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sp-band tight-binding model for the Bychkov-Rashba effect in a two-dimensional electron system
including nearest-neighbor contributions from an electric field
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We present a tight-binding calculation for a two-dimensional electron gas (2DEG) including the spin-orbit
interaction as well as an electric field perpendicular to the system in order to model the Bychkov-Rashba spin
splitting. The associated potential gradient introduces two contributions to the tight-binding matrix: an on-site
contribution coupling orbitals of the same atom and a nearest-neighbor contribution. At the � point the first-order
Rashba constant αR only depends on this nearest-neighbor contribution regardless of the lattices considered
(square, hexagonal, honeycomb). Applying the model to graphene reveals that this nearest-neighbor contribution
induces a significant increase in the zeroth-order Rashba constant λR and introduces a spin-splitting component,
which varies linearly in momentum.
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I. INTRODUCTION

The Bychkov-Rashba (BR) model has been remarkably
successful in qualitatively describing the lifting of the spin
degeneracy in a two-dimensional (2D) electron gas by means
of a perpendicular electric field.1 However, it is a phenomeno-
logical model that does not include the atomic spin-orbit
interaction or any details about the potential landscape of
the crystal lattice. Therefore the electric field that enters
the first-order Rashba constant αR has to be regarded as an
effective field whose magnitude cannot be predicted based
on the BR model. Petersen and Hedegård have related the
first-order Rashba coupling constant αR to the parameters
of a simple p-band tight-binding model including spin-orbit
coupling which enabled them to make quantitative predictions
for the size of the spin splitting.2 In their model, the atomic
spin-orbit coupling enters through the L · S Hamiltonian and
the potential gradient results in a nonzero overlap of the
in-plane px and py orbitals with the out-of-plane pz orbital
of a neighboring atom. The first-order Rashba constant αR

then depends on the atomic spin-orbit coupling parameter
α as well as a parameter γ accounting for the influence of
the potential gradient perpendicular to the 2D system. This
potential gradient may also be interpreted in terms of an
effective potential resulting from an asymmetric hybridization
of orbitals at the surface.

Recently, the tight-binding approach has also been used to
describe the Rashba-type spin splitting in graphene.3–6 Here as
well, the effective spin-orbit coupling parameter �SO as well
as the zeroth-order Rashba parameter λR accounting for an
electric field perpendicular to the graphene plane have been
expressed analytically in terms of the tight-binding param-
eters. Konschuh et al.4 also considered contributions from d

orbitals, but they did not directly consider the nearest-neighbor
contribution from the electric field. For graphene, so far, the
nearest-neighbor contribution of the electric field has only
been considered phenomenologically.6 This phenomenologi-
cal model has already been successfully applied to honeycomb
lattices as well as the Au(111) surface.7–9 A contribution
from the electric field is expected from a coupling of orbitals
in neighboring atoms as already indicated by Petersen and
Hedegård2 yielding the same effective Hamiltonian as the

phenomenological model.6,8 The question arises how the
different on-site and nearest-neighbor contributions can be
unified on common grounds.

Here, we present a generalization of the sp-band tight-
binding models used for graphene3–5 as well as the one
presented by Petersen and Hedegård.2 We calculate the effect
of a constant potential gradient ξ in the direction perpendicular
to the 2D electron system (z direction) separated into a
contribution from the orbitals within the same atom as well as a
contribution from orbitals of neighboring atoms. While the on-
site contribution couples orbitals according to the well-known
dipole selection rules �l = ±1 and �m = 0, the contribution
from neighboring atoms also couples orbitals with �l = 0 and
�m �= 0. We will discuss the findings for the model system
graphene, where additional interesting contributions to the
Rashba parameter emerge. Finally, we apply this model to
the band structure at the � point in different two-dimensional
lattices.

II. TIGHT-BINDING MODEL

The Hamiltonian that we employ can be divided into three
different contributions:

H = H tb + H SOC + Hz. (1)

The first term is the tight-binding Hamiltonian describing the
band structure in the linear combination of atomic orbitals
(LCAO) approximation.10 Here, we will only consider s and
p orbitals with on-site contributions εs and εp, respectively.
The tight-binding parameters describing the orbital overlap
from neighboring atoms are Vssσ , Vspσ , Vppσ , and Vppπ . The
corresponding matrix is then

H tb
o,o′ = εoδo,o′ +

∑
〈i〉

eikRi E(o,o′,Ri). (2)

Here, o and o′ are the orbitals (s, px , py , pz) in the tight-
binding matrix and δo,o′ is the Kronecker δ. In the second term
of Eq. (2), E(o,o′,Ri) = 〈o|H tb|o′,Ri〉 is an element from
Table I. 〈i〉 denotes the sum over neighboring atoms with Ri

being the vector connecting two neighboring atoms. If there
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TABLE I. Matrix elements for the s and p orbitals (Ref. 10).
Values that are not given can be obtained by cyclic permutation. The
quantities u, v, and w, which depend on the vector Ri connecting
two neighboring atoms, are the directional cosines in the x, y, and z

direction, respectively. It should be noted that matrix elements with
same (different) parity between orbitals transform even (odd) under
exchange of indices [E(o′,o,−Ri) = (−1)|l−l′ |E(o,o′,Ri)].

Parameter Overlap

E(s,s,Ri) Vssσ

E(s,px,Ri) uVspσ

E(px,px,Ri) u2Vppσ + (1 − u2)Vppπ

E(px,py,Ri) uv(Vppσ − Vppπ )

is more than one atom in the basis, the matrices have to be
adapted accordingly.

The term H SOC in Eq. (1) is the atomic spin-orbit interaction
(see, e.g., Ref. 2),

H SOC = αL · S = α

[
1

2
(L−S+ + L+S−) + LzSz

]

= α/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Here the basis of the matrix is {px↑,py↑,pz↑,px↓,py↓,pz↓}.
The parameter α is the atomic spin-orbit coupling strength.

The third contribution Hz in Eq. (1) takes into account the
potential gradient ξ in the z direction perpendicular to the 2D
electronic structure, which resides in the xy plane:

Hz = ξz.

In order to adapt the Hamiltonian Hz to the tight-binding
framework, we divide the contributions from the Hamiltonian
Hz into an on-site part H z,onsite as well as a part coming from
neighboring atoms H z,neigh.

In order to calculate the full integral, we use spherical
harmonics for the angular part of the wave function. The radial
part is approximated by the asymptotic radial wave function
Ra as outlined by Slater in Ref. 11:

Ra(n∗,Z − s,r) ∝ pnl

(
r

a0

)n∗−1

e−[(Z−s)/n∗](r/a0). (4)

Here n∗ is an effective principal quantum number, Z is the
atomic number, s is a screening charge, and a0 = 0.529 Å is
the Bohr radius (for details see Ref. 11). Further, we introduce
a sign parameter pnl = (−1)n−l−1 to ensure an asymptotic
approach to zero from positive or negative values. Here, n and
l are the principal and orbital quantum numbers, respectively.
This asymptotic wave function Ra gives a reasonable approx-
imation for the general behavior of the different tight-binding
parameters that will be discussed in the following.

III. ON-SITE CONTRIBUTION FROM H z

The matrix elements for the on-site Hamiltonian H z,onsite

can be written as

H
z,onsite
oo′ = 〈o|ξz|o′〉 = ξ 〈o|r cos θ |o′〉. (5)

Here, r is the radial component in spherical coordinates and
z = r cos θ = 2

√
π
3 rY 0

1 (θ,φ) represents the conversion from
Cartesian to spherical coordinates and to spherical harmonics,
respectively. The last step allows us to express the angular part
of the integral in Eq. (5) in terms of Gaunt coefficients.12 From
the properties of the Gaunt coefficients, we can directly deduce
that the matrix elements in Hz are only nonzero, if �l = ±1
and �m = 0. Furthermore, as the orbitals with m �= 0 are a
linear combination of the spherical harmonics, some matrix
elements even cancel to zero for �m = 0. According to these
selection rules the only nonzero elements are spz, pxdzx , pydyz,
and pzdz2 .

In order to account for the effects of the potential gradient
on the on-site spz contribution, we define a parameter γsp in
analogy to Ref. 2. Using Eq. (4), we find

γsp = 〈s|z|pz〉 = −a0
n∗(1 + 2n∗)

2
√

3(Z − s)
. (6)

It serves as an empirical parameter similar to the tight-binding
parameters, e.g., Vspσ . The parameter γsp depends on the
effective principal quantum number n∗ through the radial part
of the wave function, which defines the spatial extent of the
orbital. The parameter γsp is shown in Fig. 1 as a function
of the principal quantum number n. The modulus for γsp

continuously increases with the effective principal quantum
number n∗, i.e., the parameter becomes more important for
heavier atoms. The increase with n∗ can be understood by the
increasing spatial extension of the wave function, so that it
becomes more sensitive to the effects of the potential gradient.
The modulus of γsp is closely related to the position of the
principal maximum rmax = a0n

∗2/(Z − s) of the radial charge
density ρr ∝ r2R2

a .11
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FIG. 1. Overlap integral −γsp as a function of principal quantum
number n and for the elements of the fourth group.
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IV. NEAREST-NEIGHBOR CONTRIBUTION FROM H z

The matrix elements for the H z,neigh Hamiltonian between
two neighboring atoms are

H
z,neigh
oo′ =

∑
〈i〉

eikRi 〈o|ξz|o′,Ri〉

=
∑
〈i〉

eikRi ξ 〈o|r cos θ |o′,Ri〉. (7)

These integrals can only be evaluated numerically even
for the rather simple wave function of the hydrogen atom.
Nevertheless, we can identify the nonzero matrix elements
in H z,neigh and find their angular dependence in terms of the
directional cosines. The resulting tight-binding matrix for the
contribution of the neighboring atoms to the potential gradient
in the basis {s,px,py,pz} is

H z,neigh =
∑
〈i〉

eikRi ξ

⎛
⎜⎜⎜⎝

0 uw(γsp2 − γsp1) vw(γsp2 − γsp1) (1 − w2)γsp1 + w2γsp2

uw(γsp2 − γsp1) 0 0 uγpp1

vw(γsp2 − γsp1) 0 0 vγpp1

(1 − w2)γsp1 + w2γsp2 −uγpp1 −vγpp1 0

⎞
⎟⎟⎟⎠ . (8)

The quantities u, v, and w, which depend on the vector Ri

connecting two neighboring atoms, are the directional cosines
in the x, y, and z direction, respectively. The parameters γsp1,
γsp2, and γpp1 are defined as

γsp1 = 〈s|z|pz,dex〉,

γsp2 =
〈
s,−d

2
ez

∣∣∣∣ z
∣∣∣∣pz,

d

2
ez

〉
, (9)

γpp1 = 〈px |z|pz,dex〉,
where d is the nearest-neighbor distance and ei are the unit
vectors in the respective directions. A matrix element in
H z,neigh will transform even (odd) under exchange of indices if
the orbitals have different (same) parity, i.e., Eγ (o′,o,−Ri) =
(−1)|l−l′+1|Eγ (o,o′,Ri). The parameter γsp2 accounts for the
nearest-neighbor displacement perpendicular to the xy plane.
To calculate γsp2, the xy plane (z = 0) has been set at an
equal distance between the neighboring atoms for the influence
of the potential on the two neighboring atoms to be equal.
Equation (8) applies to the general case of a corrugated 2D
system where the vectors connecting the atoms have a z

component. If the 2D system is completely flat, then w → 0
and the matrix in Eq. (8) reduces to

H z,neigh =
∑
〈i〉

eikRi ξ

⎛
⎜⎜⎜⎝

0 0 0 γsp1

0 0 0 uγpp1

0 0 0 vγpp1

γsp1 −uγpp1 −vγpp1 0

⎞
⎟⎟⎟⎠ .

(10)

The matrix in Eq. (10) depends on the parameters γsp1 and
γpp1, which account for a lattice residing in the xy plane. If we
further reduce the basis to the p orbitals in the lower matrix of
Eq. (7), we recover the parameter γ from the potential gradient
that was used by Petersen and Hedegård,2 i.e., γ = ξγpp1. In
contrast to the on-site contribution of the potential gradient,
where only orbitals with �l = ±1 couple, the contribution
from the neighboring atoms also couples orbitals with �l = 0
and �m �= 0.

The parameters γsp1, γsp2, and γpp1 all depend on the
distance d between the neighboring atoms. In order to plot this
distance dependence (Fig. 2) we use the asymptotic radial wave

function Ra for the carbon atom. The parameters γsp1 and γsp2

have a maximum at zero distance, which is expected as they are
closely related to the only nonzero on-site contribution γsp . The
third parameter γpp1 reaches a maximum for a certain distance
d between neighboring atoms indicating optimal overlap. For
larger distances all three parameters decrease to zero as the
overlap between orbitals diminishes.

V. APPLICATION TO GRAPHENE AT K

We apply this model to the honeycomb lattice of graphene.
A Rashba-type spin splitting has been discussed extensively
in the literature,3–5,13 but the combined aspects of an on-site as
well as a nearest-neighbor contribution to the potential gradient
have not been considered so far.

The basis vectors a1 and a2 as well as the vector τ

connecting the two basis atoms (A and B) can be defined
using the nearest-neighbor distance d:

a1 = d

2

(−√
3

3

)
, a2 = d

2

(√
3
3

)
, τ = d

(
0

1

)
. (11)

With s and p orbitals, two basis atoms, and two spin
components, the resulting matrix will be a 16 × 16 matrix. In
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FIG. 2. (Color online) Dependence of the parameters γsp1, γsp2,
and γpp1 on the distance d between the neighboring atoms. The
calculations have been done for the valence orbitals of carbon.
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order to compare the results from the Hamiltonian in Eq. (1)
to previous results, we project, i.e., downfold, the Hamiltonian
in Eq. (1) onto the pz bands near the K point using a standard
theorem:

H eff = PHP + PHQ
1

ε − QHQ
QHP. (12)

Here, P is a matrix projecting the Hamiltonian near the energy
ε onto the pz orbitals and Q = 1 − P . The denominator in the

second term of Eq. (12) will be evaluated at the K point with
α = 0 and ξ = 0. The elements of the resulting 4 × 4 matrix

H eff =

⎛
⎜⎜⎜⎝

H11 H12 H13 H14

H ∗
12 H22 H23 H13

H ∗
13 H ∗

23 H22 H12

H ∗
14 H ∗

13 H ∗
12 H11

⎞
⎟⎟⎟⎠ , (13)

with the basis {pz↑A,pz↑B,pz↓A,pz↓B}, are to second order in
momentum k:

H11 = −d2(k2
x + k2

y

)
ξ 2 γpp1(Vspσ γsp + γpp1εs)

2V 2
spσ

+ ξ 2 γpp1(2Vspσ γsp + γpp1εs)

V 2
spσ

,

H12 = 3

2
d(kx − iky)

(
Vppπ + ξ 2 2γpp1γsp1

Vspσ

)
+ 3

8
d2(kx + iky)2

[
Vppπ − 2ξ 2γpp1

(
γpp1

Vppπ − Vppσ

− γsp1

Vspσ

)]
,

H13 = −id2(kx + iky)2 αξ

8

(
γpp1

Vppπ − Vppσ

+ γsp1

Vspσ

)
+ d(ikx + ky)

αξ

2

(
γpp1

Vppπ − Vppσ

− γsp1

Vspσ

)
,

(14)
H14 = 0,

H22 = −d2
(
k2
x + k2

y

)
ξ 2 γpp1(Vspσ γsp + γpp1εs)

2V 2
spσ

+ 18Vspσ ξ 2γpp1γsp + (
α2 + 9ξ 2γ 2

pp1

)
εs

9V 2
spσ

,

H23 = id2
(
k2
x + k2

y

) αξγpp1εs

6V 2
spσ

− 2i
αξ (Vspσ γsp + γpp1εs)

3V 2
spσ

.

In order to better understand the origin of the different terms in Eq. (14) and their effect on the band dispersion, we compare
the matrix elements in Eq. (14) to the Hamiltonian expressed in terms of the basis functions of the trigonal graphene band
structure near the K point from Ref. 14:

H sym = a10 + a61(kxσx + kyσy) + a11
(
k2
x + k2

y

) + a62
[(

k2
y − k2

x

)
σx + 2kxkyσy

] + α p21szσz + α p22
(
k2
x + k2

y

)
szσz

+ ξ r62(syσx − sxσy) + ξ r11(kxsy − kysx) + ξ r64[(kxsx − kysy)σy + (kysx + kxsy)σx]

+ ξ r12
[(

k2
x − k2

y

)
sx − 2kxkysy

] + ξ r63
[
2kxkysxσx − (

k2
x − k2

y

)
syσx − 2kxkysyσy + (

k2
y − k2

x

)
sxσy

]
+ ξ r65

(
k2
x + k2

y

)
(syσx − sxσy). (15)

For brevity, the superscripts of the coefficients in Ref. 14
as well as the unit matrices have been omitted. The si and
σi (i = x,y,z) are the Pauli-spin and pseudospin matrices,
respectively. The coefficients aij , pij , and rij refer to the
intrinsic band dispersion, the spin-orbit coupling α, and the
effects of an external electric field ξ along the z direction,
respectively. We find a direct correspondence between the
Hamiltonian H eff and H sym:

a10 = 2ξ 2γpp1γsp

Vspσ

+
(
α2 + 18ξ 2γ 2

pp1

)
εs

18V 2
spσ

,

a11 = −d2ξ 2γpp1(Vspσ γsp + γpp1εs)

2V 2
spσ

,

a61 = 3

2
d

(
Vppπ + 2ξ 2γpp1γsp1

Vspσ

)
,

a62 = −3

8
d2

[
Vppπ − 2ξ 2γpp1

(
γpp1

Vppπ − Vppσ

− γsp1

Vspσ

)]
,

p21 = − αεs

18V 2
spσ

,

p22 = 0,

r11 = −d
α

2

(
γpp1

Vppπ − Vppσ

− γsp1

Vspσ

)
,

r12 = −id2 α

8

(
γpp1

Vppπ − Vppσ

+ γsp1

Vspσ

)
,

r62 = α

(
γsp

3Vspσ

+ γpp1εs

3V 2
spσ

)
,

r64 = 0,

r63 = 0,

r65 = −d2α
γpp1εs

12V 2
spσ

. (16)

All terms in Eq. (16) are influenced by the electric field ξ

(through the parameters γoo′x) and/or the atomic spin-orbit
coupling strength α to second order, i.e., α2, αξ , or ξ 2.
The coefficients for the unperturbed band dispersion aij are
corrected by terms proportional to ξ 2 and/or α2 from the
nearest-neighbor contributions to the Hamiltonian Hz. Terms
to second order in ξ and α have not explicitly been considered
in the expansion of the basis functions in Ref. 14. They result
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from the projection of the Hamiltonian [Eq. (1)] and are thus
included for completeness. This affects the value of the band
velocity h̄vF related to a61 as well as second-order corrections
to the linear band dispersion from the coefficients a11 and
a62. The coefficient a10 is a constant offset corresponding to
a rigid-band shift, which has no further consequence for the
subsequent discussion. For the coefficients associated with
the spin-orbit interaction pij , the present tight-binding model
contributes only to second order in the atomic spin-orbit
coupling strength α via the parameter p21. This result has
been obtained previously.5

The coefficients rij are related to the first-order contribution
of the electric field ξ . They also depend linearly on the
spin-orbit coupling α. The coefficient r62 can be identified
with the zeroth-order Rashba constant λR (see, e.g., Refs. 4
and 5). Aside from the first term in r62, which originates
from the on-site contribution in Hz, all other contributions to
rij come from the nearest-neighbor contribution. The on-site
contribution in r62 has been considered in previous models4,5

and can be constructed from the effective on-site Rashba term:6

H R,onsite = VR(syσx − sxσy), (17)

where VR is the corresponding effective coupling constant,
with VR = αξ

γsp

3Vspσ
. The second term in r62 has not been

considered in previous models.4,5 It is of the same order of
magnitude as the first (on-site) term, but originates from the
nearest-neighbor contribution in Hz. It can be constructed from
the effective nearest-neighbor Rashba term to zeroth order in
momentum k, which has been discussed in Ref. 6 and in more
detail in Ref. 14:

H R,neigh =
(

0 hR

h∗
R 0

)
; hR = V ′

R

∑
〈i〉

ieikRi

(
s × Ri

|Ri |
)

· ẑ,

(18)

where the sum is over nearest neighbors, V ′
R is the corre-

sponding effective coupling constant, ẑ is the unit vector
in the z direction, and s is the vector of Pauli matrices.6,14

The second term in r62 opens up a new path in the effective
nearest-neighbor hopping of two pz orbitals in addition to
the one discussed in Ref. 4. This means that the effect
of the electric field ξ on the spin-splitting in graphene is
larger than previously assumed. Further, the effective nearest-
neighbor Rashba term in Eq. (18) has nonzero coefficients,
which are zero in the tight-binding model (r63 and r64). The
coefficients extracted from Eq. (18) are up to second order in
momentum k:

ξr62 = 3
2V ′

R,

ξr64 = 3
4dV ′

R,
(19)

ξr63 = 3
16d2V ′

R,

ξr65 = − 3
8d2V ′

R.

Here, V ′
R = αξ

2γpp1εs

9V 2
spσ

when comparing the coefficients to the

tight-binding model. Other contributions not considered in
the present tight-binding model (e.g., higher-order orbitals)
may result in nonzero coefficients r63 and r64. On the other
hand, the coefficient r11 is nonzero in the tight-binding model,
but cannot be constructed from either Eqs. (17) or (18).14

It can be assigned to the “linear” Rashba constant αR from
the “conventional” Bychkov-Rashba model,1 as the corre-
sponding basis function shows the same linear momentum
dependence. It introduces a spin-dependent correction to the
band velocity h̄vF . The coefficients r12 and r65 both give
a correction to second order in momentum. In this way,
the tight-binding model unifies different phenomenological
descriptions [Eqs. (17) and (18)] demonstrating that even
though they have similar effects on the band dispersion,
they actually have a different origin (the on-site and nearest-
neighbor contribution, respectively).

In order to make the effects of the different contributions
more obvious we reduce the Hamiltonian H eff in Eqs. (13)
and (14) to first order in momentum k. This enables us to
calculate the energy eigenvalues in an analytical form. We
find

Eμ,λ(k)

= a10 + λξr62 + μ
√

k2 (a61 + λξr11) 2 + (p21 − λξr62) 2,

(20)

where μ = ±1 refers to the valence/conduction band and
λ = ±1 is the index for the spin eigenstate. The origin of
the momentum k is set at the K point. We can associate the
coefficients of the basis functions with the band velocity h̄vF ,
the intrinsic spin-orbit splitting �SO, as well as the zeroth and
first-order Rashba constants λR and αR:

h̄vF = a61 + λξ r11

= 3

2
d

(
Vppπ + ξ 2 2γpp1γsp1

Vspσ

)

− λd
αξ

2

(
γpp1

Vppπ − Vppσ

− γsp1

Vspσ

)
,

(21)

�SOC = α p21 = − α2εs

18V 2
spσ

,

λR = ξ r62 = αξγsp

3Vspσ

+ αξγpp1εs

3V 2
spσ

,

αR = ξ r11 = −d
αξ

2

(
γpp1

Vppπ − Vppσ

− γsp1

Vspσ

)
.

For a numerical evaluation of the parameters in Eq. (21), we
have to calculate the potential gradient parameters γsp, γsp1,
and γpp1 using Eqs. (6) and (9). Again, we use the asymptotic
radial wave function Ra for the carbon atom. Further, for the
atomic spin-orbit coupling strength we assume α = 8.5 meV,15

and for the electric field we estimate ξ = 0.1 eV
Å

, which is a
reasonable value for a graphene layer on a substrate. With
the potential gradient parameters γsp = −0.47 Å, γsp1 =
−0.16 Å, and γpp1 = 0.17 Å, as well as the tight-binding
parameters from Table II, we find at the K point

h̄vF = −6.46 eV Å + λ × 107.7 μeV Å,

�SOC = 1.14 μeV,
(22)

λR = 37.4 μeV,

αR = 6.46 μeV Å.
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TABLE II. Tight-binding parameters of graphene with a nearest-
neighbor distance of d = 1.42 Å (Refs. 5 and 16).

Parameter Value (eV)

εs −8.868
εp 0.000
Vssσ −6.769
Vspσ 5.580
Vppσ 5.037
Vppπ −3.033

The band velocity h̄vF agrees with experimental values (see,
e.g., Ref. 17). The band dispersion near the K point is shown
in Fig. 3 for different scenarios. It is clearly visible that
the nearest-neighbor parameters γsp1 and γpp1 give a sizable
contribution to the spin splitting. Away from the K point,
we find for the momentum dependent energy splitting �E

between the spin-split branches

�E = 2λR + 2 |k| αR. (23)

Therefore the nearest-neighbor contribution to the Hamilto-
nian Hz does not only give a correction to the constant spin
splitting, but also introduces an additional term, which depends
linearly on momentum.

VI. APPLICATION TO pz BANDS AT �

We have carried out a similar analysis for the pz bands at
the � point, in analogy to the calculation presented for the K
point above. In addition to the honeycomb lattice of graphene
with two atoms per unit cell, we have also calculated the
corresponding Hamiltonians for a hexagonal and a quadratic
lattice with one atom per unit cell. As the symmetry at the �

point is higher than at the K point, we expect the set of allowed
basis functions for the band dispersion to be smaller. The
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FIG. 3. (Color online) Dispersion of the graphene bands near the
Fermi level at the K point for different contributions from the potential
gradient.

energy dispersion, which we have found from the tight-binding
model presented here to second order in momentum k, is

Eλ (k) = h̄2

2m
k2 + λαR |k| + E0 (24)

with the origin of the momentum k at the � point. The
projection given in Eq. (12) has been carried out at ε = ηVppπ

with η being the number of nearest neighbors in the respective
lattice. The different coefficients in terms of the tight-binding
parameters are

h̄2

2m
= −1

4
d2η

(
Vppπ − 2ξ 2γ 2

pp1

Vppπ − Vppσ

+ 2ξ 2γsp1(γsp + ηγsp1)

ηVppπ − ηVssσ − εs

)
,

E0 = ηVppπ + α2

ηVppπ − ηVppσ

+ ξ 2(γsp + ηγsp1)2

ηVppπ − ηVssσ − εs

, (25)

αR = dαξγpp1

Vppπ − Vppσ

.

Here, d is the nearest-neighbor distance of the respective
lattice. Because of the high symmetry at the � point, the zeroth-
order Rashba parameter λR is zero so that the lowest-order
contribution is the linear Rashba constant αR . It is equivalent
to the phenomenological description of the nearest-neighbor
Rashba term.6,8 The results for the different lattices (effective
mass and energy offset) only differ from each other by
the number of nearest neighbors involved, i.e., η = 3 for
the honeycomb lattice, η = 4 for the quadratic lattice, and
η = 6 for the hexagonal lattice. A schematic of the band
dispersion is shown in Fig. 4. The characteristic offset can be
clearly seen. Since � is a time-reversal invariant point in the
two-dimensional Brillouin zone, the spin-split band remains
degenerate there. The atomic spin-orbit coupling strength α

and the electric field ξ introduce small corrections to the
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FIG. 4. (Color online) Dispersion of a two-dimensional state at
the � point for different contributions from the potential gradient.
The effective mass m is 0.4 me (me: free electron mass), the energy
offset E0 is zero, and the linear Rashba constant αR is 0.33 eV Å.
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effective mass and the energy offset. Interestingly, the linear
Rashba constant αR only depends on the electric field ξ through
the nearest-neighbor overlap of the pxy orbitals with the pz

orbital in agreement with Petersen and Hedegård;2,18 it does
not depend on the on-site contribution γsp . Moreover, the linear
Rashba constant αR is independent of the details in the three
lattices. This gives the result a certain kind of universality.

VII. APPLICATION TO A CORRUGATED LATTICE

Many systems with a sizable Rashba-type spin splitting
have a corrugated surface structure (e.g., Bi, Sb, Ag, or
Cu based surface alloys with Bi, Pb, Sb).19–25 The simplest
approach to describe a corrugated surface is a honeycomb
lattice where the two basis atoms are displaced by ±�z from
the xy plane. This structure mimics the topmost surface layer
of, e.g., the Bi(111) or Sb(111) surface. The linear Rashba
constant αR in a corrugated honeycomb lattice amounts to

αR = dαξγpp1
Vppπ − Vppσ

(26)

and is identical to the one for the uncorrugated lattice [see
Eq. (25)]. It increases proportionally to the nearest-neighbor
distance d. As the values of the tight-binding parameters
decrease with increasing distance d (see, e.g., Ref. 26), we
expect a corresponding increase in the Rashba constant as well.

In the literature, a strong increase of the Rashba-type
spin splitting due to the corrugation of the surface has been
discussed extensively.25,27–30 In particular, for the Ag and Cu
based surface alloys with Bi, Pb, or Sb, a correspondence
between the outward relaxation of the alloy atoms and the
strength of the Rashba-type spin splitting has been observed.29

However, for the tight-binding model presented here a corru-
gation of the lattice does not result in a particular enhancement
of the Rashba-type spin splitting. Obviously, a more detailed
model, possibly an inclusion of the d bands4 or higher-order
contributions to the Rashba coefficient,31 is needed to describe
this enhancement by corrugation.

VIII. CONCLUSION

In summary, we have presented an extended sp-band
tight-binding model for the Rashba-type spin splitting in
two-dimensional lattices by combining the on-site and nearest-
neighbor contributions from the potential gradient. Concerning
the conical band structure near the K point of graphene, it
combines the effective on-site and nearest-neighbor Rashba
terms [Eqs. (17) and (18)] along with other Rashba terms
that are not included in the effective Rashba terms. The tight-
binding model thus further validates the already successful
phenomenological description at the same time pointing out
that it is not complete. The nearest-neighbor contribution from
the potential gradient gives a sizable contribution to the zeroth-
order Rashba constant λR as well as a nonzero linear Rashba
constant αR . Hence both the on-site and the nearest-neighbor
contribution should be considered in model calculations. At
the �-point quadratic, hexagonal as well as flat and corrugated
honeycomb lattices all give the same simple expression for
the linear Rashba parameter αR , which only depends on the
nearest-neighbor contribution from the potential gradient. In
particular, it is independent of the details of the lattices giving
the result a certain kind of universality and confirms the success
of the phenomenological nearest-neighbor Rashba term. The
next step would be to combine this model with the results
from d-band contributions4 and higher-order contributions to
the Rashba coefficient,31 which have been shown to add to
the Rashba-type spin splitting. Successively including more
components to this model will at the end lead to a better
understanding of the Rashba-type spin splitting at surfaces.
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