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Imaging of Electron Potential Landscapes on Au(111)
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The Hohenberg-Kohn theorem states that the ground state electron density completely determ
external potential acting on an electron system. Inspired by this fundamental theorem, we deve
novel approach to map directly the electron potential in surface systems: linear response theory
to the total electron density as measured with scanning tunneling microscopy determines the
potential. Potential imaging is demonstrated for thes-p derived surface state on Au(111), where
‘‘herringbone’’ reconstruction induces a periodic potential modulation, the details of which
revealed by our technique.
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FIG. 1. (a) Constant-current image of the reconstructed
Au(111) surface (512 �A� 512 �A, V � �0:42 V, I �
0:87 nA). When the surface stayed at 5.9 K for several days,
unknown adsorbates appeared at the elbows showing up as
white spots. (b) ThedI=dV map acquired by measuring 128
individual dI=dV spectra along the white line to which the
profile is shown in (c) (dI=dV recorded at open feedback loop,
bias modulation 20 mV peak to peak at 1.4 kHz). The tip used
to perform thedI=dV map had a structured DOS leading to the

ight
�22� 3� reconstruction with its herringbone pattern for
isotropic stress release on a mesoscopic scale. The profile

location independent horizontal stripes in (b) (see, e.g., br
stripes at�0:10, �0:22, and�0:30 eV).
Density functional theory (DFT) has been extensiv
used to determine the electronic structure of solids an
today also becoming a very important basis for theor
cal studies of molecular systems. At the heart of DFT
the Hohenberg-Kohn theorem [1], which states thatthe
external (one-electron) potential U�x� is determined,
within a trivial additive constant, by the ground state
electron density n�x�. Hence, if one had access ton�x�, the
Hamiltonian, and thus all properties of the particu
electronic system, would in principle be known.

In this paper we use scanning tunneling microsc
(STM) to measure the two-dimensional (2D) total de
sity n�x� of surface-state electrons. There exists no e
recipe linking the total electron density with the pote
tial, and consequently approximations have been de
oped, such as the Thomas-Fermi approximation or
Lindhard theory [2]. Here we use linear response the
to derive the external potentialU�x� from the measured
n�x�. We apply our method tos-p surface-state electron
on the �22�

���
3

p
� reconstructed Au(111) surface [3

Noble-metal surface-state electrons behave as ne
free 2D electron gas with parabolic dispersion [
On Au(111) we find a band edge energyE� � ��510�
10� meV and an effective mass ofm� � �0:27� 0:01�me,
in agreement with Refs. [5,6]. It was shown that t
reconstruction induces a periodic potential acting on
surface-state electrons [5,7]. Until now, this potential w
modeled as a square well potential, and its full shape
not been unraveled. This system is ideal for our poten
mapping since the potential modulations are weak,
thus linear response theory works well.

The experiments were performed with a homeb
low-temperature STM [8]. The Au(111) surface w
cleaned by sputter-anneal cycles. All the measurem
were taken atT � 5:9 K, with a tungsten tip and the bia
voltageV applied to the sample. The topography of t
Au(111) surface in Fig. 1(a) clearly reveals the uniax���p
0031-9007=02=89(17)=176801(4)$20.00 
is
-

y

t

in Fig. 1(c) taken along the white line reveals that
narrower hcp-stacking areas appear 0.05 A˚ higher than
the wider fcc regions. The ridges are formed by atoms
bridge sites and appear 0.18 A˚ higher than the fcc region
The differential conductance map in Fig. 1(b) was ta
along the profile and under conditions where it direc
reflects the surface local density of states (LDOS)
s�E; x�
[8–10]. This map, where bright gray levels correspond
large LDOS, shows the influence of the reconstruction
the electronic structure of the surface. The onset of
s-p derived surface state aroundE� � �510 meV can
clearly be seen. The striking features of the surf
LDOS are the broad maxima centered at�380 meV
2002 The American Physical Society 176801-1
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and situated close to the ridges of the reconstruction
the enhancements around�470 meV in the hcp regions

The total (energy integrated) density of the surfa
state electron gasn�x� is conventionally obtained b
integrating the LDOS derived from scanning tunnel
spectroscopy (STS) fromE� to EF. Since we are inter
ested in 2D maps ofn�x�, this seemed too time consum
ing, and we used the following approach yieldingn�x�
more directly. We used lock-in technique with arectan-
gular bias modulation between the lower band edgeE� �
eV� and an upper boundEf � eVf localized betweenE�
andEF [Fig. 2(a)]. The modulation frequency was chos
far above the bandwidth of the feedback loop; thus the
was stabilized through the time-averaged value of
tunnel current �II � 1

2 	I�V�� 
 I�Vf��, which is propor-
tional to the mean value of the two integrals of the surf
LDOS fromeV� andeVf, respectively, to the Fermi leve
[11]. By inspecting Fig. 1(b) one concludes that the LD
features due to the reconstruction have very little we
in such integrals, and thus�II is only weakly influenced by
changes in the electronic structure stemming from
reconstruction. Therefore the tip-sample separation is
most unaffected by those electronic structure effects
can be assumed to be constant for our purposes [8,1

For a rectangular bias modulation the lock-in outpu�
is proportional to the difference between the high and
low bias values of the current,��x� / I�Vf ;x� � I�V� ;x�.
Under the conditions of our experiment (T � 5:9 K and
�510 mV< V < 0), and assuming a constant tip DO
the tunneling current is a good measure for the integra
the LDOS [11]; therefore
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FIG. 2. (a) The bias signal used for potential mapping
switches between (V� ) and (Vf). (b) Sketch of the dispersion
relation of the Au(111) s-p surface state. (c) The spectrum
taken right before having performed the measurement shown
in Fig. 3 yields a ratio 
b=L0 of 0.7 (20 mV modulation).
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2D�E;x��

� e�Vf � V��
b 
 n2D�Ef ;x� ; (1)

where the surface LDOS is split into the bulk backgrou
and surface-state LDOS,
b and
2D�E;x�, respectively.

b is assumed to be constant, which is a good appr
mation for a noble metal in the narrow energy interva
interest.��x� is directly related to the total electro
densityn2D�Ef ;x� of surface-state electrons with ener
E� <E< eVf , i.e., the total density of the electron g
with a ‘‘fictitious Fermi level’’Ef [see Fig. 2(b)] [12]. The
total density of surface-state electronsn2D�Ef ;x� can be
inferred directly from the measured��x� [Eq. (1)]:

n2D�Ef ;x� � n0

�
��x�

�

�
1



b

L0

�
�


b

L0

�
; (2)

wheren0 � L0 �Ef � E�� is the total density of the fre
electron gas in the absence of any external potential,L0 �
m�=� �h2 is the DOS of the free 2D electron gas, and� is
the spatial average of��x�.

Figure 3(a) shows the total densityn2D��320 meV;x�
on the reconstructed Au(111) surface. It was obtai
from ��x� using Eq. (2) and the ratio
b=L0 determined
by tunneling spectra taken on clean surface spots r
before and after the acquirement of the density m
[Fig. 2(c)]. Only those tips were used for potential ma
ping where the spectra taken on clean terraces prove
be reasonably flat above the surface-state onset, ens
that the assumption of a constant tip DOS is justified. T
total density in Fig. 3(a) shows minima in the fcc regio
and maxima on the fcc side of the ridges [see also s
line in Fig. 3(c)]. The total densityn2D��320 meV;x� of
Fig. 3(a) can be very well understood in terms of
LDOS displayed in Fig. 1(b). Integrating the LDOS
Fig. 1(b) over energies in the corresponding inter
	�520 meV;�320 meV� actually leads to a density ver
similar to the one displayed in Fig. 3(c). It is clear fro
Fig. 1(b) that the maxima inn2D��320 meV; x� lying
close to the ridges of the reconstruction are due to
broad LDOS peaks centered at�380 meV.

Starting with the total density of surface-state el
trons (withE in 	E� ; Ef�) we now determine the potenti
using linear response theory. Any potentialUtot�x� acting
on an otherwise free electron gas of densityn0 induces
rearrangements in the electron density, i.e., the densi
the presence ofUtot�x� readsn�x� � n0 
 nind�x� [13]. In
linear response theory the Fourier transforms ofnind and
Utot are related by the susceptibility��q� [2,14],nind�q� �
��q�Utot�q�. For a 2D electron gas, and in linear ord
perturbation theory, the susceptibility (or so-call
Lindhard function) is given by [15]

�L�q� �

8<
:
�L0 for q  2kF;

�L0�1�

���������������
1�

4k2F
q2

r
� for q > 2kF;

(3)
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FIG. 3. (a) The 512 �A� 512 �A density map
n2D��320 meV;x� acquired simultaneously with the con-
stant-current topograph in Fig. 1(a) (I � 0:87 nA, � �
2:43 kHz). (b) External potential map U�x� obtained by apply-
ing the Lindhard procedure to the density of (a) (kf �
0:12 �A�1). Dark levels correspond to more attractive potential
regions. Solid lines in (c) and (d) show n2D��320 meV; x� and
U�x�, averaged over some line scans parallel to the white lines
in (a) and (b). The thin line in (d) shows the potential derived
with the Thomas-Fermi approximation. The dashed lines show
n2D��450 meV; x� (offset by �0:2n0 for clarity) and the cor-
responding U�x�.

VOLUME 89, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 21 OCTOBER 2002

176801-3
where q � jqj. The 2D Lindhard function is nonanalytic
at q � 2kF leading to Friedel oscillations [16].

Since the redistribution of electronic charge �enind�x�
itself contributes to the total potential, the latter is gen-
erally different from the external potential acting on
the electrons, i.e., in linear response theory U�q� �
��q�Utot�q�. In 2D, ��q� is given by [15]

��q� � 1�
1

2

e2

�b�0q
��q�; (5)

where �b is the dielectric constant of the medium sur-
rounding the electron plane. Since the medium surround-
ing the 2D surface-state electron gas on noble metals, i.e.,
the 3D bulk electrons, is highly polarizable, we can set
�b ! 1 and thus in our case U�q� � Utot�q�. Altogether,
in good approximation, we can relate the external poten-
tial to the total density of the Au(111) surface state by

n2D�Ef ;q� � �L�q�U�q�: (6)

In our case kF entering the Lindhard function [Eq. (3)]

has to be replaced by kf �
�������������������������������������
2m��Ef � E��= �h

2
q

.
We wrote a computer program to map the potential.

This program performs the fast Fourier transform of the
density image n2D�Ef ;x�, divides this Fourier transform
by the Lindhard susceptibility �L�q�, and then does an
inverse Fourier transformation to yield the potential map
U�x�. The program was tested by applying the procedure
to the total particle density in the presence of weak
square potentials, calculated using simple quantum me-
chanics. The potentials determined with our program for
such test electron densities agree very well with the input
potentials, minor discrepancies being due to the fact that
our procedure relies on linear response theory.

Figure 3(b) shows the potential map of the Au(111)
surface derived from the total electron density of Fig. 3(a)
using the Lindhard approach. The potential modulation
due to the herringbone reconstruction is clearly visible.
Furthermore, there are features in the potential maps
associated with surface and subsurface defects appearing
as white and black spots in Fig. 1(a). It is not clear
whether these features do represent the real potential,
since the different chemical nature of the defects may
induce changes in the bulk LDOS, and then the assump-
tion of a constant 
b is no more justified. Therefore, we
concentrate on the potential modulations induced by the
reconstruction. In agreement with Chen et al. [5] we find
that surface-state electrons are less strongly bound in fcc
than in hcp regions. In addition, we find that the regions
close to the reconstruction ridges are more attractive than
fcc and hcp regions; see the profile in Fig. 3(d).

We now discuss the robustness of our method to the
choice of Ef and to tip changes. Clearly, the total electron
density n2D�Ef ;x� depends on the choice of Ef , i.e., the
bias modulation used during the measurement. But of
course, if our potential mapping is correct, the resulting
external potential should be independent of Ef . This is
176801-3
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FIG. 4. Electron potential perpendicular to the Au(111) re-
construction lines. The fourth order Fourier series fit to the
potential of Fig. 3(d) is compared to the �25� 5� meV deep
extended Kronig-Penney potential of Ref. [5].
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indeed what we observe in all our measurements: den-
sities for Ef in the range of �450 meV to �320 meV yield
essentially the same surface potential. This is illustrated
for the example of Ef � �450 meV by the dashed
lines in Figs. 3(c) and 3(d). n2D��450 meV; x� is less
structured than n2D��320 meV; x� due to the fact that
kf��450 meV� is by about a factor of 2 smaller than
kf��320 meV�, and therefore n2D��450 meV; x�, which
can exhibit modulations on length scales not shorter than
2�=kf��450 meV�, is smoother than n2D��320 meV; x�.
Although the electron density profiles taken at the two
fictitious Fermi levels differ substantially, the resulting
potentials are identical, except for noise. In the about 20
independent potential measurements we performed, the
relative sensitivity of the tip to surface and bulk states,

b=L0, ranged from 0.7 to 3. Nevertheless, the resulting
potential maps proved to be independent of 
b=L0. We
also emphasize that an uncertainty in the dispersion
relation, i.e., an uncertainty in kf , does not affect the
deduced potentials crucially: varying kf by �10% leads
to essentially identical potential maps. The thin solid line
in Fig. 3(d) shows the potential derived using the Thomas-
Fermi approximation [2], U�x� � �n2D�x�=L0. Since the
fictitious Fermi wavelength 2�=kf��320 meV� is with
54 Å comparable to the typical length over which the
potential changes, Thomas-Fermi theory works well in
this case.

Figure 4 shows the corrugation of the external poten-
tial we find for the Au(111)-�

���
3

p
� 22� surface. It has its

minima, where surface atoms occupy bridge sites. In hcp
regions electrons are less strongly bound by Uhcp � 15�
5 meV, and in fcc regions even less by Ufcc �
37� 5 meV. The difference in binding energy between
fcc and hcp regions is in excellent agreement with the
value found by Chen et al. [5]. However, the real potential
shape, in particular, the fact that the bridge sites bind
electrons most strongly, could not be revealed by Chen
et al. since they interpreted their STS data in the frame-
work of a Kronig-Penney model. In addition to the po-
tential shape across the �22�

���
3

p
� unit cell our U�x� map
176801-4
in Fig. 3(b) also reveals potential changes at the elbows of
the mesoscopic reconstruction pattern. There is a further
enhancement of U�x� in the fcc regions at the rounded
elbows, i.e., the upper row of elbows in Figs. 1(a) and 3(b).
Furthermore, for the pointed elbows (lower row), we
observe two additional shallow potential minima on the
ridge sides of every hcp region. Altogether, our data
suggest that electrons are most strongly bound to the
surface areas with the highest hydrostatic pressure [17].

In conclusion, we presented a new method to image
electron potential landscapes at surfaces. It was applied to
the s-p derived surface state on Au(111). Excellent agree-
ment between hcp-fcc-binding energy differences in the
measured potential maps and previously published
results obtained using traditional scanning tunneling
spectroscopy establishes our method as a useful tool to
probe electron potentials on atomic length scales.
*Current address: Cavendish Laboratory, Madingley
Road, Cambridge CB3 OHE, U.K.
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