Ansprechpartner

Dr. Peter Wahl
Telefon:+49 151 1679-0351

Originalpublikation

Wahl, Peter et al.
Real-Space Imaging of the Atomic-Scale Magnetic Structure of Fe1+yTe

Verwandte Artikel

Ladungsdichtewellen verbessern das Verständnis des widerstandslosen Stromtransports und könnten ein ungewöhnliches Zusammenspiel von supraleitenden un

Konstruktiver Konflikt im Supraleiter

17. August 2012

Ladungsdichtewellen verbessern das Verständnis des widerstandslosen Stromtransports und könnten ein ungewöhnliches Zusammenspiel von supraleitenden und magnetischen Materialien erklären [mehr]
Magnetische Wechselwirkungen könnten bewirken, dass manche Supraleiter Strom schon bei relativ hohen Temperaturen verlustfrei leiten

Magnetismus kann Widerstand brechen

21. Dezember 2009

Magnetische Wechselwirkungen könnten bewirken, dass manche Supraleiter Strom schon bei relativ hohen Temperaturen verlustfrei leiten [mehr]

Das atomare Bild des Magnetismus

Mit der genauen Analyse magnetischer Strukturen wird es möglich, die Natur der Hochtemperatursupraleiter zu ergründen

31. Juli 2014

Supraleiter wecken viele Hoffnungen, besonders bei den Materialien, die bereits bei recht hohen Temperaturen ihren elektrischen Widerstand verlieren – ob für besonders leistungsfähige Bildgebungsverfahren in der Medizin, für die Energieversorgung oder für Magnetschwebebahnen in der Verkehrstechnik. Hochtemperatursupraleiter, die den Namen verdienen, könnten viele Anwendungen finden. Doch Ihre Faszination steht in keinem Verhältnis dazu, wie rätselhaft ihre Natur noch ist; das behindert bisher die Suche nach widerstandslosen Leitern für praxisnahe Temperaturen. Wissenschaftler des Max-Planck-Instituts für Festkörperforschung aus Stuttgart und Augsburg leisten einen Beitrag, die Funktionsweise von eisenbasierten Supraleitern und die Rolle des Magnetismus dabei näher zu verstehen. Sie haben zum ersten Mal die magnetische Struktur eines sogenannten stark korrelierten Elektronensystems, hier von Eisentellurid, auf atomarer Skala abgebildet. Zuvor gab nur die Neutronenstreuung Auskunft über die magnetische Struktur, die aber ein ungenaues Bild lieferte. Eisentellurid ist eine Muttersubstanz des supraleitenden Eisentelluridselenids. Die Forscher hoffen jetzt, die Methode auch auf Materialien, die sowohl supraleitende als auch magnetische Eigenschaften zeigen, anwenden zu können.

<p>Magnetische Ordnung von Eisentellurid, abgebildet mit einem Tieftemperatur-Rastertunnelmikroskop. Der vergr&ouml;&szlig;erte Abschnitt zeigt die at Bild vergrößern

Magnetische Ordnung von Eisentellurid, abgebildet mit einem Tieftemperatur-Rastertunnelmikroskop. Der vergrößerte Abschnitt zeigt die atomare Struktur.

[weniger]

Stoffe wie die Kupferoxid-Keramiken oder die Eisen-Arsen-Verbindungen gelten als Hochtemperatursupraleiter: Sie müssen nicht ganz so stark gekühlt werden wie andere Stoffe, um in den supraleitenden Zustand überzugehen. Warum ist das so? Bislang existieren Hypothesen, aber keine gesicherte Beschreibung der genauen Vorgänge. „Eine zentrale Frage, die sich viele Forschungsgruppen stellen, ist die nach dem Verhältnis zwischen magnetischen und supraleitenden Eigenschaften der Materialen“, sagt Peter Wahl vom Max-Planck-Institut für Festkörperforschung, „können beide Effekte an ein und derselben Stelle auftreten? Oder schließen sie sich gegenseitig aus?“ Physiker halten es für möglich, dass die magnetischen Eigenschaften der Stoffe gar Ursache für ihre Supraleitfähigkeit sind.

Um das zu überprüfen, wird schon lange nach einem Verfahren gesucht, die magnetischen Strukturen in dieser Art Systemen, den stark korrelierten Elektronensystemen, Atom für Atom zu analysieren. Die Methode der Neutronenstreuung ist bisher das Mittel der Wahl für Untersuchungen der magnetischen Ordnung, allerdings lieferte sie nur räumlich gemittelte Einblicke in die magnetische Struktur und konnte keine Genauigkeit auf atomarer Skala erreichen.

Jetzt bedienten sich die Max-Planck-Forscher aus Stuttgart eines sogenannten spin-polarisierten Rastertunnelmikroskops, das die Orientierung des Elektronenspins, also des magnetischen Moments, an einem einzelnen Atom abbilden kann. Die Methode ist nicht neu, wurde bisher allerdings nur auf metallische Oberflächen und Nanostrukturen angewendet. Allerdings war bisher nicht ganz klar, ob sich mit der Methode auch die magnetische Strutur eines stark korrelierten Systems wie des Eisentellurids aufklären ließe. Denn die oberste Schicht dieses Materials besteht aus Tellur, einem Element, das selbst nicht magnetisch ist.

Die Wissenschaftler zeigten nun, dass das spin-polarisierte Rastertunnelmikroskop trotz der äußeren Tellurschicht auch auf stark korrelierte Elektronensysteme anwendbar ist. Das darunter liegende Eisengitter hat wohl einen zu großen Einfluss. In der Aufnahme des Rastertunnelmikroskops sind deutlich schmale Längsstreifen zu erkennen, die aus der antiferromagnetischen Ordnung im Eisentellurid resultieren. Innerhalb der Streifen sind alle magnetischen Momente gleich orientiert, auf dem daneben liegenden Streifen entgegengesetzt.

Eine experimentelle Herausforderung bestand darin, die Spitze des Mikroskops für die spin-polarisierten Untersuchungen zu magnetisieren. Für Studien an Nanostrukturen auf Oberflächen erreichten Forscher dies vor allem, indem sie die Spitze des Mikroskops erhitzten und mit einem magnetischen Material bedampften. Um dieses aufwändige Verfahren zu umgehen, behalfen sich die Wissenschaftler eines Tricks: Sie sammelten  mit der Spitze des Mikroskops einzelne Eisenatome auf, die sich auf der Oberfläche des untersuchten Eisentellurids befinden, und magnetisierten die Spitze auf diese Weise.

Einen interessanten Fund machten die Forscher bei der Temperatur, die nötig ist, damit sich die antiferromagnetische Struktur ausbildet. Im Experiment lag diese bei ungefähr minus 227 Grad Celsius, rund 20 Grad unter der normalerweise notwendigen Temperatur. Der Grund dafür liegt darin, dass die Forscher im Experiment nur die Oberfläche des Eisentellurids betrachteten. Im Vergleich zu Eisentellurid-Lagen aus der Mitte des Kristalls fallen hier die Wechselwirkungen mit einer darüber liegenden Atomschicht weg. Folglich können sich die magnetischen Momente in ihrer Ordnung nicht so gut gegenseitig stabilisieren – die magnetische Struktur bildet sich erst bei einer niedrigeren Temperatur.

Außerdem stellte die Forschungsgruppe um Peter Wahl fest, dass die magnetische Ordnung bei einem höheren Anteil von Eisenatomen komplexer wird: Die Längsstreifen lösen sich teilweise auf und werden von Querstreifen überlagert. Anscheinend bringen die überschüssigen Atome und ihre magnetischen Momente die magnetische und kristalline Ordnung durcheinander. „Hier gibt es noch viel Forschungsspielraum“, sagt Peter Wahl, „ich glaube, dass sich in nächster Zeit ein richtiger Boom entwickeln wird, Gruppen werden an anderen, supraleitenden Materialien ähnliche Experimente durchführen.“ Das Verständnis der Eigenschaften solcher Stoffe wäre der erste Schritt zu effizienterer und irgendwann vielleicht sogar alltagstauglicher Supraleitertechnologie.

PH/MMG

 
loading content