# Solid State Spectroscopy II

| Particle Spectroscopy                                                                                                 |                                         |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| <i>types of probe particles</i><br>– nuclei (internal)<br>– muons (extrinsic)<br>– electrons (internal)<br>(external) | S:<br>→ NMR<br>→ μSR<br>→ ESR<br>→ EELS |  |
| – neutrons (external)                                                                                                 | $\rightarrow$ neutron scattering        |  |

# 1 — Nuclear Magnetic Resonance (NMR)

- use the nuclei of the crystal lattice (with  $I \neq 0$ ) as a local probe for the electronic environment.
- the nuclear spins interact with the surrounding electrons via "hyperfine coupling"

#### basic idea:

Apply magnetic field  $\vec{B}_0 = B_0 \cdot \hat{z}$  to the sample. This lifts the degeneracy of the nuclear levels (for  $I \neq 0$ ) with different magnetic quantum number, m = -I, ...+I.

Nuclear Zeeman effect:  $H = -\vec{\mu}_N \cdot \vec{B}$ 

2I + 1 levels

$$m = -I, \dots, +I$$

$$I = 2 \rightarrow m = 5$$

$$\frac{B = 0}{4}$$

$$\frac{B > 0}{4}$$

$$m = I$$

$$E_m = g \cdot \mu_N \cdot m \cdot B_0$$

$$\frac{B = 0}{1}$$

$$M = I$$

$$M = -I$$

$$m = -I$$
energy splitting

#### Nuclear Zeeman splitting

$$\mu_N = \frac{e \cdot \hbar}{m_P} = 5.05 \cdot 10^{-27} \left[ A \cdot m^2 \right] \text{ `nuclear magneton}$$
$$\approx \frac{1}{2000} \cdot \mu_B \quad \text{ since } m_p \approx 2000 \cdot m_e$$

The g-factors depend on the particular nucleus in a more complicated way  $\rightarrow\,$  look it up in tables

nuclei are made up of protons (p) and neutrons (n) both are spin 1/2 particles p = (uud)  $g_s(p) = 5.59$   $g_L(p) = 1$ n = (udd)  $g_s(p) = -3.83$   $g_L(n) = 0$ 

Now one probes the level splitting with electromagnetic radiation, which induces transition between them.

for  $\hbar \omega = \mathbf{g} \cdot \mu_{\mathsf{N}} \cdot B$ with B = 1 T, I = 1,  $g = 2 \implies \Delta E \approx 0.1 \mu e V$  $\rightarrow$  need radio frequency waves

reminder:  $k_B \cdot 300K \approx 25meV$  $0.1\mu eV \sim 1mK$ 

#### measure:

- frequency of absorption maximum  $\Rightarrow$  local *B*-field at nuclear site
- line width

⇒ local *B*-field at nuclear site
 ⇒ relaxation rates either due to static distribution of *B*-fields or fluctuation as a function of time



remember from optics: time-dependent-perturbation-theory



transition rates for absorption and for stimulated emission are equal.  $\rightarrow$  if  $N_1 = N_2 \Rightarrow$  no net absorption. however: thermal population is somewhat lower for higher levels.

Average nuclear magnetization density:

 $M = N \cdot g \cdot \mu_{N} \left\{ \underbrace{I_{z}}_{thermal} \right\}^{T}_{thermal}$   $= N \cdot g \cdot \mu_{N} \frac{\sum_{m=-I}^{+I} \hbar \cdot m \ e^{-g\mu_{N}} \frac{B_{0} \cdot m}{k_{B}T}}{\sum_{m=-I}^{I} e^{-g \cdot \mu_{N}} \frac{B_{0} \cdot m}{k_{B}T}}$   $\exp(1+x) \approx 1 + x \text{ for } x \ll 1$   $\approx N \cdot g \cdot \mu_{N} \frac{\sum_{m=-I}^{I} \hbar m \left[ \left( \underbrace{X} + \frac{g\mu_{N} \cdot B_{0} \cdot m}{k_{B} \cdot T} \right) \right]}{\sum_{m=-I}^{I} 1 + \underbrace{g\mu_{N} \cdot B_{0} \cdot m}{k_{B} \cdot T}}$   $\text{use} : \sum_{m=-I}^{I} m = 0 \qquad \sum_{m=-I}^{I} m^{2} = \frac{(2I+1) \cdot I(I+1)}{3}$   $M = N \cdot g^{2} \cdot \mu_{N}^{2} \frac{B_{0}I(I+1)}{3k_{B}T} \sim \frac{B_{0}}{T}$  = Curie law for paramagnetic moments

for T = 300K, B = 1 T, I = 1 $\rightarrow \frac{\langle I_z \rangle}{\hbar} \sim 10^{-6}$ 

but there are typically 10<sup>20</sup> nuclei

### **O** Classical description of NMR

treat the net magnetization density  $ar{M}$  as a classical vector

In a magnetic field  $\vec{B}$  there is a torque  $\vec{\tau}$ .

$$\vec{\tau} = \vec{M} \times \vec{B}_0 = \frac{d\vec{I}}{dt} = \frac{\hbar}{g \cdot \mu_N} \frac{d\vec{M}}{dt}$$
= Bloch equation
  
Change of angular momentum density



- free precession of  $\vec{M}$  around  $\vec{B}_0$  where  $M_z$  is conserved.
- precession frequency:  $\rightarrow$  $w_L = -\gamma \cdot B_0$ = Larmor frequency

#### Introduce relaxation mechanism:

| longitudinal relaxation rate                                                                                           | $T_1$ | spin-lattice relaxation rate                                                       |
|------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------|
| transversal relaxation rate                                                                                            | $T_2$ | spin-spin relaxation rate                                                          |
| $\begin{aligned} \frac{dM_z}{dt} &= \frac{M_0 - M_z}{T_1} \\ \frac{dM_{x,y}}{dt} &= \frac{M_{x,y}}{T_2} \end{aligned}$ |       | concerns the relaxation towards equilibrium $\left< \vec{M} \right> = (0, 0, M_0)$ |

>  $T_I$  measurement Bring unmagnetized sample in a magnetic field  $B_0 \cdot \hat{z}$ 



Here the population of levels needs to be changed  $\rightarrow$  requires an energy transfer.



The crystal lattice acts like a heat bath  $\rightarrow$  spin-lattice relaxation rate  $T_1$ 

#### > T<sub>2</sub> measurement

For example: partially magnetized sample along x so as to induce a component  $\vec{M}(t=0)$  =  $(M_{x_0},0,0)$ 



static case: dephasing of spin ensemble due to inhomogeneous magnetic field B.



Dynamic processes also can contribute to  $T_2$  since they also destroy the phase coherence.

> Combine both sets of equations (free percession and relaxation).

$$\frac{dM_z}{dt} = \gamma \cdot \left(M \times B\right)_z + \frac{M_0 - M_z}{T_1}$$
$$\frac{dM_{x,y}}{dt} = \gamma \cdot \left(M \times B\right)_{x,y} + \frac{M_{x,y}}{T_2}$$

total field:  $\underbrace{\vec{B} = B_0 \hat{z}}_{\text{static field}} + B_1 \underbrace{\left[ \hat{x} \cos(\omega t) + \hat{y} \sin(\omega t) \right]}_{\text{rf-field}}$ 

Consider rotating coordinate system, with frequency  $\omega$ 



$$\frac{dM_{z'}}{dt} = -\gamma \cdot B_1 \cdot M_{y'} - \frac{M_{z'} - M_0}{T_1}$$
$$\frac{dM_{x'}}{dt} = (\gamma \cdot B_0 - \omega) M_{y'} - \frac{M_{x'}}{T_2}$$
$$\frac{dM_{y'}}{dt} = -(\gamma \cdot B_0 - \omega) M_{x'} - \gamma B_1 \cdot M_{z'} - \frac{M_{y'}}{T_2}$$

Bloch equations in rotating coordinates

If equilibrium is maintained: "slow passage of  $\varpi$  or  $B_{\theta}$  through the resonance condition"

$$\rightarrow \frac{d\langle M_x \rangle}{dt} = \frac{d\langle M_y \rangle}{dt} = \frac{d\langle M_x \rangle}{dt} = 0$$
  

$$\rightarrow 3 \text{ linear equations}$$
  

$$\langle M_{x'} \rangle = \gamma \cdot B_1 \cdot \langle M_0 \rangle \cdot \frac{\omega - \gamma \cdot B_0}{(\omega - \gamma B_0)^2 + \frac{\pi}{4}^2}$$
  

$$\langle M_{y'} \rangle = \frac{\gamma \cdot B_1 \cdot \langle M_0 \rangle}{T_2} \frac{1}{(\omega - \gamma \cdot B_0)^2 T_2^2}$$
  

$$\langle M_{x'} \rangle = \frac{1 + (\omega - \gamma \cdot B_0)^2 T_2^2}{(\omega - \gamma B_0)^2 + \frac{\pi}{4}^2}$$
  
with  $\Gamma = \frac{2}{T_2} \sqrt{1 + \gamma^2 B_1^2 T_1 T_2}$   

$$\langle \tilde{M}_{x'} \rangle$$
  

$$\langle M_{y'} \rangle$$
  

$$\langle M_{y'} \rangle$$
  

$$\Gamma = \frac{2}{T_2} \sqrt{1 + \gamma^2 B_1^2 T_1 T_2}$$

two cases:

a) weak rf-field  $B_1^2 << \frac{1}{\gamma^2 T_1 T_2}$   $\rightarrow \Gamma \approx \frac{2}{T_2} \qquad \rightarrow T_2$  measurement b) strong rf-field  $B_1^2 >> \frac{1}{\gamma^2 T_1 T_2}$  $\rightarrow \Gamma \approx 2\gamma B_1 \sqrt{\frac{T_1}{T_2}}$  power broadening So far we considered the continuous wave techniques. Alternative is the pulse method.

Apply a pulse of frequency  $\omega_L$  for duration  $t_P$ 

for 
$$0 \rightarrow t_P \Rightarrow \bar{B}_{eff} = B_1 \hat{x}$$



Pulse of appropriate duration  $t_P$  rotates  $\overline{M}$  into the y-plan,  $t_P = \frac{\pi}{2} \frac{1}{\gamma \cdot B_1}$ After  $t_P$  the magnetic field  $B_1$  is switched off.

→ free precession around  $\vec{B} = B_0 \hat{z}$  $\vec{M}(t=0) = (0, M_{u'_0}, 0)$ 

$$B_0 \bigwedge^{z} y'$$

$$M(t=0) x$$



Two processes contribute to decay of  $M_{y'}$ , i.e. to  $\Gamma$ 

- dynamic ones,  $\frac{1}{T_1}$
- static field inhomogeneities

# Spin-Echo-Technique



After some time  $\tau$  apply a 180° pulse ( $\pi$  – pulse)

- → Dephasing process due to random but static local B fields is reversed ⇒ echo signal appears because spin dephasing is reversed
- $\rightarrow$  Dephasing due to dynamic  $\frac{1}{m}$  processes is not reversed
  - $\rightarrow$  Amplitude of echo is smaller

Ratio of 
$$\frac{I_{echo}}{I_{initial}} \rightarrow \frac{1}{T_1}$$