Raman Scattering

Most of the light incident on a solid is reflected, absorbed or transmitted.
However, some fraction is also scattered into directions different from those
described by the macroscopic Fresnel equations. One distinguishes two types
of scattering:

elastic scattering (by defects/imperfections in the solid):
no frequency shift of the incoming radiation.

inelastic scattering (also called Raman scattering):

Frequency of incident light is shifted due to creation or absorption of
excitations such as phonons or magnons. The discussion here will be mostly
about phonons already familiar from previous sections.

Due to the weakness of the inelastic scattering intensity, an intense light
source is required. Raman scattering from solids became practibable only
after invention of the laser. Most Raman scattering experiments are carried
out with visible laser light.

Basic setup:

laser sample mono- detector
chromator
visible photon energy: £ ~1eV AE 1%
phonon/magnon excitation energy: AE ~10meV | E ’

= good resolution and stray light rejection is required for the spectrometer. One
mostly uses double- or triple-grating monochromators.
General restriction of Raman spectroscopy with visible light: A~-vector of photon

~107A™" = only phonons near Brillouin zone center can be detected.

Recently, it has become possible to do Raman scattering with X-rays:
E~1-10keV, 22 1076

E
Due to the very high resolution required, such experiments are only feasible
with intense X-ray sources (synchrotrons). Since synchrotrons emit over a wide
frequency range, another monochromator must be inserted:

mono-
chromator

mono-

sample
chromator

synchrotron detector

As monochromators in the X-ray regime one often uses perfect single crystals
of Si or Ge (lattice spacings comparable to X-ray wave length).

For X-rays, k~14"", so it is possible to map out the phonon dispersion relation
over the entire Brillouin zone.



Classical theory of Raman scattering

isotropic solid with electrical susceptibility y

P=gyyE D=gell = e=1+y

l electric displacement

polarization, electric dipole moment per unit volume

incident electromagnetic wave induces polarization:

E(7,t)=E/ cos(l%i N —a)it)

P(7,t)= y E cos(EZ- -F—wit)

x is modified by thermally excited phonons with atomic displacements
u(7,t) =1, cos(q-7 - \t)

4, small compared to lattice constant = expand

oy _,_
X = %o +£u(r,t)
P(7,t)= {ZO +5—’fa(r~,t)} E cos(/%i F —a)it)
ol
- —— (1) in phase with incident radiation = elastic scattering
) (&) (2) frequency shift due to phonon = inelastic scattering

F’m (F,t) = %ﬂo cos (@F —a)ot)EiO cos(l%i ‘T —a)l»t)

:%%ﬂo Eio [cos((l@ +¢j)~7‘"—(a)l» +a)0)t)+cos((l§i —cj)f—(a)?; —a)o)t)}
inelastically scattered light contains two waves:
kp=k—q, w;=w,-w, "Stokes" process, phonon creation
ki=k;+q, w;=w,+w, "anti-Stokes" process, phonon absorption

lEf, k. << Brillouin zone diameter = phonons can be probed only near the zone

center, where their dispersion is negligible. This is a general restriction of optical
spectroscopies. However, Raman scattering can be used to probe dispersion of
polaritons (hybrid modes of transverse electromagnetic waves and transverse
optical phonons) which show a strong dispersion near the zone center.
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observe frequency shift as a function
of scattering angle ®
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Aside:

Similar to absorption spectroscopies, two-phonon processes with ¢, +¢, = 0
are also possible (from second-order terms in expansion of y (i) )

= measure phonon density of states.

While the restriction to phonons near the Brillouin zone center is common to
reflection / absorption spectroscopy and Raman scattering, some of the other

restrictions of the former do not apply to the latter:
inelastic light scattering can probe acoustic phonons. This is called Brillouin

scattering. The only difference to Raman scattering is the dispersion of the
acoustic phonons which is linear in g near the Brillouin zone center (see

problem set).
Raman scattering also probes longitudinal optical phonons directly (see

figure).

Intensity of scattered radiation

This follows the intensity distribution of a radiating electric dipole (from classical
electromagnetism):
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c c o
T polarization vectors of incident and scattered waves

Rayleigh o law with E’ =& E°, E,’ =&, E,°

The intensity depends on the polarization of incident and scattered light, and on
the atomic displacements u. By changing &;, £, and observing the intensity

variations, one can study not only the phonon energies, but also the
displacement patterns.



Quantum Mechanical Theory of Raman Scattering

Complicated, because it requires third order time dependent perturbation
theory, many possible intermediate states = only outline will be given.

For Raman scattering from phonons, need to consider two types of perturbation
terms in Hamiltonian:

H'=er-E as before: interaction between electron and photon in electric dipole
approximation
H": electron-lattice interaction, specific form to be discussed below

Example: semiconductor

@ H Three steps:
@ photon is excited across band gap
I H @ phonon is created
® electron falls back into ground state
® @ by emitting photon

Often this is described in terms of a "Feynman diagram":

The dots are called
"interaction vertices"

Rules for translating these diagrams into expressions for transition rate:
move from vertex to vertex, each introduces a term of the form

<a|H'|i>
W 2T Em )
where |i) is the initial state, |@) an intermediate state.
Proceed to second vertex:
(B|H"|a) (| H'|i)
2 >
b [ho,~(E,-B,)] [ ho,~(B, - E.)-hoy-(E; - B, )|
where |,B> is another intermediate state and 7w, is the phonon energy.

a




The last step adds another matrix element, but following the above procedure

the energy denominator simply guarantees overall energy conservation:

ho, —(E, - E))~hoy—(Eg - E, )~ho; —(E; - E4 ) = ho, —ho, - ho, -(E; - E,)
=0

This term is incorporated as a delta function at the end (analogous to second-

order perturbation theory), so that the total expression for the transition rate
becomes

2|y (H' ) (B|H"|a) (a|H']i)
ho| o [ho (B, - E,)] [ ho,~hoy—(Ey - B) ]
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‘ S heo, —ho; —hay |

This seems only slightly more complicated than second-order perturbation
theory, but there are a number of additional complications:

First, the time order of the three transitions can be different, for instance
©)

C

v

This results in a different term for the transition rate that adds coherently i.e.
inside the || ) to the first term. Altogether there are six permutations (see

problem sheet).

Second, different processes may contribute to the scattering intensity of a given

phonon, such as:

C
or, in a case with
H' H' multiple bands:

Each of the processes (and others) contributes six additional terms to the

transition rate. This shows you that it is in general very difficult to calculate

Raman scattering intensities quantitatively. Sometimes, however, a small

number of intermediate states dominate, e.g.

- photon energy near critical point in joint density of states (see section on
interband transitions)

- intermediate state is exciton

In these cases the intensity can be sharply enhanced around particular photon
energies, and one speaks of "resonant Raman scattering”.
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The two saddle points
in the band structure
are clearly seen

20 22 24 24 28 a0 a2
har (@)

Resonant Raman scattering is one aspect that cannot be understood in terms of
classical electromagnetism. Another aspect is the temperature dependence of

the scattered intensity. To see this, consider the matrix element (B|H"|c) that

appears in the transition rate. We follow our discussion of indirect interband
transitions and write

14

_ oV(F-R,

where R, are the equilibrium positions of the nuclei, %, their thermal

displacements, and V' is the electrostatic interaction of electrons and nuclei.
Note that this becomes a tensor for more than one atom in the unit cell.
Analogous to the one-dimensional harmonic oscillator treated in elementary
quantum mechanics, we write

u, = /MLQ €, [cf +a}

where @” and ¢ are phonon creation and annihilation operators, respectively,
4 is the nuclear mass, {2 the phonon energy and €, the phonon polarization

vector. (For simplicity, we have neglected the g-dependence of @ and o™, for
details see section on interband transitions.)

a and «" act on the nuclear part of the wave function, changing the occupation
number n of a specific phonon such that

<n—l| a |n> = \/E

—_— ——

nuclear nuclear
part of | 5) part of
@)

<n+l|a+|n>:\/n+l
where n is given by the Bose-Einstein distribution

1

n=—sr—7—
kT



The intensities of Stokes and anti-Stokes processes (proportional to the square
of the matrix element) therefore become equal only for large temperatures (as in
the classical case). As T'— 0, the anti-Stokes intensity goes to zero while the
Stokes intensity remains nonzero (different from the classical prediction).

Another consequence of the functional form of H” is the Raman selection
rules. A general discussion of these rules can only be given in terms of group
theory and must include the tensor properties of H” , but an important
qualitative aspect can be seen by inspection. Crudely speaking, it is clear that

the derivative ifollows the symmetry properties of the crystal lattice.

ou,,

Specifically, it is inversion symmetric for lattices with inversion symmetry. For
such lattices, the Raman intensity is therefore nonzero only for phonons whose
displacement pattern is also inversion symmetric.

Example: triatomic chain

T 0
not Raman-active
v

o—>(GF)<o O—>(+)<0 Raman-active

It is also easy to see that the upper phonon is IR-active (nonzero dipole
moment) while the lower phonon is not.

Both techniques are therefore largely complementary, although a detailed
analysis shows that some phonons can be detected by neither method (silent
modes).



