The Probes (perturbations)

1) Electro-magnetic field

$$\vec{E} = \hat{e}E_0 e^{i(\vec{k}.\vec{r}-\omega t)}$$

$$E = \hbar\omega = \frac{hc}{\lambda}$$

$$E(\lambda = 1\text{\AA}) = 12.4 \text{ keV}$$

2) Particles

$$\psi \sim e^{i\vec{k}.\vec{r}}$$

Particle	electron	positrons	muons	neutrons	proton	Nuclei $\frac{A}{Z}X$	ions ${}^{A}_{Z}\!X^{n\pm}$
Mass	m _e =9,1 ×10 ⁻³¹ kg	m _p =9,1 ×10 ⁻³¹ kg	m _μ =1,88 ×10 ⁻²⁸ kg	M _N =1,675 ×10 ⁻²⁷ kg	M _p =1,673 ×10 ⁻²⁷ kg	Z.M _P + (A-Z).M _N -E _B /c ²	~Z.M _P + (A-Z).M _N -E _B /c ²
Charge	-е	+e	-е	0	+e	+Ze	± ne
Spin	1/2	1/2	1/2	1/2	1/2	0 if Z and A are even S > 1/2 for 75% of isotopes	Depends on n (μ _e >>μ _{Nucleus})
						(Internal proba)	

(Internal probe)

neutron $m_n = 1.675 \times 10^{-27} kg$ mass charge 0 spin $s = \frac{1}{2}$ $\mu_n = \frac{-e\hbar}{2m_n} gs_n \text{ with } g_n = 3.826$ magnetic dipole moment $E = \frac{\hbar^2 k^2}{2m_n} \qquad k = \frac{2\pi}{\lambda}$ energy $E[meV] = \frac{81.81}{\lambda^2 \lceil \mathring{A} \rceil}$ interaction with matter: Coulomb interaction strong-force interaction magnetic dipole-dipole interaction

=> For wave-lengths ~ interatomic distances, E_{Neutron} ~ 10 meV

Interaction of Neutrons with Matter

	elastic scattering	inelastic scattering
strong-force interaction	position of nuclei in solid	lattice vibrations
("nuclear scattering")	(lattice structure)	(phonons)
magnetic interaction	position and orientation of	spin excitations
	electronic magnetic moments	(magnons, spin waves)
	in solids (ferromagnetism,	
	antiferromagnetism)	

Neutron Sources Worldwide

- Research reactors
- Spallation sources

Research Reactors

$^{235}U + n \rightarrow A + B + 2.3n$ (A, B: fission fragments)

Research reactor FRM-II in Munich, Germany

Outside view of the building (left) and layout of the experimental hall (right). The neutron beam tubes (blue) tap into the flux emitted from the reactor core (center) and guide the neutrons to various neutron scattering instruments. <u>http:///www.frm2.tu-muenchen.de</u>

Research Reactors

Research Reactors:

$^{235}U + n \rightarrow A + B + 2.3n$ (A, B: fission fragments)

- Optimized for neutron flux => Low power (Research reactors are poor electrical generators)
- Fission is most favorable for thermal neutrons

Spallation Source

Spallation Source

Neutron Detectors

Neutrons have no charge and interact weakly with matter: hard to detect directly

Idea: convert them into charge particles

$$n + {}^{3}He \rightarrow {}^{3}H + p$$

The protons are collected by a high electric field and converted into electric current.

Reminder

How did we get there ?

Thomson scattering from \diamond integrated over space $W_{I \to F} = \frac{2\pi}{\hbar} \left| \left\langle F \left| \frac{e^2 A^2}{2m} \right| I \right\rangle \right|^2 \rho(E_F)$

How did we get there ?

Thomson scattering from \diamond integrated over space $W_{I \to F} = \frac{2\pi}{\hbar} \left| \left\langle F \left| \frac{e^2 A^2}{2m} \right| I \right\rangle \right|^2 \rho(E_F)$ Interaction of electrons with electro-magnetic field

$$W_{I \to F} = \frac{2\pi}{\hbar} \left| \left\langle F \left| \frac{2\pi\hbar^2}{m_n} b \delta(\vec{r} - \vec{R}) \right| I \right\rangle \right|^2 \rho(E_F)$$

Incident x-ray neutron

 E_I, \vec{k}_I

Interaction of neutrons with nucleus: strong-force

$$\frac{d\sigma}{d\Omega}(\vec{Q}) = ?$$
 See exercises

Neutron Scattering length

- 'Random' variation from nucleus to nucleus but also among isotopes !

Neutron Scattering Experiment

$$\vec{Q} = \vec{k}_f - \vec{k}_i$$

$$\omega = \omega_f - \omega_i = \frac{\hbar}{2m_n} \left(k_f^2 - k_i^2\right)$$

$$\omega = 0 \quad \text{elastic scattering}$$

$$\omega \neq 0 \quad \text{inelastic scattering}$$

Conceptually very similar to photons/x-rays !

=> Calculation of the scattering cross-section in the exercise class

BUT possibility of magnetic scattering (resolution of magnetic structures)

$$|k_i\rangle = \frac{1}{\sqrt{L^3}} e^{i\vec{k}_i \cdot \vec{r}}$$
 plane waves, normalized to sample size L

$$|k_f\rangle = \frac{1}{\sqrt{L^3}} e^{i\vec{k}_f \cdot \vec{r}}$$
 plane waves, normalized to sample size L

$$\rho_f(E) = \left(\frac{L}{2\pi}\right)^3 \frac{d\vec{k}_f}{dE}$$
 for single nucleus: $\frac{d\sigma}{d\Omega} = |b|^2$

$$\text{In a crystal: If all nuclei are identical:}$$

for single nucleus:
$$\frac{d\sigma}{d\Omega} = |b|^2$$

re identical:

$$\frac{d\sigma}{d\Omega} = b^2 \frac{N(2\pi)^3}{v_o} \sum_{\vec{K}} \delta\left(\vec{Q} - \vec{K}\right)$$

for unit cell with several atoms, basis vector \vec{d}

$$\frac{d\sigma}{d\Omega} = N \frac{(2\pi)^3}{v_0} \sum_{\vec{K}} \delta(\vec{Q} - \vec{K}) |F_N(\vec{K})|^2$$
$$F_N(\vec{K}) = \sum_{\vec{d}} e^{i\vec{Q}\cdot\vec{d}} b_{\vec{d}} \qquad \text{``nuclear structure factor''}$$

Neutron Absorption

Neutron Absorption

Neutron Absorption

Neutron vs x-ray Radiography

Neutrons

http://mnrc.ucdavis.edu/radiography.html

Ferromagnetic mirrors

Neutron reflectivity from nonmagnetic and magnetic films http://www.orau.org/council/02presentations/klose.pdf

Ferromagnetic mirrors

Polarized-beam reflectometer

http://www.orau.org/council/02presentations/klose.pdf

Inelastic Neutron Scattering

 $\vec{Q} = \vec{k}_f - \vec{k}_i$ $\omega = \omega_f - \omega_i = \frac{\hbar}{2m_n} \left(k_f^2 - k_i^2\right)$ $\omega = 0 \quad \text{elastic scattering}$ $\omega \neq 0 \quad \text{inelastic scattering}$

Triple Axis Spectrometer

Triple Axis Spectrometer

Time-of-Flight Spectrometer

Time-of-Flight Spectrometer

MARI Spectrometer @ISIS

Larmor precession frequency
$$\omega_L = \frac{\gamma \mu_N B}{\hbar}$$

 $\hbar\omega = \frac{m_N}{2} \left(v_f^2 - v_i^2 \right) = m_N \Delta v \qquad \Delta \phi \sim \frac{\omega_L L}{v_i^3} \frac{\hbar\omega}{m_N} = \omega_L \tau_{SE}$

NB: If the beam is not perfectly monochromatic (spread of v_i), it is depolarized at the sample position BUT recombination works the same !

Consequence: monochromaticity of the incident beam does not limit the experimental resolution that can be enhanced by order of magnitudes here !

NSE at NIST http://www.ncnr.nist.gov/instrumen ts/nse/NSE_70deg_20010226.png

Neutron scattering from quantum condensed matter

Steven T. Bramwell and Bernhard Keimer

Collective quantum phenomena such as magnetism, superfluidity and superconductivity have been pre-eminent themes of condensed-matter physics in the past century. Neutron scattering has provided unique insights into the microscopic origin of these phenomena.

NATURE MATERIALS | VOL 13 | AUGUST 2014 | www.nature.com/naturematerials

763

Ex: Superfluid He

Analogy with BEC

Triple Axis Spectrometer

Dispersion Measurement

Constant-q scans

Constant-E scans (nb: here magnons)

Pintschovius et al. PRB 2004 Reznik et al. Nature 2006 Hinkov et al. Nature Physics 2007

Time-of-Flight Spectrometer

Reciprocal space maps at constant energy transfer

Vignolle et al. Nature Physics 3 163 (2007)