Phonon Softening in the CDW Systems NbSe₂ and TiSe₂

Roland Hott¹, Rolf Heid¹, Klaus-Peter Bohnen¹, Frank Weber^{1,2}, Stephan Rosenkranz², John-Paul Castellan^{1,2}, Raymond Osborn², Takeshi Egami³, Ayman Said⁴, and Dmitry Reznik^{1,5}

¹Karlsruhe Institute of Technology, Institute of Solid State Physics, P. B. 3640,

- D-76021 Karlsruhe, Germany
- ²Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA
- ³Department of Materials Science and Engineering, University of Tennessee,

Knoxville, Tennessee, 37996, USA

⁴Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA ⁵Department of Physics, University of Colorado at Boulder, Boulder, Colorado, 80309, USA

We investigated the soft-mode behaviour of phonons in the Charge Density Wave (CDW) systems NbSe₂ and TiSe₂ both theoretically in Density Functional Theory (DFT) based on abinitio phonon calculations and experimentally by means of high resolution Inelastic X-ray Scattering (IXS). For both materials, the theoretical predictions for the phonon softening using the experimental lattice parameters coincide with the experimentally observed CDW instability behaviour. While TiSe₂ shows a rather sharp phonon anomaly at T = 190 K, the anomaly in NbSe₂ at T = 33 K is much broader than expected for a Fermi surface nesting driven CDW instability. For NbSe₂, we exclude Fermi surface nesting as main origin of the phonon softening. For TiSe₂, there is no need to go beyond DFT in order to describe the phonon softening.