy

one finds then for the symmetric part of the resistivity tensor

ρ
(sym)
ik

³−→
j ,
−→
B
´
= ρ

(0)
ik + %

(1)
ik

−→
B 2 + χ

D/L
ik,00

−→
j ·−→B + o

³−→
j 2p+1 ·−→B 2q+1

´
(7.17)

and again the eMChA terms are discovered (other higher order terms have been omitted for simplicity).
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7.3 Chiral anisotropy versus asymmetry

Usually a conductor is connected in an asymmetric way to source and drain electrodes. That is the electri-

cal coupling of the two electrodes is not identical due to contact imperfections. However, if the conductor

is of macroscopic size, the contacts or better the contact area is it too, such that the asymmetries in

the contacts are negligibly small for all experimental purposes. In contrast, for microscopic conductors,

contact imperfections can lead to asymmetries in the electrical transport which are not negligible any

more. Further, even if the contacts are perfect, the conductor itself may have asymmetric behaviour.

The question now arises whether the contacting or the intrinsical asymmetry can be qualitatively

distinguished from the chiral anisotropy as it is derived in the sections 7.2.1 and 7.2.2. To clarify this

consider a semiconductor p-n-junction in two-terminal configuration as it is illustrated in Fig. 7.1 which

is obviously asymmetric. Further, expose the p-n-junction to an external magnetic field
−→
B parallel to the

current flow direction. Assume that the resistance of the p-n-junction is a function of
−→
B and the current

density
−→
j , that is R

³−→
B,
−→
j
´
. For simplicity and without loss of generality, R(

−→
B,
−→
j ) may be written

to lowest order as R
³−→
B,
−→
j
´
= R0 + χ

−→
B · −→j . In Fig. 7.1a −→B and

−→
j are parallel and the resistance in

this configuration is given by R(a)
³−→
B,
−→
j
´
= R0+χ

−→
B ·−→j . After a parity operation bP the situation has

changed as depicted in Fig. 7.1b, where
−→
B and

−→
j are now anti-parallel. Finally, by rotating the device

by 180◦ one finds the configuration in Fig. 7.1c with the resistance R(c)
³−→
B,
−→
j
´
= R0 − χ

−→
B ·−→j .

FIGURE 7.1. a) Asymmetric, but achiral p-n-junction in a two-terminal configuration and an exter-

nally applied magnetic field. b) p-n-junction after parity-operation bP . c) p-n-junction after either
parity-operation bP and rotation bR. The same situation is achieved by simply inverting the magnetic
field, leading to the conclusion that eMChA can not occur in achiral, asymmetric physical objects.
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As neither by bP nor by rotation the resistance of the device is changing, one finds R(a)
³−→
B,
−→
j
´
=

R(c)
³−→
B,
−→
j
´
which is contradictory unless χ = 0. Therefore, any kind of asymmetries in devices, wherever

they may originate from, cannot lead to dependences of the form
−→
B ·−→j in a two-terminal measurement.

In contrast, replacing the p-n-junction by a chiral object, for example a helix, the coefficient χ ≡ χD/L

is a chiral quantity and behaves as bPχD = χL with χD = −χL and therefore does not contradict the
equality R(a)

³−→
B,
−→
j
´
= R(c)

³−→
B,
−→
j
´
.

7.4 Experimental data

In this section first the principle experimental technique to measure the eMChA is explained. Then,

charge transport measurements on SWNT samples contacted with electrodes on top are presented. All of

the investigated samples show a high transmission probability between the SWNT and metal contacts.

7.4.1 Experimental technique and set-up

For measuring the electrical Magnetochiral Anisotropy (eMChA), the experimental set-up described

in section 4.3 has to be modified. From (7.9), (7.16) and (7.17) it is apparent, that the two-terminal

resistance of a chiral conductor is anisotropic in the externally applied magnetic field and the traversing

current. Thus the eMChA contribution to the resistance can be extracted if the difference in resistance (or

resistance anisotropy) is measured when the current
−→
I traversing the SWNT is parallel or anti-parallel

to an externally applied magnetic field
−→
B . That is,

δR
³−→
B,
−→
I
´
≡ R

³−→
B,
−→
I
´
−R

³−→
B,−−→I

´
. (7.18)

As discussed in section 4.2 and 4.4 the contacting area of SWNTs is very sensitive also to changes on the

sub-nanometer scale. Therefore, unintentional, small differences between the two contacts to the SWNT

under investigation may occur. Therefore, a contact-resistance anisotropy may contribute to δR
³−→
B,
−→
I
´
.

However, as shown in section 7.2.1 and 7.2.2, such a contribution can only have an even magnetic field

dependence. In order to eliminate this undesired contribution, the difference in δR
³−→
B,
−→
I
´
for the two

possible orientations is taken which yields, considering (7.17),

∆R
³−→
B,
−→
I
´
≡ δR

³−→
B,
−→
I
´
− δR

³
−−→B,−→I

´
= 4χD/L

−→
I ·−→B (7.19)

where higher orders in
−→
I and

−→
B have been omitted and indices dropped for simplicity. Therefore, from

the last quantity the MChA coefficient χD/L can be immediately extracted.

In order to obtain δR
³−→
B,
−→
I
´
, the experimental set-up is centred around a V/I-converter (self-made)

and two Lock-In amplifiers (Stanford Instruments, SR 830). In Fig. 7.2 the principle experimental set-up

is shown. The use of Lock-In amplifiers allows a phase-sensitive measurement to be performed as will be

discussed in the following.
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FIGURE 7.2. Principle experimental set-up for phase-sensitive measurements in order to detect the

eMChA. The principal function of the indicated measurement devices is stated in the text.

The V/I-converter adds the output oscillator voltage of Lock-In 1 and Lock-In 2 and converts this

sum to an output current I˜ . This current is sent through the SWNT device and consists of two parts:

(i) small amplitude, high frequency (Lock-In 1) and (ii) high amplitude, low frequency (Lock-In 2). The

amplitudes have been chosen to be about one order of magnitude different, for example 55 nA (Lock-In

1) and 500 nA (Lock-In 2). The frequencies have been selected in such a way that they are no multiple

of each other, and also no multiple of 50 Hz, for example 186.02 Hz and 1.4247 Hz.

As Lock-In amplifiers can act as both, source and measuring unit, Lock-In 1 was used to detect phase-

sensitively the high frequency part which yields the differential resistance dV/dI of the sample. The

phase-shift between output signal and input signal, that is the current flowing from the sample to Lock-

In 1, should be zero or close to zero in order to obtain a reliable resistance value. In all the measurements

that will be presented in the next section this was the case. The differential resistance signal is then sent

to Lock-In 2. As the second Lock-In works at a much lower frequency and significantly higher amplitude,

it serves as a ”DC”-source and the difference in the incoming resistance signals for current parallel or

anti-parallel to the SWNT axis can be detected. The two signals, that is, for
−→
I parallel to

−→
B and for−→

I antiparallel to
−→
B , can principally have a constant phase-shift of either 0◦ or 180◦, as the eMChA is

proportional to the scalar product
−→
I ·−→B . Another phase-shift, as for example 90◦ would correspond to a

capacitive coupling of the electrodes to the SWNT which is observed in SWNT samples with two-terminal

resistances higher than the quantum resistance RK ≈ 25.8 kΩ. Depending whether the phase-shift is 0◦
or 180◦, the measured difference in the resistances from Lock-In 1 has to be multiplied by cos(0◦) = 1 or

cos(180◦) = −1, respectively. Finally after the correction for the phase-shift, δR
³−→
B,
−→
I
´
is obtained.
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The main problems during the measurements have been the extremely high electrostatic sensitivity

of the samples and the Lorentz force. The samples had to be protected perfectly against electrostatic

perturbations, otherwise instabilities may occur which may destroy the samples already during mounting

in the cryostat. When brought into the cryostat, the Lorentz force [91] due to the applied magnetic field

in a few cases altered the samples. This effect can be attributed to detachment of the electrodes, if their

adhesion to the substrate’s surface is poor. However, the experimental data presented in the next section

was collected only on absolutely stable SWNT devices.



7.4 Experimental data 97

7.4.2 Measurement results

The measurements presented in this section have been carried out on two-terminal contacted SWNT

bundles with the magnetic field
−→
B along the bundle axis (Fig. 7.3) in a liquid-helium-bath cryostat.

Only SWNTs with room-temperature two-point resistances less than 12.5 kΩ, have been investigated.

This implies both a small contact resistance, and a metallic character of the tube. Indeed, in these

SWNT, the resistance values did not change by more than 10 % upon cooling to 4.2 K. The resistance

anisotropy δR(B, I) ≡ R(B, I) − R(B,−I) is determined as described in the preceding section 7.4.1.
The vectorial notation for

−→
B and

−→
I has been dropped as the scalar product

−→
B · −→I in (7.19) equals¯̄̄−→

B
¯̄̄
·
¯̄̄−→
I
¯̄̄
cos
³
]
³−→
B,
−→
I
´´
= ±BI in the present experimental configuration. B and I thus correspond to

the absolute values of
−→
B and

−→
I , respectively, and their sign to their orientation relative to each other.

In Fig. 7.4a the measured resistance anisotropy ∆R(B, I) ≡ δR(B, I) − δR(−B, I) of the nanotube
in Fig. 7.3 is plotted as a function of the absolute value of the magnetic field. In the inset, δR(B, I) vs.

B is shown. From both it is obvious that the term, linear in B, is clearly dominant and only a small

contribution from the terms proportional to B2 is apparent, which can be ascribed to contact artefacts.

From the latter graph, using (7.19) the absolute value of χD/L can be estimated to be about 500 kΩ/AT.

FIGURE 7.3. Shown is an SFM image of a typical nanotube sample and an illustration of a (10,5)

nanotube connected in two-point configuration to an AC current source. In the latter the chiral

character of the nanotube is highlighted by the solid lines. The external magnetic field
−→
B is applied

along the SWNT symmetry axis to within a few degrees. The height of the thin nanotube bundle is

about 1.8 nm.
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FIGURE 7.4. Measured resistance anisotropy ∆R(B,I ) vs. B of the SWNT sample in Fig. 7.3 at

I = 500 nA and T = 4.2 K. In the inset δR(B,I ) vs. B is shown. The linear term in the eMChA

determines the shape of the curve and only small contributions from higher order terms are present.

The eMChA slope can be defined as

η ≡ lim
B→0

∂

∂B
∆R(B, I) (7.20)

which in the sample depicted in Fig. 7.4 yields η > 0. At a given current and field orientation, the two

signs of η are assigned to the two handedness of the SWNTs. Note, that it is not possible to determine

with the experimental setup utilized here, which sign corresponds to which handedness. Thus the sign of η

represents the relative handedness of the investigated SWNT sample. In order to get the real handedness

of the SWNT, either an independent experimental identification, or a rigorous theoretical assignment is

required. However, it should be noted that the clear observation of eMChA proves that charge transport

through CNTs is sensitive to chirality, and therefore must have a three-dimensional character.

In view of the different molecular structures present among the investigated SWNTs (c.f. section

2.1), the eMChA cannot be expected to be the same for all tubes. Fig. 7.5 shows the experimentally

determined δR(B, I) (inset) and ∆R(B, I) for another SWNT. The results for δR(B, I) at fields below

7 T are mostly dominated by quadratic terms in B and no clear linear dependence can be seen. For

higher fields, asymmetry and additional structures can be observed. Upon evaluating ∆R(B, I), the odd

B-dependence characteristic of eMChA appears. At low magnetic field, the linear term is dominant with

an eMChA slope η < 0.

With increasing field, higher odd terms are contributing to the eMChA. The additional structure at

|B| > 8 T probably originates from resonant contributions to the eMChA which are not taken into
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FIGURE 7.5. Inset δR(B,I ) vs. B for another SWNT at I = 300 nA and T = 4.2 K. The result is

asymmetric in B but at low magnetic field strengths it is still dominated by contributions quadratic in

B. Main figure: ∆R(B,I ) as a function of B. At low magnetic fields (. 5-6 T) the linear contribution
to the eMChA is dominant with η < 0. The higher order terms (B 3, B 5,...) start to be important at

increasing fields. The structure at high field may be caused by resonant contributions to the eMChA.

account in the derivation of (7.9) and (7.17) in section 7.2.1 and 7.2.2, respectively. The nature of such

resonances is unclear at this moment, but similar behaviour for δR(B, I) was observed in several other

tubes. However, the resonances can not originate from the Aharanov-Bohm effect, because considerably

higher magnetic fields (up to several 100 T) would be necessary due to the SWNTs small diameter.

As discussed in section 2.1, the so-called armchair and zigzag SWNTs are special classes of nanotubes

that are not chiral. Therefore, no eMChA should be observable in such tubes. In Fig. 7.6 the difference

in resistance δR(B, I) of such a SWNT sample is shown. Upon analysis, the linear contribution turns

out to be about (50 ± 100) kΩ/AT. This means that within the experimental uncertainty, this particular
SWNT does not show eMChA and therefore is most likely of an achiral type. Whether this SWNT is an

armchair or a zigzag type cannot be drawn from the experimental data.

During the studies several SWNT samples with different eMChA slope η have been measured. In Fig.

7.7 a histogram is shown in which the number of tubes with a certain sign of η, that is the relative

handedness, is depicted. Five SWNTs with η < 0, four tubes with η > 0 and only one tube with η = 0

have been found. On the basis of SFM data of each of the investigated SWNTs, the diameters can be

estimated to be between 1.0 and 1.4 nm. Within this diameter range, using (2.2) and (2.3), 50 possible

pairs of indices (n,m) can be found. Among these are 3 armchair and 5 zigzag nanotubes, of which 3 and 1,

respectively, are metallic. Out of the chiral nanotubes 12 are metallic, but as they are doubly-degenerate
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FIGURE 7.6. eMChA result of a particular SWNT. Shown is δR(B,I ) as a function of B at I = 500

nA and T = 4.2 K. The dotted line is a fit from which the magnitude of the term linear in B is

estimated to be (50 ± 100) kΩ/AT.
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FIGURE 7.7. Histogram showing the relative handedness sign(η) of the samples investigated. The

relative abundance are in agreement with theoretical considerations.
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FIGURE 7.8. Current dependence of the eMChA. ∆R(B,I ) is shown as a function of I for two

different magnetic field strengths at liquid helium temperature (dotted lines are guides to the eye).

due to their chirality, 24 chiral metallic tube types have to be considered. Thus when investigating metallic

SWNTs in this diameter range, 28 tubes are expected to be metallic, of which 4 are achiral. Therefore,

under the assumption that no chiral preference has existed during nanotube synthesis, one would expect

that of the metallic tubes, 43 % are left-handed, 43 % are right handed and only 14 % are achiral. This

is in good agreement with the assignment that the experimentally observed sign of η corresponds to the

handedness of the tubes.

As evident from (7.19) and discussed in section 7.4.1 the eMChA is anisotropic in the externally

applied magnetic field as well as in the current traversing the chiral conductor. In Fig. 7.8 the resistance

anisotropy ∆R(B, I) is plotted against the current for a SWNT samples with η > 0. A linear decrease

is observed when decreasing the current, in good agreement with (7.19) (dashed lines are guide for the

eye).

During the measurements, no eMChA in a SWNT above 50 K could be found. In Fig. 7.9 a typical

temperature dependence of ∆R(B, I) is shown. For T ≤ 4.2 K a strong increase is observable and in

the range 4.2 K to 1.5 K, no significant temperature dependence is apparent. The strong increase is

not attributed to the substrate temperature itself, but to the increased cooling of the SWNT when it

is immersed in the liquid helium bath. This would imply that for higher substrate temperatures, when

cooling occurs by helium gas, the tube lattice temperature or the electron temperature is significantly

higher than the substrate temperature due to heating by the high current densities traversing the SWNT.

Thus the true dependence of ∆R(B, I) on the temperature may be much weaker than suggested by Fig.

7.9. It has to be noted that the increase of ∆R(B, I) with decreasing temperature shows that the eMChA
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FIGURE 7.9. Temperature dependence of the eMChA. ∆R(B,I ) is plotted as a function of temper-

ature at B = 14 T and I = 350 nA. Temperatures above 4.2 K were obtained by gas cooling, the

others by liquid helium cooling. The dotted line is a guide to the eye.

is not some hot-electron effect, as one might associate with a current dependent resistance, but an intrinsic

contribution of chirality to magnetotransport.

From the experimental data presented in this section, the microscopic origin of the observed eMChA

cannot be determined. Only qualitative arguments can be given in order to elucidate possible mechanisms

at the present stage.

The classical magnetic self-field effect [10] is one imaginable mechanism which can lead to eMChA. For

an estimation of this effect consider the SWNT to be modeled by a conducting helix of the same size.

A current I flowing through the helix will generate an axial magnetic field Baxial = χ
D/L
classicalI which is

seen by each charge carrier. The parameter χD/L depends on the actual geometry (handedness, number

of turns, length) of the model helix. Applying an external magnetic field Bext in parallel to the helix

yields the effective magnetic field Beff = Baxial ± Bext acts on each charge carrier ((+)-sign for Baxial
parallel to Bext and (−)-sign otherwise). Obviously, a difference in the resistance of the helix for different
relative orientations of the magnetic fields is apparent. It is easy to show [10] that this effect leads to a

term 2χ
D/L
classicalI ·Bext in the resistance of the helix, which is just the eMChA. Following this analysis of

the experimental data, χD/Lclassical can be estimated to be smaller 5 kΩ/AT for the SWNT-diameter range

(about 0.6 nm) in the present experiments, which is too small to explain the observed effects. However,
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the model of a helix is not unsuitable to obtain informations on the microscopic mechanism if a quantum

mechanical treatment of the helix is performed as it will be shown in section 7.5.

Another possible origin of the eMChA could be scattering by chiral objects, like electron-electron,

electron-phonon, electron-defect or electron-twiston scattering. In view of the observed temperature de-

pendence, electron-phonon scattering is ruled out. An interpretation in terms of electron-twiston scat-

tering would be consistent with the observed temperature dependence of the eMChA as twistons are

chiral CNT lattice deformations [93]. As discussed in section 3.3.3 electron-electron correlations become

important to electronic transport [6] at low temperatures. A chiral electron-electron scattering would,

similar to the electron-twiston scattering process, be consistent with the observed results. Alternatively,

the electron-electron correlation may reduce screening, so that electron-defect scattering becomes more

important. However, in all cases, increasing eMChA with decreasing temperature is to be expected.

The above examples show that a variety of microscopic mechanism for the existence of the eMChA

in SWNTs are possible. Which of them is the dominating one is, as already mentioned, not clear, which

should be subject of future investigations in this field. However, the here presented electrical transport

measurements on SWNTs show that eMChA clearly exists in SWNTs and implies a helicoidal component

of the current path along the SWNT.

7.5 The free electron on a helix - a theoretical model

In this section the free electron on a helix as a simple analytical, quantum mechanical model of a

molecular chiral conductor, like a CNT, is considered. The focus is on diffusive electronic transport

due to achiral scatterers, and ballistic transport through a helix between two achiral contacts. The

considerations are restricted to magnetic fields for which the cyclotron radius of a free electron is large

compared to the helix radius and all electron-electron interaction effects other than those leading to mass

renormalization and scattering are neglected. Restriction to the cylindrical surface of a CNT allows one

to treat the problem in two dimensions. If in addition the two degrees of freedom are correlated, as in

the case of a helix, one finds a one-dimensional description of the problem [94]. Although the reduction

in dimensions facilitates some theoretical considerations, it also inhibits others. An adaptation from

the point of view in terms of dimensionality will be necessary. The quasi-one-dimensional description is

suitable in obtaining qualitative statements on the diffusive transport. To calculate the conductance for

ballistic transport through a helix between bulk, 3D achiral contacts, a three-dimensional approach is

necessary. In both cases, ballistic and diffusive electrical transport, a dependence linearly on the current

and the magnetic field and on the handedness of the helix are found, corresponding to eMChA. These

results agree qualitatively with the experimentally observed eMChA in SWNTs and are compared in

section 7.5.3 also quantitatively with the experimental data in section 7.4. For more details on these

calculations refer to Appendix F.

In Fig. 7.10 the correspondence between a chiral single-wall nanotube and the proposed helix model

is shown.
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FIGURE 7.10. Correspondence between a chiral carbon nanotube and a helix. The radius a, the

pitch p = (2πb)−1 and the winding angle for both are drawn in. In the experiments typical values

for a and b are 0.6 nm and 0.24 nm, respectively. The number of turns N depends on the length of

the SWNT (helix).

7.5.1 Diffusive transport

The Hamiltonian of a free electron with mass m which is restrained to move on a helix of N turns with a

radius a and a pitch p = (2πb)−1, in the presence of a static magnetic field Bbz (pointing along the helix)
reads in the symmetric gauge [94]

bH = − ~2

2m(a2 + b2)

∂2

∂ϕ2
− i~ q

2m

a2

a2 + b2
B

∂

∂ϕ
+
q2a2

8m
B2. (7.21)

The simplest possible case of an electron moving in a given direction on the helix is considered. The

ansatz for its wavefunction is Ψ (ϕ) = C exp(ikϕ). For cyclic boundary conditions Ψ(ϕ = 0) = Ψ(ϕ =

2πN) is imposed, from which follows k = kn = n/N , (n integer). The requirement of orthogonality leads

to the wavefunction Ψn (ϕ) =
√
2πbN

−1
exp (inϕ/N) . This state carriers a current jz,n in the bz direction

[94]

jz,n =
q

m
(Ψ∗npzΨn −ΨnpzΨ∗n) =

q~n
πmN2(a2 + b2)

. (7.22)

The energy eigenvalues can now be obtained by applying Ψn (ϕ) to (7.21) and use of (7.22) leading to

En =
~2n2

2mN2(a2 + b2)
+
qn~
2mN

a2

a2 + b2
B +

q2a2

8m
B2. (7.23)

In this expression, three contributions can be recognized: a zero-field energy Ezf,n ≡ ~2n2
2mN2(a2+b2) , a

magnetochiral-anisotropy energy EeMChA,n ≡ qn~
2mN

a2

a2+b2B = (πN/2)a
2jz,nB and a diamagnetic energy

Edia ≡ q2a2

8m B
2. That is, in the energy eigenvalues the interaction of the electron with the external
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magnetic field is already apparent. The electronic density of states gn ≡
¯̄̄
(En+1 −En)−1

¯̄̄
for large n,

taken into account spin degeneracy, is given by

g(En) ≈ |n|
Ezf,n

µ
1− EeMChA,n

2Ezf,n

¶
. (7.24)

In the case of diffusive transport the longitudinal conductivity σ, which has been measured as described

in section 7.4.1, is calculated in the framework of the Boltzmannn transport formalism, using a constant

relaxation time approximation [92] and taking into account the restricted motion of the electron on the

helix:

σij = q
2
X
n

hviin hvjin
∂f(En)

∂En
τ (7.25)

with f(En) being the Fermi distribution, τ the relaxation time and hviin the expectation value of the
i-th component of the velocity operators. For the latter ones it is found

hvzin =
b

a
hvϕin =

~bn
mN(a2 + b2)

+
qa2b

2m(a2 + b2)
B (7.26)

where the correlation between hvϕin and hvzin, as expressed by (7.26), results from the helicoidal motion.
The longitudinal conductivity is given by σzz. In order to determine σzz the sum in (7.25) is converted into

an energy integral. The derivative of the Fermi function f(En) yields a Gaussian like function centered

at E = EF . For temperatures for which kBT ¿ E −EF the main contribution to the integration comes
from the Fermi-energy. Thus, the longitudinal conductivity reads

σ(jz, B) ≈ q2τ

kBT
hvzi2F g(EF ) ≈ q2τ

kBT

2b2 |nF |
m (a2 + b2)

(7.27)

×
µ
1 +

EeMChA,n

NEzf,nF
+

a2Edia
(a2 + b2)Ezf,nF

¶µ
1− EeMChA,nF

2Ezf,nF

¶
leading in consideration of the dominating terms to an eMChA contribution in the diffusive regime,

ξdif ≡
σ(jz, B)− σ(−jz, B)
σ(jz, B) + σ(−jz, B) ≈

EeMChA,nF

2Ezf,nF
≈ πNa2jz,nFB

4Ezf,nF
(7.28)

Note, that the term proportional to Edia on the right hand side of (7.27) describes the quadratic

magneto-resistance that occurs in all conductors. In combination with the magnetic self-field inherent to

all current-carrying chiral conductors [92], this also leads to eMChA, as demonstrated in Ref. [10].

7.5.2 Ballistic transport

In the case of ballistic transport along the helix at zero temperature, the conductance G is given by

G =
¡
e2/h

¢P
i Ti (c.f. section 3.1.1). In the case of perfect transmission, T = 1 and for one spin-

degenerate conducting channelG = 2e2/h. Recently, de Picciotto et al. have shown that in a four-terminal

measurement on a ballistic system there is no influence of an externally applied magnetic field on the

charge transport [22]. Therefore, charge transport on a ballistic helix cannot show any eMChA and in
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FIGURE 7.11. A ballistically conducting helix connected to two reservoirs in two-terminal config-

uration. A current I is driven through the helix with an in parallel applied magnetic field. The

handedness of the helicoidal motion of charge carriers in the reservoirs is opposite to the one of the

helix giving rise to the eMChA.

an ideal four-terminal resistance measurement no eMChA will be detected. However, in a two-terminal

resistance measurement in the ballistic regime, eMChA is possible, even for ideal contacts as discussed

below.

The electronic wavefunctions Φ in the achiral contact material will consist of a cyclotron component

around the magnetic field direction, and a plane wave component along the magnetic field direction. Such

a motion is helicoidal, and it will be intuitively clear that the transmission probability of an electron from

the helix into the contact region Th→c will depend on the relative handedness of the contact wavefunctions

and the helix. Therefore, eMChA in the ballistic regime can be basically regarded as an interface effect

between the contact region and the ballistic helix. The resulting two-terminal conductance will be given

by G ≈ 2q2

h Tc→hTh→c where we have omitted interference terms between reflected waves at the two

ends of the helix [95]. If interference effects would be taken into account, the eigen-states would become

linear combinations of states moving parallel and anti-parallel to the magnetic field. As these states

have opposite contributions to the eMChA, an increase as well as an decrease in the eMChA of the

ballistic transport would be possible. In Fig. 7.11 the case of opposite relative handedness of the contact

wavefunction and the helix is illustrated.

To evaluate Tc→hTh→c, the problem has to be treated in three dimensions in order to take the finite

radial extension of the wavefunction in the contact and on the helix into account. Pictorially, the electron

can be thought to move along a three-dimensional (section area ∼ d2) helicoidal path on a cylinder with
radius a. Since a free electron is described, a separation ansatz may be used to approximate the electron
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wave-function, that is

Ψn (ρ,ϕ, z) = Cn exp

Ã
−
µ
ρ− a
d

¶2!
exp

µ
−
³a
d

³
ϕ− z

b

´´2¶
(7.29)

× exp (inϕ/N) exp(inz/bN)

where Gaussian functions with extent d are utilized to restrict the position in space.

The three-dimensional wavefunctions in the contacts are given in the symmetrical gauge byΦ
−→
R
l,µ,kz

(−→r ) =
Φl,µ,kz

³−→r −−→R´ exp³i h−→r ×−→Ri /2`2´ [100] where −→R denotes the center-of-mass position of the cyclotron
orbit and

Φl,µ,kz (ρ,ϕ, z) =
Cl,µ√
L

µ
ρ√
2`

¶|µ|
L
|µ|
l+|µ|

µ
ρ2

2`2

¶
(7.30)

× exp
µ
− ρ2

4`2
+ ikzz + iµϕ

¶
.

The quantum number l is a non-negative integer, L a finite spatial extent in the z-direction, µ the

angular momentum quantum number, ` the cyclotron radius, Lnm is an associated Laguerre polynomial

and Cl,µ =
√
l!/` ((l + |µ|)!)3/2. The energy of the contact states [101] is given by

El,µ,kz =
~q
m

µ
l |B|+ µB + |µ| |B|+ |B|

2

¶
+
~2k2z
2m

(7.31)

with the angular momentum LzΦl,µ,kz = µ~Φl,µ,kz . In the following, it is assumed that the effective mass
is the same in the contact and on the helix. The transmission coefficients Tc→h and Th→c are determined

by the boundary condition that the incident and reflected wavefunctions are matched to the transmitted

wavefunctions at the helix-contact junction [102],[103]. The following considerations are limited to the

case where the contact states are centered on the helix position, that is,
−→
R = 0. Note that this approach

represents already an approximation, as charge accumulation effects near the junction [103] have been

neglected. Straightforward algebra, using d << a, yields for the transmission from state n of the helix to

state (l, µ, kz) in the contact

tn,l,µ = 2Rn,l,µΩn,µ
κn − 1

b

¡
µ− n

N

¢
kz + κn +

1
b

¡
µ− n

N

¢ (7.32)

where κn ≡ n/bN and Rn,l,µ and Ωn,µ are the expectation values of the radial and angular parts of the

wavefunction overlap of the helix and contact states (see also Appendix F).

The current transmission coefficient from the helix into the contact Th→c is related to the wavefunc-

tion transmission coefficients tn,l,µ by a summation of the latter over all states involved in the current

transport, Th→c =
P
El,µ,kz

|tn,l,µ|2. At temperatures close to zero, only the states at the Fermi energy
in the helix will contribute to the charge transport. Consequently n = nF and additionally, by noting

that Rn,l,µ and Ωn,µ are strongly peaked at l = 0 ∀ n, µ, and at µ = nF/N , respectively, the summation
can be approximated by

Th−→c ≈ 4
¯̄̄
R
nF ,0,

n
F
N
Ω
nF ,

n
F
N

¯̄̄2Ã κnFekz + κnF

!2
(7.33)
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where

ekz ≡ ±
r
2m

~2

µ
EF − ~q

m

µB + |µ| |B|+ |B|
2

¶1/2
(7.34)

≈ kF

µ
1− ~q

4mEF

nFB + |nF | |B|+N |B|
N

¶
with kF ≡ ±

p
2mEF /~2 the zero field Fermi wavevector in the contact.

The current transmission coefficient from the contact into the helix Tc→h is calculated analogously. The

main difference is that one has to sum over all reflected waves in the contact. Orthonormality properties,

angular momentum conservation, the considerable difference in the spatial extent of the contact- and

the helix-wavefunction and energy conservation have been used in order to determine the dominant

contribution. For the total transmission coefficient T ≡ Th→cTc→hone finds

T ≈ 16
¯̄̄
R
nF ,0,

n
F
N
Ω
nF ,

n
F
N

¯̄̄4 ekz2κ2nF³ ekz + κnF

´4
+ 1

4b2

³ ekz + κnF

´2 . (7.35)

At small magnetic fields and κnF ≈ kF (7.35) yields

T ≈
¯̄̄
R
nF ,0,

n
F
N
Ω
nF ,

n
F
N

¯̄̄4
(7.36)

×
Ã
1− 1

32 (bkF )
2

~q
mEF

nFB + |nF | |B|+N |B|
N

!

leading to the eMChA contribution

ξbal ≡
G(I,B)−G(−I,B)
G(I,B) +G(−I,B) ≈

−1
32 (bkF )

2

~q
mEF

nFB

N
(7.37)

= −a
2 + b2

a2
EeMChA

16 (bkF )
2
EF

Similar expressions can be found for different relative sizes of κnF and ekz.
7.5.3 Comparison to experiment

The model of a free electron on a helix is a simplified description of a SWNT. In the following its

predictions derived in section 7.5.1 and 7.5.2 are compared to the experimental results obtained on

SWNTs in section 7.4.2.

The typical values for parameters of the experimentally investigated SWNTs are a radius a = 0.6 nm

and a length of 180 nm (distance between source- and drain-electrode). With a inverse pitch p−1 = 2πb =

1.5 nm the number of turns N of the corresponding helix (c.f. Fig. 7.10) is thus equal to 120. The square

of the size of a carbon π-orbital, 0.25 Å2, is taken for d2.

For a helix that corresponds to a metallic SWNT of this size, one finds for the Fermi energy EF ≈ 2.9
·10−19J [104], from which utilizing Ezf,nF ≡ ~2n2F

2mN2(a2+b2) , the quantum number nF = 535 and the
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corresponding Fermi-wavevector κnF = nF /bN ≈ 18.6 · 109 m−1 can be deduced. The large value of nF
justifies the Boltzmann approach that has been used in the section 7.5.1. For a gold contact, the Fermi

energy EF is approximately 1 ·10−18 J [105] and thus |kF | =
p
2mEF/~2 = 13 · 109 m−1.

Thus (7.37) leads to ξbal/B ≈ 3 · 10−7T−1at a current of 2jz,nF = 1 µA and (7.28) yields the value
ξdif/B ≈ 6 · 10−5T−1 at the same current. For realistic parameters, therefore, the predicted ξdif/B is

orders of magnitude larger than ξbal/B. Experimentally ξexp/B ≈ 10−4 T−1at a current of j = 0.3

µA was observed for metallic SWNTs. This is in reasonable agreement with the predicted ξdif/B. It

should however be noted that in the shown electrical transport measurements, no significant temperature

dependence of the conductance, and values close to 4e2/h were observed, suggesting predominantly

ballistic transport. On the other hand, a decrease of eMChA with increasing temperature was observed.

The prediction of a significantly smaller eMChA for ballistic transport than for diffusive transport would

be consistent with this, as transport in SWNT is believed to be ballistic at room temperature down

to intermediate temperatures, but diffusive at low temperatures due to electron-electron correlations

[6],[106]. It is noteworthy that also other results suggest SWNTs to be ballistic down to 4 K [95].

Miyamoto et al. [92] calculated that for large carbon nanotubes the circular component of the diffusive

current is vanishing due to the high in-plane conductivity in graphite. However, like in the present section,

only achiral scatterers have been considered. Chiral scatterers in SWNTs as for example twistons [93]

will also lead to eMChA, analogous to what was shown for screw dislocations in metals [10].

7.6 Concluding remarks

In this chapter the presented experimental data showed the existence of the eMChA in SWNTs. The

experimental studies were performed on several samples and revealed that the amount of SWNTs with

opposite (relative) handedness is approximately the same. This implies that the production process of

SWNTs is not enantioselective. Furthermore the temperature dependence of the eMChA was measured,

showing an increase of the eMChA with decreasing temperature.

In order to obtain information on the physical mechanism in charge transport leading to the eMChA in

SWNTs, the theoretical model of a free electron on a helix [94] has been extended and treated quantum

mechanically. From the comparison of the experimental data and the theoretical model a reasonably

good agreement for the case of diffusive charge transport was found. This coincidence indicates that

scattering on chiral defects, as for example twistons or chiral electron-electron scattering, is the origin of

the eMChA and is consistent with the observed temperature dependence.
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Summary

Single-walled carbon nanotubes (SWNTs) are one of the most interesting and fascinating molecular

structures known with exceptional and a rich variety of electronic properties: Depending on the helical

character of the SWNT, they can be either metallic or semiconducting. In particular some SWNTs are

also real chiral molecules, whereas the remaining type of tubes are achiral, which is a consequence of the

interplay of the six-fold symmetry of the carbon-lattice and the helical symmetry of the respective type of

tube. Moreover, at room temperature SWNTs are observed to be ballistic conductors whereas Luttinger-

liquid-like indications are found towards lower temperature, as a consequence of the one-dimensional

electronic nature of the SWNTs.

The present thesis was motivated by the rich variety of physical effects observed in the charge transport

which, however, obey the necessity for further investigations. The scope of the thesis comprises the

experimental investigation of

(i) the influence of electrodes at floating potential electrically coupled to the SWNT on the ballistic

transport properties

(ii) the excitation spectrum due to the Luttinger-liquid properties probed with the aid of superconduct-

ing leads and

(iii) the influence of the chiral character of SWNTs on magnetotransport properties.

In order to perform the electrical transport experiments first an appropriate way of contacting the

SWNTs had to be developed. According to this, contacting with various metals has been investigated.

As contacting procedure standard electron-beam-lithographical techniques have been used: A strong elec-

trical coupling to the SWNTs could be achieved by contacting from top with gold palladium electrodes,

minimizing side effects, like single-electron tunneling due to high tunneling barriers between metal and

SWNT. This way of contacting has been found to be most suitable for the exploration of the influence

of electrodes at floating potential and of the chiral character of SWNTs on the electrical transport.

In order to probe the Luttinger-liquid properties of the SWNTs at low temperature, contacting from

top using the superconductor Rhenium has been found to fulfill the experimental requirements. A weak

electrical coupling to the SWNTs was achieved such that tunneling of single superconductor quasi-

particles could be utilized as probing tool.

SWNTs were contacted in three-terminal configuration where the middle electrode was at floating

potential, that is, no current was flowing through the latter. The experimental results at room temper-

ature were interpreted in the framework of the Landauer-Büttiker formalism, modeling the SWNT by a

ballistic conductor with two spin-degenerated channels and assuming that the middle electrodes acts as

a phase randomizing scatterer. The theoretical results were found to be consistent with the experimental
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data observed, leading to the existence of a phase-coherent and a non-coherent part of the total current

traversing the SWNT.

At temperatures in the mK regime, the suppression of quasi-particle tunneling from superconducting

Re leads into the SWNT could be observed in the current/voltage-characteristics. The suppression was

found to be not always complete such that partially shallow peaks in the current voltage characteristics

could be found. A simple theoretical model for the superconductor/SWNT/superconductor arrangement

was developed assuming the SWNT to be a Luttinger liquid: Within this model, the suppression of current

peaks is related to the interplay of the tunneling density of states of the SWNTs and the quasi-particle

density of states of the superconductor leads connected. The main features of the model could be found

in the experimental data presented, such that based on this model and the experimental observation,

the Luttinger—liquid-like nature of the SWNTs is clearly indicated. In consequence the interpretation of

previous works on SWNTs, connected to normal metal leads showing single-electron tunneling, in the

frame of the constant interaction picture is highly questionable.

In an externally applied magnetic field parallel to the SWNT symmetry axis, the SWNT resistance

showed odd power contributions in the magnetic field and the applied current at liquid Helium tempera-

ture, which are the two main features of the electrical Magnetochiral Anisotropy. For different SWNT, dif-

ferent qualitative odd power dependencies on the magnetic fields were observed, that is, higher odd power

contributions than linear, reflecting the huge variety of the SWNT’s molecular structure. The observation

of the electrical Magnetochiral Anisotropy clearly indicates that the current path in the SWNTs must

have a cyclic component. From the experimental data the relative handedness of the investigated SWNT

samples could be deduced. For the number of samples investigated, good agreement with the theoretical

abundance of opposite handedness, assuming a non-enantioselective production process of the SWNTs,

was found. The real handedness of the investigated SWNTs is not (or extremely hard) experimentally

accessible. This is common to other experimental techniques, as for example Raman-spectroscopy which

yields only information on the pair of indices (n,m) of the tube or the scanning tunneling microscopy

providing non-consistent results and being hardly compatible with electrical transport techniques, as a

conducting surface is needed.

The temperature dependence of the electrical Magnetochiral Anisotropy was also investigated. The

effect could not be observed at room temperature and down to intermediate temperatures. In the vicinity

of approximately 5 K a strong increase of the effect was apparent. However, this abrupt increase is

attributed to different cooling mechanisms (via Helium gas and via liquid Helium) in the temperature

regimes above and below 5 K.

The microscopic origin of the electrical Magnetochiral Anisotropy is not accessible from the experi-

mental data. For clarification, the analytical quantum-mechanical model of a free electron on a helix has

been extended by including an external magnetic field. In the diffusive electrical transport regime, as

well as in the ballistic case, the existence of the electrical Magnetochiral Anisotropy could be derived.

Comparison of the theoretical predictions with the experimental data yielded a good agreement with the

calculations on the diffusive transport, whereas the ballistic case was found to be orders of magnitude too



8. Summary 113

small. This coincidence indicates that the electrical Magnetochiral Anisotropy in SWNTs is possibly due

to, for example, the chiral scattering of charge carriers on twistons or chiral electron-electron interaction

(ballistic properties of the SWNTs are suppressed at low temperature) and is in agreement with the

experimentally observed temperature dependence of the effect.

The experimental studies on the electrical transport in SWNTs presented in the thesis, revealing the

effect of phase-randomization of charge carriers, suppression of superconductor quasi-particle tunneling

due to Luttinger-liquid-like properties and the electrical Magnetochiral Anisotropy, underline the fasci-

nating physical properties of SWNTs. These observations encourage to seek for further physical effects

in this molecular material in both, fundamental physics and in view of possible applications.
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Appendix A

Landauer-Büttiker Formalism: confinement and
phase-coherence

A.1 Influence of confinement and the conductance quanta

In section 3.1.1 the total conductance (3.4) for a ballistic conductor has been presented. In the following, a

short derivation of the conductance quantum G0 = e2/h will be given [24]. Consider again the case when

diffusive, infinitely large electron reservoirs connect a ballistic conductor in two-terminal configuration.

The subbands in the conductor contributing to the current are mainly determined by the confinement

of the electrons. For example consider a 2D electron gas with a parabolic confinement in one spatial

direction (say y) (m/2)ω20y
2. Then the eigenvalues of the system are En(k) =

¡
~2k2/2m

¢
+
¡
n+ 1

2

¢
~ω0

(n = 0, 1, 2,...) where each n enumerates a subband. Here it is already apparent that in general a subband

will only contribute to the conduction process above a certain energy ε(c) which depends mainly on the

confinement for a given number of electrons in a system [96]. In the present example ω0 is the determining

factor for ε(c). The larger ω0, the less modes are available for a given energy E of the conducting electrons

as it is depicted in the inset of Fig. A.1 for two ω0 and 2ω0.

Now, consider an electron gas of length L with the electron density ρ (electrons per unit length) and a

single subband whose k-states are occupied according to some distribution function z(E). The electrons
within such a system will move with the group velocity υg = 1

~ ∂E(k)/∂k and carry a current eρυg. The

total current carried by all k-states is therefore [96]

I =
e

L

X
k

υgz(E) =
e

~L
X
k

∂E(k)

∂k
z(E)→ I =

2e

h

Z ∞
ε(c)
z(E)dE. (A1)

where the sum over k has been converted into 2
R
(L/2π) dk using (∂E(k)/∂k)dk = dE and the factor 2

arises from spin degeneracy.

The last expression can easily be extended to a multi-channel conductor which has more than one

subband carrying a current [96]. Note, generally the number of subbands a system can provide for the

conduction process depends on electron density and thus on the Fermi energy of the electrons [96].

Therefore, defining N(E) to be the number of subbands at a given energy E, the current through the

system reads

I =
2e

h

Z ∞
−∞

N(E) ·z(E)dE. (A2)

If the number of modes N(E) is constant over the energy range µ1 > E > µ2, where µ1 and µ2 are

the electrochemical potentials of reservoir 1 and 2, respectively. And z(E) is assumed to be the Fermi
distribution, then (A2) yields I = (2e/h)N (µ1 − µ2). In an experiment, µ1−µ2 is just the applied voltage
to the conductor, that is eVappl = µ1 − µ2, such that the current may be written as I = (2e2/h)NVappl.
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FIGURE A.1. Dispersion relations for two different parabolic confinements ω0 and 2ω0 (upper and

lower graph, respectively). For a given Fermi energy the number of occupied subbands (denoted by

n) is different for the two confinements. In the case of ω0, five, whereas for 2ω0 only three subbands

are contributing to the conduction mechanism (for the chosen Fermi energy).

Thus the conductance of a ballistic wire with N conducting channels yields

G =
2e2

h
N ≡ 2G0N (A3)

where the conductance quantum G0 ≡ e2/h appears and the total conductance would be just given

by the number of transverse modes in the ballistic conductor. The latter expression is only true if the

probability of an incident electron wave being reflected from any subband is equal to zero, which was

implicitly assumed in the previous discussion. Thus, in order to obtain a general expression for the total

conductance, for each mode i in the conductor a certain transmission coefficient Ti has to be defined.

Therefore, the substitution

N →
X
i

Ti (A4)

has to be performed and thus

G = 2G0
X
i

Ti =
2e2

h

X
i

Ti. (A5)

A.2 Mean free path and phase-coherence length: equal or not?

Consider an electron or charge carrier moving in a perfect crystal. Then it will mainly behave as a

free electron but with a different mass (effective mass). If defects are present the electrons suffer from

scattering. All possible types of defects can be generally subdivided in two categories: static (or elastic)

and dynamic (or inelastic) scatterers.

Static scatterers have no internal degree of freedom, that is, cannot change its state upon scattering.

A vacancy or a dislocation, for example, in a crystal lattice is just a mismatch of neighbouring lattice
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FIGURE A.2. A conducting ring to which the voltage V is applied and the current I driven. The ring

diameter is considerably larger than the mean free path lm. The scatterers are static and randomly

distributed along the ring. If a perpendicular magnetic field
−→
B is applied, the phase-coherence of the

charge carriers moving the upper path and the lower path is preserved as the scatterers are static.

The thin solid black line exemplifies the charge carrier path through the ring.

sites and will remain the same after a collision with a charge carrier. In contrast, dynamic scatterers have

an internal degree of freedom. For example in the case of a lattice vibration (phonon) as a scatterer, a

momentum exchange between electron and phonon is possible. That is, the phonon before and after the

scattering process is not the same. Magnetic impurities are also dynamic scatterers. Upon interacting

with the charge carrier the spin of the impurity might change. Similarly, electron-electron interactions

are also dynamic.

Principally, three possible scattering events are imaginable: (i) the momentum of the electron changes,

(ii) the phase of the electron (wavefunction) changes or (iii) momentum and phase are altered simulta-

neously.

In case (i), the distance that an electron travels before it is changing its momentum due to a collision

is the mean free path lm. Related with lm is the mean free time τm via the expression

lm = υF τm (A7)

where υF is the Fermi-velocity of the electron.

In case (ii), the scattering process is more subtle and for understanding consider the following gedanken-

experiment [63]: a conducting ring connected to two electrode lines as in Fig. A.2 and a voltage applied

across them.

If the ring is without scattering centres, upper and lower path can be regarded as identical, such

that constructive interference due to the definite phase-relationship of each of the charge carriers exist.

Random introduction of static scatterers, lifts the identity of the two paths and the interference may not

be constructive any more. However, since the scatterers are static, a definite phase-relationship between

the two possible paths is still present. That is, the phase-coherence of a charge carrier is preserved [63].

Experimentally this has been confirmed on a metal ring by the application of an external magnetic
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field perpendicular to a ring which size is several hundred times larger than the mean free path [97].

This example shows that the phase-coherence-length lφ can be larger than lm. Similar to lm, the phase-

coherence time is τφ related to lφ.

Now exchange the static by dynamic scatterers as for example by phonons or magnetic impurities. The

phase-relationship between the up- and down-moving electron is no longer defined and varies randomly

with time. An external magnetic field would lead to a variety of constructive and destructive interference

processes which in total would average to zero and therefore in this case one finds lφ ≈ lm. Experimentally,
this has been demonstrated in polycrystalline rings in which dynamic impurities have been introduced

via ion implantation [98]. As impurities manganese defects have been chosen [98] as each of them carries

a magnetic moment, i.e., has a spin degree of freedom. The spin degree of freedom can change due to

scattering with conducting electrons which in turn implies that these impurities are dynamic (inelastic)

scatterers.

Finally, consider a defect-free conductor but with non-negligible electron-electron interaction (Coulomb-

interaction). The electrons scatter off each other, yet none of them can be regarded as stationary due

to the mutual Coulomb-interaction. However, the scattering processes do not lead to a net momentum

change, since any momentum loss of one particular electron will be picked up by another one. Thus,

interestingly, the mean free path is not changing but the phase-coherence between the electrons is lost

at any point in time and therefore lφ < lm.

Depending on the system under investigation, therefore, either lφ > lm or lφ ≈ lm or lφ < lm. For the

cases lφ ≈ lm and lφ < lm one finds similar to (A7) the relation

lφ = υF τφ. (A8)



Appendix B

Interaction constants and spin-charge separation in
Tomonaga-Luttinger liquids

B.1 Interaction constants

In section 3.2.2 and 3.2.3 the Coulomb-interacting electron system of a CNT was described in the frame

of the LL-theory. For this instead of fermionic operators the bosonic phase fields θk and there canonical

momenta Πk, k = c+,c−,s+,s−, were introduced such that the Hamiltonian of the system could be written

in the simple form bH =
~υF
2

X
k

Z h
Π2k + g

−2
k (∂xθk)

2
i
dx. (B1)

The constants gk are the so-called interaction constants for each charge- and spin-mode k and are all

equal to 1 if no interactions are apparent between the fermions. Introducing the Coulomb-interaction

to the system leads to a change of the interaction parameter gc+ which corresponds to the only mode

carrying a charge, therefore gc+ 6= 1. However, although all other modes are in this sense electrically

neutral, their interaction parameters also change as the bosonic fields are by construction to some degree

entangled. In order to see how much these interaction constant deviate from unity it is useful to go a

step back and start with a fermionic description of the interacting electron system in the CNT.

Introducing the 1D fermion (creation) operator ψ(†)pασ(x), where σ denotes for the spin of the elec-

tron, p = ±1 for the two sub-lattices which originate from the two-atomic basis of the graphene-sheet

honeycomb-lattice and the index α = ± for the wavefunction with the Fermi-wavevector ±kF , respec-
tively, the free non-interacting Hamiltonian of the electron system can be written as [15]

bH(fermionic)
free = −~υF

X
pασ

p

Z
ψ†pασ(x)∂xψ(−p)ασ(x) dx. (B1)

If a Coulomb-interaction U(−→r ), −→r = (x, y), is acting between the electrons, then in addition tobH(fermionic)
free the Hamiltonian

bH(fermionic)
C =

1

2

Z
ρ(x)V (x− x0)ρ(x0) dxdx0

has to be taken into account which ascribes for forward scattering processes and implies the LL-like

behaviour [15]. V (x− x0) is the 1D interaction potential and is given by

V (x− x0) =
Z 2πrNT

0

dy

2πrNT

Z 2πrNT

0

U(−→r −−→r 0) dy0

2πrNT
(B2)

where rNT is the radius of the CNT and

ρ(x) =
X
pασ

ψ†pασ(x)ψpασ(x) (B3)
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the 1D electron density [15]. It is noteworthy that bH(fermionic)
C is entirely due to the long-ranged tail of

the Coulomb-interaction. For small distances, that is smaller or equal to the average distance aπ of two

π-electron orbitals of neighbouring C-atoms in the honeycomb-lattice, short-ranged interaction processes

start to be of importance [15]. Thus an additional forward scattering and an backscattering contributionbH(fermionic)
f and bH(fermionic)

b , respectively, to the total Hamiltonian arise. bH(fermionic)
f is of the form

(omitting the arguments of the operators for simplicity)

bH(fermionic)
f = −f

Z X
pαα0σσ0

ψ†pασψ
†
(−p)α0σ0ψ(−p)α0σ0ψpασ dx (B4)

where f ≡ ζfe
2aπ/rNT and the parameter ζf is of the order of magnitude 0.05 [15]. Therefore, f << 1.

And bH(fermionic)
b can be written as

bH(fermionic)
b = b

Z X
pp0ασσ0

ψ†pασψ
†
p0(−α)σ0ψp0ασ0ψp(−α)σ dx (B5)

where b ≡ ζbe
2aπ/rNT ≈ f .

Recall now the bosonized form of the electron system of the CNT, (B1), with the interaction parameters

gk. In section 3.2.2 the interaction parameter of the charge-carrying mode was given as, (3.10),

gc+ ≡ g =
·
1 +

4

π~υF
V (q ≈ 0)

¸−1/2
where V (q) is the Fourier transform of the Coulomb-interaction. Naively, the Coulomb-interaction should

not alter the interaction parameters for the electrically neutral modes gk, k 6= c+. However, short-range
interactions are also apparent such that the interaction parameters gk, k 6= c+, are renormalized to [15]

gk = 1 +
f

π~υF
, k 6= c+. (B6)

The term f/ (π~υF ) is due to f << 1 also much smaller than 1, such that in contrast to the Coulomb-
interaction, the short-range interactions are for most experimental purposes negligible [15]. However, the

backscattering interaction gives rise to the opening of an energy gap. This energy gap is exponentially

small and can be written in terms of temperature as

Tb =
D

kB
e
−π~ υF√

2b (B7)

where kB is the Boltzmann constant and D ≈ 1 eV (c.f. section 3.1.1) [15]. This corresponds to tempera-
tures Tb ≈ 0.1 mK, that is, which is far below the typical temperatures used in most electrical transport
measurements as it is also the case in the present thesis. Therefore, the interpretation of the experimental

data of with the aid of a LL-like electron-system represented by the CNT is appropriate.

B.2 Spin-charge separation

As indicated by the bosonic description of the interacting electron-system of a CNT, expressed by the

four phase-fields, a decoupling of the charge- and spin-degree of freedom of the electrons in a LL-like state



B.2 Spin-charge separation 121

is present. This is also apparent by the existence of four different interaction parameters as discussed in

the first section of the present Appendix. Only the phase-field θc+ describes electrically charged modes

whereas the other three θcc , θss and θs− are denoting electrically neutral modes [15].

With each of the phase-fields a ”plasmon” velocity [15]

υk =
υF
gk

(B8)

is connected which in the case of θss and θs− describes the motion of spin through the system. As

gc+ < gs+ , gs− apparently υc+ > υs+, υs− , that is charge- transport is faster in a LL-like CNT than

spin-transport.

Experimentally, the spin-charge separation has not been reported yet. A way of detection, as proposed

by Egger et al. [15] could be a electrical two-terminal measurement on a CNT contacted by two ferro-

magnetic leads with different magnetization directions. Then the current to through system (normalized

to the current with identical magnetizations) is given by [99]

I(φ)

I(0)
= 1− P 2 tan2(φ/2)

tan2(φ/2) + Y
(B9)

where φ is the angle between the two magnetizations, P the polarization of the ferromagnetic leads

according to the difference in the density of states for up and down spin and Y accounts for spin-mixing

effects.

For non-LL-like samples contacted Y is a constant, but for a LL-like CNT Y and also I(0) will

depend on the applied source-drain voltage Vsd such that (B9) has to be modified. I(0) has in this

case to be renormalized by the power-law suppression factor V γ/2
sd and Y will be diverging towards zero

temperature T and zero Vsd according to [max(eVsd, kBT )]−γ [15]. Although this experiment seems rather

straightforward, a severe bottleneck is found in the exact tunability of the directions of the magnetizations

on a nanoscopic scale and the high accuracy required to detect the effect, as implied by (B9).

However, experiments similar to the one described here has been performed on SWNTs and MWNTs

[58], but the work focused more on the spin-valve-effect than on LL properties of the CNTs which for

MWNTs are itself questionable as discussed in section 3.2.4.
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Appendix C

Constant interaction model

In section 6.1 and 6.2 single-electron effects of a electrically weakly coupled island, either FL-like or LL-

like has been discussed. The energy difference between two groundstates with n+ 1 and n electrons on

the island was given by µ(n+1; {Vl}) = E(n+1, 0; {Vl})−E(n, 0; {Vl}) (see (6.1)). Thus, if, for example,
tunneling through the island containing n electrons in the groundstate, the energy required µ(n+1; {Vl}).
The last expression is of general validity and not restricted to any special electrical properties of the island

itself, yet.

The constant interaction model (CIM) [68] is the simplest model that can be applied in order to

describe the properties of the island. This heuristic model assumes that the interactions between the

particles do no depend on the number of electrons n on the island. This conditions are usually fulfilled

for FL-like, metallic islands.

Recalling that an electron −e added to the island influences image charges δe(i) on the surrounding
electrodes, between each of the electrodes and the island a constant capacitance Ci can be defined.

Therefore the island can be electrically described by a single constant capacitance

C =
X
i

Ci. (C1)

The potential of the island Visland can then be found by noting that it can be expressed by the potentials

Vl of the surrounding electrodes and the total additional charge q on the island Visland = q/C+
P
l αlVl,

where the αl’s are the capacitive coupling constants between each electrode and the island. The energy

required for charging the island with −ne is therefore given by

E(n+ 1) =

Z −ne
0

Visland(q) dq =
(ne)2

2C
− ne

X
l

αlVl. (C2)

Therefore µCIM(n+ 1; {Vl}) ≡ E(n+ 1)−E(n) = (n+ 1
2)e

2/C − ePl αlVl (analogous to the general

case) and finally one finds the energy difference

µCIM(n+ 1; {Vl})− µCIM(n; {Vl}) =
e2

C
(C3)

where e2/2C is also called the Coulomb energy Ec. Obviously, in the CIM Ec does not depend on the

number of charges n on the island, such that the transport regions for groundstate transitions in the

(Vsd vs. Vg)-plane are all equally in size. In section 6.1 and 6.2, this has been assumed for simplicity to

keep the (Vsd vs. Vg)-plane more comprehensible and not to divert from the main effects caused by the

tunneling density of states τ(ε) ∼ εγ of the LL-like island.

As the CIM is based on the assumption of an invariant interaction strength between the electrons

on the island with respect to the number n, it is evident that this simple model cannot be applied to

LL-like islands. These have heavily interacting electron-systems and are extremely sensitive to external
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perturbations. This sensitivity leads to the circumstance that LL-like islands exhibit only collective

excitations [38]. Therefore in order to describe and interpret the electrical transport of electrically weakly

coupled SWNTs a more general description, as it was done in chapter 6, than the CIM has to be

considered.



Appendix D

More grey-scale plots

In section 6.3 I/Vsd- characteristics for different Vg have been presented as grey-scale plots. In Fig. D.1

the corresponding grey-scale plot to the electrode pair (I) with a step-size Vg for of 200 mV. The two

parallel white dotted lines close to zero Vsd correspond to the theoretically predicted width of 4∆0/e ≈
3.6 mV for the currentless band. Only very shallow irregular diamond-like structures are visible (white

dotted as guide for the eye). No significant dark or white spots are apparent indicative for QP tunneling

induced current peaks.

FIGURE D.1. Grey-scale plot of the I/V sd -characteristics for different V g for electrode pair (I) in Fig.

6.11. V g was changed in steps of 200 mV. Dark denotes increasing negative, bright increasing positive

current (depending on V sd ). A currentless band of somewhat larger width than the theoretically

predicted width (indicated by the two parallel dashed lines) of 4∆0/e ≈ 3.6 mV is observed. Some

diamond-like features are visible in outlines (see dotted lines). For better contrast, the ”height-lines”

of the current are also plotted (dashed, dark grey)

The situation depicted in Fig. D.2 is similar to the one in Fig. D.1: a currentless band around zero Vsd
is visible of about 4 mV width. Again no pronounced current peaks are visible. The rhomb-like features

are not well developed and seem to be of irregular shape.
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FIGURE D.2. Grey-scale plot of the I/V sd -characteristics for different V g of electrode pair (II) in Fig.

6.11. The stepsize for V g was 200 mV. Again a currentless band of similar width as the theoretically

predicted width of about 3.6 mV (two parallel dashed lines) is visible. diamond-like structures are

only weakly pronounced and some are indicated by dotted lines. Dark denotes increasing negative,

bright increasing positive current. For better contrast, the current ”height-lines” are also depicted

(dashed, dark grey).

Thus, the experimental data shown here for the electrode pairs (I) and (II), apparently, are similar

to those of the presented samples in section 6.3. In all of them a currentless band is observed and the

irregularity of the diamond-like structure is also confirmed as predicted by the proposed model in sections

6.1 and 6.2. However, no prominent dark or white spots are apparent indicating a suppression of QP

tunneling induced current peaks.



Appendix E

Perturbation approach to the electrical Magnetochiral
Anisotropy

E.1 Ballistic charge transport

In the case of a ballistic conductor, the charge carriers can be regarded to traverse the object without

suffering from any scattering process. If the conductor is chiral, then R = R
³−→
B,
−→
j
´
. Time-reversal

symmetry and invariance of scalar quantities under bT require
bTR³−→B,−→j ´ = R³−−→B,−−→j ´ = R³−→B,−→j ´ (E1)

and thus leading to

R
³−→
B,
−→
j
´

= R0 + α1
−→
B 2 + β1

−→
j 2 + γ11

−→
j 2 ·−→B 2 + χ

D/L
00

−→
j ·−→B (E2)

+o
³−→
j 2p+1 ·−→B 2q+1

´
+ o

³−→
j 2k ·−→B 2r

´
with appropriate coefficients in each of the sums. In order to get the allowed dependences of the resistance,

the parity operation has yet to be applied, yielding

bPR³−→B,−→j ´ = R0 + α1
−→
B 2 + β1

³
−−→j

´2
+ γ11

³
−−→j

´2
·−→B 2 + χ

D/L
00

³
−−→j

´
·−→B (E3)

+o

µ³
−−→j

´2p+1
·−→B 2q+1

¶
+ o

µ³
−−→j

´2k
·−→B 2r

¶
= R

³−→
B,
−→
j
´
.

The terms χD/L00

³
−−→j

´
· −→B and o

µ³
−−→j

´2p+1
·−→B 2q+1

¶
in (E3) seem to be contradictory with the

requirement of invariance R
³−→
B,
−→
j
´
under bP . But bP has also to be applied to the coefficients in (E3). As

the conductor is chiral the coefficients of the terms of odd power in
−→
B and

−→
j change sign under bP , such

that no contradiction is apparent any more. To the lowest order, the symmetry allowed dependences of

the resistance for a chiral ballistic conductor are then given by the expression

R
³−→
B,
−→
j
´
≈ R0 + α1

−→
B 2 + χ

D/L
00

−→
j ·−→B + o

³−→
j 2p+1 ·−→B 2q+1

´
(E4)

where the terms

χ
D/L
00

−→
j ·−→B + o

³−→
j 2p+1 ·−→B 2q+1

´
(E5)

denote the so-called eMChA.
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E.2 Diffusive charge transport

For diffusive electrical transport one has to use the Onsager relation [88] for the electrical conductivity.

Assume σik = σik

³−→
B
´
. Then applying Onsager’s relation leads to

σik
³−→
B
´
= σki

³
−−→B

´
. (E6)

As σik is a component of a tensor, it can be written as the sum of a symmetric part sik and an

asymmetric part aik. Therefore it follows

σik

³−→
B
´
= sik

³−→
B
´
+ aik

³−→
B
´
. (E7)

According to Onsager’s relation one is led to the expression

σik

³−→
B
´

= sik

³−→
B
´
+ aik

³−→
B
´

(E8)

= ski
³
−−→B

´
+ aki

³
−−→B

´
= σki

³
−−→B

´
.

As sik
³−→
B
´
is symmetric, that is sik

³−→
B
´
= ski

³−→
B
´
∀i, k, applying Onsager’s relation one finds

sik

³−→
B
´
= sik

³
−−→B

´
. Consequently, sik

³−→
B
´
only terms with

−→
Bn are allowed where n is an even integer.

aik

³−→
B
´
is an asymmetric quantity, that is aik

³−→
B
´
= −aki

³−→
B
´
∀i, k which implies that aii

³−→
B
´
= 0.

Applying Onsager’s relation here yields aik
³−→
B
´
= −aik

³
−−→B

´
. Therefore, aik

³−→
B
´
can only depend

on
−→
Bm where m is an odd integer. In order to extract the allowed

−→
B -dependences, the parity-reversal

operation as yet to be performed

bPσik ³−→B´ = σik

³ bP−→B´ = σik

³−→
B
´
. (E9)

Then for the symmetric sik
³−→
B
´
and the asymmetric part aik

³−→
B
´
it follows, that both are unaltered

by the the parity-reversal operation and σik
³−→
B
´
contains even as well as odd powers in

−→
B . But the

diagonal elements σii
³−→
B
´
, which describe the longitudinal conductivity, are only determined by the

symmetric part of the conductivity tensor.

In the case of a diffusive chiral conductor, the conductivity tensor σ depends on the current density
−→
j and the magnetic field

−→
B . Writing σ in terms of components yields

σik
³−→
j ,
−→
B
´
= sik

³−→
j ,
−→
B
´
+ aik

³−→
j ,
−→
B
´
. (E10)

Then the Onsager relation requires sik
³−→
j ,
−→
B
´
= ski

³
−−→j ,−−→B

´
and aik

³−→
j ,
−→
B
´
= aki

³
−−→j ,−−→B

´
and the corresponding symmetries of sik

³−→
j ,
−→
B
´
and aik

³−→
j ,
−→
B
´
lead to

sik
³−→
j ,
−→
B
´

= sik
³
−−→j ,−−→B

´
(E11)

aik

³−→
j ,
−→
B
´

= −aik
³
−−→j ,−−→B

´
.
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The asymmetric part aik
³−→
j ,
−→
B
´
, therefore, has to be of the form

aik

³−→
j ,
−→
B
´

= a
(0)
ik + ²

(0)
ik

¯̄̄−→
B
¯̄̄
+ ε

(0)
ik

¯̄̄−→
j
¯̄̄

(E12)

+o
³−→
j 2k ·−→B 2r+1

´
+ o

³−→
j 2p+1 ·−→B 2q

´
and the symmetric part sik

³−→
j ,
−→
B
´
yields

sik
³−→
j ,
−→
B
´

= s
(0)
ik + α

(1)
ik

−→
B 2 + β

(1)
ik

−→
j 2 + κD/Lik,00

−→
j ·−→B (E13)

+o
³−→
j 2p+1 ·−→B 2q+1

´
+ o

³−→
j 2k ·−→B 2r

´
.

As the parity operation requires bPσik ³−→j ,−→B´ = σik

³ bP−→j , bP−→B´ = σik

³
−−→j ,−→B

´
= σik

³−→
j ,
−→
B
´
the

allowed dependences of the asymmetric part of the conductivity tensor in
−→
B and

−→
j reduces to (omitting

higher order terms)

aik
³−→
j ,
−→
B
´
= a

(0)
ik + ²

(0)
ik

¯̄̄−→
B
¯̄̄
+ ζ

(10)
ik

−→
j 2 ·

¯̄̄−→
B
¯̄̄
. (E14)

The symmetric part remains unaltered by bP except for the terms of odd power in
−→
B and

−→
j . But the

conductor is chiral and therefore these terms are conserved as the corresponding coefficients change sign

under bP : exemplified for the linear part as
bPκDik,00 = κLik,00 with κDik,00 = −κLik,00. (E15)

The symmetric part thus can be written as (omitting higher order terms)

sik

³−→
j ,
−→
B
´
≈ s(0)ik + α

(1)
ik

−→
B 2 + κD/Lik,00

−→
j ·−→B + o

³−→
j 2p+1 ·−→B 2q+1

´
. (E16)

discovering the eMChA again.
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Appendix F

Details on the ballistic free electron on a helix model

In the ballistic case the electron on the helix is described by the trial 3D wave-function

eΨn (ρ,ϕ, z) = Cn exp−
µ
ρ− a
d

¶2
exp−

³a
d

³
ϕ− z

b

´´2
(F1)

× exp
µ
inϕ

N

¶
exp

µ
inz

bN

¶
≡ Rn(ρ)Fn(z,ϕ)

For the three-dimensional wavefunctions in the contacts in the symmetrical gauge

Φ
−→
R
l,µ,kz (

−→r ) = Φl,µ,kz
³−→r −−→R´ expÃ i−→r ×−→R

2`2

!
(F2)

is used [100] where
−→
R denotes the position of the center-of-mass of the cyclotron orbit and

Φl,µ,kz (ρ,ϕ, z) =
Cl,µ√
L

µ
ρ√
2`

¶|µ|
L
|µ|
l+|µ|

µ
ρ2

2`2

¶
(F3)

× exp
µ
− ρ2

4`2
+ ikzz + iµϕ

¶
≡ Rl,µ(ρ) exp (iµϕ) exp (ikzz) .

The quantum number l is a positive integer or zero, µ is an integer,
√
2` the cyclotron radius and Lnm is

an associated Laguerre polynomial, with

Cl,µ =

√
l!

` ((l + |µ|)!)3/2
(F4)

The energy of the contact states are therefore given by [101]

El,µ,kz =
~q
m

µ
l |B|+ µB + |µ| |B|+ |B|

2

¶
+
~2k2z
2m

(F5)

with an angular momentum

LzΦl,µ,kz = µ~Φl,µ,kz . (F6)

For the following considerations, it is assumed that the effective mass of the electron is the same in

the contact and on the helix. Then the transmission coefficients Tc→h and Th→c are determined by the

condition that the incident and reflected wavefunctions are matched to the transmitted wavefunctions

at the helix-contact junction (z = 0) [102],[103]. Further the considerations are limited to the case of

low temperatures and contact states centered on the helix position, that is,
−→
R = 0 . This approach

represents already an approximation, as charge accumulation effects in the vicinity of the junction have

been neglected.
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F.1 Transmission from helix to contact

The boundary conditions for incident and reflected wavefunctions yield

Rn(ρ)Fn(0,ϕ) + rnRn(ρ)Fn(0,ϕ) =
X
l,µν

tn,l,µνRl,µν (ρ) exp (iµνϕ) (F7)

and

iknRn(ρ)Fn(0,ϕ) + 2
a2

d2
ϕ

b
Rn(ρ)Fn(0,ϕ) (F8)

−iknrnRn(ρ)Fn(0,ϕ)− 2a
2

d2
ϕ

b
rnRn(ρ)Fn(0,ϕ)

=
X
l,µν

tn,l,µν (ikzν )Rl,µν (ρ) exp (iµνϕ)

with kn ≡ n
bN and rn the reflection- and tn,l,µν transmission-probability of the incident wavefunctioneΨn (ρ,ϕ, z).

Multiplying (F7) with Rl0,µν0 (ρ) exp (−iµν0ϕ), integrating over ρ and ϕ, and use of orthonormality

yields

Rn,l0,µν0

Ωn,µν0

®
+ rnRn,l0,µν0Ωn,µν0 =

X
l,µν

tn,l,µνδl,l0δν,ν0 . (F9)

Therefore one obtains

rn = tn,l0,µν0
1

Rn,l0,µν0Ωn,µν0
− 1 (F10)

where

Rn,l0,µν0 ≡

Rn(ρ)|Rl0,µν0 (ρ)

®
(F11)

and

Ωn,µν0 ≡ hFn(0,ϕ) | exp (−iµν0ϕ)i (F12)

are the expectation values for the radial and the angular part of the wave-functions, respectively.

Similarly for (F8) it follows

ikn(1− rn)Rn,l0,µν0Ωn,µν0 + 2
a2

d2
1

b
(1− rn)Rn,l0,µν0Ωn,µν0ϕ = tn,l0,µν0 ikzν0 (F13)

with

Ωn,µν0 (ϕ) ≡ hFn(0,ϕ) | ϕ | exp (−iµν0ϕ)i (F14)

The expectation values Ωn,µν0 and Ωn,µν0 (ϕ) can be determined as
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Ωn,µν0 =

2πZ
0

exp−
·³a
d
ϕ
´2
+ i
³
µν0 −

n

N

´
ϕ

¸
dϕ (F15)

= exp−
µ
d

2a

³
µν0 −

n

N

´¶2 2πZ
0

exp−
µ
a

d
ϕ+ i

d

2a

³
µν0 −

n

N

´¶2
dϕ

=
d

a
exp−

µ
d

2a

³
µν0 −

n

N

´¶2 2π a
dϕ+i

d
2a(µν0− n

N )Z
i d2a (µν0− n

N )

exp−u2du

=

√
πd

2a
exp−

µ
d

2a

³
µν0 −

n

N

´¶2
×
·
erf

µ
2π
a

d
ϕ+ i

d

2a

³
µν0 −

n

N

´¶
− erf

µ
i
d

2a

³
µν0 −

n

N

´¶¸
≈
√
πd

2a
exp−

µ
d

2a

³
µν0 −

n

N

´¶2
where for the last step d << a and the strong rising properties in the argument of the error-function

erf(x) has been used.

In analogy one finds

Ωn,µν0 (ϕ) = i
∂

∂µν0
Ωn,µν0 (F16)

≈ i
∂

∂µν0

√
πd

2a
exp

Ã
−
µ
d

2a

³
µν0 −

n

N

´¶2!

= −i2√π
µ
d

2a

¶3 ³
µν0 −

n

N

´
exp

Ã
−
µ
d

2a

³
µν0 −

n

N

´¶2!
.

The ratio of the two expectation values is therefore given by

Ωn,µν0 (ϕ)

Ωn,µν0
≈ −i

2
√
π
¡
d
2a

¢3 ¡
µν0 − n

N

¢
exp

³
− ¡ d2a ¡µν0 − n

N

¢¢2´
√
πd
2a exp

³
− ¡ d2a ¡µν0 − n

N

¢¢2´ (F17)

= −i2
µ
d

2a

¶2 ³
µν0 −

n

N

´
.

Combining (F10), (F13) and utilizing (F17) leads to the transmission probability for eΨn (ρ,ϕ, z)
tn,l0,µν0 = 2Rn,l0,µν0Ωn,µν0

kn − 1
b

¡
µν0 − n

N

¢
kzν0 + kn +

1
b

¡
µν0 − n

N

¢ . (F18)
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As the current transmission coefficient Th→c from the helix into the contact is given by the summation

over all states (wavefunction) involved in the current transport one finds

Th−→c =
X

EF=El,µ,kzν

¯̄̄̄
¯2 Rn,l,µν® Fn,µν® kn − 1

b

¡
µν0 − n

N

¢
kzν0 + kn +

1
b

¡
µν0 − n

N

¢ ¯̄̄̄¯
2

(F19)

where the accents have been dropped for simplicity and use of the circumstance has been made, that at

low temperatures mainly states at the Fermi energy EF are contributing to the current transport.

The sum can be reduced by utilizing n = nF and that Rn,l,µ and Ωn,µν0 are strongly peaked for l = 0,

and eµ = nF
N , respectively,

Th−→c ≈ 4
¯̄̄
RnF ,0,nFN

ΩnF ,nFN

¯̄̄2Ã knFekz + knF
!2
. (F20)

From energy conservation the wavevector component ekz in the contact is deduced to be
ekz ≡ ±

r
2m

~2

µ
EF − ~q

m

µB + |µ| |B|+ |B|
2

¶1/2
(F21)

≈ kF

µ
1 +

~q
2mEF

eµB + |eµ| |B|+ |B|
2

¶
= kF

µ
1 +

~q
4mEF

nFB + |nF | |B|+N |B|
N

¶
with kF ≡ ±

q
2mEF
~2 being the contact Fermi wavevector at zero magnetic field.

F.2 Transmission from contact to helix

Consider a state (l, µ, kz) in the contact incident on the helix at z = 0. Using the same boundary

conditions as in the case for Th→c one obtains

Rl,µ(ρ) exp (iµϕ) +
X

l0,µ0,k0z

r
l0,µ0,k0z
l,µ,kz

Rl0,µ0(ρ) exp (iµ
0ϕ) = tn,l,µRn(ρ)Fn(0,ϕ) (F22)

and

ikzRl,µ(ρ) exp (iµϕ) (E23)

+
X

l0,µ0,k0z

r
l0,µ0,k0z
l,µ,kz

(−ik0z)Rl0,µ0(ρ) exp (iµ0ϕ)

= tn,l,µ

µ
ikn + 2

a2

d2
ϕ

b

¶
Rn(ρ)Fn(0,ϕ)

Multiplying with Rn(ρ)F ∗n(0,ϕ), integrating over ρ and ϕ, using the orthonormality properties of the

wavefunctions yields

Rn,l,µΩ
∗
n,µ +

X
l0,µ0,k0z

r
l0,µ0,k0z
l,µ,kz

Rn,l0,µ0Ω
∗
n,µ0 = tn,l,µ (F24)
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and

ikzRn,l,µΩ
∗
n,µ −

X
l0,µ0,k0z

r
l0,µ0,k0z
l,µ,kz

(ik0z)Rn,l0,µ0Ω
∗
n,µ0 =

½
ikn + 2

a2

d2
1

b
hϕi
¾

(F25)

where rl
0,µ0,k0z
l,µ,kz

and tn,l,µ are the corresponding reflection and transmission coefficients of the incident

contact wavefunction Φl,µ,kz (ρ,ϕ, z). The expectation value hϕi is given by

hϕi ≡ hFn(0,ϕ) | ϕ | Fn(0,ϕ)i . (F26)

Conservation of angular momentum conservation leads to rl
0,µ0,k0z
l,µ,kz

= r
l0,µ0,k0z
l,µ,kz

δµ,µ0 and therefore r
l0,µ0,k0z
l,µ,kz

=

r
l0,k0z
l,µ,kz

. Additionally, due to the considerable difference in the spatial extension of the wavefunction in the

contact and the helix wavefunction it follows rl
0,k0z
l,µ,kz

δl,l0 = r
k0z
l,µ,kz

. Finally, energy conservation requires

|kz| = |k0z|. Therefore the sum in the latter two equations can be reduced to

Rn,l,µΩ
∗
n,µ + rl,µ,kzRn,l,µΩ

∗
n,µ = tn,l,µ (F27)

and

ikzRn,l,µΩ
∗
n,µ − rl,µ,kz ikzRn,l,µΩ∗n,µ = tn,l,µ

½
ikn + 2

a2

d2
1

b
hϕi
¾

(F28)

Evaluating hϕi,

hϕi =

2πZ
0

ϕ exp−
³√
2
a

d
ϕ
´2
dϕ (F29)

= − 1

2
¡√
2ad
¢2 ·exp−8π2 ³ad´2 − 1

¸

=

µ
d

2a

¶2 ·
1− exp−8π2

³a
d

´2¸
≈

µ
d

2a

¶2
and noting that Rn,l,µ is strongly peaked for l = 0 for all n, µ one finally obtains

Rn,0,µΩ
∗
n,µ + rl,µ,kzRn,0,µΩ

∗
n,µ = tn,l,µ (F30)

and

ikzRn,0,µΩ
∗
n,µ − rl,µ,kz ikzRn,0,µΩ∗n,µ ≈ tn,l,µ

½
ikn +

1

2b

¾
. (F31)

The combination of the last two equations yields for the transmission coefficient of the incident contact

wave

tn,l,µ = Rn,0,µΩ
∗
n,µ

i2kz£
i (kn + kz) +

1
2b

¤ . (F32)
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Since Tc−→h =
P
EF=El,µ,kz

|tn,l,µ|2 , use of n = nF ,and that Ωn,µν0 is strongly peaked at eµ = nF/N ,
the current transmission coefficient from contact into helix is found to be

Tc−→h ≈
¯̄̄D
RnF ,0,

nF
N

ED
FnF ,

nF
N

E¯̄̄2 4 ekz2³ ekz + kn´2 + 1
4b2

. (F33)

The total current transmission coefficient T is therefore

T = Th−→cTc−→h (F34)

≈ 4
¯̄̄
RnF ,0,

nF
N
ΩnF ,

nF
N

¯̄̄2Ã knFekz + knF
!2

×
¯̄̄
RnF ,0,

nF
N
ΩnF ,

nF
N

¯̄̄2 4 ekz2³ ekz + kn´2 + 1
4b2

= 16
¯̄̄
RnF ,0,nFN

ΩnF ,nFN

¯̄̄4 ekz2k2nF³ ekz + knF´4 + 1
4b2

³ ekz + knF´2
Assuming for b typical values that can be found for CNTs (b . 1 nm) and the wavevectors knF , ekz to

be of the order of magnitude of a few Å−1, T can be expressed as

T ≈ 16
¯̄̄D
RnF ,0,nFN

ED
FnF ,nFN

E¯̄̄4 ekz2k2nF³ ekz + knF´4 . (F35)
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