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Radial Elasticity of Multiwalled Carbon Nanotubes
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We report an experimental and a theoretical study of the radial elasticity of multiwalled carbon
nanotubes as a function of external radius. We use atomic force microscopy and apply small indentation
amplitudes in order to stay in the linear elasticity regime. The number of layers for a given tube radius is
inferred from transmission electron microscopy, revealing constant ratios of external to internal radii. This
enables a comparison with molecular dynamics results, which also shed some light onto the applicability
of Hertz theory in this context. Using this theory, we find a radial Young modulus strongly decreasing with
increasing radius and reaching an asymptotic value of 30� 10 GPa.
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The exceptional mechanical, electrical, and thermal
properties [1–8] of carbon nanotubes (CNTs) have at-
tracted great scientific and technological interest. CNTs
have cylindrical symmetry with axial mechanical proper-
ties characterized by the strong in plane covalent C-C
bond. The strength of this bond gives rise to an extraordi-
nary axial stiffness, as pointed out by several experimental
[1,9,10] and theoretical studies [7,8,11] finding values for
the axial Young modulus of about 1 TPa. In graphite, the
C11 in plane elastic constant is 1.06 TPa, while the per-
pendicular elastic constant C33 is only 36 GPa [7].
Similarly the radial Young modulus of CNTs is expected
to be much smaller than the axial one. Evidence for the
softness of CNTs in the radial direction has been reported
in experiments under hydrostatic pressure [12], where a
critical pressure of only 2 GPa has led to the collapse of
single-walled CNTs with a radius of 0.7 nm. Achieving a
fundamental understanding of the radial deformability of
CNTs is important for applying them in nanoelectrome-
chanical and nanoelectronic systems. For example, the
radial deformation of CNTs may strongly affect their
electrical properties [3,13–16]. However, our quantitative
understanding of the radial elasticity of CNTs is so far
based on studies performed on only one tube, with an
unknown number of layers, and using deformations up to
the nonlinear regime [17–20].

In principle, the simplest way to measure the radial
elasticity of CNTs would be to indent an atomic force
microscope (AFM) tip into a NT adsorbed at a surface
and to measure force vs indentation curves. However, in
practice, such measurements are very challenging, since in
order to stay in the linear elastic regime, one has to
measure forces of a few nanonewtons vs displacements
of a few Å. Some authors have proposed an alternative
AFM based method to investigate the radial elasticity of
CNTs [17]. While scanning the tip across the sample, the
authors vertically vibrate the cantilever in noncontact or
tapping mode with amplitudes in the range of several
hundreds of Å and with the turning point situated a few
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Å above the sample. Because of the large amplitudes, a
considerable fraction of the signal arises from the
van der Waals forces acting between the tip and the tube,
and only a small part comes from the elastic properties of
the tube. Therefore in these experiments in order to extract
quantitative results on the radial deformation of a CNT it is
necessary to evaluate the van der Waals forces taking the
cantilever, tip, and sample geometry into account, which is
far from trivial [21].

Here, we present quantitative measurements of the radial
elasticity of 39 multiwalled CNTs with external radii rang-
ing from 0.2 to 12 nm and having a constant ratio of
external to internal radii of Rext=Rint � 2:2� 0:2. We
underline that the NT with Rext � 0:2 nm is most likely a
single-walled NT. By means of modulated nanoindentation
with an AFM [22], we find that the radial stiffness strongly
increases with decreasing external diameter. The radial
Young modulus Erad is extracted from the experimental
results by applying the Hertz model. Erad is found to
decrease to an asymptotic value of 30 GPa for larger tube
sizes. We also perform molecular dynamics (MD) simula-
tions with empirical C-C potentials to mimic the experi-
ments. Force-indentation curves obtained by the
simulations indicate a similar trend in Erad�Rext�.

The multiwalled CNTs are produced by chemical vapor
deposition (CVD) using acetylene as carbon feedstock
[23]. A drop of an alcohol suspension of the obtained
CNTs is deposited onto a silicon surface and the solvent
is allowed to evaporate at room temperature. In this way,
the CNTs are adsorbed on the Si substrate with their
principal axis parallel to it. The CVD production method
generates CNTs with Rext=Rint � 2:2� 0:2, as obtained
from a large number of measurements with transmission
electron microscopy (TEM) (see inset of Fig. 1). The
morphology and the mechanical properties of CNTs have
been measured with an AFM [24] operating in contact
mode in ambient conditions and equipped with commercial
SiN cantilevers with a tip radius of typically 35 nm.
Normal cantilever spring constants, klev, have been care-
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FIG. 1. Experimental normal contact stiffness vs normal in-
dentation force F for a 3 nm tube radius. Errors presented here
are due to mean errors on the detection signal dF [28], taking
into account the uncertainty on the cantilever stiffness.
Experimental data are fitted with Eqs. (1) and (2). In the inset
we show Rext=Rint as a function of Rext, as obtained by TEM.
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fully calibrated and typical values were about 46 N=m. For
each NT, the tip radius has been explicitly determined in
two ways: first, by using the equation Rtip � w2=�16RNT�,
where RNT is the tube radius inferred from its apparent
height and w is its apparent width; second, by imaging the
tip with a scanning electron microscope. Both methods
yielded consistent results.

MD simulations are performed by modeling the AFM tip
as a rigid continuous sphere and the NT by atoms interact-
ing through an empirical potential. Forces between carbon
atoms are derived from a two-body pair energy plus a
three-body angular penalty for the covalent energy (intra-
layer energy), as developed by Marks [25], and from a
truncated Lennard-Jones potential for the interlayer en-
ergy, as applied by Lu [7]. The free potential parameters
are fitted on the bulk graphite elastic constants, C11, C12,
and C33, the cohesive energy, and the two lattice constants.
CNTs are built with graphene sheets spaced by an interwall
distance as close as possible to the graphite interlayer
distance, the chirality being a free parameter. Subse-
quently, the CNTs are compressed between the rigid sphere
and a rigid plane using short range, purely repulsive po-
tentials for both interactions. The two ends of the NTs are
frozen. The NT length and the sphere radius are, respec-
tively, fixed at 20 and 12 nm. In all cases studied, the
largest diameter of the contact area is smaller than
1.4 nm. Technically, the sphere is slowly moved against
the NT, while the kinetic energy is periodically removed.
Expressed in the usual MD units (m.a.u., eV, and Å), the
time step is 0.4 and the sphere velocity is equal to or lower
than 2� 10�5 �A per time step.
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Normal modulated nanoindentation consists of indent-
ing an AFM tip in a sample up to a fixed distance while
small oscillations are applied to the sample. Oscillations
and indentation are colinear, normal to the substrate and to
the NT long axis. The amplitude of the oscillations is
chosen very small, 1.3 Å in our case, in order to remain
in the sticking regime. In this amplitude range and experi-
mental geometry, the normal force F required to move
vertically the NT’s substrate by a distance D with respect
to the cantilever support coincides with the force needed to
elastically stretch two springs in series [26,27]: the canti-
lever, with stiffness klev, and the tip-sample contact, with
stiffness kcont. If D is the total normal displacement of the
NT’s substrate, i.e., D is equal to cantilever bending plus
tip and NT normal deformation, and F is the total normal
force, this configuration allows the measurement of the
total stiffness ktot at each load, defined by the relation

dF=dD � ktot � �1=klev � 1=kcont�
�1: (1)

Since klev is known, a measurement of dF=dD at differ-
ent normal loads leads to the value of kcont as a function of
F [28]. Figure 1 shows the results of the measurement of
kcont�F� for a NT with a radius of 3 nm. F � 0 nN corre-
sponds to the cantilever being unbent. The fact that the tip
and the sample remain in contact at negative external loads
indicates the presence of an adhesive force.

By integrating the equation dF � kcont � dz, where z is
the indentation of the tip in the NT [29], we obtain F vs
indentation z from the experimental curves kcont�F�. The
result is shown in Fig. 2(a) for NT radii from 0.2 to
5.25 nm. If we call F�z�=z the radial stiffness of the NT,
Fig. 2(a) indicates that the radial stiffness increases when
the tube radius is decreasing for any value of z in the range
explored by the experiment. Figure 2(b) presents the nor-
mal force vs the indentation distance obtained by the
simulations and with Rext=Rint kept close to the experimen-
tal value for CNTs with 2 to 6 layers. The respective NT
external radii are 0.61, 1.22, 1.82, 2.43, and 3.65 nm, while
the ratios between external and internal radii are kept
constant and equal to 2.2. In agreement with experiment,
the nanotubes radial stiffness also increases when its radius
decreases, and again in agreement this effect is less pro-
nounced for larger NT radii. Compared to the results of
Fig. 2(a), normal forces at equivalent indentation distances
are typically 1 order of magnitude lower in the simulation.
This is mainly attributed to the fact that the tip radius in the
experiment is a factor of 2 larger than the sphere radius in
the simulation.

We can extract the radial CNT Young modulus from
kcont vs F measurements by modeling the contact between
the AFM tip and the CNT with the Hertz model [13,17,18].
We underline that the extracted Erad is therefore the radial
linear elasticity. The Hertz model predicts a 3=2 power law
dependence of F on z, which we indeed observe in our
experiments [see Fig. 2(a)]. From the calculations, we find
the 3=2 power law for filled CNTs, while there are devia-
2-2
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FIG. 3. Experimental values of the radial Young modulus of
CNTs as a function of Rext as obtained from normal modulation
experiments. Error bars correspond to mean errors on tubes of
the same diameter. Errors due to the fit of kcont vs F are included
in the symbol size.
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FIG. 2. (a) Normal force as a function of indentation for NTs
of different radii, obtained by the integration of experimental
1=kcont vs F curves using the trapeze method. (b) Theoretical
normal force as a function of indentation for NTs of different
radii (different number of layers), obtained by simulating the
indentation of a rigid sphere in a NT.
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tions from F / z3=2 for hollow NTs with the cross sections
used in experiment [Rext=Rint � 2:2; see Fig. 2(b)]. We
attribute the deviations to the fact that the calculations
have been performed for technical reasons with a smaller
tip radius than the one in the experiment. This suggests that
our experiment is just at the limit where the Hertz model
might be applied, whereas the size of the contact in the
simulations falls below this limit.

Under the assumptions of standard elasticity theory, the
Hertz model gives the dependence of the indentation dis-
tance z vs the normal force F between two elastic solids in
contact [30]. Although very sophisticated extensions of
this model were developed to include the effect of the
adhesion at low external forces [31], in the context of
this work it suffices to use the first level approximation,
consisting of an additive correction of the normal force F.
We consider the contact between a sphere and a cylinder
(corresponding to the tip and the NT), and we include the
adhesive force Fadh, which is experimentally determined.
The Hertz theory gives
17550
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�, where �1;2

and E1;2 are, respectively, the Poisson ratios and radial
Young moduli of the tip and NT. � is a coefficient that
takes the geometrical aspect of the contact area into ac-
count [32]. kcont vs F (as in Fig. 1) is then fitted with
Eq. (2), the Young modulus E2 � Erad being the only
free fit parameter for each NT. The elastic constants of
the SiN tip are �1 � 0:27 and E1 � 155 GPa [33]. The
Poisson ratio of the NT is taken as �2 � 0:28, a mean value
of common materials. Obviously, any reasonable errors on
�2 would have only a minor impact on the extracted Erad

and even less so on the variation of the modulus with the
NT radius.

The obtained values of Erad as a function of the CNT’s
external radius are reported in Fig. 3. The radial Young
modulus, as previously observed for the radial stiffness,
increases when decreasing the NT radius. More precisely,
Erad increases sharply for Rext smaller than 4 nm, while it is
almost constant and equal to about 30� 10 GPa for Rext

between 4 and 12 nm. This last value is, within the experi-
mental error, equal to the Young modulus of graphite along
its c axis, Egraphite � 36 GPa [34]. For the NTs studied in
this work, Rext is proportional to Rint and both are propor-
tional to the number of layers since the distance between
layers is approximately constant [7]. Thinking of the elas-
tic energy necessary to enroll a plane, we could deduce that
the radial rigidity and hence Erad of a NT should increase
by increasing the number of layers and by decreasing the
internal radius. This is confirmed by measurements of
radial deformations of NTs due to van der Waals forces
2-3
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between the tube and the substrate [35,36]. In both these
studies, the radial deformation increases with the radius for
single-walled NTs and decreases with the number of
layers. Our experiments show that, for small Rint, Erad

increases sharply by decreasing Rint; we conclude that in
this size range the radial rigidity is controlled by the
magnitude of Rint, whereas the number of layers plays a
minor role. This result is in agreement with a previous
theoretical study [7] that shows that the elastic properties
of a NT with Rint � 0:34 nm do not change by increasing
the number of layers as long as the interlayer distance is
fixed to 0.34 nm, i.e., the distance between planes in
graphite. A similar finding is also obtained in the simula-
tions of Ref. [36], where the radial deformation of a single-
walled NT is the same of a multiwalled NT when the radius
of the first one is equal to Rint of the second one. For large
Rint, our experiments show that Erad is almost constant.
This could mean that the effect due to the increase of Rint is
counterbalanced by the increase of the number of layers,
up to the point at which the NT’s properties reach asymp-
totically those of graphite. We believe that the behavior
shown in Fig. 3 is not restricted to NTs with Rext=Rint � 2,
but it is expected for other ratios larger than 1 since the
asymptotic value corresponds to E of graphite.

The radial stiffness of multiwalled CNTs has been
investigated experimentally by Yu et al. [17] and by Shen
et al. [18]. In both cases, one NT with an unknown number
of layers is compressed, the maximum indentation distance
being larger than 40% of the initial diameter. In Ref. [17],
the force vs indentation distance curves are obtained
through a model of the tip-NT van der Waals forces.
By interpreting these curves with the Hertz model, they
find, for a NT with a diameter of 8 nm, a radial Young
modulus between 0.3 and 4 GPa, which is roughly 1 order
of magnitude lower than our results for NTs of similar
diameters. This discrepancy can be ascribed to a difference
in the number of graphene layers forming the NT, which
is plausible since the NT preparation techniques are differ-
ent. The radial elastic modulus of the NTs obtained
in Ref. [18], where the tubes are deformed up to the
nonlinear regime, is hardly comparable to our findings
since its definition differs notably from the one exposed
above.

In summary, we measured the radial stiffness and Young
modulus of carbon nanotubes. They steeply decline with
increasing radii, until the Young modulus takes on an
asymptotic value of 30� 10 GPa for CNTs with Rext >
5 nm. The experiments were performed with modulated
nanoindentation and on statistically significant amounts of
CNTs with well-defined external to internal radii. This
trend is very well reproduced by MD simulations.
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