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3rd lecture

1. Topological insulators w/ time-reversal symmetry!
- Time reversal symmetry and Kramers theorem!
- Quantum spin Hall state on square lattice!
- Z2 surface invariant & Z2 bulk invariant!
- 3D topological insulator
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Time-reversal symmetry & Kramers theorem

Presence of time-reversal symmetry gives rise to new topological invariants 

Time-reversal symmetry implemented by anti-unitary operator:

[Kane-Mele, PRL 05]

For quadratic Hamiltonians in momentum space: 

Kramers theorem (for spin-1/2 particles):
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�H(k)��1 = +H(�k)

all eigenstates are at least two-fold degenerate 

� : t ! �t, k ! �k, Ŝµ ! �Ŝµ

⇥ ⇤ |� ⌅ = �⇤ |� ⌅ = 0

)

Consequences for edge states:  

UT = �UT
T

)
 have same energy; degeneracy at TRI momenta|u(k)⇥ and |u(�k)⇥

for Bloch functions in k-space:

— states at time-reversal invariant momenta are degenerate!
— crossing of edge states is protected!
— absence of backscattering from non-magnetic impurities
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2D topological insulator"
(also known as Quantum Spin Hall insulator)

edge band structure:
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Bulk energy gap but gapless edge: Spin filtered edge states

[Kane-Mele, PRL 05]
[Bernevig, Hughes, Zhang 2006]

— protected by time-reversal symmetry!
— half an ordinary 1D electron gas!
— is realized in certain band insulators with strong spin-orbit coupling

Sz is conserved

FIG. 1: (color online). This is.
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2D Bloch Hamiltonians in the presence of time-reversal symmetry:
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1 frist chapter

Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (1)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (2)

γC =

∮

C

A · dk (3)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2
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(4)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (5)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (6)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (7)

Θ2 Ξ2 Π2 (8)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)

Time-reversal-invariant topological insulator

Simplest model:!
(Chern insulator)2 H(k

x

, k
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energy spectrum Simple example Polyacethylene:

� = i⇧y ⇤ K (1)
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⇧
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�C =

⌃

S
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Fµ⇥ = ⇥µ⇥⇤F ⇤ (6)

F = ⌅k ⇥A (7)

d(k) = k (8)

�C =

⌃

S

F · dk (9)

Berry curvature tensor

Fµ⇥(k) =
⌥

⌥kµ
A⇥(k)� ⌥

⌥k⇥
Aµ(k) (10)

Berry curvature

Fki,kj =
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2
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⌥(ki, kj)
(11)

k d(k) (12)

F�⌅ = ⌥�A⌅ � ⌥⌅A� =
sin ⇤

2
(13)

Berry vector potential

A� = i
�
u�k
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= 0 (14)
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�
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⇥
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⌅
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⌅
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⇧
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(19)

E± = ± |d| (20)



TRI topological insulator: HgTe quantum wells

 observed in HgTe/(Hg,Cd) quantum wells

[Bernevig, Hughes, Zhang Science 2006]

conventional insulator ⌫ = 0 : topological insulator⌫ = 1 :

Band inversion 
transition

E E

k k
s band

s bandp band

p band

d < 6.3 nm: Normal band order d > 6.3 nm: Inverted band order

[M. Koenig, Buhmann, 
Mohlenkamp, et al., Science 2007]
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Measured conductance:             for short samples L < Lmag, LIS

Although the four-band Dirac model (Eq. 1)
gives a simple qualitative understanding of
this novel phase transition, we also performed
more realistic and self-consistent eight-band
k·p model calculations (13) for a 6.5-nm quan-
tum well, with the fan chart of the Landau
levels displayed in Fig. 1B. The two anoma-
lous Landau levels cross at a critical magnetic
field Bc

⊥, which evidently depends on well
width. This implies that when a sample has its
Fermi energy in the gap at zero magnetic
field, this energy will always be crossed by
the two anomalous Landau levels, resulting in
a QH plateau in-between the two crossing
fields. Figure 3 summarizes the dependence
of Bc

⊥ on well width d. The open red squares
are experimental data points that result from
fitting the eight-band k·p model to experi-
mental data as in Fig. 1, while the filled red
triangles result solely from the k·p calcula-
tion. For reference, the calculated gap ener-
gies are also plotted in this graph as open
blue circles. The band inversion is reflected
in the sign change of the gap. For relatively
wide wells (d > 8.5 nm), the (inverted) gap

starts to decrease in magnitude. This is be-
cause for these well widths, the band gap no
longer occurs between the E1 and HH1 lev-
els, but rather between HH1 and HH2—the
second confined hole-like level, as schemat-
ically shown in the inset of Fig. 3 [see also
(17)]. Also in this regime, a band crossing of
conductance- (HH1) and valence- (HH2) band–
derived Landau levels occurs with increasing
magnetic field (13, 17, 18). Figure 3 clearly
illustrates the quantum phase transition that
occurs as a function of d in the HgTe QWs:
Only for d > dc does Bc

⊥ exist, and at the
same time the energy gap is negative (i.e.,
the band structure is inverted). The experimen-
tal data allow for a quite accurate determi-
nation of the critical thickness, yielding dc =
6.3 ± 0.1 nm.

Zero-field edge channels and the QSH
effect. The actual existence of edge channels
in insulating inverted QWs is only revealed
when studying smaller Hall bars [the typical
mobility of 105 cm2 V−1 s−1 in n-type material
implies an elastic mean free path of lmfp ≈
1 mm (19, 20)—and one may anticipate lower

mobilities in the nominally insulating regime].
The pertinent data are shown in Fig. 4, which
plots the zero B-field four-terminal resistance
R14,23 ≡ V23/I14 as a function of normalized gate
voltage (Vthr is defined as the voltage for which
the resistance is largest) for several devices that
are representative of the large number of
structures we investigated. R14,23 is measured
while the Fermi level in the device is scanned
through the gap. In the low-resistance regions at
positive Vg − Vthr, the sample is n-type; at
negative Vg − Vthr, the sample is p-type.

The black curve labeled I in Fig. 4 was
obtained from a medium-sized [(20.0 × 13.3)
mm2] device with a 5.5-nm QW and shows the
behavior we observe for all devices with a
normal band structure: When the Fermi level
is in the gap, R14,23 increases strongly and is
at least several tens of megohm (this is the de-
tection limit of the lock-in equipment used in
the experiment). This clearly is the expected
behavior for a conventional insulator. How-
ever, for all devices containing an inverted QW,
the resistance in the insulating regime remains
finite. R14,23 plateaus at well below 100 kilohm
(i.e., G14,23 = 0.3 e2/h) for the blue curve
labeled II, which is again for a (20.0 × 13.3)
mm2 device fabricated by optical lithography,
but that contains a 7.3-nm-wide QW. For much
shorter samples (L = 1.0 mm, green and red
curves III and IV) fabricated from the same
wafer, G14,23 actually reaches the predicted
value close to 2e2/h, demonstrating the exis-
tence of the QSH insulator state for inverted
HgTe QW structures.

Figure 4 includes data on two devices with
d = 7.3 nm, L = 1.0 mm. The green trace (III)
is from a device with W = 1.0 mm, and the red
trace (IV) corresponds to a device with W =
0.5 mm. Clearly, the residual resistance of the
devices does not depend on the width of the
structure, which indicates that the transport
occurs through edge channels (21). The traces
for the d = 7.3 nm, L = 1.0 mm devices do not
reach all the way into the p-region because the
electron-beam lithography needed to fabricate
the devices increases the intrinsic (Vg = 0 V)
carrier concentration. In addition, fluctuations
on the conductance plateaus in traces II, III,
and IV are reproducible and do not stem from,
e.g., electrical noise. Although all R14,23 traces
discussed so far were taken at the base
temperature (30 mK) of our dilution refriger-
ator, the conductance plateaus are not limited
to this very-low-temperature regime. In the
inset of Fig. 4, we reproduce the green 30-mK
trace III on a linear scale and compare it with
a trace (in black) taken at 1.8 K from another
(L × W) = (1.0 × 1.0) mm2 sample, which was
fabricated from the same wafer. In the fabrica-
tion of this sample, we used a lower-illumination
dose in the e-beam lithography, resulting in a
better (but still not quite complete) coverage of
the n-i-p transition. Clearly, in this further
sample, and at 1.8 K, the 2e2/h conductance

Fig. 3. Crossing field,
Bc⊥ (red triangles), and
energy gap, Eg (blue
open dots), as a func-
tion of QW width d
resulting from an eight-
band k·p calculation.
For well widths larger
than 6.3 nm, the QW is
inverted and a mid-gap
crossing of Landau levels
deriving from the HH1
conductance and E1 va-
lence band occurs at fi-
nite magnetic fields. The
experimentally observed
crossing points are in-
dicated by open red
squares. The inset shows
the energetic ordering of the QW subband structure as a function of QW width d. [See also (17)].
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Fig. 4. The longitudinal four-
terminal resistance, R14,23, of
various normal (d = 5.5 nm)
(I) and inverted (d = 7.3 nm)
(II, III, and IV) QW structures
as a function of the gate volt-
age measured for B = 0 T at
T = 30 mK. The device sizes
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1.8 K (black) on a linear scale.
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TRI topological insulator: HgTe quantum wells

Helical edge states are unique 1D electron conductor

• spin and momentum are locked!
• no elastic backscattering from non-magnetic impurities!
• perfect spin conductor!

helical edge states:

topological insulator

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)

d < 6.3 nm !
normal band order:!

trivial

d > 6.3 nm !
inverted band order:!

topological

 observed in HgTe/(Hg,Cd) quantum wells

(two terminal conductance)

[M. Koenig, Buhmann, 
Mohlenkamp, et al., Science 2007]



2D topological insulator: Edge Z2 invariant

Valence band

Conduction  band
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E
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Momentum CA

trivial phase!
even # Dirac cones

non-trivial phase!
odd # Dirac cones

Conduction  band

Valence band

Momentum

Ef

E
ne
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A C

OR

Edge Z2 invariant distinguishes between !
even / odd number of Kramers pairs of edge states

Time-reversal invariant insulators with   !!
are classified by a Z2 topological invariant (   = 0,1)

This can be understood via the bulk-boundary correspondence:

[after Hasan & Kane, RMP 2010]
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1 frist chapter

Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (1)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (2)

γC =

∮

C

A · dk (3)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈
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∣

∣
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∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(4)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

Symmetry Operations: Egap = !ωc

ΘH(k)Θ−1 = +H(−k); Θ2 = ±1 (5)

ΞH(k)Ξ−1 = −H(−k); Ξ2 = ±1 (6)

ΠH(k)Π−1 = −H(k); Π ∝ ΘΞ (7)

Θ2 Ξ2 Π2 (8)

�2 = �1

⌫

consider edge states in half of the edge Brillouin zone (other half is related by TRS))

)

Kramers degenerate 
at TRI momenta

conventional insulator ⌫ = 0 : topological insulator⌫ = 1 :

Dirac cone

k = 0 k = � k = 0 k = �

Edge Z2 invariant: 

[Kane Mele 05]



e.g.: Pf

✓
0 z
�z 0

◆
= z

consider anti-symmetric “t-matrix”:)
antisymmetry property:

) Pfaffian can be defined:

(Pf [!(�a)])
2

= det [!(�a)]

[Kane Mele 05]
[Fu and Kane]

—                                       denote gauge choices in the two EBZs!
— TR-smooth gauge: |u(1)

n (�k)⇥ = �|u(2)
n (k)⇥

|u(1)
n (k)� and |u(2)

n (k)�

  Bulk Z2 invariant as an obstruction to define a “TR-smooth gauge”:

tmn(k) =
⌦
u�
m(k)

��⇥
��u�

n (k)
↵

tT(k) = �t(k)

Pf [t(k)]

Pf [t(k)]  Zeroes of                 occur in  
    isolated points, carry phase winding

2D topological insulator: First bulk Z2 invariant

 Due to time-reversal symmetry:

(i) |Pf[t(k)]| = |Pf[t(�k)]| ) zeros come in pairs

(ii) At TRI momenta ⇤a we have |Pf[t(⇤a)]| = 1

) zeros cannot be brought to TRI momenta
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h Λi Λ1 Λ2 Λ3 Λ4 (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h Λi Λ1 Λ2 Λ3 Λ4 (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h Λi Λ1 Λ2 Λ3 Λ4 (1)
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conventional insulator topological insulator

Topological invariant =  number or zeros of                 in EBZ modulo 2Pf [t(k)]

I =
1

2�i

Z

�(EBZ)
dk ·⇥ log

�
Pf

⇥
�u�

m(k)|�|u�
n (k)

⇤�
mod 2

It follows from bulk-boundary correspondence: edge Z2 invariant = bulk Z2 invariant

2D topological insulator: First bulk Z2 invariant



e.g.: Pf

✓
0 z
�z 0

◆
= z

2D topological insulator: Second bulk Z2 invariant

consider unitary sewing matrix:)
�mn(k) = ⇥u�

m(�k)|�|u�
n (k)⇤

antisymmetry property: !T (k) = �!(�k)

at TRI momenta: �a = ��a ) !T (�a) = �!(�a) is antisymmetric

) Pfaffian can be defined: Pf [!(�a)]
(Pf [!(�a)])

2

= det [!(�a)]

Bulk Z2 invariant (   = 0,1):⌫ (�1)� =
4Y

a=1

Pf [!(�a)]p
det [!(�a)]

= ±1
(gauge invariant, 
but smooth 
gauge needed)

[Kane Mele 05]
[Fu and Kane]

It follows from bulk-boundary correspondence: edge Z2 invariant = bulk Z2 invariant

—                                       denote gauge choices in the two EBZs!
— TR-smooth gauge: |u(1)

n (�k)⇥ = �|u(2)
n (k)⇥

|u(1)
n (k)� and |u(2)

n (k)�

  Bulk Z2 invariant as an obstruction to define a “TR-smooth gauge”:
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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2D topological insulator: Bulk Z2 invariants
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we have

kx ky π/a − π/a (1)

majoranas

γ1 = ψ + ψ† (2)

γ2 = −i
(

ψ − ψ†
)

(3)

and

ψ = γ1 + iγ2 (4)

ψ† = γ1 − iγ2 (5)

and

γ2
i = 1 (6)

{γi, γj} = 2δij (7)

mean field

γ†
E=0 = γE=0 (8)

⇒ γ†
k,E = γ−k,−E (9)

Ξ ψ+k,+E = τxψ
∗
−k,−E (10)

Ξ2 = +1 Ξ = τxK (11)

τx =

(

0 1
1 0

)

(12)

c†c c†c ⇒ ⟨c†c†⟩c c = ∆∗c c (13)

weak vs strong

|µ| < 4t (14)

n = 1 (15)

Lattice BdG Hamiltonian

m̂(k) =
m(k)

|m(k)|
m̂(k) : m̂(k) ∈ S2 π2(S

2) = (16)

HBdG = (2t [cos kx + cos ky] − µ) τz + ∆0 (τx sin kx + τy sin ky) = m(k) · τ (17)

mx my mz (18)
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and time-reversal symmetry

Θ = e+iπSy/!K Θ2 = −1 2e2/h Λi Λ1 Λ2 Λ3 Λ4 (1)

E0 ky (2)

2γC = solid angle swept out by d̂(k) (3)

H(k) = d(k) · σ d̂ (4)

n =
i

2π

∑

∫

Fd2k (5)

|u(k)⟩ → eiφk |u(k)⟩ (6)

A → A + ∇kφk (7)

F = ∇k ×A (8)

γC =

∮

C

A · dk (9)

γC =

∫

S

Fd2k (10)

=⇒ (11)

Bloch theorem

[T (R), H ] = 0 k |ψn⟩ = eikr |un(k)⟩ (12)

(13)

H(k) = e−ikrHe+ikr (14)

(15)

H(k) |un(k)⟩ = En(k) |un(k)⟩ (16)

we have

H(k) kx ky π/a − π/a k ∈ Brillouin Zone (17)

majoranas

γ1 = ψ + ψ† (18)

γ2 = −i
(

ψ − ψ†
)

(19)

and

ψ = γ1 + iγ2 (20)

ψ† = γ1 − iγ2 (21)
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EBZ

Three equivalent definitions for bulk Z2 topological invariant: 
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1 frist chapter

ν =
1

2π

[
∮

∂(EBZ)

dk · A−
∫

EBZ

d2kF
]

mod 2 (1)

tages

Ξ HBdG(k) Ξ−1 = −HBdG(−k) "−→ (2)

∆n

Chern number g = 0, g = 1

n =
∑

bands

i

2π

∫

Fdk2 (3)

γC =

∮

C

A · dk (4)

First Chern number n = 0

n =
∑

bands

i

2π

∫

dk2

[〈

∂u

∂k1

∣

∣

∣

∣

∂u

∂k2

〉

−
〈

∂u

∂k2

∣

∣

∣

∣

∂u

∂k1

〉]

(5)

H(k) :

H(k, k′)

kF > 1/ξ0

sgn(∆+
K) = − sgn(∆−

K) and lk antiparallel to lek

sgn(∆+
k ) = − sgn(∆−

k )

σxy = ne2

h

ρxy = 1
n

h
e2

n ∈

Jy = σxyEx

in terms of sewing matrix: (�1)� =
4Y

a=1

Pf [!(�a)]p
det [!(�a)]

= ±1
(gauge invariant, 
but smooth 
gauge needed)

�mn(k) = ⇥u�
m(�k)|�|u�

n (k)⇤

(B)

(C)

  count number of zeroes of                                            in EBZPf
⇥
�u�

m(k)|�|u�
n (k)

⇤

(A)

in terms of Berry connection:

I =
1

2�i

Z

�(EBZ)
dk ·⇥ log

�
Pf

⇥
�u�

m(k)|�|u�
n (k)

⇤�

(is unitary, and anti-!
symmetric at TRI momenta)sewing matrix:

(antisymmetric at all momenta, 
but not unitary)

mod 2



Three-dimensional "
topological insulators



3D topological insulator: Surface Z2 invariant

• Surface Z2 invariant:

k
x

ky

e⇤4
e⇤3

e⇤2
e⇤1

Dirac cone

surface Brillouin zone

Valence band

Conduction  band

Ef

E
ne

rg
y

Momentum CA

Conduction  band

Valence band

Momentum

Ef

E
ne

rg
y

A C

OR

k = e⇤1 k = e⇤2 k = e⇤1 k = e⇤2

• How do surface states connect between TRI momenta?

k
x

ky

Strong topological insulator⌫ = 1 :

Weak topological insulator⌫ = 0 :

— Fermi surface encloses odd number of TRI momenta

k
x

ky

— Fermi surface encloses even number of TRI momenta

— protected by time-reversal symmetry
— independent of surface orientation

— depends on surface orientation (quasi-2D topological insulator)
— protected by time-reversal and translation symmetry

(4 time-reversal invariant momenta in surface BZ)
[after Hasan & Kane, RMP 2010]



(�1)� =
8Y

a=1

Pf [!(�a)]p
det [!(�a)]

= ±1

kz

k
x

ky
⇡

⇡

⇡ ⇤a

— Strong Z2 invariant

Bulk-boundary correspondence: edge Z2 invariant = bulk Z2 invariant

[Kane-Mele, Moore-Balents, Roy, 
Fu-Kane-Mele (06-07)]

• Bulk Z2 invariant:

8 TRI momenta in bulk BZ

— Weak Z2 invariant
(�1)⌫i =

4Y

a=1

Pf [!(⇤a)]p
det [!(⇤a)]

�����
ki=0

3D topological insulator: Bulk Z2 invariant

— Due to time-reversal symmetry there are  
     only 16 possibilities for the arrangement of the lines:

– Zeros of Pf[t(k)] are lines

(⌫0; ⌫1, ⌫2, ⌫3)

0

tmn(k) =
⌦
u�
m(k)

��⇥
��u�

n (k)
↵



Experimental detection of 3D topological insulators

 observed in certain band insulators with strong spin-orbit coupling

BiSb alloy, Bi2Se3, Bi2Te3, TlBiTe2, TlSbSe2, etc ....

stable surface states cross a gap, that is opened up by spin-orbit coupling

Bi1-xSbx

Theory:  Predict Bi1-xSbx is a  topological insulator  by exploiting 
inversion symmetry of pure Bi, Sb   (Fu,Kane PRL’07)

Experiment:  ARPES (Hsieh et al. Nature ’08)

• Bi1-x Sbx is a Strong Topological 
Insulator �0;(�1,�2,�3) = 1;(111) 

• 5 surface state bands cross EF  

between � and M

ARPES Experiment  :   Y. Xia et al.,  Nature Phys. (2009).
Band Theory :               H. Zhang et. al, Nature Phys. (2009).Bi2 Se3

• �0;(�1,�2,�3) = 1;(000) : Band inversion at �

• Energy gap: � ~ .3 eV :  A room temperature
topological insulator

• Simple surface state structure :
Similar to graphene, except 
only a single Dirac point

EF

Control EF on surface by
exposing to NO2

• Bi1�x

Sb
x

: [Hsieh, Hasan et al, Nature 2008]

momentum resolved photoemission (ARPES)

five  surface state bands cross EF between TRI momenta      and�̄ M̄

) strong topological insulator

[Fu, Kane, PRL 2007]



Experimental detection of 3D topological insulators

locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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locked due to Z2 topology. This is most clearly seen in the spin-
resolved spectra (Iy

",#; Fig. 1g), which are calculated from Py accord-
ing to Iy

"5 Itot(11Py)/2 and Iy
#5 Itot(12 Py)/2, where Itot is the

spin-averaged intensity. To extract the spin polarization vectors of
the forward (1kx) and backward (2kx) moving electrons, we
performed a standard numerical fit (Supplementary Informa-
tion)21. The fit results yield 100(615)% polarized (Fig. 1h) spins that
point along the (k3 z) direction, which is consistent with its topo-
logical spin–orbit coupling origin14,21. Spin-momentum locking is
the key to topological order in a topological insulator which cannot
be demonstrated without spin sensitive detection. Therefore the
existence of the topological insulator state was not established in
previous work on Bi2X3. Our combined observations of a spin–orbit
origin linear dispersion relation and a one-to-one locking of
momentum and spin directions allow us to conclude that the surface
electrons of Bi2X3 (X5Se, Te) are helical Dirac fermions of Z2

topological-order origin (Fig. 1).
To experimentally access these helical Dirac fermions for research-

device applications, the electronic structuremust be in the topological
transport regime where there is zero charge fermion density7–9.
This regime occurs when EF lies in between the bulk valence band
maximum (VBM) and the bulk conduction band minimum (CBM),
and exactly at the surface or edge Dirac point, which should in turn lie
at a Kramers time-reversal invariant momentum3,4. This is clearly not
the case in either Bi2Te3, Bi2(Sn)Te3, Bi2Se3 or graphene. Although
pure Bi2X3 are expected to be undoped semiconductors20,22,23,
nominally stoichiometric samples are well known to be n- and p-type
semiconductors owing to excess carriers introduced via Se or Te site
defects, respectively16,17. To compensate for the unwanted defect
dopants, trace amounts of carriers of the opposite sign must be added
into the naturally occurring material, which may be easier to achieve
in Bi2Se3 than in Bi2Te3 because the former has a much larger
bandgap15,24 (around 0.35 eV (ref. 25) compared to 0.18 eV (ref. 26),
respectively). To lower the EF of Bi2Se3 into the bulk bandgap, we

substituted trace amounts of Ca21 for Bi31 in as-grown Bi2Se3, where
Ca has been previously shown16 to act as a hole donor by scanning
tunnelling microscopy and thermoelectric transport studies16.
Figure 2a shows that as the Ca concentration increases from 0% to
0.5%, the low temperature resistivity sharply peaks at 0.25%, which
suggests that the system undergoes a metal to insulator to metal trans-
ition. The resistivity peak occurs at a Ca concentration where a change
in signof theHall carrier density also is observed (Fig. 2b),which shows
that formeasuredCa concentrations below and above 0.25%, electrical
conduction is supported by electron and hole carriers, respectively.

We performed systematic time-dependent ARPES measurements
to study the electronic structure evolution of Bi22dCadSe3 as a func-
tion of Ca doping in order to gain insight into the trends observed in
transport (Fig. 2a and b). Early time ARPES energy dispersion maps
taken through the !CC point of the (111) surface Brillouin zone are
displayed in Fig. 2c–h for several Ca doping levels. In the as-grown
(d5 0) Bi2Se3 samples, a single surface Dirac cone is observed with EF
lying nearly 0.3 eV above the Dirac node forming an electron Fermi
surface. We also observe that EF intersects the electron-like bulk
conduction band. When a 0.25% concentration of Ca is introduced,
EF is dramatically lowered to lie near the Dirac node (Fig. 2d), which
is consistent with Ca acting as a highly effective hole donor. Because
the bulk CBM lies at a binding energy of approximately20.1 eV for
d5 0 (Fig. 2c), a 0.3 eV shift in EF between d5 0 and d5 0.0025
suggests that for d5 0.0025, EF is located 0.2 eV below the CBM.
This is consistent with EF being in the bulk bandgap, because the
indirect energy gap between the CBM and the VBM is known from
both tunnelling24 and optical25 data and theory22 to be nearly 0.35 eV.

As the Ca concentration is increased further, the position of EF
continues a downward trend such that by d5 0.01, it is located
clearly below the Dirac node (Fig. 2) and intersects the hole-like bulk
valence band. The systematic lowering of EF with increasing d in
Bi22dCadSe3 observed in early time ARPES measurements
(Fig. 2i–k), which reflect the electronic structure of the sample bulk,
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Figure 1 | Detection of spin-momentum locking of spin-helical Dirac
electrons in Bi2Se3 and Bi2Te3 using spin-resolved ARPES. a, b, ARPES
intensity map at EF of the (111) surface of tuned stoichiometric Bi22dCadSe3
(a; see text) and of Bi2Te3 (b). Red arrows denote the direction of spin
projection around the Fermi surface. c, d, ARPES dispersion of tuned
Bi22dCadSe3 (c) and Bi2Te3 (d) along the kx cut. The dotted red lines are
guides to the eye. The shaded regions in c and d are our projections of the
bulk bands of pure Bi2Se3 and Bi2Te3, respectively, onto the (111) surface.
e, Measured y component of spin-polarization along the !CC{ !MM direction at
EB5220meV, which only cuts through the surface states. Inset, schematic
of the cut direction. f, Measured x (red triangles) and z (black circles)
components of spin-polarization along the !CC{ !MM direction at

EB5220meV. Error bars in e and f denote the standard deviation of Px,y,z
where typical detector counts reach 53 105; solid lines are numerical fits21.
g, Spin-resolved spectra obtained from the y component spin polarization
data. The non-Lorentzian lineshape of the Iy

" and Iy
# curves and their non-

exact merger at large |kx | is due to the time evolution of the surface band
dispersion, which is the dominant source of statistical uncertainty. a.u.,
arbitrary units. h, Fitted values of the spin polarization vector P (Sx,Sy,Sz) are
(sin90ucos295u, sin90usin295u, cos90u) for electrons with 1kx and
(sin86ucos85u, sin86usin85u, cos86u) for electrons with 2kx, which
demonstrates the topological helicity of the spin-Dirac cone. The angular
uncertainties are of the order of 610u and the magnitude uncertainty is of
the order of 60.15.
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spin resolved  and momentum resolved photoemission (ARPES)

[Hsieh, Hasan et al, Nature 2009]

Unique properties of helical surface states:
• spin and momentum are locked!
• half of an ordinary 2DEG, “1/4 of graphene”!
• robust to disorder, impossible to localize

• Bi2 Se3 :

simple surface state structure, similar to graphene

[H. Zhang et al., Nat Phys 2009]


