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Inelastic Neutron Scattering 
 
In an elastic neutron scattering event, a momentum ( )= −

� ��
ℏ ℏ f iQ k k  is 

transferred from the neutron to the sample. This leads to a minuscule 
translation of the entire sample, but the internal state of the sample remains 
unchanged. 
 
Inelastic scattering of neutrons creates or annihilates an excitation inside the 
sample, so that both the energy of the neutron and the internal state of the 
sample (here denoted as λ ) is modified. Experimentally, one has to keep track 
not only of the flight direction of the scattered neutron but also of its energy.  
 
This can be experimentally accomplished by the following methods: 
 
1 — Triple-axis spectrometer 
 (commonly used at steady-state neutron sources) 
 
 
 
neutron source 
 
 
 
 
 
 
 
 
 
 
 
Bragg scattering from analyzer selects scattered neutrons with unique energy 
and momentum. 
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Fig. 1 
 
Triple Axis Spectrometer 
 
TRISP at FRM-II     
http://www.fkf.mpg.de/keimer/groups/
frm/index.html 
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2 — Time-of-flight spectrometer  
 (commonly used at pulsed neutron sources) 
 
 
 
 
neutron 
source 
 
 
 
 
 
 
 
 
The incident neutron energy is selected by the rotation frequency ω  of the 
Fermi chopper (which consists of curved neutron-absorbing blades) and its 
phase delay relative to the source emission. The final energy can be computed 
from the time of arrival of the scattered neutron pulse at the detector. 
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Time-of-flight spectrometer 
 
MARI at ISIS     
http://www.isis.stfc.ac.uk/instrument
s/mari/ 
 



3 

3 — Spin-echo spectrometer  
 
 
 
 
 
 
neutron   sample 
source  solenoid 1 
 spin polarizer solenoid 2 
 
 spin analyzer 
 
 detector 
 
The magnetic fields B in the two solenoids are equal in magnitude but opposite 
in direction. In the magnetic field, the neutron spins undergo Larmor 
precessions with frequency  

N
L

Bγµω =
ℏ

. 

The phase angle of the neutron spins after the first solenoid is then  
L

i

i

L

v

ωφ =  

If the beam is not perfectly monochromatic (i.e. there is a spread of initial 
neutron velocities iv ), the beam will be depolarized at the sample position. If the 
scattering at the sample is perfectly elastic, however, every neutron will reverse 
its Larmor precessions in the second solenoid, and the beam polarization will be 
fully restored at the analyzer. If the scattering is inelastic, the final beam 
polarization is reduced: 
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The net beam polarization determined by the analyzer is thus a measure of the 
inelasticity of the scattering process: 

( ) ( )cos , cos ,SE SEd S Q S Q∆Φ = ω ω ωτ = τ∫  where ( ), SES Q τ  is the Fourier 

transform of the scattering probability ( ),S Q ω . 
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For a quantitative description of inelastic neutron scattering, one writes down a 
double-differential scattering cross section as follows: 

( )
22 2

22
f

f f f i i i i f
f i

kd m
k m V k m E E

d dE k λ λ
σ λ λ δ ω

π
 = − − Ω  

� �
ℏ

ℏ
 

where ωℏ  is the difference between final and incident neutron energies. The 
derivation uses Fermi’s Golden Rule, as in the case of elastic scattering, and 
the δ -function guarantees energy conservation in the scattering event. 
Specializing to nuclear scattering, which does not affect the spin state m  of 
the neutron, we obtain 

( )
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f iQ R
f i i fR
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We first evaluate this expression for a gas of free nuclei of mass M  and initial 
wave vector iξ

�
, so that  

1 ⋅=
� �
ii R

i e
V

ξλ  and 
2 2

2
i

iE
Mλ
ξ= ℏ  where V  is the volume of the sample.  

The matrix element becomes    ( )1 − + ⋅⋅ = ∫
� � � �� � �
i fi Q RiQ R

f ie dR e
V

ξ ξλ λ  

This integral is zero unless  f i f iQ k k ξ ξ= − = −
� �� � �

  (momentum conservation). 

Plugging this expression into the condition for energy conservation, one obtains 

( ) ( )
2 2

2 2 2 2
2 2

− = − = + ⋅
� � � � �ℏ ℏ

f i f i iE E Q Q
M Mλ λ ξ ξ ξ . 

 
We need to sum the matrix elements in the double-differential cross section 
over all final states consistent with energy and momentum conservation, then 
thermally average over initial states. The sum over final states can be written as 
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Fig. 3 
 
Neutron spin echo 
spectrometer 
 
NSE at NIST    
http://www.ncnr.nist.gov/instrumen
ts/nse/NSE_70deg_20010226.png 
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If one takes an average over an ensemble of nuclei with a thermal distribution of 
initial wave vectors, one obtains the cross section for neutron scattering from an 
ideal gas: 
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where the x-direction was chosen to coincide with Q
�

. Using the identities 

( ) ( )1
ax x

a
δ δ=  and 

2axe
a

π− =∫    one obtains 
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   where 

2 2

2r
Q

E
M

= ℏ  is the average  

recoil energy transferred to the nuclei in the scattering event. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 neutron energy gain neutron energy loss 
 
 
At low temperatures, the nuclei move slowly, and most of them are sped up 
upon colliding with a neutron, leading to a loss of neutron energy in the 
scattering events. At high temperatures, a significant number of nuclei move 
towards the neutron before the scattering event, so that they are slowed down 
and, conversely, the neutron gains energy upon scattering. The dynamical 
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structure factors for neutron energy gain and loss are related through the 
so-called “principle of detailed balance”: 

( ) ( )/, ,Bk TS Q e S Qωω ω−− − = + +ℏ
� �

 

which can easily be verified for the case of the ideal gas, but holds generally for 
inelastic neutron scattering. A consequence of this relationship is that the cross 
section for neutron energy gain vanishes at 0T = , because in this limit there are 
no thermally generated excitations present in the sample. 
 
The scattering function (for an ideal gas) discussed above also applies to “deep 
inelastic scattering” of neutrons from nuclei in condensed matter, involving 
energy transfers well above the atomic binding energies. An example is a 
recent time-of-flight spectroscopy study in hydrogen atoms in a polymer, with 
energy transfers up to about 100eVω =ℏ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For ωℏ  in the meV  regime, the recoil of the atoms can be neglected. In the limit 

,rEωℏ ≫  the Fourier transform of the scattering function for an ideal gas, which 
can be measured by spin-echo spectroscopy, can be written as  
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Fig. 4 
 
Deep inelastic neutron 
scattering from hydrogen in a 
polymer 
 
C. Stock et al.,  
Phys. Rev. B 81, 024303 (2010) 



7 

 
 
Fig. 5 shows neutron spin-echo data on a polymer melt at high temperatures, 
which indicate a relaxation rate that decreases strongly with increasing ,Q  in 
qualitative agreement with this expression. The formula does not provide a 
quantitative description, however, because the polymer molecules diffuse 
through the melt, rather than moving ballistically as in an ideal gas. Neutron 
spin-echo spectroscopy has provided a lot of insight into the collective dynamics 
of polymers. 
 
 
 
 

      
a) b) 
 
 
 
 
(to be continued) 

Fig. 5 
 
Neutron spin-echo spectroscopy 
of a polymer melt 
 
D. Richter, Journal of the Physical 
Society of Japan 75, 111004 (2006)  

Fig. 6 
 
Lattice structure and phonon 
dispersions of C60 
 
a) http://www.godunov.com/bucky/
c60-gold.gif 
 
b) L. Pintschovius et al., PRL 69, 
2662 (1992) 


