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Abstract
The interplay of superconductivity and magnetism is investigated for systems with dimensions

ranging from the mesoscopic to the atomic scale by scanning tunneling microscopy (STM)

at millikelvin temperatures and by numerical calculations. Based on geometrically confined

superconductors in magnetic fields, a novel STM approach is introduced to quantitatively

probe the spin polarization of tunneling electrons.

In the first part of this work, the effects of magnetic fields and geometrical confinement are

probed for superconducting vanadium STM tips. Due to the unique confinement ranging

from the atomic to the mesoscopic scale, the superconducting properties of the STM tips

vary considerably from their bulk counterparts. To analyze the experimentally determined

magnetic field dependence of several V tips, the superconductivity is numerically calculated

for modeled cone geometries with various opening angles. The numerical approach based on

a one-dimensional Usadel equation leads to a direct correlation between the opening angle α

and the order of the superconducting phase transition. First order phase transitions occur

when the opening angle is smaller than a critical value (α<αc ), whilst larger opening angles

(α>αc ) result in second order phase transitions. The comparison of experimental findings and

numerical results reveals the existence of first and second order quantum phase transitions in

the V STM tips. In addition, the numerical calculations also explain experimentally observed

broadening effects of the superconducting spectra by the specific tip geometry.

In the second part, the superconducting V tips are employed in a novel approach to quantita-

tively probe the spin polarization of tunneling electrons on the nanoscale. For this purpose,

the Meservey-Tedrow-Fulde technique is transferred to STM in order to combine their virtues,

such as the quantitative probing capability of the spin polarization, the precise control at the

atomic scale and the well-defined vacuum tunnel barrier. To demonstrate the capabilities of

the new technique, the local spin structure is resolved for a magnetic Co nanoisland, where

spin polarizations ranging from -56 % up to 65 % were found, depending on the local posi-

tion. Furthermore, the spin polarization P strongly varies with the tip-to-sample distance z

(dP/dz ≈ 10 %/Å), which is described by the different decays of the spin-up and spin-down

wave functions into the vacuum tunnel barrier.

The final part describes the local interaction between isolated magnetic moments and the

superconducting ground state. Copper phthalocyanine molecules on the superconducting

V(100) surface induce bound states within the superconducting gap due to the magnetic cou-

pling and the Coulomb potentials. Spatially resolved measurements reveal the non-isotropic

structure of the spectral weights that is explained by the adsorption site on the 5×1 recon-
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struction of the V(100) surface. The quasi-particle excitations are not only observed on the

magnetic molecule but also occur in its close vicinity. With increasing distance from the

molecular structure, the intensities of the bound states decay within the distance x ≈±30 Å

and show periodic oscillations at the same time. Comparing the experimental findings to a

one-dimensional model suggests the presence of a complicated scattering potential, which

can be simplified by assuming two point scatterers within the molecular structure.

The investigations presented in this thesis provide a better fundamental understanding of

superconductivity in the presence of magnetic fields, enabling a novel approach for quantita-

tively probing the spin polarization in STM. Furthermore, the interplay of superconductivity

with isolated magnetic moments is probed on the atomic scale and the distance dependence

of the induced bound states indicates the spatial extension of the magnetic interaction.
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Kurzfassung
Die vorliegende Arbeit studiert das Wechselspiel zwischen Supraleitung und Magnetismus

mittels Rastertunnelmikroskopie und numerischer Berechnungen. Es werdem Systeme un-

tersucht, deren räumliche Ausdehnung von einigen wenigen Atomen bis hin zu mesoskopi-

schen Größen reicht. Dabei wird ein neues Verfahren der Rastertunnelmikroskopie vorgestellt,

welches auf räumlich eingegrenzten Supraleitern in magnetischen Feldern als Sonden zur

quantitativen Messung der Spinpolarisation von tunnelnden Elektronen basiert.

Die Effekte räumlicher Eingrenzung und hoher Magnetfelder werden zunächst an supralei-

tenden Vanadiumspitzen für die Rastertunnelmikroskopie untersucht. Die supraleitenden

Eigenschaften der Rastertunnelmikroskopiespitzen weichen aufgrund der besonderen Geo-

metrie, welche den Supraleiter sowohl auf atomarer als auch auf mesoskopischer Längenskala

räumlich begrenzt, erheblich von makroskopischen Proben ab. Zur Analyse der experimentell

bestimmten Magnetfeldabhängigkeiten verschiedener, supraleitender Spitzen wird die Su-

praleitung für kegelförmige Modelle unterschiedlicher Öffnungswinkel numerisch berechnet.

Basierend auf einer eindimensionalen Usadel Gleichung führt die numerische Berechnung

zu einer direkten Beziehung zwischen dem Öffnungswinkel α und der Ordnung des supra-

leitenden Phasenübergangs. Während für Öffnungswinkel unterhalb eines kritischen Wertes

(α<αc ) Phasenübergänge erster Ordnung auftreten, erzeugen größere Winkel (α>αc ) Pha-

senübergänge zweiter Ordnung. Der Vergleich von experimentellen Befunden und numeri-

schen Berechnungen bestätigt die Existenz von Phasenübergängen sowohl erster als auch

zweiter Ordnung in den Vanadiumspitzen.

Zur Anwendung kommen die supraleitenden Vanadiumspitzen anschließend in einem neuen

Verfahren zur quantitativen Bestimmung der Spinpolarisation von tunnelnden Elektronen mit

atomarer räumlicher Auflösung. Mit dem Transfer der Meservey-Tedrow-Fulde Technik in die

Rastertunnelmikroskopie werden die Vorzüge beider Verfahren kombiniert, welche quantitati-

ves Messen der Spinpolarisation, präzise Kontrolle auf atomarer Skala und eine wohldefinierte

Vakuumtunnelbarriere beinhalten. Zur Demonstration des Leistungsvermögens der neuen

Messtechnik werden die lokalen Spinstrukturen einer magnetischen Nanostruktur aus Cobalt

räumlich aufgelöst und, abhängig von der Messposition, Spinpolarisationen von -56 % bis

65 % nachgewiesen. Darüber hinaus zeigt die Spinpolarisation P eine signifikante Abhängig-

keit von dem Abstand z zwischen Spitze und Probe (dP/dz ≈ 10 %/Å), welche sich durch das

unterschiedliche Abklingen der Wellenfunktionen verschiedener Spinorientierungen in der

Vakuumtunnelbarriere erklären lässt.

Abschließend wird die lokale Wechselwirkung zwischen einzelnen magnetischen Momenten
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und dem supraleitenden Grundzustand untersucht. Auf der Oberfläche eines supraleitenden

V(100) Einkristalls induzieren einzelne Kupferphthalocyaninmoleküle gebundene Zustän-

de, welche durch die lokale magnetische Kopplung und Coulomb-Potentiale innerhalb der

supraleitenden Bandlücke entstehen. Messungen mittels Rastertunnelmikroskopie veran-

schaulichen die anisotrope Ausbreitung der induzierten Zustände in Folge des Adsorbierens

auf der 5×1 Rekonstruktion der V(100) Oberfläche. Die Anregungen von Quasiteilchenzu-

ständen beschränken sich jedoch nicht nur auf die räumliche Ausdehnung der molekularen

Strukturen, sondern lassen sich auch in deren unmittelbarer Umgebung nachweisen. Mit

zunehmender Distanz x ≈±30 Å von den Molekülen verschwindet die spektrale Intensität der

induzierten Zustände, wobei während des Abklingvorgangs noch zusätzliche Oszillationen zu

beobachten sind. Im Vergleich mit einem eindimensionalen Modell finden sich Hinweise auf

die Existenz eines komplexen Streupotentials, welches sich in einer vereinfachten Betrachtung

mittels zweier punktförmiger magnetischer Momente innerhalb eines einzelnen Moleküls

beschreiben lässt.

Die hier präsentierten Studien verbessern das Grundlagenverständnis von Supraleitung in

Gegenwart von magnetischen Feldern und ermöglichen ein neues Messverfahren in der Raster-

tunnelmikroskopie zur quantitativen Bestimmung der Spinpolarisation. Die Untersuchung

der Wechselwirkung zwischen Supraleitung und einzelnen magnetischen Momenten zeigt die

räumliche Ausdehnung der magnetischen Kopplung.

Schlagwörter:
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1 Introduction

Superconductivity and magnetism are often considered as competing phenomena arising

from different interactions of electrons on the microscopic scale. In this context, the electron

spin plays an important role with its intrinsic angular moment as an additional degree of free-

dom. In conventional superconductors, electrons form so-called Cooper pairs with opposing

spin moments at low temperature [1, 2]. Since these Cooper pairs move through supercon-

ducting materials without any electric resistance, superconductors provide great potential

for energy efficient applications, for example, in the generation and distribution of electric

power. The attractive force of the pairing mechanism stems from the electron interaction

with phonons of the crystal lattice and, as a result, the coupling is long ranged up to the order

of several micrometers [3]. Since the total spin of Cooper pairs is an integer and, hence, of

bosonic character, the resulting superconducting ground state greatly differs from the normal

conducting phase. In magnetic materials, by contrast, the electrons as fermions obey the Pauli

exclusion principle. It is directly related to the ferromagnetic exchange interaction, which is

normally short-ranged between neighboring atoms. Here, the electron spins align in the same

direction in order to produce a total net magnetization. Magnetic materials are also important

in a wide field of applications ranging from electromobility to sensing and logic devices.

The opposing character of superconductivity and magnetism becomes obvious when a ma-

gentic field is applied to a superconductor. In high fields, the superconducting phase ceases

to exist and the superconductor undergoes a phase transition to the normal conducting state.

Studying the phase transition not only provides a better understanding of the fundamental

superconducting processes, e. g. the underlying pairing mechanism of the Cooper pairs, but

is also essential for modern applications, such as the superconducting magnets used for the

Large Hadron Collider at CERN. In weaker magnetic fields below the phase transition, the

complex interplay of superconductivity and magnetism can already manifest in the so-called

Meissner phase. Here, the magnetic field only penetrates a small portion of the superconduc-

tor, which expels the field from its interior with the majority of the Cooper pairs remaining in

field free conditions [4, 5]. In this context, the geometry of the superconductor represents an

essential factor, which can directly change the amount of effected Cooper pairs and, thus, can

1



Chapter 1. Introduction

greatly alter the behavior of superconductors in magnetic fields. The effects of geometrical

confinement have extensively been studied on superconducting thin films. To this end, tunnel-

ing experiments have been carried out on planar tunnel junctions, where the superconducting

films and a metal counter electrode are separated by an isolating tunnel barrier [6–9]. These

studies have revealed the unique properties of geometrically confined superconductors, in

which the majority of the Cooper pairs are exposed to the magnetic field. More importantly,

R. Meservey, P. M. Tedrow and P. Fulde demonstrated in their pioneering work that thin film

superconductors can be employed in a detection scheme to measure the spin orientation of

electrons [6–10]. Over the years, the Meservey-Tedrow-Fulde (MTF) technique has emerged

as a well-established standard for probing the spin polarization of tunneling conduction

electrons in various magnetic materials and compounds [8–10]. In fact, their spin-dependent

tunneling experiments based on geometrically confined superconductors laid the foundation

for a new field of research aimed at the control of the electron spin as an additional degree

of freedom. However, it became clear in later years that spin transport already responds to

variations on the atomic scale and, thus, the lack of local resolution in planar tunnel junctions

poses a major limitation. Whereas tunneling experiments with atomic scale resolution are

feasible in scanning tunneling microscopy (STM), it has not been successfully combined

with the spin-polarized MTF technique, so far. Besides technical aspects, the main physical

question arises from the superconducting geometry required for STM, which considerably

differs from the thin films usually employed in the MTF approach, or as R. Meservey put it [10]:

“What is the best way to apply the techniques of spin-polarized electron tunneling to scanning

tunneling microscopy? The answer is not clear at this time (. . . ).“

In contrast to magnetic fields, which usually effect a large number of Cooper pairs in conven-

tional superconductors, isolated magnetic impurities only act as local perturbations to the

superconducting state. While frequently regarded as distracting obstacles, single impurities

can reveal elemental physical mechanisms of the system under investigation, which are not

accessible in perfectly pure bulk materials [11]. Moreover, impurities play an important role

in many applications, for example as dopants in the semiconductor electronics industry. For

superconductors, single magnetic moments are employed as experimental probes on the

atomic scale. As a result, the superconducting order parameter is locally reduced and leads to

excitations within the superconducting state [11–14]. The states created by impurities reveal

the underlying physics and the origin of the superconducting phase [11]. In this context,

STM represents an important tool for experimentally resolving the electronic structure on the

atomic scale in close vicinity of the impurities [11, 15–18].

This thesis starts with a brief theoretical introduction to superconductivity and magnetism in

Chap. 2. The interaction of superconductivity with external magnetic fields is described by a

phenomenological approach and the main concepts are presented for a microscopic descrip-

tion. A short overview of the fundamental properties of magnetic systems and spin-dependent

transport is followed by a description of the local effects of isolated magnetic impurities on

superconducting surfaces. In Chap. 3, the basic concepts are explained for the experimental

techniques used in this thesis, namely STM and the MTF technique. The scientific results
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are discussed from Chap. 4 to Chap. 6. Starting with Chap. 4, the influence of geometrical

confinement on superconductivity in the presence of magnetic fields is investigated by STM.

The main focus lies on the experimental and theoretical investigation of the superconducting

phase transition in magnetic fields. In Chap. 5, the results achieved in the previous chap-

ter are applied in a novel approach for quantitatively probing the spin polarization at the

nanoscale. Chap. 6 deals with the interaction of superconductivity and magnetism on the

atomic scale. Here, the local excitations of the superconducting quasi-particle density of states

(DOS) induced by isolated magnetic moments are probed by STM.
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2 Theoretical Background

This chapter introduces the theoretical background required to analyze and understand the

experimental results presented in Chap. 4-6. In the first part, the interaction of superconduc-

tivity with external magnetic fields is discussed by a phenomenological approach, which is

later justified in the framework of a microscopic theory. The second part deals with the basic

properties of magnetic system as well as a brief introduction into spin-dependent transport.

In the third part of the chapter, the local effects of isolated magnetic impurities on super-

conductivity are discussed with respect to the resulting spectral properties for experimental

investigations.

2.1 Superconductivity

In 1911, superconductivity was discovered by H. K. Onnes at Leiden university [19]. He

observed that the electrical resistance of mercury vanished below a characteristic critical

temperature. The foundations for his great discovery were laid three years earlier, when he

liquefied helium for the first time and was able to achieve temperatures close to 1.5 K [20]. For

his work, H. K. Onnes received the Physics Nobel Prize in 1913.

While the great potential of superconductors was immediately recognized, for example in

applications generating or distributing electric power, deriving a fundamental understanding

of superconductivity has been an ongoing challenge for more than one hundred years. In 1935,

the brothers F. and H. London developed the London equations, providing a phenomenologi-

cal description of the electrodynamics in superconductors [5]. The first commonly accepted

microscopic theory about superconductivity was presented by J. Bardeen, L. Cooper, and

J. Schrieffer in 1957 — almost half a century after the first experimental observation [2]. Their

so-called BCS theory describes the superconducting state by the formation of Cooper pairs

due to an attractive interaction between two electrons. It correctly predicts experimental

observations such as the characteristic critical temperatures and the superconducting gap

at the Fermi level. Over the years, BCS theory has been extended by various modifications,

considerably increasing its range of applications. For example, Maki’s model adds spin-flip
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scattering of Cooper pairs on magnetic impurities and the Usadel approach describes diffusive

transport in systems where elastic scattering is dominant.

In this work, superconducting vanadium plays an important role. Since it belongs to the

conventional superconductors, its properties are well-described by the London equations and

BCS theory. While a complete discussion goes beyond the scope of this thesis, the detailed

theories are the subject of many modern textbooks [21–23]. This section represents a summary

of Refs 21, 22, 24 focusing on the relevant topics for the experimental results (Chap. 4-6).

2.1.1 Superconducting Phenomena

The first characteristic phenomenon of superconductivity is the perfect electric conductivity,

which was already described by H. K. Onnes [19]. For example, when cooled down below the

critical temperature Tc , persistent currents in superconducting rings have been demonstrated

to flow without any external power source for more than a year without any measurable

decrease [22]. Tc marks the transition from the normal conducting to the superconducting

phase and depends on the material. It is rather low for conventional superconductors, such

as aluminum Tc (Al) = 1.18 K [25] or vanadium Tc (V) = 5.43 K [26], and increases for high Tc

superconductors, for which values up to 133 K have been reported [27].

The second characteristic of superconductors is their perfect diamagnetism. In 1933, W. Meißner

and R. Ochsenfeld described the expulsion of a magnetic field from a superconductor, later

called the Meissner effect [4]. They investigated superconducting cylinders in external mag-

netic fields and observed that the field distribution around the superconductor resembled an

ideal diamagnet with susceptibility χ=−1. More importantly, this effect is also observed even

when a superconductor is first brought into a magnetic field and then cooled down below

Tc . In Fig. 2.1(a), a metallic sample in an external magnetic field is schematically shown for

the normal conducting state at T > Tc . The magnetic field penetrating the sample is almost

unchanged except for small negligible paramagnetic effects. After cooling the sample below

Tc , the magnetic field is excluded from the superconducting material as shown in Fig. 2.1(b).

While the exclusion of the magnetic field from the superconductor could also be attributed to

the perfect conductivity, the expulsion below Tc is an unique effect of superconductivity. It

contradicts the behavior of a perfect conductor, which would trap in the magnetic flux.

The two most important phenomena of a superconductor — perfect conductivity and perfect

diamagnetism — are described by the London equations [5]. They phenomenologically

express the response of a superconductor to external electromagnetic fields [21]:

∂j

∂t
= nq2

m
E , (2.1)

∇× j = −nq2

m
B , (2.2)
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Figure 2.1: Expulsion of magnetic fields from superconductors by the Meissner effect. (a) For
T > Tc , the normal conducting metal is penetrated by the external magnetic field, which is
only slightly effected by small paramagnetic effects. (b) For T < Tc , the superconducting metal
expels the magnetic field. The field free condition is realized by the formation of shielding
currents Is . (c) The expulsion of the magnetic field from a superconductor is calculated by the
second London equation. The magnetic field decays exponentially within the superconducting
bulk, where the decay is given by the London penetration depth λ.

where j is the superconducting current density, B and E are the magnetic and the electric field,

respectively. m represents the electron mass and n is the density of the charge carriers with the

charge q . The first London equation (Eq. 2.1) is derived for non-dissipative transport, in which

the charge carriers are continuously accelerated by an electric field.1 Thus, this equation

replaces Ohm’s law and describes perfect conductivity for superconductors.

The second London equation (Eq. 2.2) provides a phenomenological description for the

behavior of superconductors in magnetic fields.2 It is transformed by the Maxwell equation

1 In Sec. 2.1.3, the first London equation is derived from the microscopic BCS theory. A simpler approach starts
from Newton’s second law in the form

F = m
∂v

∂t

with the force F = qE on a particle with mass m and charge q in the electric field E. In combination with the
current density

j = nqv

the first London equation (Eq. 2.1) is obtained with the density of charge carriers n. However, the detailed
correlation of n and the density of Cooper pairs formed in a superconductor is only obtained from the BCS
approach.

2The second London equation (Eq. 2.2) is also derived from BCS theory in Sec. 2.1.3. For now, Faraday’s law is
applied on the curl of first London equation leading to:

∂

∂t

(
∇× j+ nq2

m
B

)
= 0.

This equation is solved by constant as well as exponentially decaying functions for j and B. The phenomenological
London approach neglects the constant solution, which is justified by BCS theory (Sec. 2.1.3).
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∇×B =µ0j (with the vacuum permeability µ0) that leads to the differential equation

∇2 ×B = 1

λ2 B . (2.3)

Since the solution yields an exponential decay of the magnetic field in the superconductor,

Eq. 2.3 represents the electrodynamic description of the Meissner effect. In Fig. 2.1(c), the

simple case of a semi-infinite superconductor is shown for a homogeneous magnetic field

B = (0,0,B0) pointing parallel to the superconducting surface into z-direction (Fig. 2.1(c)). For

this geometry, the solution of Eq. 2.3 reads

Bz (x) = B0e−x/λ , (2.4)

where x points perpendicular from the surface towards the interior of the superconductor

(Fig. 2.1(c)). Due to the special geometry, the magnetic field is not effected outside the

superconductor. From its surface, the magnetic field exponentially decays due to the formation

of shielding currents within the bulk of the superconductor. The decay length is called the

London penetration depth λ, which is given by

λ=
√

m

µ0nq2 . (2.5)

For most superconducting materials, λ is in the order of 100 nm, for example λ (Al) =45 nm

[25] and λ (V) =267 nm [28]. In addition, λ is found to show a strong temperature dependence,

which is empirically described by λ (T ) ≈λ (0)
(
1− (T /Tc )4

)−1/2
[22].

The suppression of the magnetic field is microscopically explained by the formation of shield-

ing currents. In the small region given by λ, these shielding currents compensate for the exter-

nal magnetic field, so that the interior of the superconductor remains field free (Fig. 2.1(b)).

For the geometry shown in Fig. 2.1(c), the shielding current density jy is given by

jy (x) = B0

µ0λ
e−x/λ . (2.6)

The shielding currents flow perpendicular to the external magnetic field in the thin surface

layer defined by λ. They induce the reverse magnetization to compensate the external field,

which, as a result, is completely ejected from the superconductor. The exponential decay

of the magnetic field suppression also weakens the perfect diamagnetism attributed to su-

perconductors. While the argument still holds true for bulk superconductors, the behavior

for geometrically confined superconductors may be different when at least one dimension

becomes similar to the London penetration depth. However, understanding such systems in

detail requires a more fundamental description for the microscopic origin of superconductiv-

ity.
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2.1.2 Bardeen-Cooper-Schrieffer Theory

Introduced in 1957, the BCS theory [2] represents the first microscopic description and “revo-

lutionized the quality of our understanding of superconductivity“ [22]. It not only provides

the capability to calculate phenomenological parameters such as the London penetration

depth, but also explains the origin of superconducting phenomena such as the energy gap

at zero-bias or the coherence length. The basic concept is that electrons are bound to each

other by an attractive interaction. The new bound state is energetically favored and forms

the superconducting phase, as demonstrated below. The approach shown here follows the

presentation in Ref. 21.

The fundamental mechanism presented by J. Cooper in 1956 [1] describes the formation of

the superconducting energy state. At zero-temperature, the ground state is the Fermi sea,

where electrons are non-interacting except for Pauli’s exclusion principle.3 All electron states

are occupied for energies E ≤ EF =ħ2k2
F /(2m) with the reduced Planck constant ħ, the Fermi

energy EF , the Fermi wave vector kF and the electron mass m. Two extra electrons are added

to this system, where they can interact with each other but not with other electrons in the

Fermi sea (except for Pauli’s principle). This interaction is described by elastic scattering

processes, where the two additional electrons maintain their total momentum

k1 +k2 = k′
1 +k′

2 = K . (2.7)

As the underlying mechanism for the attractive electron interaction, H. Fröhlich in 1950 had

already suggested electron-phonon scattering [3]. In a simplified picture, the first electron

interacts with the positively charged ions of the medium due to the Coulomb force. The

polarized lattice forms an attractive potential for the second electron so that the two electrons

are effectively coupled by a weak attractive interaction. Compared to normal scattering

processes in the electron transport, this indirect phonon coupling represents a much weaker

interaction of second order. When moving through the potential landscape formed by the

atomic ions, the electrons continuously emit and absorb phonons which keeps the two extra

electrons coupled. Due to the conservation of energy, the phonons only exist for a short time,

which is limited by the uncertainty relation τ≤ 2π/ω. In k-space, the interaction is limited by

the Debye energy ED =ħωD with the Debye frequency ωD , which is the theoretical upper limit

for lattice vibrations in this model. The amount of electron-phonon interaction processes

reaches its maximum for K = 0, which means k1 =−k2 = k opposite wave vectors for the two

coupled electrons (Fig. 2.2).

The two-body system is described by the Schrödinger equation for the interaction potential

V (r1,r2) [21]:

− ħ2

2m
(∆1 +∆2)ψ (r1,r2)+V (r1,r2)ψ (r1,r2) = Eψ (r1,r2) , (2.8)

3Pauli’s exclusion principle states that two identical fermions cannot have identical quantum numbers. As a
result, the many-body wave function is anti-symmetric with respect to exchanging two of the electrons.
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Figure 2.2: Formation of Cooper pairs due to an attractive interaction between electrons. The
figure is based on Ref. 21. (a) Cooper pairs consist of two electrons with opposite momentum
and spin orientation. (b) In the simplest case, the attractive interaction between the two
electrons is considered constant for the energy range EF −ħωD < ħ2k2

2m < EF +ħωD .

where E = ε+2EF . Due to their interaction, the two extra electrons possess the energy ε com-

pared to the non-interactive state with E = EF . The resulting wave function ψ for interacting

electrons is given by

ψ (r1 − r2) = 1

L3

∑
k

g (k)e i k(r1−r2) . (2.9)

In this formalism, the relative coordinate r = r1 −r2 replaces the single electron coordinates.∣∣g (k)
∣∣ is the probability to find the electron pair at (k,−k) which means that the first electron

is in k1 and the second electron is in k2. Due to the Debye limit of the interaction energy and

due to Pauli’s principle, the probability to find such a pair of electrons is expressed by g (k) = 0

for k < kF and g (k) = 0 for k >
√

2m (EF +ħωD )/ħ2. For simplicity, the spin orientation of the

electron states is not included in the Schrödinger equation or in the wave function (Eq. 2.8

and Eq. 2.9). According to the Pauli principle, the total wave function for the two electrons is

anti-symmetric with respect to exchanging the particles. The electrons forming the Cooper

pair have not only opposite momentum but also opposite spins (k ↑,−k ↓). Therefore, the

electrons in Eq. 2.9 form a singlet state. In general, triplet states can result from more complex

electron-electron interactions, which are not considered in this simplified model.

The Schrödinger equation (Eq. 2.8) is solved by the planar wave expansion for the many-body

problem (Eq. 2.9) as demonstrated in Ref. 21. The resulting equation for ε yields the following

expression:

ε= 2ħωD

1−exp
[
4/

(
V0ρ (EF )

)] , (2.10)

where V0 are the interaction matrix elements for electron scattering and ρ (EF ) represents the

DOS at the Fermi level. Due to the indirect coupling mechanism by phonons, the attractive

electron interaction is only weak (V0ρ (EF )/2 ¿ 1). In this weak coupling limit, Eq. 2.10
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becomes

ε≈−2ħωD exp
[−4/

(
V0ρ (EF )

)]
. (2.11)

Therefore, the attractive interaction between the two extra electrons results in a bound state

whose energy is lowered by ε = E −2EF < 0. In the superconducting regime, the Fermi sea

of non-interacting electrons becomes unstable and a new ground state exists. While the

interaction is only discussed between two electrons for simplicity, in reality, the majority of

electrons form Cooper pairs. Since Cooper pairs consist of two electrons whose opposite spin

moments compensate each other, they follow, in a good approximation, bosonic behavior.

This means that the Pauli principle does not apply and all Cooper pairs occupy the same BCS

ground state. The resulting new state represents the microscopic origin of superconductivity.

However, for real systems, the total energy of the new ground state is not simply the sum of

the separate contributions from all Cooper pairs because the interaction between all electrons

has to be considered. In the second quantization, the interaction between the electrons is

expressed by the annihilation of the Cooper pair with (k ↑,−k ↓) and the creation of the Cooper

pair with
(
k′ ↑,−k′ ↓). The many-body wave function is given by [21]:∣∣φBCS
〉∼=∏

k
(uk |0〉k + vk |1〉k) . (2.12)

Here, the scattering process is expressed by the two orthogonal states |0〉k and |1〉k. In this

notation, |0〉k means that the state (k ↑,−k ↓) is unoccupied and, accordingly, |1〉k is the occu-

pied state. wk = v2
k gives the probability that the state is occupied whereas 1−wk = u2

k is the

probability that it is unoccupied.

As demonstrated in Ref. 21, the total energy of the many-body system consists of the kinetic

energy (Ekin = 2Σkwkξk) and the interaction potential:

EBCS = 2
∑

k
v2

kξk −
V0

L3

∑
kk′

vkukvk′uk′ . (2.13)

Since the ground state is the state with the lowest energy, it is found by minimizing Eq. 2.13

with respect to vk and uk [21]. The result reads

E 0
BCS =

∑
k
ξk (1−ξk/Ek)−L3∆

2

V0
, (2.14)

with the important parameter

∆= V0

L3

∑
k′

uk′vk′ . (2.15)

∆ indicates the energy, which the system gains by the transition into the superconducting state.

Starting from the normal conducting state, electrons from the energy range EF −∆≤ E ≤ EF
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Figure 2.3: The superconducting quasi-particle DOS derived by BCS theory. The figure is
based on Ref. 21. (a) Due to their bosonic behavior, Cooper pairs can occupy the same
BCS ground state. Excited single electron states require at least the additional energy ∆. (b)
The superconducting quasi-particle DOS exhibits the characteristic gap Eg = 2∆ and two
coherence peaks at E =±∆.

condense into the superconducting state with the energy E = EF −∆. On average, the system

gains ∆/2 during the condensation process.

For a more detailed calculation of the excitation energy, the BCS ground state is written in the

form

E 0
BCS =−2

∑
k

Ekv4
k . (2.16)

The first excited state requires breaking of a Cooper pair with
(
k′ ↑,−k′ ↓), which is equivalent

to v2
k′ = 0:

E 1
BCS =−2

∑
k6=k′

Ekv4
k . (2.17)

The excitation energy is the difference of the ground state and the first excited state

∆E = E 1
BCS −E 0

BCS = 2Ek′ = 2
√
ξ2

k′ +∆2 . (2.18)

Since ξ2
k′ is the kinetic energy of the electrons that formed a Cooper pair in the ground state

before the excitation, the energy required to excite the system is given by

∆E ≥ 2∆ . (2.19)

As a result, the superconducting excitation spectrum exhibits the characteristic energy gap

2∆, as shown in Fig. 2.3(a). It requires at least E =∆ to add an additional free electron to the

superconducting state. Of course, it can also occupy higher energetic states if the kinetic

energy is large enough. In the limit of ξ2
k À∆2, the continuous spectrum of states becomes
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available, which is similar to the normal conducting phase (Fig. 2.3(a)):

Ek =
√
ξ2

k +∆2 ≈ ħ2k2

2m
−EF . (2.20)

In the superconducting phase, the DOS around the Fermi level is obtained from

ρs (Ek)/ρn (EF ) = dξk

dEk
=


Ek√

E 2
k−∆2

for Ek >∆ ,

0 for Ek <∆ ,
(2.21)

under the assumption that the amount of states is the same for the normal conducting and

superconducting phase. In vicinity of the Fermi level, the superconducting DOS diverges

for E =±∆ (Fig. 2.3(b)). For higher energies Ek À∆, the superconducting DOS is similar to

the normal conducting phase. Exciting the single electron state k means that it cannot be

occupied by a Cooper pair and, therefore, the state −k remains unoccupied. Since single

electron excitations of the superconducting state are neither of pure electron nor of pure hole

character, they are usually referred to as quasi-particle states.

For simplicity, the model discussed here describes superconductivity at zero-temperature.

Since the superconducting gap is the direct result of the attractive interaction, it is reduced

when the binding energy is weakened by thermal excitations. The BCS theory also predicts the

temperature dependence of the superconducting gap ∆ (T ) which is given for bulk supercon-

ductors by:

∆ (T ) ≈∆0

√
1−T /Tc , (2.22)

with ∆0 the superconducting gap at zero-temperature [22]. ∆0 is directly correlated to the

critical temperature Tc by ∆0 ≈ 1.764kB Tc with the Boltzman contant kB . Thus, it depends on

the superconducting material, for example ∆0 (Al) =179µeV and ∆0 (V) =814µeV [25].

2.1.3 Characteristic Superconducting Parameters

The main purpose of BCS theory is to microscopically explain the fundamental hallmarks of

superconductivity, which are perfect conductivity and perfect diamagnetism. To this end, one

needs to understand how the BCS ground state is effected by the flow of electric current. In a

superconductor, the Cooper pairs act as charge carriers when their momentum is increased, e.

g. by an external electric field. The density of the supercurrent js is

js =−nsev =−nseħk/m , (2.23)
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with the electron density ns . Due to the current flow, each electron of the Cooper pair under-

goes a change of momentum according to

(k ↑,−k ↓) →
(

k ↑ +1

2
K ↑,k ↓ −1

2
K

)
. (2.24)

Every single Cooper pair gains the momentum P = ħK. The many-body wave function

(Eq. 2.12) is adapted to the new momentum state:

ψ(K6=0) (r1,r2) = e i KR 1

L3

∑
k

g (k)e i kr = e i KRψ(K=0) (r1,r2) . (2.25)

Due to the electric current flow the phase of the superconducting wave function is changed by

e i KR. However, this phase change does not effect the probability amplitude
∣∣ψ∣∣2 and, therefore,

the electric current flow can be illustrated by shifting the k-space. The superconducting gap ∆

is invariant with respect to this k-shift. This means that inelastic electron scattering (which

would lead to electrical resistance) is still suppressed for small excitation energies E < 2∆.

Thus, there is no electrical resistance as long as the change of the total momentum P is not

correlated with excitation energies larger than the superconducting gap. In the case E > 2∆,

the superconducting state breaks down and the material becomes normal conducting. This

occurs at the critical current density, which is estimated from Eq. 2.23:

jc ≈ ens

ħkF
∆ . (2.26)

The critical current density depends on the Fermi wave vector kF and on the superconducting

gap ∆.

So far, perfect conductivity has been derived for the superconducting state by BCS theory.

The second characteristic property of superconductors is ideal diamagnetism; the repulsion

of the magnetic field from the interior of the superconductor. The electrodynamics of the

phenomenon are described by the second London equation, which is derived by BCS theory.

The current density is given by the quantum mechanical momentum operator and the BCS

many-body wave function [21]:

j =− e

2m

(
ψ (−iħ∇+2eN A)∗ψ∗+ψ∗ (−iħ∇+2eN A)ψ

)
, (2.27)

where A represents the vector potential, 2eN is the total charge with N the number of Cooper

pairs and e the electron charge. Neglecting spatial variations of the Cooper pair densities, the

expression in Eq. 2.27 is simplified to

∇× j =−2e2

m
N

∣∣ψ∣∣2∇×A . (2.28)
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2.1. Superconductivity

With the relation B =∇×A, the magnetic field B is correlated with the current density j:

∇× j =−ne2

m
B , (2.29)

where n = 2N /L3 is the density of the electrons bound in Cooper pairs. The expression

(Eq. 2.29) represents the second London equation (Eq. 2.2) correctly describing the electrody-

namics of a superconductor in an external magnetic field.

In the simplified approach presented here, the assumption is made that the spatial distribution

of the Cooper pair density is constant. Variations in the Cooper pair density are depicted by the

superconducting coherence length ξ, which is an important parameter for the classification

of superconductors. The superconducting gap defines the energy uncertainty δE for the

electrons forming Cooper pairs. It is expressed in terms of the momentum uncertainty δp:

2∆∝ δ

(
p2

2m

)
∼= pF

m
δp . (2.30)

The uncertainty principle correlates δp to the spatial distribution of the Cooper pair wave

function δx, which is given by:

ξ= δx ∝ ħ
δp

≈ ħpF

2m∆
= ħ2kF

2m∆
, (2.31)

ξ is the superconducting coherence length, which describes the spatial variations of the super-

conducting wave function. It is effected by temperature ξ (T ) ∝ 1/(1−T /Tc ) and depends on

the superconducting material, for example, ξ (Al) = 1600 nm [25] and ξ (V) = 44 nm [26, 29] at

zero-temperature.

2.1.4 Superconducting Phase Transition in Magnetic Field

So far, the behavior of superconductors in magnetic fields has been described by the Meissner

effect and the second London equation (Sec. 2.1.1). However, the London approach does not

consider the influence of the magnetic field on the superconducting state as it was derived

by BCS theory (2.1.2). In this context, the superconducting phase is only stable as long as

expelling the magnetic field requires less energy than the energy gained by the condensation of

electrons into the BCS ground state. When increasing the external field, the superconducting

ground state inevitably collapses and the superconductor becomes normal conducting. The

phase transition into the normal conducting state occurs at the critical magnetic field Bc . It is

calculated from the critical current density (Eq. 2.26) by the Maxwell equation

∇×B = µ0j , (2.32)∫
∇×B df = µ0

∫
j df . (2.33)
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Figure 2.4: Phase diagrams for type I and type II superconductors. Superconductivity is
suppressed by temperature and external magnetic fields. (a) Type I superconductors become
normal conducting at the critical field Bc and the critical temperature Tc . (b) Superconductors
of type II exhibit two superconducting phases, which are characterized by the lower (Bc1) and
the upper (Bc2) critical fields. For B < Bc1, type II superconductors form the Meissner phase
similar to type I superconductors. When increasing the magnetic field to Bc1 < B < Bc2, type
II superconductors enter the Shubnikov phase where the superconductor is penetrated by
magnetic flux tubes. At higher fields B < Bc2, the metal is in the normal conducting state.

The integral is solved for the simple geometry of a cylindrical superconductor with the radius

r and the length l in an external magnetic field B :

2πrµ0B =
∫

jdf , (2.34)

with the geometric simplification l À r . In the cylinder, the supercurrent is confined to a small

region close to the surface given by the London penetration depth λ (Sec. 2.1.1). Inserting the

exponentially decaying current (Eq. 2.26) in Eq. 2.34 yields the critical magnetic field Bc :

Bc ≈µ0λ
en∆

ħkF
. (2.35)

For external fields B > Bc , the superconducting state breaks down and the material becomes

normal conducting. Since the superconducting gap ∆ depends on temperature (Eq. 2.22), a

similar relation is valid for the critical field Bc and the critical current:

Bc (T ) ∝λ jc (T ) ∝
√

1−T /Tc . (2.36)

In Fig. 2.4(a), the superconducting phase diagram is presented for temperature and magnetic

field. The critical fields are rather small for bulk superconductors, for example in bulk Al

Bc (Al) =10.5 mT and in bulk V Bc (V) =142 mT [30].

While the Meissner effect correctly predicts the behavior of most elemental superconductors

in magnetic field, a different magnetic field dependence is observed in niobium, vanadium

and most superconducting compounds. In 1957, A. A. Abrikosov demonstrated that the

ratio κ of the two characteristic length scales — the London penetration depth λ and the
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Figure 2.5: Magnetic flux penetration in type I and type II superconductors. (a) In type I super-
conductors, the magnetic flux is expelled by the Meissner effect. The superconducting state is
abruptly suppressed by a first order phase transition at Bc . (b) In type II superconductors, the
magnetic field is only expelled in the Meissner phase, which is limited by the lower critical
field Bc1. Increasing the magnetic field to Bc1 < B < Bc2 results in the formation of magnetic
flux tubes. Their amount increases with increasing magnetic field until the normal conducting
state is reached by a second order phase transition at the upper critical field Bc2.

superconducting coherence length ξ

κ= λ

ξ
(2.37)

governs the superconducting response to the magnetic field.4 For superconductors with

κ = λ/ξ < 1/
p

2, the Meissner effect is observed up to the critical field Bc , where the su-

perconducting phase becomes unstable and the superconductor turns normal conducting

(Fig. 2.5(a)). Materials of such behavior are referred to as type I superconductors. In these

superconductors, the magnetic flux is expelled up to the critical field (except for the regions

within the London penetration length).

In Fig. 2.4(b), the phase diagram is presented for superconductors of type II with κ= λ/ξ>
1/
p

2. The Meissner effect is only observed up to the lower critical field (B < Bc1). For higher

fields the flux penetrates the superconductor in the form of flux tubes, resulting in the so-

called Shubnikov phase [33]. These flux tubes form a regular array where each flux tube

carries the magnetic flux quantum Φ0 = h/(2e). The existence of the Shubnikov phase has

been experimentally observed, for example by scanning tunneling microscopy (STM) [34, 35].

Within the flux tubes, the material is normal conducting while the superconductivity continues

to exist in the surrounding regions. For Bc1 ≤ B ≤ Bc2, the magnetic flux increases, which is

achieved by the formation of additional flux tubes. At B = Bc2, the magnetic flux reaches the

vacuum value and, as a result, the superconductivity completely vanishes. For ξ¿ λ, the

upper critical field Bc2 =
p

2κBc greatly surpasses the thermodynamic critical field Bc . Thus,

4The parameterκwas originally introduced in the framework of the Landau-Ginzburg theory [31]. The approach

employs the order parameter ψ, which is correlated to the density of superconducting electrons ns =
∣∣ψ∣∣2. When

introduced the correlation appeared rather phenomenological but L. P. Gor’kov demonstrated in 1959 that the
Ginzburg-Landau formalism is a special form of BCS theory [22, 32].
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Chapter 2. Theoretical Background

type II superconductors do not completely fulfill the perfect diamagnetic characteristic in

the Shubnikov phase (Fig. 2.5(b)). In addition, the first hallmark — perfect conductivity —

is also effected due to the formation of the flux tubes. When current flows through a type II

superconductor in the Shubnikov phase, the flux tubes move due to the Lorentz force. The

detailed behavior is still subject to ongoing research, but an increase of resistance in the

Shubnikov phase is expected according to Rs = RnB/Bc2 where Rn is the resistance of the

normal conducting state [22, 36].

In general, the classification into type I and type II also depends on the purity of the supercon-

ducting material. While κ< 1/
p

2 for most elemental superconductors, the ratio is significantly

changed by the introduction of impurities. As a result, elemental superconductors of type I

containing a certain amount of impurities show similar properties to superconductors of type

II. The London equations (Eq. 2.29), as well as the coherence length (Eq. 2.31), are derived for

the case of an ideal superconductor, which consists of a perfect crystal lattice. Introducing

impurities drastically effects the electron transport because the mean free path l is shortened.

In the dirty limit ξÀ l , the effective coherence length ξeff is defined by:

1

ξeff
= 1

ξ
+ 1

l
. (2.38)

Therefore, the effective coherence length is reduced to ξeff → l in the dirty limit and κ is

significantly increased due to the impurities.

2.1.5 First and Second Order Phase Transitions

P. Ehrenfest introduced the earliest formal classification for phase transitions. It is based on

the Landau theory, which describes equilibrium states as the minimum of the thermodynamic

potential, e. g. the Gibbs energy. To classify the order of the phase transition, the response of

the potential is analyzed for fluctuations of the thermodynamic variables, such as temperature

T or magnetic field B [24]. The phase transition is labeled by the order n, if n is the lowest

partial derivative of the potential, which is discontinuous at the transition. For example, if the

first partial derivative of the Gibbs energy exhibits a jump when changing a thermodynamic

variable, the phase transition is first order. However, the approach does not consider divergent

derivatives of the thermodynamic potential. Furthermore, the classification into higher orders

proves to be meaningless, because the physical differences between the phases become

smaller and smaller with increasing order. Therefore, the modern classification scheme only

distinguishes between first and second order phase transitions. First order phase transitions

release or absorb energy, which is called the latent heat. Second order phase transitions are

characterized by continuous first partial derivatives of the Gibbs energy. Their susceptibilities

diverge and the coherence length increases to infinity (ξ→∞) at the transition.

In Fig. 2.6, the difference between first and second order phase transitions is visualized by the

thermodynamic potential. In the Landau theory, an order parameter is identified that usually
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Figure 2.6: Order of the phase transition and thermodynamic potential. (a) For first order
phase transitions, the order parameter jumps from the minimum at ψ 6= 0 to the minimum at
ψ= 0 when the thermodynamic variable (such as the temperature T ) reaches its critical value
(critical temperature Tc ). (b) For second order phase transitions, the minima gradually move
from ψ 6= 0 to ψ= 0.

measures the degree of order in the system. For example, it is related to the density of Cooper

pairs in superconductors. The approach expands the thermodynamic potential in powers of

the order parameter ψ. Near the first order phase transition, the Gibbs energy G is given as a

function of the order parameter ψ:

G = 1

2
αψ2 + 1

4
βψ4 + 1

6
γψ6 , (2.39)

where α, β and γ are functions of the thermodynamic variables, for example α = α (B ,T ).

The conditions ∂G/∂ψ = 0 and ∂2G/∂ψ2 > 0 reveal existing solutions and physical phases,

respectively. When multiple solutions ψmin,i exist, the stable phase is identified by the lowest

energy Gmin. The other states are called metastable, which is observed, for example, in

supercooled or superheated phases. In Fig. 2.6(a), the first order potential has three minima

for T < Tc , where the solutions are only stable for ψ 6= 0. With increasing temperature, the

metastable state ψ= 0 becomes equally probable, which implies phase coexistence. At the

transition, the equilibrium state switches from the minimum atψ 6= 0 to the minimum atψ= 0.

The jump in the order parameter is accompanied by a discontinuity in the first derivative of

the Gibbs energy. This behavior is typical for first order phase transitions [24, 37, 38].

In Fig. 2.6(b), the Gibbs energy for a second order phase transition is shown as a function of

the order parameter:

G = 1

2
αψ2 + 1

4
βψ4 . (2.40)

In this case, there is always a true equilibrium state for β> 0. Below the critical temperature

T < Tc , the minima at ψ2 = −α/β represent the stable phase for α < 0. When increasing

the temperature, α increases and, as a result, changes its sign. Therefore, the minimum

gradually moves in a second order phase transition to ψ= 0, which corresponds to the normal

conducting state for T > Tc . In this example, the temperature is used as a thermodynamic
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Chapter 2. Theoretical Background

parameter, whereas in real systems such as superconductors, there are additional parameters,

for example the external magnetic field.

In general, type I superconductors exhibit a first order phase transition at the critical field

Bc . Experimentally, first order phase transitions are indicated by an abrupt disappearance of

the superconducting gap when the external magnetic field reaches the critical value B = Bc .

For B = 0, type I superconductors exhibit a second order phase transition in temperature

at Tc . With increasing temperature, the superconductivity continuously decreases until it is

completely suppressed for T = Tc . For superconductors of type II, the superconducting phase

transition is second order at Tc for both the Meissner and the Shubnikov phases.

In addition to the type of the superconductor, the phase transition is also governed by the

detailed geometry of the superconductor. When geometrically confined to dimensions smaller

than the London penetration depth, superconductors in a magnetic field exhibit properties

that can significantly differ from their bulk counterparts. In this context, the pioneering

experiments were carried out mostly on superconducting thin films in standard sandwich

tunnel junctions [6, 39–41]. These devices are formed by a superconducting and a normal

conducting electrode that are separated by a thin oxide barrier (Fig. 2.7). In tunnel experi-

ments, the superconducting gap is extracted as a function of external parameters, such as the

magnetic field or the temperature. The superconducting gap ∆ of thin Al films is presented

as a function of the external magnetic field B at the reduced temperature T̃ = T /Tc ≈ 0.87

in Fig. 2.7 [39]. Compared to bulk Al, the critical magnetic fields, at which the films become

normal conducting, are considerably enhanced due to the geometrical confinement. The

effect is ascribed to the suppression of shielding currents, which cannot be formed efficiently.

Therefore, the critical current density jc is only reached at higher critical fields Bc , where the

superconducting phase transition occurs [6, 39]. In Fig. 2.8, the magnetic field dependence

is presented for a superconducting thin film for the temperature regime 0.74 ≤ T̃ ≤ 0.973.

At lower temperature, the superconducting gap remains almost constant and then abruptly

vanishes at the critical field. The measurements at higher temperature reveal a more con-

tinuous transition, where the superconducting gap slowly decreases until the critical field is

reached. While this behavior is reminiscent of first and second order phase transitions, direct

conclusions are difficult for the geometrically confined systems, where the superconducting

gap does not directly represent the superconducting order parameter. However, it can be

shown for those systems that the order of the superconducting phase transition depends not

only on temperature but also on geometrical factors such as the film thickness [6, 39].

In addition to thin films, various other geometries have been studied experimentally and

theoretically [42–46]. Similar behavior has been observed, for example, in superconducting

cylinders, which are placed in magnetic field aligned parallel to the cylinder axis [47]. In these

cylinders with the radius r and the thickness d , first order phase transitions are observed for

r d ≥λ2 and second order transitions for r d ≤λ2 [47].
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Figure 2.7: Superconducting gap of thin Al films with the thickness d as a function of external
magnetic field B . When the geometrical confinement of the Al film is in the order of the
London penetration depth, the critical field is considerably enhanced. The figure is adapted
from Ref. 39.
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Figure 2.8: The magnetic field dependence of thin Al films (thickness d = 452 nm) at the
reduced temperature T̃ = T /Tc . For lower temperatures, the superconducting gap ∆ abruptly
vanishes at the critical field indicating a first order phase transition. For higher temperatures,
the superconducting gap decreases more continuously as predicted for second order phase
transitions. The figure is adapted from Ref. 39.
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2.1.6 Maki Model

The original BCS theory describes the pairing mechanism of Cooper pairs by the interaction of

electrons and phonons (Sec. 2.1.2). In practice, the experimental results differ from the original

BCS superconducting quasi-particle DOS (Eq. 2.21). Much better agreement is obtained by

including depairing effects, which hamper the formation of Cooper pairs in most supercon-

ducting materials. In particular, the combination of external magnetic fields and magnetic

impurities effects the electron orbital motion and the electron spin due to spin-orbit coupling

[48, 49]. In external magnetic fields, depairing effects are mostly induced by paramagnetic im-

purities, which break the time-reversal symmetry [50]. As a result, the superconducting order

parameter, as well as the lifetime of Cooper pairs, is locally decreased, which is manifested

in a smaller superconducting gap in close vicinity of the magnetic impurities. Furthermore,

the symmetry of electron states is also effected in geometrically confined systems, such as

thin film superconductors. In this case, the depairing parameter ζ is directly related to the

film thickness d by ζ∝ τζ
(
evF dµ0B

)2 /∆, where τζ is the time between scattering events,

vF is the Fermi velocity, e the electron charge, µ0 the vacuum permeability, B the external

magnetic field and∆ the superconducting gap [51, 52]. In general, the orbital depairing effects

are described by a single depairing parameter ζ for superconductors, where the mean free

path is small (l ¿ ξ) [48, 51, 53]. In addition, spin-orbit scattering reduces the lifetime of

Cooper pairs in superconductors. This effect increases for heavier elements because the

spin-orbit scattering potential V (r ) is proportional to Z 4 with the atomic charge Z in the case

of Coulomb interactions.

K. Maki calculated the influence of magnetic and spin-orbit scattering on the superconducting

DOS [48]. The Maki model expands Eq. 2.21 by two additional terms. The superconducting

quasi-particle DOS is modified to:

ρ↓↑ (E) = ρ0

2
sgn(E) Re

 u±√
u2
±−1

 , (2.41)

where u+ and u− are implicitly defined by

u± = E ∓µB B

∆
+ζ u±√

1−u2
±
+b

u∓−u±√
1−u2

∓
, (2.42)

with ρ0 the normal conducting DOS, E the energy, µB Bohr magneton, ∆ the superconducting

order parameter and B the external magnetic field. The term ζ
u±p
1−u2

±
describes orbital de-

pairing and the spin-orbit scattering results in spin-mixing, which is given by b u∓−u±p
1−u2

∓
. The

spin-orbit scattering parameter b =ħ/(3τso∆) depends on the spin-orbit scattering time τso.

Eq. 2.42 represents a quartic polynomial, which is difficult to solve for u±. The reason for this is
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2.1. Superconductivity

the existence of multiple solutions, which are discussed in Ref. 54. In the case that either ζ= 0

or b = 0, the iteration of Eq. 2.42 results in a unequivocal solution for the superconducting

quasi-particle DOS. However, the problem is more complicated when both ζ 6= 0 and b 6= 0. In

this case, there are two non-trivial solutions that result in two different DOS for the Maki model.

Detailed analysis reveals that there is one in-phase solution, which correctly reproduces the

coherence peaks and is considered the correct physical description. So far, the physical

meaning has remained unclear for the second (out-of-phase) solution. Numerically solving

the Maki equations (Eq. 2.42) requires that the approach converges to the physically correct

solution. To this end, Eq. 2.42 is transformed into four equations for four complex unknowns

which are solved by the Newton-Raphson method [55]. The advantage of this approach lies

in the fact that the correct physical solution can be identified by the conservation of spectral

weight. While u+ converges to the in-phase solution for E > 0, it results in the out-of-phase

solution for E < 0. This allows identification of the correct spin-up as well as spin-down DOS

for the complete energy range [54, 55].

2.1.7 Usadel Equations

Increasing amounts of impurities in a superconductor effect its properties, for example the

electronic transport. In the dirty limit, the mean free path of an electron is smaller than the

superconducting coherence length (l ¿ ξ). The theoretical description of superconductors in

the dirty limit benefits from negligible electronic anisotropies resulting from the averaging

effect of the highly increased scattering rate. The Eilenberger equations of the quasi-classical

Green’s function formalism [56] can be simplified in the dirty limit because they are nearly

isotropic as well [57]. The resulting equations were first obtained by K. Usadel in 1970 [58].

The free energy F = T S for a superconductor in the dirty limit takes into account the influence

of magnetic impurities. For a homogenous magentic field in the z-direction, it reads [59]:

F = πρ

4
T

∑
ε

∫
Re

{
D

[
(∇θ)2 + sin2θ

(∇φ−2eA/c
)2

]
−4(ε− i h)cosθ−4∆cos

(
φ−ϕ)

sinθ
}

dr+ ρ

2λ

∫
∆2dr , (2.43)

where ρ is the DOS at the Fermi level per spin channel, D represent the diffusion constant, A

is the vector potential and λ= ln(2ωD /∆0) is the Cooper channel interaction constant with

the Debye energy ωD [59]. θ (r) and φ (r) are the spectral angles and depend on the Matsubara

energy [59]. The Usadel equations for such system are derived by varying the free energy with

respect to the spectral angles:

D

2

[
−∇2θ+ sinθcosθ

(∇φ−2eA/c
)2

]
+ (ε− i h)sinθ−∆cos

(
φ−ϕ)

cosθ = 0

−D

2
∇(

sin2θ
(∇φ−2eA/c

))+∆sin
(
φ−ϕ)

sinθ = 0. (2.44)
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The order parameter ∆ is calculated by the self-consistency condition [59]:

∆ (r)e iϕ(r) =λ2πT
∑
ε>0

Re sinθε (r)e iφε(r) . (2.45)

The Usadel equations represent a powerful approach that can be solved either analytically or

numerically for various experimental situations, for example for the description of supercon-

ducting cones (Chap. 4).

2.2 Magnetism and Spin-dependent Transport

In 1915, A. Einstein and W. J. de Haas demonstrated the correlation between magnetism

and the spin or the orbital angular momentum of electrons, respectively [60]. While the

existence of the electron spin alone already creates a magnetic moment, most magnetic

phenomena are the result of many-electron interactions, where the individual spins are

coupled into collective order. As a result, the DOS of such materials is spin-dependent and,

most importantly, the amount of states differs for spin-up and spin-down electrons at the

Fermi level. Since most electronic transport occurs at this energy, great efforts are directed

towards creating, processing and detecting spin-polarized currents through an imbalance of

spin-up and spin-down electrons [61]. Spintronics is an emerging field of modern applications,

which employ both the charge as well as the spin of the electron. Magnetic read-and-write

heads of magnetic hard drives represent one of the most prominent examples, which either

rely on the giant [62, 63] or the tunnel magnetoresistance effect [64–66]. In this section, the

underlying physical models are introduced for the description of magnetic systems. This

section presents the relevant magnetic phenomena for this work, mainly summarizing Refs 21,

67, 68.

2.2.1 Magnetic Energies

The total magnetic moments of electrons stems from its spin and orbital angular momentum.

The intrinsic contribution of the electron spin with the spin moment S is given by

µs =−gs
e

2me
S =−gsµB

S

ħ , (2.46)

where µB is the Bohr magneton and me represents the electron mass. The g-factor gs was

originally derived from the Dirac equation [69] and today represents one of the most precisely

known fundamental parameters in physics [70, 71]. In the framework of this thesis, the

common approximation g ≈ 2 leads for electrons with the spin s = 1/2 to

µs ≈µB . (2.47)
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(a) (b) (c) (d)

Bex

Figure 2.9: Schematic of the spin alignment due to magnetic interactions. (a) The magnetic
exchange interaction favors parallel (or anti-parallel) orientation of neighboring spins. (b)
The dipole-dipole interaction is long ranged and aims for aligning spin moments parallel
to surfaces. (c) In magnetic materials with magneto-crystalline anisotropy, the spins point
along the preferred crystal axis (ex ). (d) Due to the Zeeman energy, the electron spins align
anti-parallel to an external magnetic field.

The orbital contribution of the magnetic moment results from the motion of the electron

around the nucleus:

µl =−gl
e

2me
L =−glµB

L

ħ , (2.48)

with the gl the electron orbital g-factor. For L 6= 0, the total magnetic moment depends on the

interaction between the quantum numbers for spin S and orbital momentum L.

The interaction of the individual magnetic moments determines the overall magnetic configu-

ration. In this context, the stable orientation of the magnetic moments has to consider short

and long range interactions, the influence of the crystal lattice and the coupling to external

magnetic fields. In ferromagnetic materials such as iron, cobalt and nickel, the spontaneous

order of the magnetic moments arises from the exchange interaction. In quantum mechanics,

the effect is correlated with the symmetry of the many-body wave functions with respect to

particle exchange and, thus, it is related to Pauli’s exclusion principle for electrons. Besides

the symmetry of the wave function, the quantum mechanical approach takes into account the

repulsion between electrons as well as the attraction between electrons and positive ions due

to the Coulomb potential. As a result, the exchange constant J determines the orientation of

neighboring spin moments. It is employed in the classical Heisenberg model, which describes

the ordering mechanism between spin moments:

Hex =−J
∑
〈i , j 〉

Si ·S j , (2.49)

with the classical three-dimensional vectors Si , j of unit length. The sign of the exchange

constant determines the resulting magnetic order; ferromagnetic order is observed for J > 0,

anti-ferromagnetic order stems from J < 0. The exchange constant J depends on the overlap of

wave functions, which rapidly decays with increasing distance. Therefore, most ferromagnetic

systems are well-described by considering only nearest neighbor interactions [67].

In addition to the exchange interaction, magnetic moments are coupled by long ranged
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dipole-dipole interactions. The magnetic coupling depends on the distance ri , j between two

moments Si , j :

Hdip =−w

2

∑
i 6= j

3(Si ·ei , j )(ei , j ·S j )−Si ·S j

r 3
i , j

, (2.50)

with the strength of dipole-dipole interactions w = µ0µ
2
s /4πa3, the vacuum permeability µ

and the lattice constant a. ei , j is the corresponding unit vector to the space vector ri , j pointing

from Si to S j . Compared to the exchange coupling, the dipole-dipole interactions are much

weaker. However, their relative contribution to the magnetic energy increases with the size of

the system due to its long range, which can also produce stray fields. The dipole energy is the

reason that the magnetic configuration depends on the geometry of the magnetic body and,

therefore, it is also referred to as the magnetic shape anisotropy.

In many magnetic systems, the magnetization is aligned along a certain crystal orientation.

The ordering is ascribed to the so-called magneto-crystalline anisotropy whose primary origin

is the spin-orbit coupling. The preferred direction is called the easy axis. For the simple case

of uniaxial magneto-crystalline anisotropy, the corresponding Hamiltonian reads for an easy

x-axis in the classical case:

Hani =−dx
∑

i
S2

x,i , (2.51)

where dx is the anisotropy constant for the easy x-axis.

In an external magnetic field, the magnetic moments align parallel to the field direction. The

energy is given by the Zeeman term:

Hz =−µsB ·∑
i

Si , (2.52)

where B represents the external magnetic field. Depending on the orientation of the magnetic

moment, the energy of the corresponding state is either raised or lowered in energy.

2.2.2 Spin Polarization

In ferromagnetic materials, the alignment of spins into a well-defined direction is called the

spin polarization. For electronic states, spin polarization means that the spin-degeneracy is

lifted for the DOS and, as a result, different amounts of spin-up and spin-down states occur

at a given energy. The underlying mechanism can easily be discussed for free electrons in a

Fermi gas, where it is also referred to as Pauli paramagnetism [67].
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Figure 2.10: Schematic of the spin-polarized DOS for free electrons in an external magnetic
field (Pauli paramagnetism). (a) The DOS (ρ) corresponds to free electrons in a Fermi gas
where the spin-up and spin-down states are degenerate. (b) Due to the Zeeman energy, the
DOS is split into two shifted parabola that results in an overall magnetization oriented parallel
to the external field. As a result, an imbalance between spin-up and spin-down states is
created at the Fermi level.

In Fig. 2.10(a), the DOS for free electrons in a Fermi gas is shown, which follows the relation

ρ (E) ∝p
E . In the case of B = 0, the states are equivalent for both electron polarities. When a

magnetic field interacts with the electrons, the spin-degeneracy is lifted due to the Zeeman en-

ergy (Eq. 2.52). The energy states of spins oriented parallel to the field is raised by E =µB B (for

the electrons spin s = 1/2). Accordingly, the spin orientation anti-parallel to the field is lowered

in energy by E =−µB B . As a result, the DOS for spin-up and spin-down electrons is shifted

with respect to the opposite polarity (Fig. 2.10(b)). The resulting equilibrium state creates

an imbalance of spin-up and spin-down electrons. In real ferromagnetic systems, the spin-

polarized DOS arises from the complex interplay of several magnetic coupling interactions

(Sec. 2.2.1).

Due to the shifted DOS, the electron spins are spin-polarized at a given energy E . The spin

polarization P is calculated by

P (E) = ρ↑ (E)−ρ↓ (E)

ρ↑ (E)+ρ↓ (E)
. (2.53)

For electronic transport, the spin polarization at the Fermi level is particularly important. The

imbalance of spin-up and spin-down electrons generates spin-polarized currents, which can

be exploited in many spintronic applications.

2.2.3 Spin-dependent Transport

Most conventional electronic devices utilize the electron charge manipulated by electric fields.

However, the electron provides an additional degree of freedom — the spin (Sec. 2.2.1). In spin-
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(a) (b) R↑

R↓

Figure 2.11: Schematic for spin-dependent transport. (a) The transmission probability de-
pends on the spin-orientation of the electrons. (b) The equivalent circuit consists of two
channels with different resistances for each spin orientation.

tronics, the electron spin is controlled by external electric and magnetic fields. Spin-dependent

transport requires the generation of spin-polarized electrons by creating an imbalance in the

spin-up and the spin-down occupation. In their pioneering work, R. Meservey and P. M. Tedrow

lifted the spin degeneracy using Zeeman splitting in magnetic fields [7–9]. Later, ferromagnetic

films were employed to create and detect spin-polarized currents [62–64]. In this context,

electron tunneling (Sec. 3.1.2) plays an important role in magnetic tunnel junctions, where

the spin-dependent transport is not only determined by the spin-polarization but also by

thin insulating layers (Chap. 5) [65, 66]. The working principle of spin-dependent transport is

schematically shown in Fig. 2.11(a). In this case, the transport is favored for spin-up electrons,

for example due to less scattering events in ferromagnetic metals or higher tunneling proba-

bilities in ferromagnetic semiconductors. The equivalent circuit consists of two channels for

each spin orientation, for which the overall resistance is controlled by external parameters

such as the magnetization direction (Fig. 2.11(b)). In principle, several such spin-selective

components can be combined into a single device enabling various applications for sensing

and logic.

2.3 Local Spin Moments Interacting with Superconductors

In the 1960s, L. Yu, H. Shiba and A. I. Rusinov discussed the interaction of an isolated magnetic

moment with a superconductor [72–74]. In contrast to the influence of external magnetic

fields discussed in Sec. 2.1.4, the single classical spin moments are much more localized

and directly interact with the conduction electrons of the superconductor. The underlying

physical mechanisms as well as the local effects on the superconducting quasi-particle DOS are

theoretically described in this section. This discussion represents an introductory summary of

Ref. 11–13, 16, which are recommended for a more detailed description.
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2.3.1 Magnetic Impurity-induced Bound States in Superconductors

Superconductivity is the result of electrons forming Cooper pairs. At magnetic impurities,

the pairing is disturbed due to the interaction with the Coulomb potential and ferromagnetic

exchange coupling. The local Coulomb potential arises from the simple fact that the electronic

configuration of the impurity is different from its superconducting surrounding. In addition,

the exchange energy couples the conduction electrons of the superconducting material and

the local spin of the impurity. As a result of the pair breaking, bound quasi-particle states

are formed in the superconducting gap, which is free of electronic states in the classic BCS

theory.5 Contrary to the superconducting properties typically defined on length scales in

the order of the coherence length, these bound states only appear in the close vicinity of

the magnetic impurity. They are spin-polarized and their local distribution can be strongly

anisotropic depending on the superconducting wave function. Furthermore, the bound states

are expected to modify the properties of the superconducting ground state [12, 13, 15, 75].

For the theoretical description, a localized magnetic spin moment S is considered at the

position r in a two-dimensional lattice [12]. The starting point is the effective Hamiltonian H =
H0 +Himp, where H0 is the unperturbed BCS Hamiltonian and Himp describes the interaction

with the magnetic impurity. The spin of the magnetic moment interacts with the conduction

electrons of the superconductor due to the exchange coupling (Sec. 2.2.1) and the Coulomb

potential:

Himp = JS ·s (0)+Un (0) , (2.54)

with the operators

s (r) = 1

2

∑
σν
ψ†
σ (r) τ̂σνψν (r) , (2.55)

n (r) =
∑
σ
ψ†
σ (r)ψσ (r) , (2.56)

which give the spin and number densities of the conduction electrons [12]. τ̂ describes

the particle-hole transformation, J is the exchange coupling constant (Sec. 2.2.1) and U

represents the local Coulomb potential. The coordinate system is chosen in such a way that

w ≡ 1/2JS points into the z-direction. While the exchange coupling maintains the particle-hole

symmetry, it is broken by the Coulomb interaction [12].

For a uniform order parameter, the bound states are induced within the superconducting gap.

The spectral density per site is given by [12]:

Aσ (r,ω) =− 1

π
ImGσσ (r,r,ω) (2.57)

= Z (+)
σ (r)δ (ω−Ω0)+Z (−)

σ (r)δ (ω+Ω0) . (2.58)

5In tribute to L. Yu, H. Shiba and A. I. Rusinov, the bound quasi-particle states are also referred to as YSR states
in the literature.
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Figure 2.12: Energies and spectral weights of quasi-particle bound states for exchange coupling.
The figure is adapted from Ref. 12. (a) When increasing the magnetic interaction w , the quasi-
particle excitation energy Ω decreases until the spin character of the bound state changes
at wc (U ). (b) In the absence of the Coulomb interaction, the spectral weights are similar for
spin-up and spin-down bound states. Solid (open) symbols refer to the regime of w < wc

(w > wc ).

The expression includes the single particle Green’s function

Ĝ
(
r,r′,ω

)= Ĝ (0) (r− r′,ω
)+Ĝ (0) (r,ω) T̂ (ω)Ĝ (0) (−r′,ω

)
, (2.59)

where the scattering processes on the magnetic impurity are described by the matrix

T̂
(
r,r′,ω

)= T̂ (ω)δr0δr′0 . (2.60)

In the equilibrium, the energies of the bound states are calculated from

Ω0 = sgn(c+c−)∆0
c+c−−1√(

c2++1
)(

c2−+1
) . (2.61)

For w < wc (U ) =
√
πρN (EF )−2 +U 2, the bound state energy is given by Ω< = −Ω0, for w >

wc (U ) the sign is reversed Ω> = Ω0. The parameters c± = cw ∓ cu describe the exchange

coupling

cw = (
w/πρN (EF )

)
/
(
w2 −U 2) (2.62)

and the Coulomb interaction

cu = (
U /πρN (EF )

)
/
(
w2 −U 2) . (2.63)

The resulting bound states are of quasi-particle character. In this context, the quasi-particle
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Figure 2.13: Energies and spectral weights of quasi-particle bound states for Coulomb inter-
action. The figure is adapted from Ref. 12. (a) The Coulomb interaction effects the critical
coupling wc (U ). (b) The spin-degeneracy is lifted by the Coulomb potential due to the broken
particle-hole symmetry. Solid (open) symbols refer to regime of w < wc (w > wc ).

bound states are referred to as spin-down, when the spin projection of the particle compo-

nent is anti-parallel and the projection of the hole component is parallel to the spin of the

impurity [12]. Neglecting the Coulomb interaction, the minimum excitation energy for the

quasi-particle states decreases when increasing w for w < wc (U ) (Fig. 2.12(a)). In this regime,

the superconducting condensate is stable for quasi-particle excitations with spin-down char-

acter. However, its excitation energy would become negative for w > wc (U ). Instead, the

superconductor undergoes a quantum phase transition to a spin-polarized state. The calcula-

tion of the total spin polarization reveals 〈sz〉 = 0 for w < wc (U ) and 〈sz〉 =−1/2 for w > wc (U )

at zero-temperature [12]. For w > wc (U ) the excitation energy of the quasi-particle bound

state increases with increasing w and changes its spin orientation. In the absence of the

Coulomb potential, the same spectral weights are found for the spin-up and spin-down

channels (Fig. 2.12(a)). As shown in Fig. 2.13(a) for πρN
(
E f

)
w = 1.4, the Coulomb interac-

tion effects the critical coupling wc (U ). Furthermore, different spectral weights for spin-up

and spin-down states are observed due to the Coulomb potential and the resulting broken

particle-hole symmetry (Fig. 2.13(b)).

2.3.2 Spatial Distribution of Quasi-particle Bound States

In general, the relaxation of quasi-particle excitations to the superconducting ground state

is expected to occur within the superconducting coherence length (Sec. 2.1.3). Since the

Coulomb potential and the scattering potential, respectively, is usually considered as strongly

localized for the bound states, they should decay exponentially within length scales on the

order of the coherence length when increasing the distance from the magnetic impurity.

However, experimental observations suggest that the spectral density vanishes on much

shorter length scales, which are in fact in the order of the Fermi length [16, 18]. At first view,
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these findings are surprising because decays on such short length scales would suggest energy

excitations clearly exceeding the superconducting gap energies, as can be seen from the simple

estimation E ∝ħvF /lF . The expression reveals energies in the order of the Fermi energy but

such states could not be formed within the superconducting gap [12]. Instead, the theoretical

model explains the quick decay by a power-law prefactor in the exponential decay of the

bound state. For isotropic scattering with a uniform gap function ∆ (r), both the Coulomb

and the magnetic interaction decay exponentially with the prefactor 1/r , which give squared

the prefactor for the spectral weight. Furthermore, it is found that the interaction potentials

spatially oscillate with the Fermi wave vector ∝ sin(kF r ). The resulting spectral weight of the

bound state reads as

Z (±)
σ (r) ∝

(
sin

(
kF r −δ±)

kF r −δ±
)2

exp
(−2r

∣∣sin
(
δ+−δ−)∣∣/ξ0

)
, (2.64)

with the Fermi wave vector kF and the coherence length ξ [11, 12, 16]. The phase shifts for

scattering of spin-up (δ+) and spin-down (δ−) electrons are given by the Coulomb potential

and the magnetic coupling [11]. They are correlated to the energy of the formed bound states

by [11]:

E

∆0
= cos

(
δ+−δ−)

. (2.65)

Due to the prefactor, the spectral weight of the bound state already decreases significantly

at length scales much smaller than the coherence length. It is important to mention that

constant energy positions of the bound state are assumed for the derivation of Eq. 2.64.
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This chapter introduces the most important experimental techniques for this work, namely

the scanning tunneling microscopy (STM) and the Meservey-Tedrow-Fulde (MTF) technique.

These techniques represent great inventions opening up entirely new fields of research. In both

fields, many achievements have been published ranging from the investigation of fundamental

mechanisms to advanced technological applications. While a full coverage is not feasible in

the framework of this thesis, the basic concepts of STM and MTF is presented in the following

sections.

3.1 Scanning Tunneling Microscopy

The STM was developed in 1981 by G. Binning and H. Rohrer [76–78] who were rewarded

with the Physics Nobel Prize five years later. The technique provides the ability to image

surfaces with sub-nanometer resolution and to manipulate single atoms or molecules. In

addition, STM reveals the detailed electronic properties of the investigated system, such as

the local DOS (LDOS). The underlying concept of STM is quantum tunneling. The quantum

mechanical phenomenon describes the transmission of particles through barriers, which

would not be surmounted in the classical picture. This brief introduction presents the basic

working principle of STM and its main components. The discussion of the tunneling theory

includes the approaches presented by J. Bardeen to calculate the tunnel current [79] as well as

the Tersoff-Hamann model for the special geometry of STM tips [80, 81].

3.1.1 Working Principle

The basic working principle of STM is presented in Fig. 3.1. A conducting tip (usually made

from metal wire) is positioned close to a conducting sample. In classical STM, there is no

mechanical contact between the tip and the sample; instead, there is a small separation on the

order of 10 Å. Applying a bias voltage between tip and sample results in a detectable current

flow due to quantum tunneling. The phenomenon is correlated with wave nature of electrons
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Figure 3.1: Schematic of the STM working principle. The conducting tip is positioned close
to the sample in order to enable electron tunneling. Applying an external bias results in
the formation of a measurable tunnel current. The current is recorded as the signal for the
feedback loop, regulating the tip-to-sample distance. In order to image the surface of the
sample, the tip is scanned by an additional x/y-controller.

in quantum mechanics as described in Sec. 3.1.2. The tunnel currents are usually in the order

of 1 nA.

To image the surface of the sample, the tip is scanned over the sample and the resulting tunnel

current is simultaneously recorded. (In Sec. 3.1.2, it is explained that STM does not directly

image the actual topography of the surface but the local electronic structure.) The spatial

positioning of the tip is usually achieved by piezoelectric actuators, which allow moving the

tip with atomic scale precision. The two most commonly applied modes of operation are

the constant height mode and the constant current mode. In the constant height mode, the

z-position of the STM tip is fixed while the tip scans the sample surface and the tunnel current

is recorded. Naturally, the method is only employed for flat surfaces to avoid contact between

tip and sample, for example due to atomic step heights. It sets high demands in terms of

stability and, therefore, disturbances such as vibrations or piezo creep have to be eliminated.

Modern control electronics considerably facilitate this method by automatically compensating

piezo effects and by electronically adjusting a flat scanning plane. According to its name, the

constant current mode employs a fixed set point for the tunnel current. To keep the current

constant, the tip-to-sample distance is adjusted by a feedback loop, which records the current

as feedback signal for a proportional-integral controller. The optimal setup parameters take

into account the roughness of the sample, the scan speed and the required spatial resolution.

In 1982, atomic steps were resolved for Au(110) and CaIrSn4 surfaces [77], the detailed surface

7×7 reconstruction of Si(111) was successfully imaged in 1983 [78].

STM greatly benefits from the high sensitivity of the tunnel current with respect to the tip-

to-sample distance. In fact, the tunnel current changes by an order of magnitude when the
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tip-to-sample distance is changed by only 1 Å, as demonstrated in Sec. 3.1.2. This makes

STM very sensitive for detecting small height corrugations of the sample, resulting in highly

resolved surface topographies. It is important to mention that the tunnel current is mainly

governed by the last atom at the tip apex, in contrast to superconducting length scales such as

the London penetration depth or the coherence length (Sec. 2.1.3).

3.1.2 Theoretical Description of Electron Tunneling

The concept of tunneling is discussed for the case of a one-dimensional (1D) potential barrier

of thickness d and height V (Fig. 3.2). In the classical description, particles can only pass when

their energy levels exceed the barrier height (E > V ), otherwise (E < V ) the potential step

represents an impenetrable barrier. Due to their wavelike nature, the quantum mechanical

description of electrons leads to a certain probability for passing the barrier, which is called

quantum tunneling. The Schrödinger equation reads for a single electron as follows [82]:(
− ħ2

2m

∂2

∂z2 +V (z)

)
ψ (z) = Eψ (z) , (3.1)

with ħ the reduced Planck constant, m the electron mass and z the position. The solution of

the differential equation depends on the ratio of the electron energy and the potential energy:

ψ (z) =


Ae i kz +Be−i kz for the tip,

Ce−κz +Deκz for the vacuum barrier,

Fe i kz +Ge−i kz for the sample.

(3.2)

In the tip region, A = 1 fulfills the norm for the wave function and B is the amplitude of the

reflected part of the electron wave. For simplification, quantum tunneling is only considered

for electrons tunneling from the tip to the sample, which means G = 0. The wave vector k of

the traveling wave solution depends on the difference between the electron energy and the

potential:

k =
p

2m (E −V )

ħ . (3.3)

In the barrier, the energy of the electron is smaller than the potential (E <V ), which results in

an exponentially decaying wave

κ=
p

2m (V −E)

ħ . (3.4)

The remaining unknowns (B , C , D, and G) are calculated from the conditions that both the

wave function ψ (z) as well as its derivative ψ′ (z) are continuous functions in space. The

35



Chapter 3. Experimental Techniques

VacuumTip Sample Re ψ(z)V(z)
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Figure 3.2: Schematic of quantum tunneling in a 1D potential barrier. Due to their wavelike
character in quantum mechanics, electrons tunnel through potential barriers with a certain
probability, even when their energy levels are below the barrier height (E <V ).

probability P for an electron to transmit the tunnel barrier depends on its energy level [82]:

P (E) = 4E (V −E)

4E (V −E)+V 2 sinh2 (2κd)
. (3.5)

In contrast to the classical view, the transmission probability is neither zero for E < V nor

equals one for E >V . In the case of κd À 1, the probability for an electron transmitting the

vacuum barrier exponentially depends on the tunneling distance P (E) ∝ e−2κd .

In 1961, J. Bardeen presented a more general formalism to describe electron tunneling between

two isolated electrodes for more complex geometries than the 1D potential barrier. The

approach takes into account the existence of multiple conduction channels as indicated in

Fig. 3.3(a). In Bardeen’s model, the tunnel current is derived by Fermi’s golden rule from

time-dependent perturbation theory [79]:

I = 2πe

ħ
∑
µ,ν

(
f
(
Eµ

)− f (Eν)
)∣∣Mµν

∣∣2
δ

(
Eµ−Eν−eV

)
, (3.6)

with the Fermi function f , the applied voltage V and the energy Eµ (Eν) of the state ψµ (ψµ).

Mµν are the elements of the tunnel transmission matrix, which gives the transmission rate for

an electron tunneling from the occupied state ψµ to the unoccupied state ψν:

Mµν = ħ2

2m

∫ (
ψ∗
µ∇ψν−ψµ∇ψ∗

ν

)
dA . (3.7)

Mµν is directly correlated to the overlap of the wave functions ψµ and ψν. The integration

covers the area A between tip and sample. In practice, the calculation of the matrix elements

is difficult because the wave functions are not known in full detail.

The common work-around for this problem is the Tersoff-Hamann model [80, 81]. The discrete
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Figure 3.3: Probing the electronic properties by scanning tunneling spectroscopy. (a) The
tunnel process is illustrated for the transmission between the normal conducting DOS of
the tip (ρtip) and the superconducting quasi-particle DOS (ρsample) of the sample. Applying
the bias V results in the formation of a detectable tunnel current. (b) The tunnel current is
recorded as a function of the applied voltage. The non-conducting range around the zero-bias
arises from the gap in the superconducting DOS. (c) The differential conductance (dI/dV )
reveals the detailed electronic structure of the sample.

states ψµ and ψν are replaced by continuous distributions, which are given by the DOS for the

tip ρt (E) and the sample ρs (E). The tunnel matrix reads

∣∣Mt,s (E ,V , z)
∣∣2 = exp

(
−2z

√
m

ħ2

(
φt +φs −eV +2E

))
, (3.8)

where φt (φs) is the work function of the tip (sample). The resulting tunnel current

I (V ) ∝
∫
ρs (E)ρt (E −eV )

∣∣Mt,s (E ,V , z)
∣∣2 (

f (E −eV ,T )− f (E ,T )
)

dE , (3.9)

depends on the DOS of tip and sample, the temperature T in the Fermi function f and the

applied bias V . In the Tersoff-Haman approach, the DOS of tip and sample are considered

constant for the investigated range of energies. More importantly, the model is restricted to

wave functions of s-type which is equivalent to a spherical wave function at the tip apex. The

expression for the tunneling current is simplified to

I (V ) ∝
∫
ρs (E)dE , (3.10)

which represents an approximation for zero-temperature (T = 0) and small potential differ-

ences (eV ¿φ). Then, the measured tunnel current directly reflects the LDOS of the sample.
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3.1.3 Scanning Tunneling Spectroscopy

STM does not only image the surface of a sample but it also reveals its detailed electronic

properties. This ability is primarily employed in scanning tunneling spectroscopy (STS).

Differentiating Eq. 3.10 reveals the direct correlation between the differential conductance

(dI/dV ) and the LDOS of the sample (ρs):

dI

dV
∝

∫
ρs (E) f ′ (E ,T )dE . (3.11)

In this approximation, the DOS of tip is constant in the investigated energy interval. Broaden-

ing effects due to finite temperatures are described by the convolution of the LDOS and the

derivative of the Fermi function f ′ (E ,T ). While the differential conductance can be obtained

from differentiating the tunnel current as a function of the applied voltage, the derivative

generally reacts very sensitively to parasitic noise in the measurement of the tunnel current.

In practice, the differential conductance is usually recorded by a lock-in technique. Here, the

applied bias V0 is combined with a small modulated voltage signal Vmod:

V =V0 +Vmod sin(ωt ) , (3.12)

where ω is the modulation frequency. The lock-in detection of the signal averages the LDOS

over the modulation range (±Vmod). Therefore, the choice of the lock-in amplitude is essential

in order to resolve the spectral features of interest. Increasing the modulation frequency

usually decreases the measurement time required to obtain sufficient signal-to-noise ratios.

However, the chosen frequency needs to stay below the bandwidth limitation of the current

amplifier and needs to take into account noise frequencies of the system. For example, in order

to resolve the Zeeman splitting (Chap. 4 and Chap. 5), the dI/dV spectra are recorded with

a lock-in modulation voltage Vmod ≈ 5−20µV and a modulation frequency of f =ω/(2π) ≈
700 Hz.

The effective energy resolution is a measure of the minimum spectral separation at which two

spectral features are still distinguishable. For the experiments presented here, it consists of

the thermal broadening ∆Ethermal and the lock-in averaging ∆Elock-in [83]:

∆E ≈
√

(3.5kB T )2 + (2.5eVmod)2 . (3.13)

The pre-factor of the thermal broadening describes elastic tunneling, and thus changes for

inelastic processes [84]. From Eq. 3.13, the direct correlation becomes obvious between

thermal broadening effects and the achievable energy resolution. For example, the MTF-

technique (Sec. 3.3) requires recording dI/dV spectra with an energy resolution in the order of

100µeV and, therefore, the approach is only suitable in low temperature systems.
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3.2 Millikelvin Scanning Tunneling Microscope

Since thermal disturbances hamper the investigation of small electronic effects (Eq. 3.13),

STM in the low temperature regime represents an especially powerful tool combining high

spatial and spectral energy resolution to gain insight into physical mechanisms, that cannot

be resolved at higher temperatures. Furthermore, such experiments generally benefit from

an ultra-high vacuum (UHV) environment, in which complex in situ preparation of tips and

samples can be realized. Most experimental work of this thesis has been carried out on an

STM operating at millikelvin temperatures in UHV. In addition, external magnetic fields can

be applied up to 14 T perpendicular to the sample plane and 0.5 T in-plane. Several technical

challenges arise from operating an STM under such conditions. This section represents a brief

introduction into the experimental setup, Refs 85, 86 are recommended for a more detailed

description.

3.2.1 Overview of the System

In Fig. 3.4, an overview of the millikelvin STM (mK-STM) is presented. The system consists of a

cryostat integrating a dilution refrigerator into UHV and the preparation chamber that allows

for the in situ preparation and transfer of tips and samples. In general, STM experiments react

highly sensitively to external disturbances such as mechanical vibrations or electromagnetic

radiation. While the influence of the mechanical stability becomes directly obvious for the

tip-to-sample distance, to which the tunnel current is directly correlated (Eq. 3.10), electro-

magnetic noise disturbs the amplification and measurement of the small tunnel currents and

bias voltages applied in STM. The influence of external disturbances needs to be limited in

order to increase the quality of the experimental data. Since the STM is rigidly attached to

the dilution refrigerator for strong thermal coupling, the entire system requires mechanical

isolation from external vibrations present in the building. The mK-STM extends over two

floors, but is only in mechanical contact to the top floor, where it rests on a combination of

active and passive dampers. In addition, all connections to the cryostat, such as the electrical

cables and pumping lines, are first anchored on a separate damping stage before they connect

to the active and then to the passive damping stages of the cryostat. To minimize disturbing

vibrations created by the operation of the dilution refrigerator, the geometry of the STM unit is

optimized to limit the influence of mechanical disturbances [87].

The preparation of tips and samples is carried out in the UHV preparation chamber. Pressures

in the low 10−10 mbar range are achieved by a combination of a main turbo pump, an ion

pump and a sublimation pump. For STM measurements, the mechanical turbo pumps are

switched off to further reduce vibrations in the STM and to protect the pumps from stray fields

of the magnet.

39



Chapter 3. Experimental Techniques

pump room
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pumping lines
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cryostat

preparation
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Figure 3.4: Design of the mK-STM (adapted from Ref. 85). The entire system extends over two
floors. The cryostat maintenance as well as the STM electronics are accessed in the top floor
and the preparation of STM tips and samples is carried out in the UHV chamber located in the
lower floor.
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Figure 3.5: Design of the STM unit (adapted from Ref. 85). The STM unit functions under
extreme conditions, such as UHV, millikelvin temperatures and high magnetic field.

3.2.2 STM Unit

The STM unit is schematically presented in Fig. 3.5 [85]. In this setup, the position of the sam-

ple is fixed while the tip-to-sample distance is controlled by a moveable tip. The positioning

mechanism consists of two parts. First, the step motor for the coarse approach moves the tip

within 100 nm distance to the sample. The second part is the scan tube, which is made from

piezoelectric material and directly attached to the coarse motor. Applying a bias between the

inner and outer contacts of the piezoelectric tube enables fine control of the z-position as well

as scanning in the x y-plane. The tip is mounted on the scan tube with a banana plug, which

allows for exchanging tips in situ. The external thread of the sample holder fits in the STM,

where the bias contact is provided by metal springs. The sample is fixed on the holder by two

half-discs, which function as a thermocouple during the sample preparation. The STM unit

needs to function in UHV at millikelvin temperatures in high magnetic field. Therefore, the

materials selected for its fabrication have low vapor pressures for lower outgassing rates in

vacuum and feature high thermal conductivity to increase the cooling efficiency. Furthermore,

they show no strong response to external magnetic fields, such as ferromagnetic or diamag-

netic behavior. For example, the sample holder is made of silicon silver for high thermal

conductivity and better cooling of the sample. The thermocouple consists of Pt/Pt90Rh10 (type

S) to avoid superconducting effects at low temperatures, such as the superconducting gap or

diamagnetic response to external magnetic fields.
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3.2.3 Dilution Refrigeration

Low temperatures in the millikelvin regime are achieved by attaching the STM unit to a dilution

refrigerator. Its cooling power results from the heat of mixing the two different helium isotopes
3He and 4He [88]. The refrigeration process is continuous and requires no mechanically

moving parts inside the cryostat.

The cryostat (Fig. 3.6) consists of a liquid nitrogen, a liquid helium and a 1 K dewar, which

are thermally decoupled by UHV shells. Shielded from thermal radiation by the outer dewars,

the central dilution insert can be cooled to 10 mK by circulating a mixture of 3He and 4He.

In the closed 3He and 4He cycle, the mixture is first pumped through liquid nitrogen and

liquid helium cold traps to remove any contamination, such as machine oil of the mechanical

pumps. Then, the 3He and 4He mixture is cooled by the 1 K dewar and a combination of

heat exchangers of the dilution unit until it enters the mixing chamber, which represents the

coldest part of the cryostat. When cooled down to millikelvin temperatures, 3He and 4He

exhibit characteristic behaviors due to their different amounts of neutrons in the nucleus.

The total nuclear spin of 4He vanishes (I4He = 0) and, therefore, it follows the Bose-Einstein

statistic that leads to a superfluid transition at 2.17 K. 3He possesses a nuclear spin (I3He = 1/2)

obeying the Fermi statistic and Pauli’s exclusion principle. While low concentrations of 3He

form a Fermi liquid in superfluid 4He below 2.17 K, high 3He concentrations result in a mixture

of normal fluid 4He and 3He. Depending on the 3He content of the mixture, a spontaneous

phase separation occurs at temperatures below 870 mK and a concentrated (3He rich) phase

and a dilute (3He poor) phase are formed. In the mixing chamber of the dilution refrigerator,

the concentrated and the dilute phase are only separated by a phase boundary. 3He passing

from the concentrated to the dilute phase represents an endothermic process, which requires

heat from its surroundings. The heat necessary for passing the phase boundary is the cooling

power of the refrigeration. The process is enhanced by pumping or even heating the still,

where the 3He leaves the dilute phase and is compressed by mechanical pumps to reenter the

cycle. In the low millikelvin regime, the concentrated phase basically consists of pure 3He,

which represents the working fluid of the dilution cryostat.

3.2.4 Energy Resolution

The temperature of the STM was verified by placing ruthenium oxide sensors at the position

of the sample and the tip, respectively [85]. The measurement reveals Ttip = 17±5 mK and

Tsample = 20±5 mK [86]. However, the energy resolution of electronic measurements is defined

by the temperature of the electron bath (Eq. 3.13). Especially at very low temperatures, the

temperature of the electron bath is not necessarily the same as the temperature of the solid

lattice due to the reduced phonon-electron interactions. Capacitive noise in shielded cables,

external radio frequency noise and electromagnetic fields represent disturbances that increase

the electron temperature with respect to the lattice. Noise pick-up is prevented by shielding

and filtering the signal lines. The filtering consists of external radio frequency filters operating
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Figure 3.6: The dilution refrigerator of the mK-STM (adapted from Ref. 85). The liquid nitrogen
and liquid helium dewars shield the inner dilution unit from thermal radiation. Cooled
radiation shields are employed for the same task at the bottom transfer for tip and samples.
The cooling power of the dilution refrigerator stems from the heat of mixing liquid 3He and
4He.
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Figure 3.7: Differential conductance measured between a superconducting Al tip and a Cu(111)
surface (adapted from Ref. 85). (a) The dI/dV spectrum is fitted by the Maki equation, in which
the effective temperature is a fitting parameter. (b) For the gap edges, the quality of the fit is
illustrated by constraining the temperature parameter to fixed values.

at room temperature and an intrinsic filtering effect of the cables at high frequencies. To verify

the energy resolution, the superconducting quasi-particle DOS of an Al tip is measured on

a Cu(111) surface. The measurement is shown in Fig. 3.7(a). The superconducting gap is

fitted with the Maki model (Sec. 3.3.2), in which the temperature parameter is regarded as the

effective electron temperature Teff = 38±1 mK [86]. It corresponds to an energy resolution

of ∆E = 3.5kB Teff = 11.4±0.3µeV [86]. The quality of the fit is illustrated by constraining the

temperature parameter to fixed values (Fig. 3.7(b)).

3.3 Meservey-Tedrow-Fulde Technique

In the 1970s, R. Meservey, P. M. Tedrow and P. Fulde studied superconducting thin films by

tunneling experiments [7–9]. Observing the lifted spin-degeneracy of the superconducting

quasi-particle DOS in high magnetic fields, they developed a scheme that employs the super-

conducting films as a detector for the spin polarization of magnetic materials. Their approach

is also known as the MTF technique based on the spin-polarized tunneling of electrons — the

origin of spintronics.

3.3.1 Spin-dependent Tunneling

In their pioneering experiments, R. Meservey and P. M. Tedrow used standard thin film tunnel

junctions to reveal detailed information about the superconducting quasi-particle DOS [7].

The tunnel junctions typically consist of a thin film superconductor and a normal conducting

counter electrode, which are separated by an insulating layer. For example, Al/Al2O3/Ag was

used to investigate the quasi-particle DOS in magnetic fields [7]. When single electrons tunnel

in the superconductor, a Cooper pair has to break, which requires the energy ∆ (Eq. 2.21)
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Figure 3.8: Origin of the differential conductance spectra used in the MTF technique [7–
9]. This technique employs tunneling experiments between a superconductor (SC) and a
normal conducting (NC) electrode separated by an insulating layer. The figure is based
on Ref. 9. The top panels depict the quasi-particle DOS of the superconductor (ρt ). The
middle panel describes the thermal broadening as well as the two contributions of the spin-
up DOS (ρ↑

s ) and spin-down DOS (ρ↓
s ) of the normal conducting electrode. The resulting

dI/dV spectrum is shown in the bottom panel, where the spin-up (green) and spin-down (red)
contributions are also shown separately when they are different. (a) The quasi-particle DOS
of the superconductor ρt exhibits a characteristic gap and two coherence peaks (top). The
derivative k of the Fermi function f (E ) takes into account thermal broadening effects (middle).
The measured dI/dV spectrum is the result of convolving the quasi-particle DOS and the
derivative of the Fermi function (bottom). (b) In an external magnetic field the quasi-particle
DOS is split by the Zeeman energy and four peaks are observed in the dI/dV spectrum. (c)
For a ferromagnetic electrode, a spin polarization at the Fermi level leads to an imbalance
between spin-up and spin-down electrons. The spin polarization of the tunneling electrons
can be directly extracted from the asymmetry of the dI/dV spectrum.
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according to BCS theory (Sec. 2.1.2). The resulting quasi-particle DOS shows a characteristic

gap (Fig. 3.8(a)), which can be measured by the differential conductance (Eq. 3.11). Since the

counter electrode is normal conducting, thermal broadening occurs at the Fermi edge of the

metal. This is taken into account by convolving the superconducting quasi-particle DOS and

the derivative of the Fermi function (Fig. 3.8(a)) as described in Eq. 3.11.

In the Meissner phase, superconductors generally expel external magnetic fields from their

interior except for the small regions described by the London penetration depth (Sec. 2.1.1).

When the superconductor is geometrically confined to dimensions on the order of the London

penetration depth, shielding currents cannot be formed efficiently anymore and, as a result,

the critical fields exceed the critical bulk fields (Sec. 2.1.4) [39]. In such devices, the unusual

situation emerges that the magnetic field interacts with the majority of the Cooper pairs. In

magnetic fields B , the spin degeneracy of the quasi-particle DOS is lifted by the Zeeman

energy creating spin-up and spin-down channels that are separated by E/B = 2µB ≈116µeV/T

for s = 1/2, g-factor = 2 and µB the Bohr magneton (Fig. 3.8(b)). If the normal conducting

metal of the tunnel junction is non-magnetic, the contributions of the spin-up and the spin-

down channels are equivalent, which results in a symmetric dI/dV spectrum. In the case of a

ferromagnetic sample, however, the DOS typically differs between spin-up and spin-down

electrons (Fig. 3.8(c)). Since the measured dI/dV spectrum is the sum of spin-up and spin-

down channels, the spin-polarization of the ferromagnetic electrode at the Fermi level results

in an asymmetric dI/dV spectrum. Analyzing the asymmetry reveals absolute values of the

spin-polarization of the tunneling electrons at the Fermi level [8, 9].

When the original BCS superconducting quasi-particle DOS (Eq. 2.21) is employed to extract

the absolute spin-polarization, the conductance is only required at four different voltages

around V0 [9, 89], which are given by

σ1 = dI/dV
(−V0 −µB/e

)
, (3.14)

σ2 = dI/dV
(−V0 +µB/e

)
, (3.15)

σ3 = dI/dV
(
V0 −µB/e

)
, and (3.16)

σ4 = dI/dV
(
V0 +µB/e

)
. (3.17)

In this case, the spin-polarization P is calculated from these four data points by

P = (σ4 −σ2)− (σ1 −σ3)

(σ4 −σ2)+ (σ1 −σ3)
. (3.18)

While R. Meservey and P. M. Tedrow chose V0 to be close to ∆/e in order to minimize ex-

perimental errors, the choice is arbitrary and does not effect the resulting spin-polarization

in the absence of spin-orbit coupling. However, the spin-polarization becomes a sensitive

function of V0 when spin-orbit scattering is taken into account. For such a case, D. Worledge

and T. Geballe demonstrated that an original spin-polarization of P = 72 % can vary between
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P = 41 % and P = 95 % depending on the choice of V0 [54]. While the influence of either

spin-orbit coupling [90, 91] or orbital depairing [91] was discussed, fitting experimental data

actually proved challenging when including both contributions at the same time [92]. There-

fore, the spin-polarizations obtained from Eq. 3.18 were reduced by 6−8 % in practice to take

spin-orbit interactions into account. A more accurate analysis is provided by solving the Maki

equations [48, 54, 55].

3.3.2 Extended Maki Model

The Maki model calculates the superconducting quasi-particle DOS in the presence of mag-

netic and spin-orbit scattering (Sec. 2.1.6). The theory provides good agreement to ex-

periments carried out on non-magnetic tunnel junctions (Ag/Al2O3/Al) [52] as well as to

spin-polarized measurements (Gd/Al2O3/Al) [54, 93]. The DOS obtained by the Maki model

(Eq. 2.41) is employed to calculate the differential conductance spectra according to Eq. 3.11.

In magnetic fields, it consists of the spin-up and spin-down contributions due to the Zeeman

energy:

dI

dV
∝ ∣∣N↑

∣∣ ∣∣M↑
∣∣2

+∞∫
−∞

ρ↑ (E ,B) f ′ (E +eV ,T ) dE

+ ∣∣N↓
∣∣ ∣∣M↓

∣∣2
+∞∫

−∞
ρ↓ (E ,B) f ′ (E +eV ,T ) dE , (3.19)

where
∣∣M↑

∣∣2 is the tunnel matrix (Eq. 3.7). Thermal broadening is described by the derivative

of the Fermi function f ′ (E +eV ,T ) at the temperature T (Fig. 3.10). The spin-polarization is

given by

P =
∣∣N↑

∣∣− ∣∣N↓
∣∣∣∣N↑

∣∣+ ∣∣N↓
∣∣ . (3.20)

In this expression,
∣∣M↑↓

∣∣2 = 1 is employed because the detailed wave functions of the elec-

tronic states are usually not known in practice. In the following section, the influence of the

parameters of the Maki model is demonstrated for several calculated dI/dV spectra. In Chap. 4

and Chap. 5, a fitting routine based on Eq. 3.19 is used to extract superconducting parameters

from spectroscopy measurements.

In order to investigate the influence of orbital depairing and spin-orbit scattering, the super-

conducting quasi-particle DOS is calculated by solving the Maki equations (Eq. 2.42). The

superconducting gap ∆= 400µeV and the external magnetic field B = 3 T are kept constant

for these calculations. The counter electrode is non-magnetic (P = 0), which leads to sym-

metric spectral features. In Fig. 3.9(a), the influence is investigated for the orbital depairing

parameter at finite temperature T = 100 mK. Due to the Zeeman energy, the coherence peaks

of the superconducting DOS are split into the contributions of the spin-up and spin-down
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Figure 3.9: Differential conductance spectra calculated by the Maki model to demonstrate
depairing and spin-orbit scattering. (a) The coherence peaks appear less pronounced and
the superconducting gap decreases due to the orbital depairing. (b) The spin-orbit coupling
mixes the spin states and, as a result, the magnitude of the Zeeman split coherence peaks
adjust for increasing the parameter b.

channels. As a consequence of the orbital depairing, the spectral features are less pronounced,

for example, the height of the coherence peaks is decreased and the DOS is smeared out at

the gap edges (V ≈±0.2 mV). Effectively, the superconducting gap is slightly decreased. The

effects increase when increasing the pair breaking parameter ζ. However, even for the largest

scattering parameter, ζ = 0.05, the superconducting gap is not filled in the region close to

zero-bias. In Fig. 3.9(b), the effect of spin-orbit coupling is shown. The most characteristic

feature is the spin-mixing that forms small peaks at the position of the coherence peaks of

the opposite spin moment. In general, the magnitude of the higher peak of the dI/dV signal

is decreased while that of the lower dI/dV peak is increased. At the same time, the mixing

of the spin channels makes the visible separation of the peaks smaller. When the spin-orbit

scattering is increased, the mixing of the spin states increases as well. In the limit of b →∞,

the spin channels are no longer separated.

In addition to orbital depairing and spin-orbit coupling, non-equilibrium excitations play a

significant role in experiments on superconductors [94, 95]. These excitations mostly occur

for energies close to the superconducting gap (E ≈∆). The time τr describes the relaxation

process for two quasi-particles driven away from the equilibrium state:

τr =
√
∆

T
τ0 e∆/(kB T ) , (3.21)

where τ0 depends on the electron-phonon coupling, T is the temperature, ∆ represents the

superconducting gap and kB is the Boltzman constant [94, 95]. Relaxation into the ground state

results in the reformation of a Cooper pair. Experimentally, the superconducting quasi-particle

DOS appears broadened due to the finite lifetime of the quasi-particles. The broadening

becomes obvious in the region of the gap edge, especially for higher temperatures [95]. To
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Figure 3.10: Differential conductance spectra calculated by the Maki model to demonstrate
the influence of the broadening parameter Γ and temperature T . (a) Non-equilibrium exci-
tations limit the lifetime of the quasi-particles. As a result, broadening is observed for the
superconducting quasi-particle DOS, which is described by the broadening parameter Γ. (b)
The effect of thermal broadening is described by the convolution of the dI/dV spectrum and
derivative of the Fermi function f ′ (E +eV ,T ) at the temperature T .

include finite lifetime effects, the superconducting quasi-particle DOS (Eq. 2.42) is modified

by adding an imaginary part to the energy E → E − iΓ[95]:

u± = (E − iΓ)∓µB B

∆
+ζ u±√

1−u2
±
+b

u∓−u±√
1−u2

∓
. (3.22)

The parameter Γ broadens the spectral features and results in a much better agreement to

data obtained by tunneling experiments [95, 96]. In Fig. 3.10(a), the superconducting DOS

is calculated from Eq. 3.22 for several values of Γ. With increasing Γ the spectral features

appear less pronounced. For the largest Γ= 100µeV, the broadening hides the separation of

the spin-up and the spin-down contributions. Instead of the Zeeman split coherence peaks,

only the formation of a shoulder is observed in the dI/dV signal. The effects are similar to

thermal broadening, which is presented in Fig. 3.10(b) for several temperatures.
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4 Geometrically Confined Superconduc-
tors in Magnetic Fields

In this chapter, the impact of geometrical confinement is investigated for superconducting

STM tips in magnetic field. To this end, the experimentally obtained magnetic field depen-

dence for several V tips is analyzed by the extended Maki model and compared to microscopic

calculations based on a 1D Usadel equation. The theoretical model for superconducting cones

leads to a direct correlation between the detailed geometry and the order of the supercon-

ducting phase transition. Comparing the experimental findings to the theory reveals first and

second order phase transitions in the V STM tips. In addition, the Usadel theory explains

experimentally observed spectral broadening in magnetic fields. Parts of the results discussed

in this chapter are already published in Refs 97, 98.

4.1 Overview and Motivation

When geometrically confined to dimensions smaller than the London penetration depth,

superconductors in a magnetic field exhibit properties that can significantly differ from their

bulk counterparts. Such effects have been extensively studied on superconducting thin films

using sandwich tunnel junctions [6, 39–41]. Due to the geometrical confinement, the critical

magnetic fields, at which the films become normal conducting, are considerably enhanced

compared to the bulk [39]. At the critical field, the order of the superconducting phase

transition depends not only on temperature but also on geometrical factors such as the film

thickness as well as the magnetic field itself (Sec. 2.1.5) [6, 39]. In addition to thin films, various

other geometries have been studied experimentally and theoretically such as disks, rings or

spheres [42–46].

In this thesis, superconductors are employed as tips in STM. The approach aims to combine

the superconducting properties (Sec. 2.1) with the atomic scale resolution of STM (Sec. 3.1).

For example, superconducting STM tips can be employed for enhancing energy resolution

[18, 99], for accessing parameters of a superconductor [100], as probes for absolute spin

polarization (Sec. 3.3), and for designing Josephson junctions [101]. The geometry of such

tips is well approximated by cones for the mesoscopic length scales, where superconductivity
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Figure 4.1: Magnetic field dependence of superconducting V tip with sharp spectral features.
(a) The dI/dV spectra are measured with a superconducting V tip on normal conducting
V(100) at 15 mK. With increasing external magnetic field the Zeeman splitting (indicated by
the horizontal arrows) is enhanced and the superconducting gap decreases. The lines are
fits based on Maki’s theory, red (green) triangles mark the coherence peak of the spin-down
(spin-up) channel.

has to be described (Sec. 2.1.3). A cone presents a particularly interesting and challenging

geometry covering length scales from the atomic scale apex to the macroscopic base [102]. In

a conical geometry, it is a priori not clear if the superconducting properties are effected due to

the mesoscopic confinement, or if quantum size effects have to be considered, as in the case of

zero-dimensional superconductors [103–106]. In this context, the magnetic field dependence

of the superconducting gap is of fundamental interest. The order of the superconducting

phase transition also remains an open question. Therefore, it is essential to understand the

impact of the confinement on tunneling experiments employing superconducting STM tips.

4.2 Magnetic Field Dependence of Vanadium STM Tips

The experiments were carried out on an STM operating in ultrahigh vacuum (UHV) at a base

temperature of 15 mK. External magnetic fields up to 14 T can be applied perpendicular to the

sample plane (Sec. 3.2) [85, 86]. The STM tips are mechanically cut ex situ under tension from

polycrystalline V wire of 99.8 % purity and then transferred to the STM. The thin native oxide

is removed by field emission on a V(100) sample, which is cleaned by several cycles of Ar ion

sputtering and annealing to 1000◦C. After this procedure, all V tips are superconducting at
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Figure 4.2: Comparison between experimental data and several fit models. The original BCS
theory neglects magnetic and spin-orbit scattering. Better agreement is obtained by the Maki
model. The filling of the gap is described by the additional damping parameter Γ in the
extended Maki model.

about 1 K, but exhibit varying properties, which will be discussed below. In magnetic fields, the

superconductivity of the tips is optimized by short bias voltage pulses to shape the tip apex on

the V(100) sample. As soon as the tips show superconductivity at higher magnetic fields, the

STM unit is cooled down to 15 mK. At this temperature, differential conductance spectra are

acquired by a lock-in technique (modulation amplitude Vmod = 20 µV, modulation frequency

fmod = 720 Hz). After stabilizing the tunneling contact at IS = 500 pA and VS = 2.5 mV the

feedback loop is opened and the dI/dV spectra are measured as a function of the bias voltage.

In Fig. 4.1, dI/dV spectra measured with a superconducting V tip on a V(100) single crystal are

presented for increasing magnetic fields. The magnetic field is perpendicular to the sample

surface and parallel to the axis of the tip. Since the critical field for bulk V Bc,bulk is smaller than

0.5 T [30], the sample is normal conducting for all measurements shown. At the measuring

temperature of 15 mK, all spectra feature superconducting quasi-particle DOS for magnetic

fields up to 4.2 T, proving that the tip apex remains superconducting. The enhanced critical

field results from the confined geometry naturally provided by the tip, which hinders the

formation of shielding currents and retains the superconducting phase. The characteristic

four-peak-structure of the superconducting coherence peaks is caused by the lifted spin

degeneracy of the quasi-particle DOS. The splitting increases with magnetic field B (see

arrows in Fig. 4.1) and follows the theoretical prediction ∆E = 2µB B of a system with spin

s = 1/2, g-factor = 2 and µB the Bohr magneton. The superconducting gap becomes smaller

and closes at the critical field Bc ≈ 4.5 T.

To characterize the data, the superconducting quasi-particle DOS is described by several

53



Chapter 4. Geometrically Confined Superconductors in Magnetic Fields

20

16

12

8

4

0

d
I/

d
V

 (
a

rb
. 

u
n

it
s)

-1.0 -0.5 0.0 0.5 1.0

Bias (mV)

0.25 T

0.50 T

2.25 T

0.75 T

1.00 T

1.25 T

1.50 T

1.75 T

2.00 T

2.50 T

Figure 4.3: Magnetic field dependence of superconducting V tip with broadened spectral
features. Compared with the tip in Fig. 4.1, the spectral features appear much broader and the
critical field Bc ≈ 2.5 T is smaller. This observation indicates the influence of the specific tip
geometry.

theories, which are employed as fitting routines in Fig. 4.2. First, a fit based on BCS theory

(Eq. 2.21) is exemplarily shown for a measurement at 2.5 T, demonstrating that the dI/dV

spectra of the V tips are in general insufficiently described by BCS theory. This is not too

surprising, considering the impurity concentration of the used V wire as well as the spin-orbit

coupling in V. The analysis based on the Maki model (Eq. 2.41) takes into account magnetic and

spin-orbit scattering [48, 54] and, as a result, much better agreement with the dI/dV spectra is

obtained. While the fit correctly reproduces the Zeeman split coherence peaks, the central gap

region still deviates from the acquired data (Fig. 4.2). The dI/dV spectra usually exhibit broader

spectral features than one would expect just from thermal effects at 15 mK. In particular at

higher magnetic fields, the filling of the superconducting gap is observed where the dI/dV

signal does not completely go to zero, as predicted by the original Maki model (Eq. 2.41)

[48, 54]. Therefore, the extended Maki model is applied with the additional phenomenological

broadening parameter Γ (Eq. 3.22) [95]. Including Γ broadens the spectral features and results

in a much better fit to the experimental data (Fig. 4.2). It is important to mention that an

artificially introduced parameter Γ should not be attributed to any microscopic pair-breaking

mechanism. Its appearance is the price one has to pay for a good fitting of experimental data

by an oversimplified Maki model. In Sec. 4.3, a microscopic approach based on the Usadel

equations is presented, which consistently describes the broadening of the quasi-particle DOS

in the tip without any broadening parameters. However, the approach cannot routinely be
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of V tips. The results are derived from experimental data by the extended Maki model. The
lines indicate elliptic fits of the superconducting gaps at small B , which largely overestimate
Bc for most tips deviating from the bulk phase transition.

used as fitting procedure due to the high computational effort.

In Fig. 4.1, the black solid lines represent fits to the data using the extended Maki model

(Eq. 2.41 and Eq. 2.42). In Fig. 4.3, the same experiment is repeated with a different STM tip

made from V wire. While the superconducting DOS of the tip is clearly visible and similar

to Fig. 4.1, the spectral features appear much broader and the critical field Bc ≈ 2.5 T is

smaller. Fitting the more broadened spectra with the extended Maki equation requires larger

Γ values than in Fig. 4.1. The broader spectra can be attributed to a tip that is more blunt as

demonstrated in Sec. 4.3. Furthermore, the transition to the normal conducting state at high

fields seems smoother than in Fig. 4.1.

Repeating these experiments for several V tips, the superconducting parameters are extracted

by the fitting routine based on the extended Maki model. Fig. 4.4 shows the superconducting

gap∆ (solid symbols) and the Zeeman energy (open symbols) as a function of the external mag-

netic field B . The analysis reveals large variations of the critical fields (2 T ≤ Bc ≤ 4.5 T) as well

as of the superconducting gaps at zero-field (260 µeV ≤∆0 ≤ 580 µeV). The enhanced critical

fields Bc compared to bulk V (Bc,bulk) result from the confined geometry naturally provided by

the tip. The confinement prevents the efficient formation of compensation currents, which are

usually formed to eject external magnetic fields inside the superconductor but tend to destroy

superconductivity at the critical current density. Furthermore, the magnetic field dependence
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Figure 4.5: The reduced parameter Γ̃ = Γ/∆ for spectral broadening. The fits based on the
extended Maki model reveal that Γ̃ increases monotonically with increasing magnetic field for
all V tips. Γ̃ as well as the rate of change d Γ̃/dB indicate the influence of the specific geometry
of each tip.

of the superconducting gap ∆ depends on the specific tip. For example, tip 1 (Fig. 4.1) remains

superconducting at large external magnetic fields and shows a discontinuous transition to

the normal conducting state. For other tips, such as tip 5 (Fig. 4.3), a more continuous phase

transition is observed where the gap steadily decreases until the superconductivity vanishes.

This behavior becomes more obvious when comparing the measured superconducting gaps

to ellipses drawn as a guide to the eye in Fig. 4.4. While the ellipses largely overestimate the

critical fields of tips 1 and 2, good agreement is found for tip 4 and 5. Different initial supercon-

ducting gaps∆0 are found at zero-field, all of which are smaller than the superconducting bulk

gap of V [26]. This reduction might be explained by the influence of V oxide at the tip surface,

changes in the phonon dispersion, and correspondingly the electron-phonon interaction,

or grain size effects within the material [107–109]. An effective reduction in ∆ due to single

magnetic impurities is excluded. At the given 99.8% purity of the V wire, the superconductor is

in the dirty limit, such that impurities can be treated in a mean field approach. Furthermore,

the observed Zeeman splitting follows the theoretical prediction of a system with spin s = 1/2

and g = 2 for all investigated V tips (gray line and open symbols in Fig. 4.4) [110]. Therefore,

the superconducting DOS at the apex is not influenced by the formation of vortices in its

vicinity (Sec. 2.1.4) [102].

The phenomenological broadening parameter Γ obtained by fitting the properties of the

56



4.2. Magnetic Field Dependence of Vanadium STM Tips

0.2

0.1

0.0

b

543210

B (T)

0.10

0.05

0.00

ζ

543210

B (T)

 tip 1

 tip 2

 tip 3

 tip 4

 tip 5

 

(a) (b)

Figure 4.6: The magnetic field dependence for the spin-orbit scattering b and the orbital
depairing ζ. (a) b only slightly increases with increasing field. The sudden increase for B → Bc

of tip 3 and 5 is probably correlated with the gap filling rather than with spin-orbit scattering.
(b) The depairing parameter ζ strongly depends on the tip indicating the influence of its
geometry.

superconducting V tips within the extended Maki model is shown in Fig. 4.5, where the

reduced broadening parameter Γ̃= Γ/∆ is plotted as a function of the external magnetic field.

When increasing the external field, the values of Γ̃ increase monotonically for all V tips. Both Γ̃

as well as the rate of change d Γ̃/dB depend on the specific tip, indicating that Γ is correlated

with the specific geometry of each tip. To obtain a better understanding of the geometrical

influence on the non-uniform superconducting state in the V tips and to find a connection

between Γ and the tip geometry, a 1D Usadel equation for a conical superconductor is solved

in Sec. 4.3.

In Fig. 4.6, the magnetic field dependence is shown for the spin-orbit scattering b and the

orbital depairing ζ. Both effects are minor in comparison with the overall broadening by Γ

discussed before. Fixing both parameters to average values only slightly reduces the overall fit

quality. In fact, the spin-orbit interaction surpasses the Zeeman energy for the applied fields

and, therefore, strong variations in b are not expected. The orbital depairing is a measure

of the kinetic energy of Cooper pairs and is expected to increase in magnetic fields. The

depairing parameter ζ extracted for the superconducting V tips reveals a monotonic magnetic

field dependence. However, the rate of increase strongly depends on the tip indicating the

influence of the detailed tip geometry.

The extracted superconducting gaps (Fig. 4.4) diminish differently in increasing magnetic

fields. This observation indicates the presence of first and second order phase transitions,

which are characterized by the response of the order parameter to an external parameter, e. g.

the magnetic field (Sec. 2.1.5). However, extracting the superconducting order parameter is not

straight-forward for these measurements due to geometrical confinement, orbital depairing

and spin-orbit scattering. Therefore, a more detailed theoretical model is presented for the
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Figure 4.7: Continuous measurement of the differential conductance while ramping the mag-
netic field. The superconducting quasi-particle DOS of a V tip is measured for magnetic fields
from 1 T to 3.5 T. This dynamic method saves measurement time and enables the investigation
of the magnetic field dependence with higher resolution.

analysis in Sec. 4.3. The measurements presented in Fig. 4.4 are carried out in static field

conditions. To this end, the superconducting magnet of the mK-STM is ramped to the re-

quested field strength and switched to the persistent mode, where the stability of the magnetic

field is guaranteed and the power supply can be switched off in order to eliminate additional

noise. The method provides the best signal-to-noise ratios, especially in combination with

recording times up to 200 ms for each data point of the dI/dV spectrum. In addition, the

acquired spectra are averaged by repeating the measurements up to 20 times. However, such

a recording process for the entire magnetic field dependence of the V tip proves very time

consuming, which limits the number of investigated magnetic fields.

For the precise characterization of the phase transition, the superconducting gap is required

as a function of the magnetic field with the best possible resolution. In Fig. 4.7, the supercon-

ducting quasi-particle DOS of a V tip is measured on V(100) while ramping the magnet from

1 T to 3.5 T. This dynamic method shortens the time consuming setting up of each magnetic

field value and enables the dI/dV spectra to be recorded at a much higher magnetic field

resolution. However, it comes at the cost of additional noise due to the response of the system

to the changing external field and the radio frequency noise of the magnet power supply. In

order to minimize these disturbances, the measurement of the dI/dV spectra is optimized

in terms of short recording times (feedback loop off) and small tunnel currents (large tip-to-

sample distances). For example, the recording time and the tunnel current for the stabilizing

conditions are reduced by a factor of ten. However, the measurements are still highly sensitive

to external noise and contact between tip and sample frequently occurs even at low tunnel

currents. Since the mechanical contact with the sample usually effects the superconducting
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Figure 4.8: Differential conductance spectra and Maki fits for the dynamic measurement
method. The density of data points is reduced in comparison to Fig. 4.1 and Fig. 4.3. The fit
routine based on the extended Maki model can still be applied to extract the superconducting
parameters.

properties, the dynamic method proves unsuitable when comparing the superconducting

properties of several V tips.

The measurement presented in Fig. 4.7 progressed successfully without any tip changes.

The tunnel contact is stabilized at IS = 200 pA and VS = 2.5 mV and the feedback loop is

opened to record a dI/dV spectra as a function of the bias voltage. The feedback is then closed

again to stabilize the tunnel contact before the next dI/dV spectrum is acquired. At the same

time, the magnetic field is ramped from 1 T to 4 T (passing Bc ) at a very slow ramping rate

(0.171 mT/s). In this way, more than 550 dI/dV spectra are recorded for the superconducting

phase transition. The corresponding magnetic field resolution of 5.34 mT per spectrum

allows for a detailed comparison of the differential conductance data and the fit results due

to the high density of data points. To this end, the single dI/dV spectra are analyzed by

the fit routine based on the extended Maki model, exemplary shown for two differential

conductance spectra in Fig. 4.8 (a) and (b). Compared to the measurements with static

magnet field (Fig. 4.1 and Fig. 4.3), the density of data points is reduced by approximately a

factor of five. Furthermore, only ten data points are acquired for each bias sign outside the

coherence peaks in the normal conducting regime to reduce the recording time. Despite this,

the quality of the fits is still acceptable. In Fig. 4.9(a), the differential conductance at zero-bias

is compared to the superconducting gap extracted from the Maki fits to entire dI/dV spectra.

The zero-bias conductance (dI/dV0V) is normalized with respect to the normal conducting

regime (dI/dVNC) as dI/dVnorm = (dI/dVNC −dI/dV0V)/dI/dV0V (Fig. 4.9(b)). For small fields

(B ¿ Bc ), both approaches lead to similar results. With increasing field, differences become

more obvious until large deviations occur close to the critical field (B → Bc ). As will be

discussed in Sec. 4.4, first and second order phase transitions are best distinguished in this

region. While the continuous approach is too sensitive for a more extended study, this single

successful measurement still demonstrates that entire dI/dV spectra need to be recorded for

59



Chapter 4. Geometrically Confined Superconductors in Magnetic Fields

1.0

0.5

0.0d
I/

d
V

(0
V

) 
(a

rb
. 

u
n

it
s)

3.53.02.52.01.51.0

B (T)

500

400

300

200

100

0

∆
 (µ

e
V

)

1.0

0.5

0.0

n
o

rm
. 

d
I/

d
V

, ∆

3.53.02.52.01.51.0

B (T)

 ∆/∆0
 dI/dV(norm)

(a) (b)

Figure 4.9: Comparison of zero-bias differential conductance and the superconducting gap.
The superconducting gaps are extracted by Maki fits to the dI/dV spectra shown in Fig. 4.7.
When normalized, the differences of both approaches become obvious in the regime close to
the critical field (B → Bc ), which is essential for the characterization of the phase transition
(Sec. 4.4).

the characterization of the superconducting phase transition. In this context, the density of

recorded magnetic fields has to be adjusted for static measurements in close vicinity of the

critical field, as discussed in Sec. 4.5.

4.3 Usadel Equation for Superconducting Cones in Magnetic Fields

For the quantitative description of the non-uniform superconducting state in the V tips, a

quasi-classical approach based on the Usadel equation is employed (Sec. 2.1.7) [58]. The

approach presented in this section was derived by M. A. Skvortsov and O. V. Kondrashov for

the polycrystalline V tips in the dirty limit, where the electron mean free path is smaller than

the coherence length (l ¿ ξ0). The STM tips are modeled as superconducting cones with the

opening angle α in an external magnetic field B applied along the tip z-direction (insets in

Fig. 4.11(a) and (b)). In the case α¿ 1, one can use the adiabatic approximation neglecting

variations perpendicular to the cone axis. The resulting 1D Usadel equation for spin-down

quasi-particles is expressed in terms of the spectral angle θε (z̃) [59]:

α/αc

3
p

2
µB B

(
−θ′′ε −

2

z̃
θ′ε+ z̃2 sin2θε

)
+ (
ε− iµB B

)
sinθε =∆(z̃)cosθε , (4.1)

where ε is the imaginary Matsubara energy, z̃ is the dimensionless z-coordinate defined by

z̃ = z
p
πBα/2Φ0, andΦ0 = h/2e is the superconducting flux quantum. The tip radius at z is

described by the equation R(z) =αz. In this notation, the critical angle αc is defined as

αc = (2
p

2/3)(cµB /eD) =p
2(m∗/m)/(kF l ) ¿ 1, (4.2)
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with the diffusion coefficient D, the Fermi wave vector kF , and the effective mass m∗. The

order parameter ∆ (z̃) is determined from the self-consistency equation at T = 0:

∆ (z̃) =λ Re
∫ ħωD

0
sinθε (z̃) dε , (4.3)

where λ is electron-phonon coupling constant, and ħωD is the Debye energy. The DOS is

obtained by analytic continuation:

ρ↓↑ (E , z̃) = (ρ0/2)sgn(E)Recosθ±−i E (z̃) , (4.4)

where θ+ε (z̃) = θε (z̃), and θ−ε (z̃) is obtained by changing the spin orientation. u± =−i cothθ±,

Eq. (4.4) generalizes Eq. 2.42 to a non-uniform case. Calculating the free energy of such a

system reveals that the nature of the phase transition at the critical field is determined by the

ratio α/αc . While for small opening angles α<αc (sharp tips) a first order phase transition

with abrupt disappearance of the superconducting gap ∆ at B = Bc is expected, larger opening

angles α > αc (blunter tips) exhibit a second order phase transition, with ∆ continuously

vanishing at B = Bc . The critical field is derived from the free energy as

Bc = Bp
1√

1+ (α/αc )2
, (4.5)

where Bp =∆0/
(
gµB

)
is the paramagnetic limit.

4.4 Magnetic Field Dependence of Superconducting Cones

The magnetic field dependence for superconducting cones is numerically calculated by Eq. 4.4

for 0.2 ≤α/αc ≤ 4. For the numerical approach, the differential Usadel equation (Eq. 4.4) is

solved under consideration of the boundary conditions, which are given by the self-consistency

equation (Eq. 4.3). The calculations are executed in MATLAB using the bvp5c solver [111]. As

initial starting configuration, the superconducting order parameter in the tip is chosen to

decay as a Gaussian function of the dimensionless coordinate z̃

∆ (z̃) =∆0e−z̃2
. (4.6)

The solution provided by bvp5c fullfils the boundary conditions φ′ (0) = 0 and φ (z →∞) = 0.

The iterative procedure is repeated until the difference between the solutions of the last two

iterations (n and n −1) lies below a given threshold value t :∑
z̃

(∆n (z̃)−∆n−1 (z̃))2 < t . (4.7)

On the one hand, the threshold value should be as small as possible to achieve a converging

solution. On the other hand, small thresholds t drastically increase the number of iterations

resulting in unmanageable computation times. In Fig. 4.10(a), the magnetic field dependence
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Figure 4.10: Numerical precision of the Usadel approach. (a) The magnetic field dependence of
the superconducting gap is numerically calculated for a cone with the opening angle α/αc = 2.
The solution is effected by the chosen accuracy of the numerical approach. (b) The precision
of the numerical procedure is increased until the superconducting gap at the critical field
∆ (Bc ) lies below three percent of its initial zero-field value.

of the superconducting gap is numerically calculated for a conical geometry with the opening

angle α/αc = 2. Increasing the accuracy of the numerical approach effects the solution

considerably in the region of Bc and in particular for B > Bc . The analytical expression for the

critical field (Eq. 4.5) is used to identify a suitable threshold value, which offers acceptable

accuracy in combination with manageable computational times. In Fig. 4.10(b), the resulting

superconducting gap at the critical field ∆ (Bc ) is shown as a function of the threshold value t .

According to the analytic expression, the superconducting gap should vanish for B ≥ Bc and,

therefore, the precision of the analytic calculations is increased until the superconducting gap

at the critical field is below three percent of its initial value (∆ (Bc ) < 0.03∆0). In practice, this

approach offers a good trade-off between accuracy and computational effort.

The approach based on the 1D Usadel equation provides detailed information about the

superconductivity in the cone geometry. In Fig. 4.11(a), the superconducting gap in a tip with

α/αc = 0.4 is displayed as a function of the dimensionless coordinate z̃. The figure shows that

only the apex of the cone remains superconducting in an external magnetic field for B > Bc,bulk.

When increasing the magnetic field, the superconducting region shrinks and becomes more

confined to the apex of the cone. At the critical field Bc = 4.35 T, the superconducting gap

vanishes and the entire cone is normal conducting. Fig. 4.11(b) shows the superconducting

gap for a wider opening angle α/αc = 3.2. Here, the critical field is significantly smaller

(Bc = 1.27 T) and the superconducting region is more confined at the tip apex. This indicates a

strong influence of the confined geometry, i. e. the opening angle α.

The geometrical confinement also effects the quasi-particle DOS measured in tunnel experi-

ments. In Fig. 4.12, the calculated quasi-particle DOS at the apex of a superconducting cone

is displayed for α/αc = 0.4 for different external magnetic fields. The spectral features are
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Figure 4.11: Calculated superconductivity of cones with opening angle α in an external mag-
netic field. (a) The apex of a sharp cone (α/αc = 0.4) remains superconducting for magnetic
fields up to 4.3 T. (b) For a blunt cone (α/αc = 3.2) the superconducting part is more confined
to the apex and the critical field is smaller (Bc = 1.27 T).

well-defined and the increasing Zeeman splitting is clearly observable. In Fig. 4.13, the same

calculation is shown for α/αc = 3.2. The wider opening angle results in broadened spectra,

where the separation of the spin-up and spin-down contributions is completely smeared out.

Due to the high computational cost related with the self-consistency equation (Eq. 4.3), the

Usadel approach is unsuitable as a fitting routine for the experimental dI/dV spectra. However,

for a more quantitative comparison of the experimental data with the calculations based

on the Usadel equation, the fitting routine based on Maki’s extended model is employed

to analyze the calculated spectra with b = ζ = 0, because spin-orbit coupling and orbital

depairing only play a minor role in the Usadel approach. The fits are shown as dashed lines

in Fig. 4.12 and Fig. 4.13. The superconducting gaps obtained from the Maki fits match the

results obtained from the Usadel equation. The direct comparison is presented in Fig. 4.16 for

a sharp tip, a blunt tip and a tip with the critical opening angle αc . It turns out that the fits for

the calculated spectra also require the phenomenological parameter Γ. This represents an

interesting observation because the geometrical confinement is the only origin for broadening

effects in the Usadel equation. It indicates that the broadening in the experimental data is

directly related to the conical confinement of the tip and justifies the use of the Γ parameter

for the analysis based on the extended Maki model.

In Fig. 4.14, the magnetic field dependence of the superconducting gap ∆ is presented for

several superconducting cones with varying opening angles 0.2 ≤α/αc ≤ 4. Increasing α/αc

clearly decreases the critical field Bc of the cone. More importantly, at the critical field, the ratio

α/αc determines the order of the superconducting phase transition. Sharp cones withα/αc < 1

exhibit a first order phase transition to the normal state. That becomes most obvious for very

sharp tips (α/αc ¿ 1), when the superconducting gap ∆ remains almost constant up to the

critical field where it abruptly vanishes and the cone becomes normal. Increasing α/αc → 1,
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Figure 4.12: Superconducting quasi-particle DOS for α/αc = 0.4. The DOS of the sharp tip
exhibits clear spectral features and the lifted spin degeneracy is clearly visible due to the
Zeeman energy.
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appears more broadened.
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Figure 4.16: Comparison of the superconducting gaps obtained by the Usadel calculations
and the Maki fits. The superconducting gaps for several opening angles α/αc are numerically
calculated as a function of the external magnetc field (lines). The corresponding supercon-
ducting quasi-particle DOS is fitted by the extended Maki model. The superconducting gaps
extracted as fit parameter match the original Usadel calculations.

the superconducting gap decreases more rapidly at higher fields, but at the critical field, there

is still the discontinuous drop of the superconducting gap to zero. Blunter tips with α/αc > 1

(but still α¿ 1) undergo a second order phase transition, in which the superconducting gap

continuously decreases to zero. For a quantitative analysis of the spectral broadening, Fig. 4.15

shows the reduced Dynes parameter Γ̃= Γ/∆ of the calculated quasi-particle DOS fitted by the

extended Maki model as a function of the magnetic field. For all cones with opening angles

0.2 ≤α/αc ≤ 4, good agreement with the fit function is obtained, i. e. the spectral broadening

is well-described by the phenomenological parameter Γ. As already indicated in Fig. 4.12 and

Fig. 4.13, Γ̃ increases with the opening angle α. More importantly, the rate of change d Γ̃/dB in

the magnetic field is also a function of the opening angle. When increasing α/αc , the spectral

broadening becomes more sensitive to the external field and, therefore, the observation of

features such as coherence peaks split by the Zeeman energy is more difficult.

4.5 Order of the Superconducting Phase Transition

The magnetic field dependence is investigated for superconducting V tips by STM (Sec. 4.2).

The presence of geometrical confinement, orbital depairing and spin-orbit scattering makes

characterizing the order of the superconducting phase transition difficult. Therefore, the tips

are modeled as superconducting cones, for which the magnetic field dependence is derived

from a 1D Usadel approach (Sec. 4.4). While the numerical Usadel calculations take into

account the detailed geometry by the opening angle α, the computational effort renders a
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~R(z)

z~ α

Usadel Theory

Maki Model

Experiment
V tip

Figure 4.17: The extended Maki model as a link between Usadel calculations and experimental
results. The extended Maki model is employed to fit both the experimentally acquired dI/dV
spectra and the numerically calculated superconducting quasi-particle DOS. The procedure
enables the implementation of findings from the Usadel calculations for the analysis of the
experimental data, for example the first and second order phase transitions.

fit routine based on the Usadel approach difficult. This is mainly due to the fact that the

numerical solutions require various iterations in order to fulfill the self-consistency equation

(Eq. 4.3). The extended Maki model represents a possible work-around for this problem

connecting the microscopic Usadel model and the STM experiment, as schematically shown

in Fig. 4.17. Both the experimentally acquired and the numerically calculated superconducting

quasi-particle DOS are fitted by the extended Maki model. This procedure allows for analysis

of the experimental results considering the findings of the Usadel calculations, such as the

first and second order of the phase transition. Furthermore, it turns out that the damping

parameter Γ is directly correlated with the opening angle α and the geometry, respectively

(Fig. 4.15). In a simplified view, the Γ parameter represents a computationally inexpensive

replacement for the detailed calculation of the full tip geometry.

For comparing the superconducting gaps obtained from the Usadel equation to the experimen-

tal findings in Fig. 4.18, the measurements and calculations are normalized to the zero-field

gaps ∆0 and critical fields Bc . The black line for α/αc = 1 marks the separation between phase

transitions of first and second order. The comparison shows that the superconducting gaps

of tip 1 lie in the region above the separation line and, therefore, tip 1 undergoes a phase

transition of first order. For tip 2, the classification of the phase transition is ambiguous, since

it is too close to the changeover from a first order to a second order transition. Tips 3 to 5

exhibit a second order phase transition, as already indicated by the continuously vanishing

gaps (Fig. 4.4).

In Fig. 4.19, the rate of change d Γ̃/dB̃ in the magnetic field is calculated for the Usadel results at

lower magnetic fields (0.5Bc ≤ B ≤ 0.7Bc ), where a linear approximation is reasonable. The gray

area indicates the results obtained when shifting the fitting range from 0.45Bc ≤ B ≤ 0.65Bc ,

respectively, from 0.55Bc ≤ B ≤ 0.75Bc and gives an error estimation for this approach. d Γ̃/dB̃

is also extracted from the fits of the experimental data for the similar field range. While

the opening angle of the V STM tips cannot be determined experimentally, comparing the

experimentally obtained values of d Γ̃/dB̃ to the Usadel calculations (line in Fig. 4.19) allows
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for an estimation of an effective α/αc . This approach provides an additional independent

parameter to characterize the order of the superconducting phase transition. Again, it shows

that tip 1 undergoes a first order phase transition. The order of the transition in the second tip

cannot clearly be characterized within the error estimation, but tips 3 to 5 are clearly in the

regime where α/αc > 1, indicating a second order phase transitions. Therefore, the findings of

the field dependence of the broadening parameter confirm the characterization of the phase

transition by the superconducting gaps (Fig. 4.18).

The phase transitions of superconducting V STM tips are investigated for various geometries

in magnetic fields at low temperatures. Solving an effective 1D Usadel equation, the direct

correlation of the cone geometry and the order of the superconducting phase transition is

revealed; first order for very sharp tips (α < αc ) and second order for blunter tips (α > αc ).

The microscopic approach provides a physical interpretation for the experimentally observed

broadening of the dI/dV spectra and sheds light on the origin of the phenomenological param-

eter Γ introduced to fit the data by the extended Maki model. This parameter is not directly

related to any microscopic pair-breaking but is a formal way to cure the inapplicability of

the Maki model to systems with non-uniform superconductivity resulting from geometrical

confinement and external magnetic fields. So far, Γ has been employed as a phenomenolog-

ical description of various systems and the study of the superconducting tips represents a

novel point of view on its microscopic origin. For experimental applications, the detailed

understanding of the superconductivity in the cone geometry is essential. The investigations

facilitate the application of superconducting STM tips in the presence of an external magnetic

field as an additional tuning parameter, which enables techniques such as Meservey-Tedrow-

Fulde STM (Chap. 5) or Josephson STM [97, 101, 112, 113]. Both techniques greatly benefit

from clearly distinguishable spectral dI/dV features, e. g. for resolving the Zeeman splitting

and probing absolute spin polarization (Chap. 5). The combination of Josephson STM with ex-

ternal magnetic fields enables a wide range of additional experiments, such as single electron

spin resonance measurements [114, 115]. The findings suggest that both techniques benefit

from superconducting tips with small opening angles (α¿αc ) resulting in small broadening

(Γ¿∆) and first order phase transitions at high critical fields (Bc À Bc,bulk).
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5 Probing Absolute Spin Polarization at
the Nanoscale

In this chapter, a novel approach is presented to quantitatively probe spin polarization at the

nanoscale. For this purpose, the MTF technique (Sec. 3.3) is transferred to STM by employing

the superconducting V tips characterized in Chap. 4. The approach combines the quantitative

probing capability for spin polarization with precise control at the atomic scale and the well-

defined vacuum tunnel barrier of the STM. To demonstrate the virtues of the new technique,

the local spin structure of a Co nanoisland is spatially resolved with an absolute scale for the

spin polarization. Furthermore, variations of the spin polarization up to 65 % are found when

changing the tip-to-sample distance by only 2.3 Å, which can be related to a different decay of

the spin-up and spin-down wave functions into vacuum. In part, the chapter has already been

published in Ref. 97.

5.1 Overview and Motivation

Many modern technological advances such as magnetic hard drives utilize spin-polarized

tunnel currents [116, 117]. Detecting the spin polarization of tunneling electrons does not only

offer insight into the underlying mechanisms of spin-dependent transport but is also essential

for novel concepts in spintronics, which employ spin-dependent tunneling on the molecular

or even on the atomic scale [118–121]. In this context, spin-polarized scanning tunneling

microscopy (SP-STM) represents a versatile tool providing detailed information about the spin

properties as well as of the surface topology. In SP-STM, the spin-sensitive signal results from

the tunnel magnetoresistance effect, which, in the simplest description is proportional to the

product of the local spin polarization of the sample and the tip [64, 122]. While SP-STM with

(anti-)ferromagnetic tips provides information of the relative spin orientation in the sample,

direct conclusions concerning the absolute values of spin polarization are difficult due to the

unknown electronic structure of the STM tip (Sec. 5.5). However, absolute values are desirable,

for example, when comparing the efficiency of multiple spin-dependent transport channels

or spin-filter systems at the atomic scale. For mesoscopic systems such as planar thin film

tunnel junctions, the quantitative probing capability for absolute spin polarization is provided

by the MTF effect (Sec. 3.3). A major drawback in thin film tunnel junctions is the lack of local
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Figure 5.1: STM image of Co nanoislands on Cu(111) (scan range 60 nm × 60 nm, IT = 50 pA
and VT =1 V). In the sub-monolayer coverage regime, Co forms bilayer nanoislands on the
Cu(111) surface. The orientation of the triangular shapes is the direct result of the stacking
order.

resolution, as the measured signal is averaged over the whole area of the tunnel junction. As

spin transport is influenced by variations on the atomic scale, it is thus desirable to combine

the absolute probing capabilities of the MTF effect with the local resolution capabilities of the

STM. In addition, as the tunnel barrier of the STM is vacuum — the most ideal, defect free

and spin neutral barrier — the magnetic structures can be measured directly. This avoids the

potential influence of the insulating barrier material on the spin transport through a matching

of the electronic structure at the interface or the spin polarizing properties of the barrier

material itself.

The capability to probe absolute values of spin polarization is transferred to STM employing

the Zeeman split superconducting DOS of V tips. As a first demonstration of this novel tech-

nique, the spin polarization of a magnetic nanostructure is quantitatively resolved with atomic

scale control. Furthermore, a direct correlation is reported for electron orbitals decaying into

the tunnel barrier and the resulting spin polarization of the tunneling electrons.

5.2 Cobalt Nanoislands on Copper

For the evaluation of a novel STM technique, Co nanoislands on the Cu(111) surface represent

an ideal test system, which has been subject to intense research, for example by SP-STM and

calculations based on density functional theory (DFT) [123–128]. Originally, thin Co films

on Cu were considered as a highly promising candidate for magnetic storage media with

perpendicular crystal anisotropy [129]. While the small lattice mismatch (-1.9 %) enables

epitaxial growth, the high surface energy of Co with respect to Cu hampers the formation of

smooth Co monolayers [130]. Instead, Co forms three-dimensional nanoislands on the Cu
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surface. These islands are of bilayer height and form triangular structures, as shown in Fig. 5.1.

Two opposite orientations of the triangular shapes are observed. While the majority of the

structures follow the fcc stacking of the Cu substrate, a minority are rotated by 180◦, as the

result of a stacking fault [124, 131]. The stacking order directly effects the electronic properties

and shifts the characteristic spectral features [124]. In general, two electronic main features

have been identified in STM studies [123, 124]. A majority state formed by sp-electrons was

found by a combined study of STM and DFT calculations. Analyzing the Friedel oscillations in

the LDOS reveals that the dispersion relation of the majority state is similar to the dispersion

of free electrons. Furthermore, an additional minority state of d character is found giving rise

to an additional peak in the LDOS below the Fermi level [123].

The overall magnetization of the Co nanoisland points out-of-plane due to the perpendicular

easy axis of the magneto-crystalline anisotropy (Sec. 2.2.1). On the Co surface, the majority

state dominates the electronic structure in the inner regions of the Co nanoisland at the

Fermi level, which results in a positive spin polarization [125, 127, 128]. The rim is mostly

governed by the minority state creating negative spin polarization due to the more localized

character of the d-electrons [125, 127, 128]. In addition, the triangular Co islands serve as

geometrical confinement for less localized electrons. Due to reflection at the boundaries, the

majority surface state forms standing wave patterns. The quantum interference results from

the complex interplay of the majority and minority state. As a result, the spin polarization at

the Co surface changes its sign and magnitude on the sub-nanometer scale [127, 128].

For the sample preparation, the Cu(111) sample is cleaned in several cycles of Ar+ ion sput-

tering and annealing to approximately 600◦C for several minutes. Co is deposited in sub-

monolayer coverage at room temperature by using an electron beam evaporator. Under these

conditions, Co forms the bilayer islands of triangular shape as described above. After being

transferred to the STM unit without breaking the UHV, the sample is cooled to 15 mK for the

measurements.

5.3 Meservey-Tedrow-Fulde Scanning Tunneling Microscopy

The superconducting V tips characterized in Chap. 4 are used for probing absolute values

of the spin polarization at the atomic scale.1 In comparison to the original experiments

carried out by R. Meservey and P. M. Tedrow (Sec. 3.3), the STM tips replace the thin film

superconductor as the electrode and the isolating layer of the sandwich tunnel junction is

realized by the vacuum tunnel barrier of STM (Sec. 3.1). In the following, the approach is

referred to as MTF-STM.

1As described in Sec. 4.2, the STM tips are prepared by field emission and voltage pulses on the V(100) sample.
Since picking-up Co and Cu suppresses the superconducting properties of the V tips, the preparation is carried
out on the V(100) surface, which is afterward replaced by the Cu(111) sample with the Co islands. Mechanical
contact between tip and sample usually destroys the superconductivity in the tip requiring a new tip preparation.
Successfully transferring a V tip suitable for the MTF technique to the Cu sample has been one of the most
time-consuming experimental challenges.
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Figure 5.2: dI/dV spectra measured on the center region of a Co nanoisland with a supercon-
ducting V tip. The asymmetry stems from the spin polarization of the tunneling electrons,
which is analyzed by fits based on the extended Maki model (lines).
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Figure 5.3: dI/dV spectra measured on the bare Cu surface. The same superconducting tip as in
Fig. 5.2 is used for a reference measurement. The resulting dI/dV spectra show no asymmetry
indicating that the electrons tunneling from the Cu surface are not spin-polarized.
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In Fig. 5.2, dI/dV spectra are measured on a Co island with a superconducting V tip. At the

measuring temperature of 15 mK, all spectra feature superconducting quasi-particle DOS for

magnetic fields up to 2.75 T. More importantly, the conductance measurements show a clear

asymmetry due to the imbalance between the tunneling spin-up and spin-down electrons.

For this particular superconducting tip, the critical field (Bc ≈ 3 T) is lower and the spectral

features appear more broadened than the measurements with the tip presented in Fig. 4.1.

As discussed in Chap. 4, both findings are attributed to the influence of the tip geometry.

Instead of the characteristic four-peak-structure of the superconducting coherence peaks,

the lifted spin degeneracy is only visible in the formation of a shoulder in the dI/dV spectra,

which becomes clearly visible at the gap edge with increasing magnetic field. In order to

analyze the spin polarization of the tunneling electrons, the spectra are fit by the extended

Maki model (lines in Fig. 5.2). The model reveals its full strength for the broadened spectral

features, which would make the use of the simpler method based on four different dI/dV values

difficult (Eq. 3.18). In contrast, the spectral broadening does not hamper a detailed analysis

of the spin polarization by the Maki fits and absolute values can still be derived with high

accuracy as will be discussed in the following. The spectral broadening only slightly increases

the error bars as discussed below. Furthermore, Maki’s theory includes a spin-orbit related

mixing of the spin channels in magnetic fields that also effects the differential conductance

measurements (Sec. 3.3.2). Although the spin-orbit interaction is still rather small, this term

needs to be included to minimize the error bar on the extracted spin-polarization. As a

reference, differential conductance spectra are measured with the same superconducting V

tip on the bare Cu(111) surface in Fig. 5.2. The lines in Fig. 5.2 represent fits to the data using

the extended Maki model (Sec. 3.3.2). While the critical field and the overall broadening of the

spectral features are similar to the measurements shown in Fig. 5.2, the dI/dV spectra appear

symmetric, indicating that the DOS on the Cu(111) surface is not spin-polarized.

In addition to the experiments presented in Fig. 5.2 and Fig. 5.3, the measurements are

repeated for the reversed orientation of the external magnetic field. For both field orientations,

the investigated magnet fields surpass the coercivity of the Co island. In Fig. 5.4(a), the

superconducting gaps and the Zeeman splitting are extracted by the Maki fits from the dI/dV

spectra. In general, neither the superconducting gap nor the Zeeman splitting depend on the

orientation of the magnetic field. For both field directions, the superconducting gap decreases

with increasing magnetic field until the tip becomes normal conducting at the critical field

(Bc ≈ 3 T). The comparison with the numerical calculations carried out in Chap. 4 reveals that

the tip clearly undergoes a second order phase transition (Fig. 5.4(b)). For this particular tip,

the magnetic field dependence clearly indicates that the effective opening angle exceeds the

critical angle αc (Chap. 4). In fact, the behavior is similar to the numerical calculations carried

out for the largest opening angle α/αc = 4. While tips with smaller effective opening angles

show less spectral broadening (Fig. 4.19) and generally provide better detecting capabilities,

this particular tip is still suitable to analyze the spin polarization of the tunneling electrons

with acceptable error estimations as discussed below. The extracted superconducting gaps

as well as the Zeeman splitting lead to similar results for measurements on Co and Cu. This
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Figure 5.4: Superconducting gaps and Zeeman splitting of a V tip measured on a Co nanoisland
and on the Cu(111) surface. (a) The magnetic field dependence of the superconducting gap
(markers) and the Zeeman splitting (lines) are not effected by the Co. These results are
independent of the magnetic field orientation (parallel or antiparallel to the tip axis). (b)
The magnetic field dependence of the superconducting gap is compared to the numerical
calculations discussed in Chap. 4, which reveals the second order phase transition.

finding indicates that the superconductivity of the tip is not effected by the stray fields of the

Co island. On the one hand, the external magnetic field is considerably enhanced directly

above the top Co layer, which should effect the superconducting tip apex. On the other hand,

the stray field is locally confined to the small Co nanoisland and, most likely, does not reach

most of the superconducting regions in the tip. The fact that the stray field can be neglected

on the superconducting length scales distinguishes MTF-STM from most other conventional

STM techniques, where the measurements are usually governed by the properties of the last

atoms at the tip apex (Sec. 3.1.2).

The asymmetry of the dI/dV spectra stems from the spin polarization of the tunneling electrons.

The imbalance between spin-up and spin-down electrons is depicted in Fig. 5.5 for a Co

nanoisland and the bare Cu(111) surface as a reference. For Co, the analysis based on the

extended Maki model reveals a high spin polarization of 54±4 % (Fig. 5.5(a)), which means

that the tunnel current consists of 77 % spin-up and 23 % spin-down electrons.2 This finding

illustrates that the MTF technique is only sensitive to the spin polarization of the electrons at

the Fermi level (P (EF )). For magnetic fields larger than the coercive field of the Co nanoisland,

the stable magnetization configuration demands parallel alignment of the magnetic fields to

the external field lines. In this case, one would actually expect negative overall spin polarization

of the Co nanostructure with respect to the external field because the spin points opposite to

the magnetic moment (Sec. 2.2.1). As a reference the same analysis is shown for the Cu(111)

surface in Fig. 5.5(b). The fit based on the Maki theory reveals a negligible spin polarization of

2The correlation between the spin polarization and the amount of tunneling electrons for each spin orientation
is given by Eq. 3.19 and Eq. 3.20 as P = 2N↑−1 with N↑+N↓ = 1.
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Figure 5.5: Contributions of spin-up and spin-down electrons to the tunnel current. (a) The
dI/dV spectrum measured on the Co island is asymmetric due to the spin polarization of
the tunneling electrons. The spin-up and the spin-down contributions are extracted from
the Maki fit. (b) The spin polarization of the tunneling electrons is negligible for the Cu(111)
surface resulting in equal contributions of spin-up and spin-down electrons.

0±2 %. Accordingly, the tunnel current consists of 50 % spin-up and 50 % spin-down electrons

(Fig. 5.5(b)). This ability to probe the absolute spin polarization with MTF-STM goes beyond

conventional SP-STM, relying on the tunnel magnetoresistance effect between two magnetic

electrodes [122]. A more detailed comparison of these approaches is presented in Sec. 5.5.

In Fig. 5.6(a), differential conductance spectra are measured for a larger voltage range. In

addition to the superconducting gap, the LDOS also shows features for higher energies in the

normal conducting regime. Since the features differ in both energy position as well as intensity

for measurements on Co and Cu, they probably stem from the substrate and thus tip effects

can be excluded. Furthermore, the additional states are effected by the external magnetic field

(Fig. 5.6(b)). In general, the observed states occur on energies, which are in the order of the

superconducting gap. For metal samples, such behavior is not expected and contradicts the

approximations made in the MTF technique. It assumes a constant DOS for the normal metal

electrode in order to calculate the resulting conductance (Sec. 3.3). In part, these effects are

compensated by the fit routine subtracting linear and constant offsets.

To gain insight into the local variation of spin polarization, more than one thousand dI/dV

spectra are acquired on the Co island shown in Fig. 5.7(a). The superconducting gap ∆

(Fig. 5.7(b)) as well as the broadening parameterΓ(Fig. 5.7(c)) are extracted from the differential

conductance measurements as described before. When employed as free fit parameters,∆ and

Γ show small variations due to the topography of the Co nanoisland. For example, ∆ appears

slightly increased at the edge of the island, where additional tunneling channels might open

due to the specific geometries of tip and sample. Furthermore, ∆ and Γ can be altered by the
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Figure 5.6: dI/dV spectra obtained on Cu and Co for larger voltage ranges. (a) Besides the
superconducting gap, additional electronic features are observed in the LDOS on Co and Cu.
(b) These states also depend on the external magnetic field.

fitting procedure within certain limits due to the broadening of the dI/dV spectra. As discussed

below, these small variations are considered for the error estimation of the spin polarization.

The Maki analysis of the differential conductance spectra reveals locally resolved absolute

values of the spin polarization. The resulting map for the investigated part of the Co nanoisland

is presented in in Fig. 5.7(d). Negligible spin polarization (0% < P < 2%) is obtained on the

bare Cu surface, meaning that the substrate electrons are not polarized within the error

estimation. The inner region of the Co island is governed by the surface state of the majority

sp-electrons and shows positive spin polarization. The rim state at the outer region of the

Co island is formed by the minority d-electrons exhibiting negative spin polarization [127].

These findings, as well as the observed variations within the rim state at the Fermi level, are

in good agreement with previous investigations [124–128]. Employing the quantitative scale

of MTF-STM, negative spin polarization down to −56±5% is found at the outer region and

positive polarization up to +65±5% around the center position of the Co island. In Fig. 5.7(e)

and (f), the tunnel current is separated into the contributing spin-up and spin-down electrons.

In Fig. 5.7(e), the transport is dominated by spin-up electrons due to the majority surfaces state

in the center region of the Co nanoisland. More importantly, the rim regions showing negative

spin polarization almost completely lack the presence of spin-up electrons, emphasizing

that the spin separation in the nanostructure occurs within sub-nanometer length scales.

The corresponding behavior is observed for the spin-down electrons (Fig. 5.7(f)). Here, the

bright red rim region corresponds to the negative spin polarization. At the center of the Co

nanoisland, the spin-down channel almost completely vanishes, which gives rise to the high

positive spin polarization. The measured spin polarization is about a factor of two higher

than the spin polarization above the Co island calculated from DFT (Sec. 5.2) [126, 127]. This

underlines the influence of the tunnel barrier, which is discussed in Sec. 5.4.

In order to estimate the errors of the absolute values of spin polarization, the extraction process
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Figure 5.7: Probing absolute values of spin polarization at the nanoscale. (a) Lower part of
a triangular Co island, on which more than one thousand dI/dV spectra are acquired. The
z values are recorded at the stabilizing conditions (IS = 500 pA and VS = 2.5 mV). (b) The
superconducting gap ∆ and (c) the broadening parameter Γ are extracted from the dI/dV
spectra by the extended Maki model. (d) Positive spin polarization up to +65±5% is found
around the center position of the Co island and negative values down to −56±5% are extracted
at the outer region. On the Cu(111) surface, the obtained spin polarization is negligible
(0% < P < 2%). (e) The spin-up and (f) spin-down contribution of the tunnel current are
separated revealing the regions dominated by each spin orientation.
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Figure 5.8: Error estimation for the fitting routine performed by varying the superconducting
gap. For the dI/dV spectrum with 54 % spin polarization, the superconducting gap ∆ is
increased (or decreased) by 3 % and the fitting routine is run to optimize the differential
conductance by varying P .
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Figure 5.9: Error estimation for the fitting routine performed by varying the broadening
parameter. The same calculations as in Fig. 5.8 are repeated for the damping parameter Γ. The
broadening parameter Γ is increased (or decreased) by 3 % and the fitting routine optimizes
the differential conductance by varying P .
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for the spin polarization from the differential conductance measurements is discussed in more

detail for the MTF technique. Originally, R. Meservey and P. M. Tedrow used a simple method

based on four different dI/dV values (Sec. 3.3), however, the approach leads to incorrect results

in the presence of spin-orbit coupling, as demonstrated in Ref. 54. In this context, the choice of

V as a material is important because its rather low spin-orbit coupling already reduces the spin

mixing in magnetic field, which is analyzed by the extended Maki model. From the fit routine,

the spin-orbit coupling parameter b = 0.14 is obtained for the dI/dV measurements on Cu.

This result is in good agreement with experiments carried out on thin film sandwich tunnel

junctions [132]. Since the spin-orbit mixing is a property of the superconducting V tip, b is

kept constant in the fit routine for all differential conductance spectra. The orbital depairing

parameter is handled accordingly and best fits are achieved for ζ = 0.05 on Cu. Keeping b

and ζ constant provides not only good agreement of the fits with the data but also decreases

the convergence time for the entire fit procedure. In addition, small known bias offsets are

corrected in the dI/dV spectra and a linear background is subtracted. The spin polarization

is then mainly influenced by the superconducting gap ∆ and the broadening parameter Γ

and, therefore, the error estimation focuses on these two parameters in the following. A single

fitting parameter (such as∆) is varied so that it deviates on purpose from the ideal fitting value.

Keeping this parameter fixed the fitting routine is run and the resulting spin polarization

is evaluated. In Fig. 5.8, ∆ is fixed to a value increased (or decreased) by 3 % from the best

fitting result (∆best) and the fitting routine is run to optimize P . Even these small deviations

significantly alter the resulting dI/dV spectra and the quality of the fits is significantly decreased

(χ2 increases by six orders of magnitude). The resulting spin polarization is increased (or

decreased) by 1 %. In Fig. 5.9, Γ is varied similar to the previous calculations for∆ (χ2 increases

in the same range). The resulting spin polarization is changed by 5 %. Considering the good

agreement between the fits and the experimental data, the deviations discussed in Fig. 5.8

and Fig. 5.9 are regarded as the upper limit. Assuming negligible correlation between ∆ and Γ

allows calculation of the total error propagation of the spin polarization, which leads to the

error estimation discussed before.

The calculations for the error estimation (Fig. 5.8 and Fig. 5.9) are repeated for several differ-

ential conductance measurements corresponding to spin polarizations of −56% ≤ P ≤ 65%.

In Fig. 5.10(a), the superconducting gap is varied by 0.7∆≤∆best ≤ 1.3∆ from the best fitting

result ∆best. The value for the superconducting gap is fixed and the fit routine optimizes the

spin polarization P to find the best fitting solution. When increasing ∆, the absolute value

of the spin polarization decreases. The calculations are also carried out for the broadening

parameter 0.7Γ≤ Γbest ≤ 1.3Γ (Fig. 5.10(b)). Here, the absolute values of the resulting spin po-

larization increases with increasing Γ. When the spectral broadening is even more dominant

than in the dI/dV measurements shown in Fig. 5.2 and Fig. 5.3, the fitting routine tends to

compensate for the too large values for ∆ by increased Γ values in some cases. The findings

presented in Fig. 5.10 suggest that the effects on the spin polarization might still be tolerable

and that superconducting tips with more spectral broadening might still offer acceptable

accuracy. While the calculations presented in Fig. 5.10 demonstrate the direct correlation
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Figure 5.10: Resulting spin polarization when varying the superconducting gap or the broad-
ening parameter. (a) The superconducting gap is varied by 0.7∆ ≤ ∆best ≤ 1.3∆ from the
best fitting result ∆0. The resulting spin polarization is a monotonic function of the var-
ied parameter. (b) The calculations are repeated for the broadening parameter varied by
0.7Γ≤ Γbest ≤ 1.3Γ.

between the fitting parameters ∆, Γ and P for a larger range, in practice, varying ∆ or Γ by only

±5 % already considerably decreases the quality of the fits.

5.4 Spin-filtering by Vacuum

Spin-dependent tunneling allows creation and detection of spin-polarized currents. For

example, the tunnel magnetoresistance is the direct result of spin-dependent transport in

magnetic tunnel junctions [64–66]. Though exploited in many applications, the contributions

from the electrodes and the tunnel barrier are highly debated and difficult to separate. While

in Jullière’s first theoretical description [64], the spin polarization is only determined by

the imbalanced DOS for the spin-up and spin-down electrons in ferromagnetic electrodes

(Fig. 5.11(a)), the tunnel barrier has tremendous effects on the spin polarization as well.

Barrier materials such as EuS [133, 134] or MgO [116, 117] have intrinsic properties that

lead to spin-filtering due to a spin-dependent decay of the electronic states (Fig. 5.11(b)).

However, the spin-dependent decay does not require any intrinsic properties of the barrier. In

a ferromagnet, the electronic states at a given energy are different for majority and minority

electrons due to exchange splitting. Therefore, these states decay differently in any tunnel

barrier, even in vacuum (Fig. 5.11(c)). While this mechanism provides the most versatile

means for tuning the spin polarization of tunneling electrons, it is experimentally difficult to

distinguish from competing effects such as the electronic structure of the tunnel barrier. In

fact, decreasing as well as increasing spin polarizations have experimentally been observed as

a function of barrier thickness and have been ascribed to the influence of the characteristic

decay of electronic wave functions [135, 136]. Unequivocally measuring the correlation of

spin polarization and the specific decay of electronic states requires, first, control of the
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Figure 5.11: Schematic illustrations of the basic influences on the spin polarization of tun-
neling electrons. (a) In Jullière’s model, the spin polarization does not depend on the width
of the tunnel barrier. The asymmetry of spin-up and spin-down states provided by the ferro-
magnetic electrodes creates the spin-polarized tunnel currents. (b) Tunnel barriers such as
MgO generate spin polarization of the tunneling electrons due to symmetry filtering. Here, the
spin-polarization depends on the width of the tunnel barrier. (c) The specific decay of atomic
orbitals is directly correlated with the tunneling probability for the electrons. If the spin states
occupy different orbitals the tunnel current is spin-polarized. Since these electronic orbitals
decay differently into vacuum the spin-polarization of the tunnel current varies with distance.

participating electronic states at the atomic scale. Secondly, using vacuum as the tunnel

barrier eliminates any interfering electronic structure within the tunnel process. Thirdly, the

spin polarization has to be measured on an absolute scale. MTF-STM fulfills all of these

requirements as discussed in Sec. 5.3.

When measuring the spin polarization of the tunneling electrons on the Co nanoisland, it is

observed that the spin polarization strongly varies with tip-to-sample distances. To investigate

the distance dependence of the spin polarization, the tunnel current is increased for the

stabilizing conditions from IS = 0.5 nA to IS = 100 nA at VS = 9.5 mV. After stabilizing the

tunnel contact, dI/dV spectra are acquired on a fixed position in the center of a Co island

and on the bare Cu surface for decreasing tip-to-sample distances. Two representative dI/dV

spectra are presented in Fig. 5.12 which correspond to the largest and the smallest found spin

polarizations. The extracted spin polarization is shown in Fig. 5.13. On Co, the analysis yields

an increase of the spin polarization from 34±3 % to 56±5 % when the tip-to-sample distance

is increased by only 2.3 Å. This corresponds to an increase in spin polarization of 65 %. At

the same time the conductance decreases from 0.14G0 to 0.0007G0 where G0 = 2e2/h is the

conductance quantum. For this measurement range, the spin-filtering is highly sensitive on

the barrier width (dP/dz ≈ 10 %/Å), which clearly outperforms the benchmark material MgO

in its standard range of application [137].

The strong distance dependence of the spin polarization can be attributed to the specific
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Figure 5.12: Differential conductance measured at two different tip-to-sample distances on a
Co island. At higher conductance the dI/dV spectrum is less asymmetric due to a lower spin
polarization (P = 34±3%) than at lower conductance (P = 56±5%).
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Figure 5.13: Distance dependence of the spin polarization of tunneling electrons. The spin
polarization is measured on a single position of the Co island and the Cu surface for increasing
conductance values. The fit shows the spin polarization calculated from a simple 1D model
presented in Fig. 5.14.
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Figure 5.14: 1D model for the distance dependence of the spin polarization. In this model, the
overlap as a function of distance is calculated for the Co minority and majority states with the
exponentially decaying state of the tip.

electronic structure of the Co island, as the tip is spin neutral in the sense that the decay of

the wave function is independent of the spin. In this context, the significant advantage of

MTF-STM becomes obvious because changes of the spin polarization can be directly related

to the spin polarization of the sample due to the known electronic structure of the tip. For

a more quantitative analysis, a simple 1D model is utilized to describe the electronic states

contributing to the tunnel current I . In this model, the spin polarization is defined as

P = (I↑− I↓)/(I↑+ I↓) , (5.1)

with the spin-up (↑) and spin-down (↓) contributions of the tunnel current:

I↑↓ ∝
∣∣〈ψ↑↓|ψtip

〉∣∣2 . (5.2)

Thus, the spin polarization only depends on the overlap of the majority (minority) Co wave

function ψ↑ (ψ↓) with ψtip, the wave function of the tip. The decay of the wave functions

into vacuum is modeled by exponential functions in the form of ψ (z) = αe−β|z| (Fig. 5.14).

For the Co majority surface state, the vacuum wave vector k0 =
√

2m0Φ/ħ2 is used with the

free electron mass m0 and the work function Φ= 5 eV for Co [138, 139]. The minority state

is also approximated by an exponential decay and the decay constant is chosen in such a

way as to reproduce the spin polarizations known from DFT calculations [126, 127]. P =−3%

(P = 34%) is modeled at 2.08 Å (4.16 Å) above the Co island similar to the results provided by

DFT calculations for the system [140]. The solid line in Fig. 5.13 represents a fit of this model

to the measured distance dependence of the spin polarization of the tunneling electrons.

When increasing the tip-to-sample distance the overlap with the localized minority state
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Figure 5.15: Alternative 1D model for distance dependence of the spin polarization. The
electronic state of the V tips is modeled as in Fig. 5.14. The majority Co state is described by
a Shockley type surface state and the Co minority state consists of Slater type Co(4s) states
(75 %) and Co(3d) states (25 %).

decreases more quickly than the overlap with the delocalized majority state, hence, the spin

polarization of the tunneling electrons increases in very good agreement with the experimental

observations. Competing effects, such as the change of the tunnel barrier height or trapping

states [141–144], are negligible in the measurement setup as discussed below.

In addition, the 1D model can also be used to estimate the tip-to-sample distance. For the best

fit result, the factor of proportionality in Eq. 5.2 is determined in such a way that the tip-to-

sample distance is 8.6 Å for the lowest conductance value and 6.2 Å at the largest conductance.

The difference of 2.4 Å is in good agreement with the z values of the stabilization conditions

for the tunnel contact. The tip-to-sample distances calculated by the 1D model also concur

with two simple approximations: The tip-to-sample distance should be in the order of the

lattice constant (a = 2.08Å) at G =G0 and a tunnel resistance of 10 Å at R = 10 GΩ.

As an alternative for the 1D model presented in Fig. 5.14, the exponential functions for the Co

states are replaced by more realistic models. To this end, the majority Co state is modeled by a

surface state of a semi-infinite crystal [138]. Contrary to bulk states, the surface state decays

not only into vacuum but also into the bulk material. The respective solutions of the wave

function in vacuum (z ≥ z0) and in the crystal (z ≤ z0) are derived from Ref. 138:

ψout (z) =αe−k0z for z ≥ z0 (5.3)

ψin (z) =βeµz cos(πz/a +δ)for z ≤ z0 (5.4)

with the wave vector µ, the phase shift δ, the lattice constant a and the normalization factors

α and β. The vacuum wave vector k0 =
√

2m0Φ/ħ2 is used with the free electron mass m0
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Figure 5.16: Distance dependence of the tunnel current. The tunnel current increases expo-
nentially when the tip-to-sample distance is decreased demonstrating that the measurements
apart from the last point are taken in the tunneling regime.

and the work function for Co [138, 139]. The remaining paramaters are obtained by the

norm
∣∣ψ (z)

∣∣2 = 1, the continuity of the wave function (ψout (z0) =ψin (z0)) and its derivative

(ψ′
out (z0) =ψ′

in (z0)). The minority state is modeled by Slater type radial orbital wave functions

[145, 146]:

ψn (z) = N (z/a0)neff−1 e
− Zeff

neff
z/a0 (5.5)

where N is a normalization factor, a0 represents the Bohr radius, neff is an effective quantum

number and Zeff is an effective nuclear charge. The modeled minority state mostly consists of

Co(4s) states (75 %) and Co(3d) states (25 %), which is in accordance with DFT calculations of

this system [140]. As it turns out, this model can be used to fit the experimentally measured

distance dependence of the spin polarization (Fig. 5.13). However, it leads to less realistic tip-

to-sample distances and the reported spin polarization above the Co island are not reproduced.

When the parameters are chosen in order to obtain P =−3% (P = 34%) at 2.08 Å (4.16 Å) above

the Co island, the measured distance dependence cannot be fitted anymore. Due to the

complicated electronic structure of the Co island, it is unclear if Eq. 5.3 to Eq. 5.5 actually

represent a more applicable description. Therefore, the simpler exponential decay is employed

for the analysis.

When measuring the distance dependence of the spin polarization, the tip-to-sample distance

is reduced due to the increasing tunnel currents in the stabilizing conditions. It is important

to note that the measurements are still carried out in the tunneling regime and effects due to

the transition to the point contact regime can be neglected. In Fig. 5.16, the tunnel current
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is shown as a function of the distance z, which are drift corrected at the stabilizing bias

(VS = 9.5 mV). For all except the last data point in the investigated conductance range, the

tunnel current follows an exponential law with the decay constant α= 2.3Å−1. As expected

for the tunneling regime, the current decreases by an order of magnitude when the tunneling

distance is increased by 1 Å. Since the tunnel current follows this exponential law, only the

width of the tunnel barrier needs to be considered in the theoretical 1D description. Changes

in the barrier height Φ are negligible. This is an important finding, since it means that the

electron wave vector in the barrierκ is constant (κ∝p
Φ). Therefore, the distance dependence

of the spin polarization is not the result of the varying electron momentum as described by

the Slonczewski model [141, 142].

This study demonstrates the direct correlation between the characteristic decay of electronic

states and the spin polarization of tunneling electrons. Varying the tunneling distance through

a well-defined vacuum barrier leads to the tunable spin-filtering effect. No particular elec-

tronic properties of the tunnel barrier are required. Thus, the effect is universal and plays

an ubiquitous role in any tunnel junction with at least one ferromagnetic electrode. The

experiment provides direct access to the underlying physical mechanism involved in the

spin-dependent tunneling process and, therefore, is ideal for comparison with theoretical

models. MTF-STM represents an excellent technique to disentangle the contributions of the

electrode and barrier material to the spin-polarized tunnel currents. Besides fundamental

aspects, the approach offers direct access to a wide variety of systems mimicking components

of real devices. For example, the role of metal oxide barriers in spin filters can be investigated

on the atomic scale allowing additional information on structural influences, participating

electronic wave functions or the formation of localized states [144]. In novel spintronic devices

on the molecular or even on the atomic scale [118–121, 147] the approach provides direct

insight into the detailed spin properties.

5.5 Alternatives for Probing Spin Polarization at the Nanoscale

MTF-STM combines the virtues of STM with the absolute probing capability for the spin

polarization. The superconducting quasi-particle DOS of the tip is spin-neutral in the sense

that the orbital wave function is the same for spin-up and spin-down electrons. Furthermore,

there is no magnetic moment interfering with the magnetization of the sample which makes it

the ideal probe for magnetic nanostructures. However, one also has to consider its limitations.

From a technical perspective, the energy resolution (µB > kB T ) requires operation at mil-

likelvin temperatures, which is experimentally challenging, especially for STM (Sec. 3.2). An

additional limitation represents the required magnetic field, which effects the magnetization

of the sample. While MTF-STM might also work with magnetic fields applied perpendicular to

the tip axis (parallel to the sample surface), this has not yet been demonstrated. Furthermore,

the spin polarization is only revealed for the Fermi level and other energies cannot easily be

accessed. In this section, the novel MTF-STM is compared to existing techniques probing

the spin polarization of electrons (Tab. 5.1). Without any claim to completeness, this brief
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MTF-STM SP-STM Shot Noise Point Contact Optical Kondo Effect

P absolute relative lower limit absolute absolute absolute
E EF eV EF EF eV −Eg ↔ EF EF

B required possible possible possible possible required
T µB > kB T ≈ 4.2 K Tc RT µB > kB TK

µ no yes no no no yes

Table 5.1: Probing spin polarization at the nanoscale. The overview compares several tech-
niques for measuring the spin polarization P with differences in the electron energy E and
the required external magnetic fields B , and the temperature regimes T for their application.
The presence of magnetic moments in the spin detecting probes is indicated by µ. So far, the
experimental realization with atomic scale control has not been demonstrated for the last
three methods.

summary focuses on techniques that are principally able to provide spatial resolution at the

nanoscale. In this context, the measurement of the spin polarization is discussed for SP-STM

[122] and for shot noise measurements carried out by STM [148]. The use of superconducting

point contacts [149] is experimentally connected to MTF-STM. Additional techniques employ

optical spin detectors [150] or Kondo systems for the spin detection [151].

SP-STM is a well established technique to investigate magnetic systems at the nanoscale. It

relies on the tunnel magnetoresistance (Sec. 2.2.3) between sample and tip, which is either

magnetic or coated with magnetic material. In this simple model, the asymmetry of the

differential conductance reads as:

A = dI/dVAP −dI/dVP

dI/dVAP +dI/dVP
, (5.6)

with parallel (P) and anti-parallel (AP) magnetization directions of tip and sample. The

asymmetry is directly linked to the spin polarization of the tip PT and the spin polarization of

the sample PS by [122, 127]

A =−PTPS . (5.7)

In principle, the signal can be obtained from two dI/dV maps recorded for both magnetization

directions. However, the analysis is not straightforward due to the spin-dependent stabiliza-

tion conditions of the tunnel contact and the complex data analysis. Alternatively, the tip’s

magnetization is modulated at high frequencies, so that it flips too fast to be compensated

for by the feedback loop of the STM. The recorded signal becomes proportional to the local

magnetization [152]. A major drawback of SP-STM is the fact that the recorded signal contains

not only the spin polarization of the sample but also the spin polarization of the tip. The latter

is generally unknown, at least for the less demanding tip preparations such as tip dips into

magnetic films or bias pulses to collect magnetic atoms. On the plus side, the magnetic fields

are only required to switch the relative magnetization between tip and sample. When modu-

lated, the amplitude of the magnetic field is usually much smaller than the fields required for

89



Chapter 5. Probing Absolute Spin Polarization at the Nanoscale

MTF-STM. Anti-ferromagnetic tips are used to minimize the effect of stray fields. Nevertheless,

any conclusions on absolute values of the spin polarization are difficult due to the influence of

the tip-to-sample distance and the different decay of electron orbitals (Sec. 5.4). An advantage

of SP-STM is the more flexible energy and temperature range in comparison to MTF-STM.

Another approach to probe spin-polarized transport is to analyze the shot noise of electric

currents [148]. Shot noise arises from the quantization of the electron charge and can be

measured by STM. For electrons with identical spins, the noise reduces by antibunching of the

fermions according to the Pauli principle [153]. In general, the transport occurs via multiple

conduction channels adding up to the total conductance G =G0
∑

i τi with the transmission

probability τi . Including the spin reduces the spectral noise by the Fano factor F [148]:

F =
∑

j τ j
(
1−τ j

)∑
j τ j

, (5.8)

with j = (i ,σ) describing the spin orientation. While the Fano factor provides a measure for

the spin polarization at the Fermi energy, it also depends on the transmission probability

of the transport channels τi , which is usually unknown. Therefore, the approach only pro-

vides a lower limit for the measured spin polarization in the case of multi-channel transport.

Furthermore, the spin quantization axis only needs to be fixed for time scales at which the

tunneling processes occur. For the experimental realization, shot noise detection sets high

demands on the measurement and amplification of small electric currents. Probing at low

temperatures (≈ 4.2 K) and at high frequencies is favorable in order to separate shot noise from

other contributions, such as temperature dependent noise or 1/ f noise. The measurement

can be combined with external magnetic fields.

Superconducting point contacts have been used to determine the spin polarization of metals

[149]. In the ballistic transport regime, Andreev reflections convert the normal currents to su-

percurrents at the metallic interface opening an additional conductance channel for energies

within the superconducting gap. The efficiency of the additional conductance channel is a

measure for the spin polarization at the Fermi energy [149]:

P = N↑ (EF ) vF↑−N↓ (EF ) vF↓
N↑ (EF ) vF↑+N↓ (EF ) vF↓

, (5.9)

with the Fermi velocities vF↑↓. This definition of the spin polarization is not necessarily the

same as in Eq. 3.20. In comparison to the MTF technique, the approach based on the Andreev

reflections has revealed different results of spin polarization that have been attributed to

the unequal definitions, scattering effects at the metallic interfaces or simply variations of

the spin polarizations for the investigated metals [149]. In principle, the superconducting V

tips (Sec. 4.2) could also function as point contacts. Indeed, such an experiment has been

attempted once in the mK-STM to compare the spin polarization obtained from tunneling

and ballistic transport. However, it was not possible to achieve a stable point contact on the

Co nanoisland. Nevertheless, the use of superconducting STM tips as local probes in the
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point contact regime represents an additional experimental challenge and sets high demands

on the mechanical stability of the system. So far, locally resolved measurements of the spin

polarization have not been demonstrated by the approach based on the Andreev reflections.

However, it would be less demanding in terms of the energy resolution since the temperature

regime is only governed by the critical temperature of the superconductor Tc . In addition, the

technique would not require external magnetic fields, which, however, could still be used as

an additional degree of freedom.

The spin polarization of tunneling electrons has also been measured with optical spin detec-

tors [135, 150]. In an STM, a ferromagnetic Ni tip has been used on an AlGaAs(110) surface. The

semiconducting sample not only forms the tunnel barrier but also serves as an optical spin de-

tector [135, 150]. The degree of circular polarization in the light emitted by the recombination

process in the semiconductor reveals absolute values of the spin polarization of the tunneling

electrons. The optical detection is also spin-neutral, which means there are no magnetic stray

fields interfering with the sample nor spin-polarized orbitals altering the tunneling probability

for spin-up and spin-down electrons. In addition, there is no influence of topographic features

on the measured spin polarization and external magnetic fields can be applied, though they

are not required. Measurements have been carried out at room temperature [135, 150]. The

probed binding energy range eV −Eg ≤ E < EF of the sample depends on the semiconducting

gap Eg and the applied voltage V . The main challenge of the optical approach is spatial

resolution in measurements, which would require the reversed experimental arrangement

with the STM tip as optical detector. This would imply the challenging fabrication of STM tips

made from crystalline AlGaAs with unaltered band structure, which has not been achieved so

far.

As an alternative to the superconducting DOS employed in MTF-STM, Kondo systems have

been proposed for quantitative measurements of the spin polarization [151]. In general, the

Kondo effect describes an additional resonance in the LDOS at the Fermi level due to the

screening of local magnetic moments by the surrounding host electrons. When the Zeeman

energy in external magnetic fields exceeds the Kondo energy (µB > kB TK ), the characteristic

Kondo signal is split into two independent fully spin-polarized peaks [151]. Such a system can

be employed to measure the spin polarization of tunneling electrons on an absolute scale. It

would require attachment of a Kondo system to the apex of an STM tip with a suitable Kondo

temperature for available magnetic fields. However, this would still create obstacles similar

to SP-STM such as interference of the magnetic tip moment with the magnetization of the

sample and spin-dependent decay of the electron orbitals.
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6 Probing Local Magnetic Moments
Interacting with a Superconductor

In this chapter, the local excitations of the superconducting quasi-particle DOS induced by iso-

lated magnetic moments are probed by STM. To this end, differential conductance spectra are

obtained for magnetic molecules on the superconducting V(100) surface. Due to the magnetic

coupling and the Coulomb potentials, bound states are formed within the superconducting

gap at several energies. Their spectral properties appear strongly non-isotropic in spatially

resolved measurements, which is attributed to the electronic structure of the adsorption sites

and the reconstruction of the V(100) surface. Moreover, the quasi-particle excitations do not

only occur on the molecule but also in its close vicinity, where their intensities decay within

the distance x ≈±30 Å while simultaneously showing periodic oscillations. These observations

are explained by a 1D model assuming two magnetic moments within the molecular structure.

The work presented in this chapter is still an ongoing project and, therefore, the analysis as

well as the conclusions are preliminary.

6.1 Overview and Motivation

Conventional superconductivity arises from electrons forming Cooper pairs with opposing

spin moments according to BCS theory (Sec. 2.1.2). The superconducting pairing is not only

effected by external magnetic fields (Sec. 2.1.4) but also by the introduction of local magnetic

impurities (Sec. 2.3). In their presence, the coherence of the superconducting state is locally

weakened, which is manifested in the creation of bound states [72–74]. Inside the energy gap

of the quasi-particle DOS, they occur as additional resonances revealing detailed informa-

tion about the superconducting state [11–14]. For example, additional features within the

superconducting gap have been observed on macroscopic planar tunnel junctions containing

magnetic impurities [154]. On the atomic scale, STM has resolved the local distribution of

bound states induced by single magnetic atoms on superconducting surfaces [16–18]. In this

context, one of the most important findings represents quasi-particle excitations, which are

not only limited to the impurity site but also detectable within a few Fermi wavelengths in

its vicinity (Sec. 2.3.2) [16]. Increasing the impurity concentration in a controlled way might

lead to interesting phenomena, such as the formation of impurity bands and gapless super-
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conductivity [73, 155]. To this end, it is essential to fully understand the spatial distribution of

the quasi-particle excitations, especially the short decay of the bound states in the vicinity of

impurities.

6.2 Copper Phthalocyanine on V(100)

On metallic surfaces, the electronic configuration of single adsorbed atoms is usually effected

by the itinerant electrons of the substrate. In order to protect their electronic properties,

such as their magnetic moment, the atoms are decoupled from the substrate by using thin

insulation layers [156, 157] or by encapsulating them in chemically stable molecules [18]. For

the latter, metal-phthalocyanines are highly suitable due to their neutral end groups forming

the mechanical contact and shielding the inner part. Metal-phthalocyanines have been

deposited on various substrates as isolated molecules, self-organized molecular networks,

and as mono- and multilayers [18, 158].

Here, copper phthalocyanine (CuPc) is employed to decouple the Cu core from the super-

conducting V(100) substrate [142, 161, 162]. CuPc represents a stable molecular structure,

where the Cu bonds to four ligands consisting of pyrrole and benzene. In the gas phase, the

bonding leaves the Cu ion in the oxidation state Cu2+ resulting in a S = 1/2 ground state [163].

Experimental studies have shown that the magnetic moment of CuPc even continues to exist

when the molecule is adsorbed on metal surfaces [164]. The size of an isolated CuPc molecule

is about 1.4nm×1.4nm. A low coverage of CuPc molecules is deposited at Tsample = 21◦C onto

the surface of a V(100) sample, which is thoroughly cleaned beforehand by several cycles of Ar

ion sputtering and annealing to 1000◦C. The sample is transferred to the mK-STM (Sec. 3.2)

without breaking the vacuum and cooled down to 15 mK. For the measurements presented

in the following sections, the same V STM tips used in Chap. 4 and Chap. 5 are utilized to en-

hance the spectral sensitivity. In Fig. 6.1(a), an STM image of the V(100) surface shows various

steps along the crystal axis and rather small terraces that is attributed to the low annealing

temperature of the V(100) sample. More importantly, the dark lines observed in the STM

images are expected to arise from oxygen absorption sites and point to a 5×1 reconstruction

of the V(100) surface due to the influence of oxygen atoms (Fig. 6.1(b) and (c)) [159, 160]. Their

different bond lengths to the V atoms induce mechanical stress, which is compensated by

the surface reconstruction of the three top layers. DFT calculations reveal that the O bonds

increase the distance between the first and second V layer, whereas the spacing between the

second and third layers is decreased [159]. In Fig. 6.1(d), the STM image of the CuPc shows

fourfold clover-shaped symmetry reflecting the four Pc rings around the Cu ion. However,

there is no visible protrusion in the center of the molecules at the position of the Cu ion. This

indicates that the Cu ion fits into the cavity of the surrounding Pc macrocycle forming a planar

molecule on the V(100) surface. Due to the surface reconstruction, the detailed structure of

the molecule depends on the preferred adsorption site.
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Figure 6.1: CuPc on the 5×1 reconstruction of the V(100) surface (IT =−50 pA and VT=−8.5 mV).
(a)-(c) The V(100) surface shows various steps along the crystal axis and a 5×1 reconstruction
due to the influence of oxygen atoms indicated by the dark lines [159, 160]. (d) The CuPc
molecule consists of the Cu core and four ligands. Due to the specific molecular structure, the
electronic coupling is reduced between the Cu ion and the V(100) surface.
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Figure 6.2: dI/dV spectra measured on three different positions of a CuPc molecule. The in-
creased superconducting gap and the outer peaks result from the electron tunneling between
the quasi-particle coherence peaks of tip and sample. Bound states within the superconduct-
ing gap are induced by the interaction of conductance electrons and the local potentials of the
CuPc.

6.3 Observation of Local Bound States

The interaction of the CuPc molecules and the superconducting V(100) surface is probed

within the energy range of the superconducting gap. For this purpose, the superconducting

DOS of the V STM tip effectively increases the energy resolution and enhances the small in-gap

features of the bound states [18]. In Fig. 6.2, the resulting differential conductance spectra show

two pronounced peaks at∆T+∆S ≈±1.3 meV, which correspond to electron tunneling between

the superconducting coherence peaks of tip (∆T) and sample (∆S). Since these features

require superconductivity in both tip and sample (∆T +∆S > ∆0,bulk), the measurements

demonstrate that the superconducting state of the V(100) sample still exists in the presence of

the CuPc molecules. In addition to the outer peaks, the dI/dV spectra show features inside

the superconducting gap of asymmetric height. These bound states result from the locally

weakened superconducting state because the electronic structure of the CuPc molecule is

not entirely screened by the itinerant electrons of the V surface (Sec. 2.3). Within this study,

no Kondo signatures have been observed for CuPc on V(100). In the quasi-particle DOS,

the energy position and height of the bound state reflect the influence of the local Coulomb

potential and the exchange interaction. In the case of a uniform electronic structure of the

metal surface, the asymmetric height of the quasi-particle excitations of electron character
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(V < 0) and hole character (V > 0) is attributed to the local Coulomb potential. However,

the strong local differences in Fig 6.2 changing from electron to hole-like states within a few

angstrom indicate the influence of the substrate with its non-uniform electronic structure. The

measurement has been repeated on several CuPc molecules showing a large variety of bound

states with various peak numbers, positions and heights. Moreover, CuPc molecules are found

that show no in-gap states at all. So far, no direct correlation between the topography and

the electronic structure has been observed. The energy positions of the bound states close to

the coherence peaks (∆T +∆S) reveal the weak coupling of the CuPc and the superconducting

conductance electrons. In this regime, the observation of the competing Kondo effect is

unlikely because the screening would occur on small energy scales and require large spatial

distribution [18].

6.4 Spatial Distribution of Locally Induced Bound States

To obtain a better understanding of the local interaction potentials, a map consisting of 625

dI/dV spectra is measured on the CuPc molecule and its close vicinity. In Fig. 6.3(a), a STM

image (IT =−50 pA and VT =−8.5 mV) shows the fourfold symmetry of the CuPc molecule

on the V(100) surface. The z values of the spectroscopic map (Fig. 6.3(b)) correspond to the

stabilizing conditions (IS =−50 pA and VS =−2 mV) before switching off the feedback loop

and demonstrates the stable spectroscopy conditions on this particular CuPc molecule. For

each data point in Fig. 6.3(b), a differential conductance spectrum is measured for the bias

range −2 mV≤ VT ≤2 mV. To analyze the differential conductance measurements, the bound

states are fitted with Gaussian functions extracting the peak heights and energies. Although

this approach provides a good overview of the measured data, it still contains the contribution

of the superconducting quasi-particle DOS of tip and sample. Thus, the analysis only provides

the relative local variations but no absolute values for the spectral weight and energies of

the bound states. The results of the Gauss fits for the quasi-particle excitations with electron

character (V < 0) are presented in Fig. 6.3(c) and Fig. 6.3(d). Surprisingly, the distribution of

the peak heights is not uniform around the Cu ion. Instead, the highest peaks are found on

the upper ligand as well as on the right hand site of the CuPc molecule as shown in Fig. 6.3(c).

Moreover, the bound states are not limited to the position of the CuPc molecule but also occur

in its close surroundings. Outside the molecular structure, the most significant contributions

are locally distributed around the part of the CuPc molecule with the highest excitation peaks.

These findings indicate that the interaction between the magnetic moment of the Cu ion and

the conduction electrons are not limited to the dimensions of the CuPc molecule. The energy

positions of the bound states are presented for V < 0 in Fig. 6.3(d). Variations mostly occur

within the molecular structure, indicating the non-uniform interaction between the magnetic

impurity and the superconducting V(100) surface. The quasi-particle excitations in the lower

right corner are shifted to larger energies. This effect might arise from contamination found

in this region of the V(100) surface (Fig. 6.3(a) and Fig. 6.3(b)). In addition, the peak height

of the bound states is much smaller in this region due to the larger distance from the CuPc
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Figure 6.3: Locally resolved bound states observed on an isolated CuPc molecule and its close
surroundings. (a) The STM image shows an isolated CuPc molecule on the V(100) surface.
(b) The z stabilization values are presented for a spectroscopic map consisting of 625 dI/dV
spectra. (c) - (h) The peak heights and energies of the in-gap states are analyzed by Gaussian
fits. (c) Peak heights and (d) energies for negative bias. (e) Peak heights and (f) energies for
positive bias. (g) Asymmetry of the peak heights from (c) and (e). (h) The bias difference of the
absolute values of (d) and (f).
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molecule, which results in larger error estimations of the Gaussian fits. Correspondingly, the

analysis based on Gaussian fits is carried out for the bound states with hole character (V > 0)

as shown in Fig. 6.3(e) and Fig. 6.3(f). Again, the largest peak heights are observed for the

upper ligand of the CuPc molecule, however, additional excitations on the lower ligand are

more pronounced than in the measurements for V < 0. As a result, the overall distribution

of the hole-like bound states appears more uniform. Their energies with the minimum on

the Cu ion resemble the findings for V < 0, demonstrating the symmetric appearance of the

quasi-particle excitations with respect to the Fermi energy. The differences of the bound states

for positive and negative bias are summarized in Fig. 6.3(g) and Fig. 6.3(h). Asymmetry peak

heights of the in-gap states mostly occur on the CuPc molecule. While the bound states of

electron character (V < 0) are dominant on the top as well as on the right ligand, the hole-

like states determine the electronic structure of the lower ligand (Fig. 6.3(g)). In Fig. 6.3(h),

the absolute values for positive bias are subtracted from the positive energy positions after

correcting small bias offsets. Within the error estimation for the energy resolution (Sec. 3.2.4),

the spectroscopic features occur symmetrically around the Fermi level confirming their origin

is due to quasi-particle excitations.

Locally resolving the bound states reveals three important findings. First, the peak heights

of the in-gap states are not uniformly distributed on the V(100) surface. This observation

might be explained by the different geometries of the fourfold CuPc structure and the 5×1

reconstruction of the V(100) surface, which also effects the electronic properties in the normal

conducting state. Depending on the adsorption site, the resulting interaction potentials might

show strong anisotropies. In addition, a non-uniform Fermi surface produces anisotropic

Fermi velocities, which might explain the differences in the formation of the bound states

outside the molecular structure [12, 165]. Local variations of the magnetic as well as of the

Coulomb potential (for example due to charging effects on the O sites) would further increase

the non-uniform distribution of the bound quasi-particle states. The second observation

concerning the spatially dependent asymmetry in the peak heights of the bound states also

supports the assertion of non-uniform interaction potentials. As discussed in Sec. 2.3, the

asymmetry is caused by the Coulomb potential, which breaks the particle-hole symmetry.

Variations and sign changes in the asymmetry might occur due to charging effects locally

induced within the molecular structure. The third result is that the bound states also occur

on the V(100) surface at some distance to the magnetic impurity. With increasing distance

from the CuPc molecule, the peak height decreases, indicating a decay on a much shorter

scale than the superconducting coherence length. The spatial decay of the bound states is

discussed more detailed in Sec. 6.5.

6.5 Distance Dependence of Bound States

The spatially resolved differential conductance measurements reveal bound states that are

not limited to the dimensions of the CuPc molecules but also appear on their surroundings on

the V(100) surface. For a more detailed investigation, more than 60 dI/dV spectra are acquired
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Figure 6.4: Differential conductance measurements for the distance dependence of the quasi-
particle excitations. (a) The position for dI/dV measurements are shown in the STM image by
the red markers forming a straight line across the isolated CuPc molecule on the V(100) surface.
(b) The z values correspond to the stabilizing conditions at IS =−150 pA and VS =−2 mV. (c)
The dI/dV spectra feature peaks at ∆1 +∆2 ≈ ±1.3 meV due to the tunneling between the
coherence peaks of the superconducting quasi-particle DOS of tip and sample. Quasi-particle
excitations occur at smaller energies (V ≈±1 meV). Their decay from the center of the CuPc
molecule reveals small oscillations in the peak heights.

on a line crossing the CuPc molecule, as shown in Fig. 6.4(a). At each point, the tunnel contact

is stabilized at IS =−150 pA and VS =−2 mV and the feedback loop is switched off in order to

measure the differential conductance with constant tip-to-sample distance. The resulting z

values of the stabilization conditions show the height profile of the CuPc molecule (Fig. 6.4(b)).

To optimize the recording time, the density of acquired data points is reduced in the normal

conducting regime as well as in the center of the superconducting gap, where no bound states

are formed on this particular molecule. The measured dI/dV spectra (Fig. 6.4(c)) arise from

the convolution of the superconducting quasi-particle DOS of the V tip and the LDOS of the

sample. At ∆T +∆S ≈ ±1.3 meV, dominant features stem from electron tunneling between

the coherence peaks of the quasi-particle DOS of tip and sample. On the CuPc molecule,

the gap energies are not significantly effected, indicating that the superconductivity of the

V(100) sample is not suppressed by the CuPc molecule. However, the heights of the coherence
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peaks are reduced by approximately 30 % on the CuPc structure due to the large amplitude of

the bound states and the convolution with the superconducting DOS. Furthermore, induced

bound states modify the superconducting quasi-particle DOS of the V(100) surface in the

close vicinity of the CuPc structure. The resulting peaks at V ≈ ±1 meV are clearly visible

within the superconducting gap and even surpass the height of the outer coherence peaks.

Although the intensities of the quasi-particle excitations decrease with increasing distance

x from the CuPc structure, they are clearly visible within a distance of x ≈ 30 Å on both sides

of the molecule. On the bare V(100) surface, the peak heights of the in-gap states not only

decay but they also show oscillations on a much smaller scale. In addition, variations of their

energies are observed in the differential conductance spectra.

For a more quantitative analysis, the intensities and energies of the bound states are extracted

from the differential conductance measurements. To this end, the tunnel current is numeri-

cally calculated by Eq. 3.9, where the superconducting quasi-particle DOS is included from

Eq. 3.22. The bound states are modeled by two Gaussian functions added to the supercon-

ducting DOS of the V(100) surface:

ρ↓↑ (E) = ρ0

2
sgn(E) Re

 u±√
u2
±−1

+
2∑

i=1
ai exp

(
− (E −Ei )2

2b2
i

)
, (6.1)

where u+ and u− depend on pair breaking and spin-orbit coupling (Sec. 2.1.6). ai is the height

of the peak resulting from the bound state, Ei represents the center of its energy position and

bi gives the standard deviation of the Gauss function. Due to the rather large tip-to-sample

separation, contributions resulting from Andreev reflections or Josephson tunneling can be

neglected for the analysis. For fitting the experimental data, the differential conductance is

numerically calculated from the tunnel current for the investigated bias range. The best results

are obtained for small pair breaking in tip (ξtip = 0.005) and sample (ξsample = 0.012). The

superconducting gap of the tip is kept constant at ∆tip =600µeV and the resulting gap of the

sample ∆sample = 744±15µeV shows only small variations within the error estimation of the

energy resolution. In addition to the pair breaking, small values for the damping parameter

Γ= 18±6µeV provide better fits to the experimental data.

In Fig. 6.5, the extracted energies Ei of the bound states are shown as a function of distance.

While large variations occur in the central region on the CuPc molecule, the energies of

the induced bound states appear rather constant on the V(100) surface. The energies are

symmetrically distributed around zero-bias due to the quasi-particle nature of the bound

states. In general, there are several possible explanations for these observations. First, the

CuPc molecule might create multiple local charging sites on the V(100) surface, which alter the

Coulomb potential within the molecular structure. Second, the magnetic coupling between

the spin moment of the molecule and the conduction electrons of the V(100) surface depends

on the overlap of the atomic orbitals, which is given by the characteristics of the adsorption site.

In this context, it is also possible that multiple magnetic centers are formed instead of a single
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Figure 6.5: Spatially resolved distance dependence of the energies for impurity induced bound
states. The energies of the bound states vary on the CuPc molecule indicating the influence
of the interaction potentials. In contrast, the quasi-particle excitation energies appear rather
constant on the bare V(100) surface.

magnetic moment and, as a result, the magnetic potential becomes strongly correlated with

the local position. Third, the energies of the bound states depend on the Fermi surface. Due

to the 5×1 surface reconstruction of the V(100) and the interaction with the CuPc molecule,

the resulting Fermi surface is most likely not uniform, which directly effects the properties of

the bound quasi-particle states.

In Fig. 6.6, the intensities of the bound states are extracted from the differential conductance

measurements by the fitting function based on Eq. 6.1. On the CuPc molecule, the bound states

with the highest intensities are observed. However, the maximum is not directly located in the

center of the molecular structure as already observed in the previous experiment (Fig. 6.3). On

both sides of the molecule, the intensities of the bound states decay until the signal vanishes in

the background noise at the distance x ≈±30 Å. In addition to the decay, periodic oscillations

in the intensities are observed for positive as well as negative bias. As a result, the character

of the bound state frequently switches between electron-like and hole-like quasi-particle

excitations. In good agreement to Eq. 2.64, the decay occurs on a much shorter length scale

than the superconducting coherence length, but it is not symmetrically distributed around

the molecule. Whereas the wave lengths of the oscillations are in the order of the Fermi wave

length, the bound states do not periodically vanish as predicted by the sine-squared function

in Eq. 2.64. Possible explanations for these deviations are the non-isotropic Fermi surface and

non-uniform scattering potentials as discussed for Fig. 6.5. In this context, it is also important

to mention that Eq. 2.64 describes the bound states induced by a point impurity. For the

CuPc on the V(100) surface, the extent of the magnetic moment might not be negligible in

comparison with the Fermi wave length or even the coherence length.
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Figure 6.6: Spatially resolved distance dependence of the intensities for impurity induced
bound states. With increasing distance, the intensities of the bound states decay on both sides
of the CuPc molecule. In addition, periodic oscillations occur for positive as well as negative
bias indicating repeated transitions between electron and hole character of the quasi-particle
excitations.

For a more quantitative analysis, a simple 1D model for the impurity induced bound states

is derived from Eq. 2.64. Instead of a single magnetic moment, the model assumes that the

bound states are induced by two separate magnetic impurities at the positions x1 and x2.

Then, the measured differential conductance represents the superposition of quasi-particle

excitations induced at these two different sites. In addition, the influence of the non-uniform

Fermi surface and Fermi wave length on the quasi-particle excitations is taken into account by

adding a phenomenological parameter γ to the phase shift in Eq. 2.64. The resulting intensity

of the electron-like (Z (−)), respectively hole-like (Z (+)), quasi-particle excitations reads as a

function of distance x as follows:

Z (±) (x) =
2∑

j=1
a j

sin
(
k j x j −δ(±)

j − iγ
)

k j x j −δ(±)
j − iγ

2

exp
(−2x j /ξ0

)
, (6.2)

with the amplitude a j , the wave vector k j , the phase shift δ j , the coherence length ξ of V, and

the position of the magnetic point impurities xi . The expression is employed as a global fit

function to simultaneously analyze the intensities of the bound states for positive (Fig. 6.7)

and negative bias (Fig. 6.8). From the fits, the spatial positions of the magnetic impurities are

revealed at x1 = 0.01 Å and x2 = 1.42 Å as well as the corresponding wave vectors k1 = 0.47 Å−1

and k2 = 0.44 Å−1. When combined, their separate contributions (dashed red and green lines)

show the overall decay and periodic oscillations of the bound state intensities. However, this

approach does not reproduce all of the spectral features in full detail.
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Figure 6.7: Distance dependence of quasi-particle excitations modeled by two magnetic
impurities (V > 0). The experimentally observed bound states are fitted by a model based on
two independent magnetic impurities. They induce quasi-particle excitations (dashed red
and green line) and their interference reproduces the measured distance dependence.
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Figure 6.8: Distance dependence of quasi-particle excitations modeled by two magnetic
impurities (V < 0). The same approach as in Fig. 6.7 is applied for the bound states observed
at negative bias.

104



6.5. Distance Dependence of Bound States

Studying the interaction of isolated CuPc molecules and the superconducting V(100) surface

reveals induced bound states, which are formed within the superconducting gap. Both the

energy positions of the bound states close to the coherence peaks and the absence of Kondo

signatures in the measured dI/dV spectra indicate weak coupling between the CuPc molecule

and the superconducting conductance electrons of the V(100) sample. The peak heights of the

bound states show a non-uniform distribution on the CuPc molecule and in its close vicinity.

The findings can be attributed to the non-uniform Fermi surface of the V(100) surface as well

as to anisotropic potentials for the magnetic exchange and Coulomb interaction. In both

cases, the observed distribution can also be effected by the 5×1 reconstruction of the V(100)

surface. The quasi-particle excitations are not limited to the dimensions of the CuPc molecules

but also appear in close vicinity on the V(100) surface, where the decay of their intensities is

compared to a 1D model. Here, assuming two individual magnetic moments considerably

improves the agreement between theory and the experimental findings. While the two point

impurities used in the model only represent a simplified approximation, the result indicates

that the magnetic moment of the CuPc on the V(100) surface is spatially extended over several

angstroms. This means that the interaction with the CuPc considerably deviates from the

simple description as a point scatterer. The agreement between the experimental data and the

1D model is further improved by the phenomenological parameter γ, which is attributed to

the influence of the the non-uniform Fermi surface and the 5×1 surface reconstruction of the

V(100) crystal. Whereas the discussed approach only represents a simplified description of

the complex system, it captures the experimental observations and explains the underlying

mechanism for the impurity induced bound states.
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7 Summary and Outlook

The thesis aims for a better understanding of the complex interplay between superconduc-

tivity and magnetism. Here, the effects of geometrical confinement, magnetic fields and

isolated magnetic moments have been investigated by STM at millikelvin temperatures as

well as by numerical calculations based on a 1D Usadel equation. The characterization of

geometrically confined superconductors in magnetic fields has enabled the development of

a novel approach to quantitatively probe the spin polarization of conduction electrons with

atomic scale resolution.

7.1 Geometrically Confined Superconductors in Magnetic Fields

The combined effects of magnetic fields and geometrical confinement have been investigated

for superconducting STM tips made from V wire. The experimentally obtained magnetic field

dependence considerably differs from bulk material and the analysis based on the extended

Maki model requires the additional broadening parameter Γ. A more quantitative description

has been derived from a quasi-classical approach based on a 1D Usadel equation. To this end,

the non-uniform superconducting state has been calculated for the cone geometry, which

was used as a model for the V STM tips. The calculations lead to a direct correlation between

the opening angle α of the conical superconductor and the order of the superconducting

phase transition in magnetic fields. For very sharp tips with opening angles below a critical

value (α < αc ), first order phase transitions occur, whereas second order phase transitions

are present in blunter tips (α>αc ). Furthermore, the numerically calculated magnetic field

dependence has been analyzed by the extended Maki model for several opening angles with

the aim of comparing the microscopic Usadel description to the experimental findings. As a

result, the order of the phase transition is determined for the STM measurements and first

as well as second order phase transitions are found, depending on the investigated V tip. In

addition, the calculated correlation of the damping parameter and the opening angle of the

superconducting geometry explains the experimentally observed broadening in the dI/dV

spectra. From a fundamental point of view, this approach provides a possible microscopic

explanation of the broadening parameter Γ, which has been used on a phenomenological
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basis within the extended Maki model. In this context, the Γ parameter represents a formal

extension to use the Maki model for non-uniform superconductors exposed to high magnetic

fields.

The better understanding of the superconducting STM tips enables novel experimental con-

cepts, such as MTF-STM [97]. In addition to probing absolute spin polarization, supercon-

ducting STM tips also play an important role for enhancing the effective energy resolution,

where the limiting thermal broadening of the Fermi edge is overcome by the superconducting

gap in the quasi-particle DOS [18, 99]. As a result, experimental investigations can resolve

small spectral features, which lie beyond the thermal resolution limit. Furthermore, Josephson

STM investigates the tunneling of Cooper pairs between superconducting tips and super-

conducting samples [101]. For these experiments, the external magnetic field provides an

additional tuning parameter. For example in Josephson STM, junctions with a nonzero phase

shift in the ground state are of interest due to their high potential in applications [166]. The

current-phase relation of such junctions is sensitive to an external magnetic field, which

provides direct control over the phase shifts of the ground state [167]. In return, the ground

state can experimentally be determined by measuring the critical current as a function of the

magnetic field [167].

In general, spectroscopic measurements greatly benefit from clearly distinguishable spectral

dI/dV features, which have been correlated with small opening angles (α¿αc ). So far, the

presented V tips have been mechanically cut under tension with rather random results. Elec-

troetching represents an alternative approach offering more control over the resulting tip apex

and its opening angle. First attempts with oxalic acid as the electrolyte and the polycrystalline

V wire as the anode have revealed promising results, indicating that the detailed shape of the

tip can be controlled by the applied voltage [168]. Therefore, future STM experiments can

significantly be improved by the use of superconducting tips with small opening angles. They

result in less broadening (Γ¿∆) of the spectral features and the (first order) phase transition

is shifted to higher critical fields (Bc À Bc,bulk) in order to increase the range of applicable

fields.

7.2 Probing Absolute Spin Polarization at the Nanoscale

The better understanding about superconductivity in the confined tip geometry has found

direct application in a novel STM technique, which quantitatively probes the spin polarization

at the nanoscale. Following the approach introduced by R. Meservey, P. M. Tedrow and P. Fulde

for standard thin film sandwich tunnel junctions [7–9], the Zeeman split quasi-particle DOS

of the superconducting V tips has been employed as a local probe for the spin polarization

of tunneling electrons. The novel MTF-STM combines the virtues of the MTF technique and

STM, such as the capability for quantitatively probing the spin polarization, the resolution

and control on the atomic scale as well as the well-defined vacuum tunnel barrier. The latter

considerably facilitates the interpretation of experimental results because the tunnel process
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is neither effected by the electronic properties of the barrier nor by the influence of structural

defects. In comparison to conventional SP-STM, the spin polarization is probed on an absolute

scale and the tunnel process does not have to take into account the spin-dependent electron

orbitals of the tip. The capabilities of MTF-STM have been demonstrated when spatially

resolving the local spin structure of a Co nanoisland with negative (-56 %) as well as positive

spin polarizations (65 %), depending on the local position of the tunneling electrons. In

comparison to DFT calculations, the measurements carried out by MTF-STM exceed the

theoretical predictions by about a factor of two. This is attributed to the influence of the

tunnel barrier as variations of the spin polarization up to 65 % were found when changing the

tip-to-sample distance by only 2.3 Å. The observations have been modeled by a 1D model,

which correlates the distance dependence of the spin polarization to a different decay of the

spin-up and spin-down wave functions into vacuum. The described spin-filtering effect is

universal for spin-dependent tunneling and, in general, effects the characteristics of most

ferromagnetic tunnel junctions.

From a theoretical perspective, MTF-STM not only resolves the spin polarization on the

atomic scale but also provides direct access to the fundamental processes of spin-dependent

tunneling. Therefore, experimental observations obtained by the novel approach are highly

suitable for a direct comparison to theory in order to verify and further develop existing

physical models. For example, MTF-STM can be used to determine the spin-dependent

tunnel matrix employed in theoretical descriptions of electron tunneling. To this end, the

spin polarization of tunneling electrons can be spatially resolved as a function of distance for

isolated atoms or molecules. To obtain insight into the role of the electronic orbitals, the study

could include probing different charging states, which can be controlled for isolated atoms on

insulating films.

For applications, MTF-STM represents a powerful probing technique for novel magnetic

materials. Since the discovery of the TMR effect, great efforts have been directed towards

improving the efficiency of the magnetic tunnel junctions in order to reach higher signals. On

the pursuit for novel magnetic materials for the electrode, Heusler alloys represent promising

candidates with theoretical predictions of high spin polarizations up to 100 % at the Fermi level.

Their ferromagnetism is attributed to the double-exchange between magnetic ions, which

are incorporated in a highly ordered structure with a well-defined stoichiometry. Heusler

alloys have already been used in magnetic tunnel junctions [169], however, the experimentally

observed spin polarizations have not yet reached the theoretical predictions. So far, spin

polarizations of around 70 % have been obtained in low temperature measurements while

the values have been even lower at room temperature [170–173]. The results also depend

on the choice of material for the tunnel barrier. For example, in combination with MgO, the

measured magnetoresistances have not significantly improved compared to the performance

of conventional ferromagnetic electrodes [174]. The origin of the differences between theory

and experiments remain unclear, but possible explanations include lower spin polarizations

of the Heusler alloys, the influence of the tunnel barrier or varying properties of the tunnel

junctions. Here, MTF-STM can quantitatively determine the spin polarization of Heusler
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alloys free from disturbing effects arising from the tunnel junction fabrication. In addition, the

atomic resolution provides direct insight into the correlation between structural properties

and the resulting spin polarization of the tunneling electrons.

Besides the electrode material, the properties of the tunnel barrier itself also play an important

role for increasing the spin polarization of tunneling electrons. For example, magnetic tunnel

junctions, which are based on epitaxial MgO as the tunnel barrier have obtained large TMR

effects attributed to symmetry filtering [116, 117, 137]. While the performance of a conven-

tional magnetic tunnel junction is determined by the combined contributions from electrode

and barrier, they can be analyzed separately by MTF-STM due to the vacuum tunnel barrier.

In this context, MTF-STM can provide a complementary approach to TMR measurements

on planar magnetic tunnel junctions. MTF-STM can directly reveal the spin polarization of

the tunneling electrons in order to evaluate the efficiency of metal oxide barriers. The atomic

resolution can address open questions concerning the participating electronic wave functions

or the formation of localized states [144]. Additionally, studies based on MTF-STM can include

a wide range of barrier materials ranging from pristine Al2O3 to more complex spin filters such

as EuS or EuO. Such spin-selective studies cannot only reveal fundamental aspects but help to

systematically improve components for real devices.

In addition to the further development of existing devices, the atomic scale resolution of MTF-

STM might also facilitate the introduction of novel spintronic applications. Next generation

devices might use molecular or even atomic spin states for realizing logic operations as well

as data storage. First experimental demonstrations have already employed spin-dependent

tunneling on the molecular and on the atomic scale [118–121, 147]. For example, phenalenyl

based molecules on a Co electrode have shown magnetoresistance effects up to 20 % at

room temperature [121]. At first sight, the observation is rather unexpected because the

utilized zinc methyl phenalenyl molecules possess no net spin moment. A model based on

ab initio calculations has suggested the formation of a hybridized molecular layer due to the

interface spin transfer [121]. This interface layer with a large magnetic anisotropy serves as

spin analyzer for the spin-polarized electrons of the Co electrode and, as a result, the tunnel

magnetoresistance effects are observed. For such systems, studies carried out by MTF-STM

can contribute to a better quantization of the spin-filtering capability as well as to a better

understanding of the underlying hybridization and spin transfer effects. Providing atomic

scale control, MTF-STM can also address the coupling between the spin centers of isolated

zinc methyl phenaleny molecules, which would allow the development of future quantum

memories.

7.3 Probing Local Magnetic Moments Interacting with a Supercon-

ductor

In the last part of the thesis, the interaction of superconductivity and magnetism has been

studied on the atomic scale. Contrary to magnetic fields, the magnetic moments of the isolated
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CuPc molecules only interact locally with the superconducting V(100) surface. As a result,

bound states have been observed on the CuPc structure and in its close surroundings. Here,

the superconducting STM tips play an important role due to their electronic structure, which

effectively enhances the sensitivity to small features, such as the induced bound states. The

extracted energies of the bound states as well as the absence of Kondo signals in the dI/dV

measurements imply weak coupling for the magnetic moment of the CuPc molecule and

the electrons of the superconducting V(100) sample. Furthermore, when spatially resolved,

the spectral properties of the bound states appear strongly non-isotropic. This finding can

be attributed to the anisotropic scattering potentials as well as to the non-uniform Fermi

surface. In addition, the complex 5×1 reconstruction of the V(100) surface might also effect the

formation and spatial distribution of the bound states. On the V(100) surface in close vicinity

to the CuPc molecule, the intensities of the bound states decay within the distance x ≈±30 Å

while simultaneously showing periodic oscillations. The behavior has been explained by a

1D model and the best agreement to the experimental data has been obtained by assuming

two magnetic moments within the molecular structure. The 1D model also considers the

influence of the non-uniform electronic structure by a phenomenological parameter. While

this model only represents a simplified explanation, it describes the basic mechanisms of the

experimental observations.

Future studies aim for a more detailed understanding of the superconducting phase as well as

the spin state of the magnetic impurities. For example, impurity induced bound states can

reveal the existence of multiple scattering channels in the Coulomb and the exchange interac-

tion in order to obtain a better fundamental description [17]. For larger amounts of magnetic

impurities on the superconducting surface, the formation of electronic bands from localized

bound states represents another subject for future investigations. Theoretical calculations

have even predicted the formation of broader bands with properties that significantly differ

from conventional superconductors [175]. In theory, behavior similar to d-wave superconduc-

tors might be observed [175]. Furthermore, impurity induced bound states provide access to

the fundamental properties of the superconducting state, such as the pairing mechanism. For

unconventional superconductivity, mechanisms based on magnetic interactions have been

proposed over the last few years [176, 177]. Here, the effects of isolated magnetic impurities

on the local quasi-particle DOS can be probed by STM in order to reveal the basic physics of

unconventional superconductivity [178]. In this context, the high energy resolution provided

by superconducting tips at millikelvin temperatures can provide a better understanding of the

quasi-particle scattering and the underlying mechanisms of the superconducting state.

In principle, quasi-particle excitations of quantum systems can also be engineered in order to

have the same fundamental properties as Majorana fermions. First predicted by E. Majorana

in 1937 [179], these Majorana fermions are their own anti-particles, which implies that they

are free of electric charge. Since they obey non-abelian statistics, Majorana fermions are

highly promising candidates for quantum computing due to their expected high coherence.

Recently, strong evidence for the presence of Majorana fermions has been observed at the

interface of ferromagnetic iron chains and superconducting lead by STM [180]. In such
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systems, Majorana quasi-particle bound states can arise either from a spatially ordered spin

structure or from the combination of ferromagnetic exchange and spin orbit coupling. Similar

effects might be observed on coupled magnetic moments incorporated in isolated molecules

or even molecular networks on a superconducting surface. Future studies would require

detecting zero-bias peaks in the dI/dV spectra, which have to be identified as Majorana quasi-

particle excitations. For this purpose, the investigation has to demonstrate the coexistence of

magnetism and superconductivity, for example by measuring the resulting bound states in the

superconducting gap, as well as the existence of spin orbit coupling on the superconducting

surface.
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