Corresponding author

Niels Ohmer

Max Planck Institute for Solid State Research

References

1.
Ohmer, N.; Fenk, B.; Samuelis, D.; Chen, C.-C.; Maier, J.; Weigand, M.; Goering, E.; Schütz, G.
Phase evolution in single-crystalline LiFePO4 followed by in-situ scanning X-ray microscopy of a micrometre-sized battery
2.
Zhu, C.; Weichert, K.; Maier, J.
Electronic Conductivity and Defect Chemistry of Heterosite FePO4
3.
Weichert, K.; Sigle, W.; van Aken, P.A.; Jamnik, J.; Zhu, C.; Amin, R.; Acartürk, T.; Starke, U.; Maier, J.
Phase Boundary Propagation in Large LiFePO4 Single Crystals on Delithiation

Department "Physical Chemistry of Solids"

Phase evolution in single-crystalline LiFePO4 followed by in-situ scanning X-ray microscopy of a micrometer-sized battery

Authors

N. Ohmer, B. Fenk, D. Samuelis, C.-C. Chen, M. Weigand1, E. Goering1, G. Schütz1, and J. Maier

1Max Planck Institute for Intelligent Systems

Departments

Physical Chemistry of Solids (Joachim Maier)

We built a micrometer-sized all-solid-state thin film battery to follow in-situ the (de)lithiation mechanism of single crystalline LiFePO4 along the fast (010) orientation using scanning transmission X-ray microscopy. The starting point of phase transformation is dictated by the respective conductivities reflecting the defect chemical situation, while the growth pattern of both LFP and FP was clearly found to be dominated by elastic effects rather than being transport controlled.

Among the candidates for electrodes in future Li-based batteries, LiFePO4 (LFP) is one of the most important and most frequently studied ones. LFP belongs to the class of phase transformation cathodes (phase transformation to FePO4 (FP)). Nevertheless, there is still an extensive debate on the mechanism of the transformation. This is mainly due to the lack of in-situ observations with appreciable space and time resolution as well as due to the undefined state of the defect chemistry of most of the studied LFP materials, even though fundamentally necessary for an overall understanding of the materials behaviour. To fill this gap, we build a micrometer-sized all-solid-state thin film battery (Fig. 1) with a defect-chemically well characterized LFP single crystal as cathode material and use scanning transmission X-ray microscopy (STXM) to follow the phase evolution along the (010) orientation, which exhibits the fastest ion conductivity, during in-situ electrochemical (de)lithiation [1].

<strong><strong>Fig. 1:&nbsp;</strong></strong>SEM image of the micrometer-sized battery The all-solid-state thin film battery cell is fixed between the ends of two free-standing gold wires. During electrochemical delithiation the electron is transported to the left platinum contact, while the Lithium ion is transported through the electrolyte to the aluminum anode forming a lithium-aluminum alloy there. The small inset picture shows a side view of a similar thin film battery cell. Scale bar: 2 &micro;m for the big SEM image, 10 &micro;m for the small inset. Zoom Image
Fig. 1: SEM image of the micrometer-sized battery The all-solid-state thin film battery cell is fixed between the ends of two free-standing gold wires. During electrochemical delithiation the electron is transported to the left platinum contact, while the Lithium ion is transported through the electrolyte to the aluminum anode forming a lithium-aluminum alloy there. The small inset picture shows a side view of a similar thin film battery cell. Scale bar: 2 µm for the big SEM image, 10 µm for the small inset. [less]

By this we followed the reversible LFP transformation mechanism on a micro-meter scale with a lateral resolution of 30 nm and with minutes of time resolution, disclosing the influence of the defect chemistry, in terms of ionic and electronic conductivities, as well as elastic effects on the (de)lithiation process.


Fabrication of all-solid-state micro-sized thin film battery

We use oriented LiFePO4 single crystals grown via an optical floating zone technique, which have already been carefully characterized and their defect chemistry analyzed in our group. On top we deposit a solid electrolyte layer (LiF) and a layer of aluminum, functioning as anode material. Using a focused ion beam (Ga beam) inside a scanning electron microscope we fabricate out of this layered structure an all-solid-state thin film battery with attached platinum current collectors. The oriented LFP single crystal cathode has a size of 16 x 1 x 0.2 micrometer (c x b x a direction) (Fig. 1).

STXM mapping during (de)lithiation

<strong>Fig. 2: </strong>STXM images showing the filament-like growth behavior (a) SEM image of the analyzed region before performing STXM measurements. (b),(c) STXM images of compared optical densities during electrochemical delithiation (b) and lithiation (c). The region of interest is color-coded going from red (LFP) over green to blue (FP). (d) Energy spectra taken across the borderline of the phase front along the (010) direction with i) being recorded in the still pure LiFePO<sub>4</sub> zone, while ii)-iv) are recorded in intervals of 80 nm across the phase front (indicated in the lowest image in (b)) and v) showing an energy spectrum of a fully delithiated sample with the expected absorption features of FePO<sub>4</sub>. The color-coding of the energy spectra are done according to the STXM images (b) and (c). (e) Enlarged region of two STXM images to point out the filament-like growth behavior of FP in LFP (upper image) and the rather homogeneous receding of FP in LFP (lower image). Scale bar: 2 &micro;m in (a) and (b), 200 nm in (e). Zoom Image
Fig. 2: STXM images showing the filament-like growth behavior (a) SEM image of the analyzed region before performing STXM measurements. (b),(c) STXM images of compared optical densities during electrochemical delithiation (b) and lithiation (c). The region of interest is color-coded going from red (LFP) over green to blue (FP). (d) Energy spectra taken across the borderline of the phase front along the (010) direction with i) being recorded in the still pure LiFePO4 zone, while ii)-iv) are recorded in intervals of 80 nm across the phase front (indicated in the lowest image in (b)) and v) showing an energy spectrum of a fully delithiated sample with the expected absorption features of FePO4. The color-coding of the energy spectra are done according to the STXM images (b) and (c). (e) Enlarged region of two STXM images to point out the filament-like growth behavior of FP in LFP (upper image) and the rather homogeneous receding of FP in LFP (lower image). Scale bar: 2 µm in (a) and (b), 200 nm in (e). [less]

Upon delithiation of LFP a shift in the main absorption feature at the Fe L3 edge from ≈708 to ≈710 eV occurs, which is used to fingerprint the change in the local state-of-charge of the single crystalline sample by identifying areas containing Fe2+ and Fe3+, respectively. To visualize the delithiation kinetics, area scans at the energies of the centroids of the respective Fe2+ and Fe3+ Gaussian XANES contributions and well before the Fe L3 edge are performed and the optical densities at each point of the sample are calculated as a function of time and increasing voltage, recording the transition between the two oxidation states and therefore the (de)lithiation of LFP. Six images of compared optical densities, taken during (de)lithiation, are shown in Figs. 2(b) and 2(c). Energy spectra recorded across the phase front illustrate the transition from LiFePO4 to Li1-xFePO4/FePO4, showing a constant increase in Fe3+ concentration (Fig. 2(d)).

Results

Two main characteristics during (de)lithiation are observed. First, upon delithiating the electrode material, the growing FP phase forms at the current collector side, while lithiation of the delithiated cathode material leads again to a growing LFP region at the electrolyte side under a retracting movement of the delithiated phase. Second, it can be seen that the delithiation of the LFP cathode material of the micro-battery does not occur homogeneously over the whole length of the sample, resulting in a flat two-phase boundary, but rather multiple filaments of delithiated material develop along c and grow along b and a. To understand these observations they have to be discussed in terms of ionic and electronic transport as well as elastic effects:

The start of delithiation and FP phase formation at the LFP-current collector contact rather than at the LFP/LiF interface indicates faster ion than electron transport σion (LFP) > σeon (LFP) along b in the studied LFP crystal (Fig. 3(a)). Owing to the defect chemistry we refer to the D-regime in Fig. 3(c). A similar rationale explains why the LFP phase starts growing in the delithiated cathode material at the electrolyte side (σeon (FP) > σion (FP), compare Fig. 3(b)). Hence, the position where the delithiation of LFP and lithiation of FP starts can well be understood in terms of defect chemistry.

<strong>Fig. 3:&nbsp;</strong>Illustration of the phase formation requirement and Kr&ouml;ger-Vink diagram This figure shows a scheme for the delithiation of LFP (a) and lithiation of FP (b). The blue arrows in the images indicate that &sigma;<sub>eon</sub> (LFP) vs. &sigma;<sub>ion</sub> (LFP) (a) and &sigma;<sub>eon</sub> (FP) vs. &sigma;<sub>ion</sub> (FP) (b) determines on which side of the sample the (de)lithiation starts. The red arrows in both pictures clarify, that for a transport controlled (de)lithiation one would expect homogeneous growth of FP in LFP, while filament-like growth of LFP in FP, since &sigma;<sub>ion</sub> (LFP) &gt; &sigma;<sub>eon</sub> (FP). (c) Kr&ouml;ger-Vink diagram illustrating the defect concentration as a function of lithium activity in LFP Zoom Image
Fig. 3: Illustration of the phase formation requirement and Kröger-Vink diagram This figure shows a scheme for the delithiation of LFP (a) and lithiation of FP (b). The blue arrows in the images indicate that σeon (LFP) vs. σion (LFP) (a) and σeon (FP) vs. σion (FP) (b) determines on which side of the sample the (de)lithiation starts. The red arrows in both pictures clarify, that for a transport controlled (de)lithiation one would expect homogeneous growth of FP in LFP, while filament-like growth of LFP in FP, since σion (LFP) > σeon (FP). (c) Kröger-Vink diagram illustrating the defect concentration as a function of lithium activity in LFP [less]

Strikingly upon delithiation the FP grows filament-like in b direction. Was it the ratio of electronic to ionic conductivities in the initial phase (σeon (LFP) / σion (LFP)) that decided upon the starting position, so is it now the ratio of ionic to electronic conductivities in the two different phases LFP and FP (σion (LFP) / σeon (FP)) forming the criterion for growth morphology, if transport controlled (see figure 3a). Therefore, if transport controlled one would expect homogeneous growth of FP, as according to literature [2] and the above considerations the ionic conductivity along b-axis in LFP should exceed the electronic conductivity in FP. We can conclude that the growth morphology is not transport controlled. Rather, elastic effects offer a straightforward explanation: the lattice parameter change upon delithiation forces the lattice to laterally expand in c direction. Thus elastic effects favor an exclusion zone around the FP nuclei which prevents further nucleation of FP phase within the vicinity and hence causes a growth pattern which is characterized by almost regularly spaced filaments. The increased stress when the filaments grow along c is also reflected by crack formation when the sample is delithiated too far and well consistent with the finding that large single crystals of LFP disintegrate on deep delithiation [3]. After reversal of current again the growth morphology, this time of LFP in FP, is in opposite to what is solely expected from transport criteria but in line with the above elastic considerations.

Summary

We succeeded in building a micrometer-sized all-solid-state thin film battery enabling us to follow in-situ the (de)lithiation mechanism of single crystalline LiFePO4 along the fast (010) orientation using scanning transmission X-ray microscopy. Using a defect chemical analysis it can be concluded that the growth pattern of both LFP and FP is dominated by elastic effects rather than being transport controlled. This conclusion is rather general and should not depend on the defect-chemical details. Moreover, the analysis recommends a particle size of ≈100 nm as optimum electrode grain size, as the diffusion is still rapid enough and elastic effects do not lead to mechanical failure.

 
loading content