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H I G H L I G H T S
c Two-dimensional electron systems close to the surface have been prepared by surface doping.
c These systems are probed by photoelectron spectroscopy and scanning tunneling spectroscopy.
c Transitions between extended and localized states in the quantum Hall regime are visualized.
c The local exchange enhancement of up to 0.7 meV is directly measured.
c Rashba-type spin splitting is probed on the local scale.
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a b s t r a c t

The interrelation between spin and charge in semiconductors leads to interesting effects, e.g., the

Rashba-type spin–orbit splitting or the exchange enhancement. These properties are proposed to be

used in applications such as spin transistors or spin qubits. Probing them on the local scale with the

ultimate spatial resolution of the scanning tunneling microscope addresses their susceptibility to

disorder directly. Here we review the results obtained on two-dimensional electron systems (2DESs) in

semiconductors. We describe the preparation and characterization of an adequate 2DES which can be

probed by scanning tunneling microscopy. It is shown how the electron density and the disorder within

the 2DES can be tuned and measured. The observed local density of states of weakly and strongly

disordered systems is discussed in detail. It is shown that the weakly disordered 2DES exhibits

quantum Hall effect in magnetic field. The corresponding local density of states across a quantum Hall

transition is mapped showing the development from localized states to extended states and back to

localized states in real space. Decoupling the 2DES from screening electrons of the bulk of the III–V

semiconductor leads to a measurable exchange enhancement of up to 0.7 meV which depends on the

local spin polarization of the 2DES. At stronger confinement potential, i.e. larger doping, the Rashba

spin splitting with a as large as 7�10�11 eV m is observed as a beating in the density of states in

magnetic field. The Rashba spin splitting varies with position by about 750% being largest at

potential hills.

& 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The proposal of the spin transistor by Datta and Das in 1990
[1] initiated a new field, which is called semiconductor spintro-
nics. It has the goal to use the spin degree of freedom of the
electron not only to store and read information, but also to
process information [2,3]. The initial idea of the spin transistor
was to use the electric field of a gate electrode to induce an
effective magnetic field B

eff
(underlined quantities are vectors

within the whole paper) within the reference frame of moving
electrons of a 2D electron system (Rashba effect) [4,5]. This
effective B-field induces precession of electron spins, if they are
oriented perpendicular to B

eff
and if the electrons move perpen-

dicular to B
eff

. Using ferromagnetic source and drain electrodes,
which are polarized both in the same direction perpendicular to
B

eff
, the transistor can be tuned on or off, if the precession angle

between source and drain is 2p or p, respectively. This solely
depends on the gate voltage and, thus, voltage pulses can be used
for tuning. Such a spin transistor might be faster and more energy
efficient than standard field effect transistors.

Motivated by this idea, various experimental techniques using
electron spin resonance [6–8], time-resolved optics [9–12], and
multi-terminal spin transport [13–15] have been applied to
understand the spin injection into semiconductors [13,16–18],
the dynamics and possibilities of manipulation within semi-
conductors [19–22] as well as the spin detection [23–25]. While
highly efficient spin injection [13,18], large spin relaxation
lengths [26] as well as an efficient manipulation of spins by the
Rashba effect [19–21] have been demonstrated, the realization of
a reliably operating spin transistor remains elusive [22,27].

Another branch of application in semiconductor spintronics is
quantum computation based on spins in quantum dots [28,29].
Using the spin degree of freedom of an electron as a qubit of
information has the advantage that the spin is only marginally
coupled to other degrees of freedom mostly via the spin–orbit
interaction, the hyperfine interaction to the nuclear spins and the
dipolar coupling to other electron spins. Thus, decoherence and
relaxation of the qubit are weak, which might allow to implement
adequate error correction schemes for information processing
[30,31]. Using quantum dots as hosts for individual electron spins
allows to transfer the immense knowledge on preparational and
electrical control of the quantum dots gained in the previous years
[32]. However, adequately manipulating the spins on the local scale
remains a challenge, since typical electron spin resonance schemes
are never local on the nm-scale [33]. Thus, researchers used singlet
and triplet degrees of freedom of a pair of electron spins to perform
the single qubit operations electrically by gates, thereby implement-
ing a promising, scalable scheme [34]. Coherence times up to 0.2 ms
have been reached, which would lead to about 105 possible qubit
operations within the coherence time [35]. The fidelity of a two-
qubit operation has been determined to be 70% so far and, thus, still
has to be improved [36]. Although other approaches to solid-state
based qubits like superconducting transmons [37–39] or NV centers
in diamond [40–42] are ahead with respect to fidelity or coherence
times, it is still likely that the easier scalability of the spin qubits
renders it the more favorable approach.

Avoiding disorder in electronic or spintronic devices is
typically advantageous, although exceptions like the quantum
Hall resistance standard [43] relying on a remaining amount of
disorder are known. More importantly, disorder can never be
avoided completely and, thus, the relation of the relevant effects
to disorder are important to be understood. Since disorder is a
local property, getting knowledge on the local scale is the most
straightforward approach. The highest spacial resolution is pro-
vided by the scanning tunneling microscope (STM) [44], which in
different spectroscopic modes is sensitive to the charge and spin
distribution of individual electronic states [45–52]. For certain
structures, even the phase of the electron wave function has been
reconstructed [53]. A quasi-coherent manipulation of a pair of
wave functions within a quantum corral has also been realized by
manipulating the local disorder via STM [54]. Thus, STM is an
excellent tool to probe the interaction of relevant spin properties
with disorder down to the atomic length scale.

To this end, we will show that the exchange interaction between

spins as well as the Rashba-type interaction of spins with electric

fields can be detected in semiconductors on the nm-scale. Therefore,
we use a two-dimensional electron system (2DES) which is
induced by surface doping of a low band gap III–V semiconductor
[55–58]. This 2DES is located directly below the surface (depth:
10 nm) and, thus, can be probed by photoelectron spectroscopy
[55] as well as by STM [59–62]. This way, the parabolic dispersion
of the 2DES can be measured directly. Moreover, the potential
disorder can be determined with meV and nm accuracy using the
so-called tip-induced quantum dot [63]. The 2DES exhibits the
integer quantum Hall effect in magnetic field [64,65] and the
corresponding states across a quantum Hall transition have been
detected by STM [66]. Since the magnetic field allows to localize
electrons, a sizable exchange interaction between the localized
spins appears, which can be determined by careful inspection of
the spin splitting within local Landau level fans [67]. The spin
splitting is roughly 0.7 meV larger, if the local filling factor is odd
than if it is even. Moreover, by preparing the 2DES such that it is
confined within a large electric field (2�107 V/m), we can detect
the Rashba-type spin splitting. This spin splitting is visible as a
beating pattern of the density of states (DOSs) in magnetic field,
which without Rashba-interaction exhibits regularly spaced
Landau levels [68]. The Rashba-type spin splitting can also be
probed directly as a locally fluctuating energy distance between
two spin levels appearing as peaks in the local density of states
[69]. Thus, we demonstrate that both, exchange interaction as
well as Rashba-type interaction of electron spins can be probed
down to the length scale of individual electronic states.

Before doing so, we shortly highlight the scanning tunneling
spectroscopy (STS) results obtained on other types of 2DES for the
sake of comparison. This includes the surface states on metals,
which also exhibit a Rashba-type interaction [70]. The corre-
sponding results are described within this review for comparison.
Recently, graphene and the surfaces of topological insulators,
which are two-dimensional semimetals with a conical, nearly
linear EðkÞ dispersion have also been probed by STS. The crossing
point of all EðkÞ dispersion lines at the Dirac point causes a
vanishing density of states (DOSs) at this particular energy. The
STS results on graphene have been reviewed already [71–73]
showing, e.g., standing waves of electrons around defects [74,75],
impurity resonances at vacancies [76], a technique to determine
the disorder potential [77], which is significantly improved after
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deposition of the graphene on BN(0 0 0 1) [78], Landau levels
fluctuating with position on different substrates [79–81], the
tunneling into localized areas governed by Coulomb blockade
within quantizing magnetic fields [82], as well as a strong
exchange enhancement for the first Landau level [83]. However,
from these properties, only the last is related to spin and,
accordingly, included into this review. Interestingly, graphene
exhibits, in addition, spin polarized edge states at zig-zag edges,
which have indeed been found by STS probing the edges of
graphene on different substrates [84–86]. However, a direct proof
of their spin polarization is still missing [87].

Topological insulators exhibit an odd number of surface states
within the band gap of the bulk insulator. At least, one of these
states is protected by the particular symmetry of the bulk [88,89].
The protected surface state exhibits a Dirac point and a chiral spin
polarization, which has been directly probed by photoelectron
spectroscopy [90]. STS has probed this property indirectly by
analyzing the scattering patterns around defects leading to an
experimental proof that backscattering is prohibited in case of
spin conservation [91]. Another study shows the transparency of
step edges for the protected surface state [92]. Also potential
fluctuations [93], resonances at impurity states [94], and Landau
levels for energies of the surface state above the Dirac point have
been mapped [95,96]. The Landau levels could be additionally
destroyed by adsorbing atomic defects on the surface [95,96]. We
do not aim to review these results in detail, since they are only
indirectly related to spin so far.

This review is organized as follows. Section 2 describes the
characterization of the semiconductor 2DES by photoemission.
Section 3 is a short general introduction into scanning tunneling
spectroscopy (STS). Then, techniques to determine the potential
Fig. 1. (a) Sketch of buried 2DES as typically used in transport measurements with mob

for an adsorbate induced 2DES; (c) calculated band structure of InSb after depositin

(horizontal lines) and wave function CðzÞ of the first subband are shown; the valence

curves) (ND ¼ 1:1� 1022 m�3) with different Nb coverages on the surface as indicated;

angle of photoelectrons Y¼ 01; (e) energy shifts of different valence band peaks of n-In

resulting kinetic energy Ekin of the photoelectrons and estimated escape depths l of th

shift and work function shift is marked, notice that the peaks shift to lower binding en

conduction band minimum at the surface for different adsorbates on InAs(1 1 0) as a

p-InSb(1 1 0) (NA ¼ 1:5� 1024 m�3) directly after cleavage; (h) same data as (g) after a
disorder of the 2DES with high resolution are introduced (Section 4).
The resulting local density of states reacting onto different strength
of the disorder differently is shown in Section 5. After describing the
observed local density of states within the quantum Hall regime
(Section 6), we finally show how the local exchange interaction can
be directly extracted from the STS data of the 2DES (Section 7) as
well as how the Rashba effect is probed quantitatively on the local
scale (Section 8).
2. Probing the 2DES by photoemission

The general problem of studying 2DESs of semiconductors by
surface science techniques is that they are typically located about
100 nm below the surface. This depth is chosen intentionally in
order to avoid scattering at surface defects and, indeed, high
mobilities up to 104 m2/V s of the corresponding 2DESs have been
achieved at low temperature implying an electron mean free path
close to mm [97–99]. However, these 2DESs cannot be tackled by
surface science techniques as STM or angular resolved photoelec-
tron spectroscopy (ARPES). If one estimates, e.g., the tunneling
current from a tip above the surface into a GaAs 2DES covered by
100 nm of AlAs with the triangular barrier approximation [100],
one ends up with a tunneling current of the order of 10�50 A,
which corresponds to about 10�13 electrons within the antici-
pated age of the universe, well below the detection limit of
available current amplifiers. This impossibility is illustrated in
Fig. 1(a). One possibility to overcome the problem is to tunnel
into the cleaved edge of the sample, which gives access to the
cross section of the 2DES [101,102]. Indeed, subbands and con-
fined states of the 2DES have been mapped by STS of cleaved
ility m and calculated tunneling current from the tip I indicated; (b) same as (a), but

g Cs atoms on top; Fermi level EF, charged Cs on the surface, subband energies

band is omitted for clarity; (d) ARPES data of n-InAs(1 1 0) (energy distribution

nearly vertical lines mark the shifting peaks, photon energy hn¼ 13 eV, emission

As(1 1 0) as a function of Nb coverage, lower right inset shows photon energy hn,

e photoelectrons, the surface dipole determined by the differences between peak

ergies with increasing coverage; (f) highest position of the Fermi level above the

function of ionization energy of the free adsorbate atom [57]; (g) ARPES data of

dsorbing 2% Cs, T¼80 K, hn¼ 21 eV.
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heterostructures [103]. However, the distribution of electron
wave functions within the 2DES plane, guiding, e.g., the localiza-
tion phenomena of the 2DES, is not visible by this method.
Another possibility is to induce a 2DES directly at the surface by
surface doping (see Fig. 1(b)) [55,104,105]. This is possible for the
low bandgap materials as InAs and InSb, which exhibit a relatively
large electron affinity [55]. Basically, most adsorbates deposited
on that surfaces exhibit a confined, occupied state above the
conduction band edge of the substrate [55–58,104–106]. Thus,
the electron is moved from the adsorbate into the semiconductor
leaving a positive charge behind, which induces confinement of
electronic states in the conduction band. The resulting band
bending in the near surface region together with the wave
function of the confined state with lowest energy (C1ðzÞ of the
first subband) is sketched in Fig. 1(c). The band bending as well as
the wave function can be calculated using so-called Poisson–
Schrödinger solvers [107], which take the screening of the
charged surface adsorbates by bulk dopants as well as by confined
electrons self-consistently into account. A reasonable approxima-
tion is given by assuming a triangular potential well in z direction
with infinite surface barrier leading to [108]

CðzÞ ¼
b3

2

 !1=2

� z � e�bz=2, ð1Þ

with

b¼
48 � pmn

z me � e2 � N

4pEE0_
2

� �1=3

, ð2Þ

N¼NDopantþ
11
32N2DES, ð3Þ

here mn
z is the dimensionless effective mass of the conduction band

in z-direction, E is the dielectric constant of the semiconductor,
NDopant is the 2D density of charged dopants within the depletion
or accumulation layer and N2DES is the 2D density of confined
electrons. Moreover, E0 ¼ 8:8� 10�12 A s=V m is the dielectric
constant of vacuum, _¼ h=ð2pÞ ¼ 1:05� 10�34 J s is Planck’s con-
stant, e¼ 1:6� 10�19 C is the charge of an electron, and me ¼ 9:1�
10�31 kg is the bare mass of an electron. Typically, the center of
mass of 9CðzÞ92

, z0 ¼ 3=b, is about 10 nm below the surface and,
more importantly, the 2D electrons spill out of the surface due to
the finite barrier height at the surface. Thus, they can be detected
by STM like surface states, e.g., on metals [45].

A first characterization of the induced band bending and the
resulting 2DES subbands can be performed using ARPES.
Fig. 1(d) shows a number of spectra obtained for different
coverages of Nb on an n-type InAs(1 1 0) surface. Thereby,
InAs(1 1 0) is used since other surfaces as (1 1 1) or (0 0 1)
typically exhibit a band bending already after surface preparation
without adsorbates [109], presumably because of the relatively
large defect density. In contrast, the InAs(1 1 0) surface exhibits
only step edges as natural defects with typical interstep distance
of 5 mm [110]. Thus, it shows flat band conditions after cleavage
in ultrahigh vacuum. This is shown, e.g., in Fig. 1(g), where the
valence band of p-type InSb(1 1 0) as measured by ARPES exhibits
heavy and light hole bands as well as a spin–orbit split band
(maximum at �0.8 eV) and a Fermi level EF that cuts the valence
band, which evidences the absence of band bending. Conse-
quently, adsorbates can be used to tune the band bending. The
subsequently deposited adsorbate density is determined by a
quartz balance and is given with respect to the unit cell of
InAs(1 1 0), i.e. 1% coverage corresponds to an adsorbate density
of 3� 1016 m�2. The three spectra in Fig. 1(d) all exhibit two
peaks, which can be identified as bulk valence band states of InAs
[57]. They shift to lower energy with increasing coverage indicat-
ing the adsorbate induced band shift in the near surface region.
Fig. 1(e) shows the absolute value of the energy shifts of a number
of ARPES peaks observed at different photon energies as a
function of Nb coverage. Generally, all peaks show similar energy
shifts. However, the ones with the largest escape depths of the
photoelectrons show about 20% smaller peak shift in line with the
idea that they probe the shifted bands deeper into the bulk of the
system. The fact that the measured work function shift is larger
than the observed peak shifts, in particular, at large coverage
implies an additional change of a surface dipole, which has been
attributed to the lifting of the relaxation at the InAs(1 1 0) surface
[57]. In the case of Nb on n-type InAs(1 1 0), the largest band
bending is 320 meV. It is most likely limited by the donor level of
the adsorbate being Eads ¼ 320 meV above the conduction band
minimum of InAs. If the band bending is already large enough
such that the donor level of the next adsorbate is located below
the Fermi level of the substrate, no additional charging of the
adsorbates occurs. Thus, the process is self limiting. In turn, the
adsorbate level can be determined via the largest band shift at the
surface.

It has been found that this adsorbate level scales inversely
with the ionization energy of the corresponding neutral atom as
shown in Fig. 1(f) [57]. Obviously, surface band shifts up to
600 meV are possible using alkali atoms as adsorbates. This is
much larger than the band gap of InAs being 430 meV at T¼0 K or
360 meV at T¼300 K [111]. Such a large band bending can even
induce occupied confined states within a p-doped InAs crystal, i.e.
a conducting 2DES within an inversion layer. Fig. 1(g) and
(h) shows a direct proof of such an inversion layer using ARPES
mapping of the EðkÞ dispersion of p-type InSb(1 1 0) prior and
after deposition of 2% of Cs. The valence band of InSb is visible in
Fig. 1(g) as described above. Adsorbing 2% of Cs moves the
valence band down by about 450 meV and a single parabolic
band curved upwards in the EðkÞ dispersion appears at EF

(Fig. 1(h)). This band is considerably weaker in intensity than
the valence bands, such that the valence band appears as a
completely dark area, if the contrast is chosen such that the
2DES is visible. This is due to the fact that ARPES probes only a
few percent of the 2DES charge density, since the photoelectron
escape length is a factor of 10–20 smaller than the extension of
the 2DES. The fact that the energy distance between the origin of
the upwards parabola of the 2DES to the valence band maximum
is 350 meV, i.e. much larger than the known band gap of InSb
(230 meV) [112] directly reflects the confinement energy of the
first subband of the 2DES being 120 meV. Higher subbands of this
2DES are not occupied and, thus, not visible in ARPES.

Importantly, a high level of control of the band structure
properties of the 2DES is obtained by ARPES. The 2DES properties
can be designed by varying the dopant type (n- or p-type) and
dopant density of the substrate as well as the adsorbate type and
coverage.
3. Scanning tunneling microscopy

Before describing the STS data of the 2DES, we will shortly
summarize the most important features of STS. In STS, a sharp

metallic tip, mostly ending in a single atom, is positioned 3–8 Å
above a conducting surface. The surface is usually prepared in
ultra high vacuum (UHV) in order to be atomically smooth. A
voltage V is applied between the tip and the conducting surface
and the resulting tunneling current I is measured. I depends

exponentially on the distance between surface and tip Dz accord-

ing to IðzÞpexpð�aDzÞ. A good approximation for a is a¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4me � ðFsþFt�e9V9Þ

q
=_ with work functions of tip and sample

Ft and Fs, respectively. A good estimate is aC2:170:3=Å.
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The tip is positioned with respect to the sample using piezo-
electric elements. All three directions x, y, and z can be changed
with sub-pm precision [113]. For STM, the tip is scanned in x and
y direction and the tunneling current is kept constant by a
feedback mechanism adjusting z. The resulting zðx,yÞ is plotted
and called constant-current image. It represents, to first order, a
contour of constant integrated local density of states of the
substrate LDOSðx,y,z,EÞ, where the integration has to be taken
between the Fermi levels of sample and tip to be adjusted by V

[114]. The central position of the very last atom of the tip is given
by ðx,y,zÞ and E is the energy. Such images are often called
topography of the sample indicating that corrugations of the
atomic positions often dominate the contour.

Differentiating I with respect to V (at low V with respect to
FsðtÞ) gives direct access to the LDOS according to

dI=dVðx,y,z,VÞpLDOSðx,y,z,EÞ

¼
X

9C ~E ðx,y,zÞ92
� dðE� ~EÞ: ð4Þ

Thereby, C ~E are the single-particle wave functions of the sub-

strate at energy ~E and E�EF,s ¼ e � V with EF,s being the Fermi
energy of the sample and V being the sample voltage. Of course,
this requires that the system is adequately described by inde-
pendent single-particle wave functions. Moreover, an s-type
symmetry of the orbitals of the last atom of the tip is necessary,
in principle. Chen et al. have shown that the model remains
largely correct even if higher orbital momenta of the tip
wave functions are contributing [105]. In real experiments,

the d-function has to be replaced by an energy resolution

function with approximate full width at half-maximum of dE�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:3 � kBTÞ2þð1:8 � eVmodÞ

2
q

. T is the temperature (kB: Boltz-

mann’s constant) and Vmod is a modulation amplitude used to

detect dI/dV by lock-in technique. The resulting dI=dVðx,yÞ
recorded at constant V and constant I is often called LDOS-image
implying that the image is proportional to the LDOS distribution
in the surface layer. Strictly speaking, this is not correct since
constant I is not identical to constant height above the surface, i.e.
zðx,yÞaconst: A local enhancement of density of states, e.g.,
around a dopant within a semiconductor, can locally lead to a
larger tip-surface distance and, thus, to a reduced differential
conductivity. This can be cured by measuring the global distance

dependence of the tunneling current I(z) and dividing dI=dVðx,yÞ
by Iðzðx,yÞÞ resulting in [115]

LDOSðE,x,yÞp
dI=dVðx,y,V ¼ E=eÞ

Iðzðx,yÞÞ
: ð5Þ

However, that requires that the decay of I with respect to z is
spacially constant, which is a reasonable assumption for the LDOS

of a semiconductor 2DES, but could fail on the atomic scale [116].
Another modification, which applies favorably to normalize

dI=dVðVÞ curves, in particular, at higher V with respect to FsðtÞ, is

LDOSðEÞp
dI=dVðV ¼ E=eÞ

IðVÞ=V
: ð6Þ

This compensates for the effect that the transmission coefficient of
electrons through the tunnel barrier also changes with applied
voltage, which is relevant if 9V940:5 V [117]. Another problem
with dI=dVðVÞ curves is that they are sensitive to both, the LDOS(E)
of the sample as well as the LDOS(E) of the tip. Thus, it is required to
have a featureless LDOS(E) of the tip. Typically, one repeats mea-
surements with different tips on the same sample and attributes
repeatedly observed features to the sample or one changes the
properties of the sample, e.g., by applying a B-field, and measures
them with a metallic tip being insensitive to the B-field [118].

In conclusion, STM can measure atomic structure with sub-pm
resolution and electronic structure (LDOS) with sub-meV resolution
[119]. The energy resolution makes STM complementary to the
transmission electron microscope (TEM) which reveals atomically
well defined structural information partly with chemical specificity
[110], but not the LDOS down to the meV scale.
4. Disorder potential

4.1. Experimental determination

One drawback of STS on semiconductors is the low charge
density of semiconductors and the resulting relatively large
screening length ls of several nm, which can be calculated
according to

ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pE � aB

4mn

r
� ð3p2NÞ�1=6, ð7Þ

with the dielectric constant E¼ 14:6 for InAs and E¼ 16:8 for InSb,
the Bohr radius aB¼0.053 nm, and N being the 3D density of
mobile charge carriers. Thus, electric fields from the tip can
penetrate into the semiconductor leading to the so-called tip-
induced band bending [120].

This band bending depends on the work function difference
between tip and sample DF and the applied voltage. Typically,
the work function of the tip varies by about 300–500 meV
depending on details of the microtip [63]. Thus, it is important
to prepare the tip by trial and error such that DFC0 meV, which
is possible with an accuracy of better than 20 meV [59,66].

On the other hand, the tip-induced band bending can be used
to determine the disorder potential of the 2DES. Therefore, one
has to realize that the band bending, if downwards towards the
surface, leads to a conduction band region, which is confined in all
three directions, i.e. only the bands below the tip are pushed
downwards by the electric field of the tip leading to a quantum
dot below the tip. This tip-induced quantum dot (TIQD) can be
moved across the surface [63,121]. In z-direction perpendicular to
the surface, the confinement region of the quantum dot states is
approximately the same as the confinement region of the 2DES,
since screened by the same dopant density. The corresponding
probability amplitude is given by Eq. (1), however with slightly
different N2DES. In (x,y)-direction parallel to the surface, the
confinement is less, since the tip has a certain lateral extension,
which adds to twice the screening length. A good approximation
is a Gaussian with a full width at half maximum (FWHM) of
50–100 nm. This width can be determined by the energy distance
of the confined states which appear as peaks in dI/dV curves.
The lowest-energy state of such a quantum dot has roughly a
Gaussian lateral shape according to

9C1ðx,yÞ92
pe�ðx

2þy2Þ=ð2s2
1
Þ, ð8Þ

with a FWHM 2 � s1 about 4–5 times smaller than the FWHM of
the QD, i.e. about 10 nm [63].

If the TIQD is absent, dI/dV curves measure the unperturbed
LDOS of the sample. An example of the spatially averaged dI/dV

curve of an adsorbate induced 2DES without TIQD is shown in
Fig. 2(a) exhibiting two steps according to the two low-energy
subbands of the 2DES. Above the steps, the spatially averaged
LDOS is flat as expected from the density of states of each subband
of a 2DES

DnðEÞ ¼
me �mn

_2p
: ð9Þ

The second subband appears less intense, since it is buried deeper
into the substrate. Importantly, the 2DES leads to dI/dV intensity
in the region below EF although the InAs-sample is n-doped, i.e.
the 2DES is within the region where the bulk band gap of the



Fig. 2. (a) Spatially averaged dI/dV curve of n-InAs(1 1 0) (ND ¼ 1:1� 1022 m�3) after depositing 2.7% of Fe, Fermi level EF and the subband energies E1, E2 as deduced from

ARPES data are marked by vertical lines; (b) spatially averaged dI/dV curves of the same n-InAs(1 1 0) as in (a) probed with a different tip prior (lower curve) and after

(upper curve) depositing 4.5% Fe, features belonging to the 2DES, the 3DES and the tip induced quantum dot (QD) are marked; (c) grayscale plot of dI/dV as a function of

voltage V and position x, the subband energies E1, E2 and the feature belonging to the QD are marked, the latter is used to map the electrostatic potential of the 2DES; (d),

(e) measured electrostatic potential landscape of the 2DES induced by 0.8% and 4.5% Fe, respectively, grayscale covers a range of 20 meV from black to white, note the

larger disorder potential after depositing 0.8% Fe; (f) STM image of the area marked in (e) (V¼0.1 V, I¼50 pA), the black dots are the positions of Fe atoms; T¼6 K [59].
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semiconductor is expected. This is a clear hallmark of the
presence of the 2DES.

In case of a TIQD (see Fig. 2(b)), already in the presence of the
3DES only, i.e. before surface doping by adsorption, one finds
peaks below EF, i.e. in the band gap region of the 3DES. From the
distance of the peaks of about DE¼ 40 meV, one can calculate the
width of the quantum dot and the lateral FWHM of the lowest
state using the harmonic oscillator approximation

DE¼ _o) s1 ¼
_ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

me �mn � DE
p ¼ 8:5 nm, ð10Þ

i.e. the lowest state has a FWHM of 17 nm.
Moving this state across the surface exposes it to the potential

disorder of the sample. Thus, the confinement potential of the QD
is modified by the 2D disorder potential of the 2DES Vðx,yÞ ¼R
9C1ðzÞ9

2
� Vðx,y,zÞ dz, where Vðx,y,zÞ is the bare 3D electrostatic

potential of the sample. Thus, within first order perturbation
theory, the energy of the lowest state is

E1ðx,yÞ ¼/C1ðbx�x,by�yÞ9Vðbx,byÞ9C1ðbx�x,by�yÞSbx ,by : ð11Þ

Consequently, an energy map of the lowest state is a map of the
electrostatic potential of the 2DES, which is coarsened by 2s.
Notice that the 3D potential is already coarsened by C3=bC
10 nm due to the extension of the 2DES in z direction. Thus
assuming an isotropic screening of point like charges as the origin
of the disorder, the lowest state maps the potential down to about
the lowest relevant length scale.
Fig. 2(c) shows a dI=dVðV ,xÞ map of an InAs-2DES as a
grayscale plot. The subband energies En determined from ARPES
of the same system are marked. At voltages above these
energies, the 2DES shows wavy patterns along the lateral
position x which are related to the scattering of the electron
waves (see Section 5). Since more states contribute to the
scattering above E2, the apparent wave length gets smaller.
Below E1 a strong peak meandering in energy as a function
of x is visible. This peak marked QD is the lowest state of the
quantum dot (see also upper curve in Fig. 2(b)). In the central x

region at 70–130 nm even the second QD state is visible
showing a similar meandering as the first one. If one plots the
peak voltage of the low energy state as a function of position,
one gets the Eðx,yÞ maps shown in Fig. 2(d) and (e) for two
different 2DESs, respectively. These images are called map of
the potential disorder. They are both measured on n-InAs(1 1 0)
with a donor density of ND ¼ 1:1� 1022 m�3, but with different
densities of Fe adsorbates as marked. The FWHM of the
histograms of all potential values is 20 meV in both cases, but
surprisingly the potential disorder varies on a shorter length
scale at lower adsorbate coverage.

Fig. 2(e) features about four deep troughs and about seven
shallower troughs. The number of donors within the 2DES region
of the imaged area A¼200�200 nm2 amounts to ND2D ¼ A � ND �

3=b¼ 4 implying that the deep troughs mark the donors of the
substrate located within the 2DES. The shallower troughs are
most likely substrate donors lying below the 2DES, which are not
completely screened. This is compatible with ls ¼ 20 nm for the
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bulk of InAs being a factor of two larger than 3/b, although ls is
slightly shortened by the presence of the 2DES.

Thus, one concludes that the surface dopants are not relevant
for the potential disorder at 4.5% Fe coverage. This gets even more
obvious, if one compares the distribution of Fe atoms, which are
visible as black dots in Fig. 2(f). The potential fluctuations appear
on a length scale covering several 100 adsorbate atoms. More
precisely, the 2D density of dopants within the 2DES is a factor of
1000 lower than the density of Fe atoms. The potential troughs at
lower Fe coverage in Fig. 2(d) are about 80/(400�400) nm�2, i.e.
at least, a factor of two denser than in Fig. 2(e). Thus, they are
obviously influenced by the adsorbate layer. The likely reason for
this different behavior will be discussed below.

Importantly, we can probe the disorder potential experimen-
tally on the meV and nm scale [59]. Unfortunately, that requires
the presence of a disturbing TIQD. Thus, the pristine LDOS of a
2DES with exactly known potential disorder cannot be measured.

Nevertheless, we mapped the disturbed LDOS at different
energies and compared it with the calculated LDOS resulting from
a diagonalization of the matrix

Ciðx,yÞ9
_2k2

2memn
þVðx,yÞ9Cjðx,yÞ

* +
, ð12Þ

where CiðjÞ are plane waves, and we assumed antiperiodic boundary
conditions. In order to get the LDOS, the resulting wave functions are
averaged using a Gaussian energy distribution with FWHM¼ dE.
The length scale of LDOS fluctuations, the histogram of LDOS values
(see Fig. 5(c)) and the Fourier transformation of the measured LDOS

are well reproduced, but only few of the exact shapes of the
LDOSðx,yÞ are identical leading to a cross correlation of 15% only
[59]. Possible reasons are the remaining influence of the TIQD, the
coarsening of some of the details of the potential disorder and a
localization length of the states which might be larger than the
image size. Indeed, taking the measured mean free path of 300 nm
(see below), an influence of the last argument appears likely.

4.2. Role of surface dopants

Next, we will discuss the role of the adsorbates on the disorder.
Therefore, it is essential to realize that only part of the adsorbates
are charged. The requirement for charging is that the electric
potential produced by all other adsorbates at the position of a given
one is lower than Eads�EBCBM with EBCBM being the bulk conduction
band minimum of the sample. Neglecting the screening in the
adsorbate layer, one can easily simulate the charging probability
of an adsorbate numerically using Eads�EBCBM ¼ 320 meV and
ls ¼ 10 nm by depositing adsorbates subsequently onto random
positions x

n
on a 2D plane and surrounding them by

VnðxÞ ¼
e2

4pEE09x�x
n
9
� e9x�x

n
9=ls ð13Þ

if

Xn�1

m ¼ 1

Vmðxm
ÞoE

ads
�EBCBM ð14Þ

and VnðxÞ ¼ 0 eV otherwise. One has to take into account that E at
the surface is reduced with respect to the bulk [57]. The result for a
random choice of x

n
is shown in Fig. 3(a) as black triangles. For

comparison, the ionization probability deduced from ARPES data for
Fe-adsorbates on n-InAs(1 1 0) [56] is shown as open circles reveal-
ing reasonable agreement. It has been deduced from the measured
band bending by solving the Poisson–Schrödinger equation and
dividing the sum of the resulting 2DES density N2DES, which has also
been determined experimentally [56], and the density of neutralized
donors NDopant by the adsorbate density. Importantly, the ionization
probability is 40%–50% at 0.8% coverage but only 8% at 4.5% cover-
age. Thus, the 2DES density changes only slightly by increasing the
coverage to 4.5%, while most of the additional Fe atoms are
uncharged. The remaining electrons in the Fe layer can screen the
charged Fe-atoms effectively. The charge density in the Fe layer of
about 1:5� 1017 m�2 can probably even rearrange dynamically,
since it is energetically coupled to the 2DES. Given the very effective
and density independent screening in 2D systems above a threshold
density [122], it is reasonable to assume that the charge density in
the Fe layer is effectively screened on the length scale of the average
Fe–Fe distance being 2.5 nm at 4.5% coverage. Thus, the 2DES which
is coarsening on the length scale of 10 nm due to its extension
perpendicular to the surface basically ignores the potential disorder
of the Fe layer provided that the adsorbate density is significantly
larger than the density of transferred charge.

This simple picture breaks down, if the adsorbates are mobile on
the surface and, thus, form clusters. Basically, each cluster is only
charged once due to Coulomb blockade. Thus, the ionization prob-
ability per adsorbate is reduced, if clusters are formed and the
maximum band bending is achieved only at higher coverage.
Moreover, the ionization level could be changed by hybridization.
The squares in Fig. 3(a) show the ionization probability for Nb which
forms cluster consisting of 2–4 atoms depending on coverage after
room temperature deposition. The complex curve deviating strongly
from the monomer model implies that both single charging of
multimers as well as hybridization in multimers are essential [57].

Importantly, already initial clustering of adsorbates leads to
additional charge inhomogeneities. This is due the fact that
cluster formation implies a reduced adsorbate density around
the cluster and, thus, leads to a local potential hill due to reduced
charging. This has been experimentally evidenced by Hashimoto
et al. [66]. Thus, it is important to avoid clustering and to deposit
significantly more adsorbates than required for the charge trans-
fer into the 2DES, if one wants a high mobility 2DES. Measured
values of the Hall mobility m after Ag deposition on p-type
InSb(1 1 0) (NA ¼ 122� 1021 m�3) are up to m¼ 5 m2=V s at a
2D carrier density N2D ¼ 1:5� 1015 m�2 [64]. This implies a mean
free path lMFP of lMFP ¼ _=e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pN2D

p
� m¼ 320 nm. Hall measure-

ments at 40% Fe coverage or 1–20% Ag coverage on top of higher
p-doped InAs(1 1 0) (NA ¼ 1:7� 1023 m�3) revealed a lower mobi-
lity of 0.7 m2/V s and 0.3 m2/V s, respectively, again pointing to
the leading importance of bulk doping for the disorder potential
[65,123]. In accordance with the above analysis, it was found that
the mobility decreased considerably below an Ag coverage of
1.5%. Interestingly, spin-glass behavior in the Fe/p-InAs(1 1 0)
system has been deduced from hysteresis and a logarithmic time
dependence of relaxation dynamics being present up to about
1000 s after a change of B field stressing the dynamical behavior
of the adsorbate layer. This effect has been correlated with the
complex interplay of antiferromagnetic and ferromagnetic cou-
pling in Fe-chains on InAs(1 1 0) [124,125].

Fig. 3(b) shows the ionization probability for Co on
p-InAs(1 1 0), which forms larger islands at room temperature.
The ionization probability is plotted as a function of the island
density and evidently gives a very similar curve as the one found
for the Fe adsorbate density in Fig. 3(a). Thus, indeed, also larger
islands are only charged once. The reason is the Coulomb block-
ade which can be directly seen in dI=dVðVÞ curves recorded on a
particular Co island as a gap surrounded by two peaks (see
Fig. 3(c)) [60]. A histogram of the size of the Coulomb gaps has
been performed for an island density of 3:5� 1016 m�2, where
each island consists on average of 15 atoms leading to an average
gap size of 465 meV with a standard deviation of 150 meV. An
estimate using a metallic sphere with the radius of the Co-clusters
R in a distance d from a metallic plate results in a charging
energy ECharge ¼ e2=C with capacity C ¼ 4pE0 � R� ð1þR=ð2Rþ2dÞÞ,



Fig. 3. (a) Open symbols: ionization probability per adsorbate atom for Fe and Nb deposited on n-InAs(1 1 0) (ND ¼ 1:1� 1022 m�3) as deduced from the coverage dependence

of the band shift measured by ARPES (see Fig. 1e), full symbols: ionization probability calculated from a random distribution of monomers with an ionization level 300 meV

above the conduction band minimum of InAs, inset: STM image of Fe adsorbates on InAs(1 1 0) (I¼200 pA, V¼50 mV); (b) ionization probability as a function of Co island density

on p-InAs(1 1 0) (NA ¼ 4:6� 1023 m�3), inset: STM image of Co-islands on InAs(1 1 0) prepared at T ¼ 120 1C (I¼50 pA, V ¼�0:86 V); (c) dI/dV spectrum obtained on a single Co

island exhibiting a Coulomb gap (Vstab ¼ 0:7 V, Istab ¼ 0:7 nA, Vmod ¼ 5 mV); (d) simulated potential landscape of p-InAs(1 1 0) (NA ¼ 4:6� 1023 m�3) covered with 15% Co atoms

per InAs(1 1 0) unit cell, respectively, a Co island density of Nisland ¼ 3:5� 1016 m�2, it is assumed that only the 50% of the islands with the lower Coulomb gap are charged; (e),

(f) dI/dV curves obtained from the areas marked in (d) (V stab ¼ 0:7 V, Istab ¼ 0:7 nA, Vmod ¼ 5 mV); subband energies E1, E2, E3 of the 2DES and the peaks of the strongly localized

states (1s, 1p) are marked; (g), (h) dI/dV images taken at the peak energies of the localized states marked in (f) (V stab ¼ 0:43 V, Istab ¼ 0:7 nA, Vmod ¼ 5 mV); T¼6 K [57,60]. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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which is additionally reduced by the image charge potential
within the InAs of DEcharge ¼ ðE�1Þ=ðEþ1Þ � e2=ð8pE0RÞ [126]. The
calculated values are about a factor of two larger than the value
of the measured Coulomb gap. This might be caused by the
background charge [127] as observed, e.g., for Co clusters on
MgO(0 0 0 1) [128], or by an extension of the wave functions of
the metal cluster into the InAs. A crude estimate of the 2D disorder
potential can be made by assuming that all the clusters with the
lower Coulomb gap up to the ionization density are charged and,
are, thus, surrounded by a screened Coulomb potential. Adding
charged acceptors randomly and averaging as usual over the z-
extension of the 2DES leads to the 2D disorder potential shown in
Fig. 3(d). It fluctuates by about 150 meV on a length scale of
20 nm. Thus, the potential fluctuation is an order of magnitude
stronger than in Fig. 2(e). This allows to probe the 2DES at very
different disorder strengths.
5. Local density of states at different strength of disorder

The adsorbate-induced 2DES at the semiconductor surface
shows a nearly parabolic dispersion

EðkÞ�En ¼
_2
� 9k92

2me �mn
, ð15Þ
with EðkÞ being the energy of the state, En the subband energy,
and k the wave vector of the electron parallel to the surface. Thus,
the system is a good paradigm for free electrons, which also
shows parabolic dispersion and exhibits an extremely interesting
phase diagram as a function of electron density, temperature and
magnetic field [129]. At the energy of the bulk conduction band
minimum EBCBM, the effective mass of InAs is mn

0 ¼ 0:023 and of
InSb is mn

0 ¼ 0:0135 [112]. In fact, the bands are not perfectly
parabolic, but exhibit a reduced curvature at higher energy, which
can be approximated by an energy dependent effective mass
[130]

mnðEÞ ¼mn

0 �
1þ2 � ðE�EBCBMÞ

EGap
, ð16Þ

with the band gap being EGap ¼ 0:43 eV for InAs and EGap ¼ 0:23 eV
for InSb at T¼0 K [112].

For a 2DES, this leads to [131]

mnðEÞ ¼mn

0 �
1þ2 � ð1=3ðEn�EBCBMÞþEJÞ

EGap
, ð17Þ

i.e. the subband energy perpendicular to the surface En counts
differently than the in-plane energy EJ.

The spin–orbit coupling within the valence band couples to the
conduction band, which has preferentially a 5s-orbital character
[132]. This can be described, e.g., by k � p-theory. As a consequence,
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the g-factor of the 2DES is strongly enhanced, negative, i.e. spin
moments align preferentially antiparallel to B, and energy depen-
dent. A good approximation is [133]

gðEÞ

g0
¼

mn

0

mnðEÞ
, ð18Þ

with the g-factor at EBCBM being g0 ¼�15 for InAs and g0 ¼�51 for
InSb. Moreover, the Rashba-type spin splitting within a potential
gradient given, e.g., by the confinement of the 2DES in z direction, is
relatively strong as will be discussed in Section 8. One should keep
in mind that the given approximations are only valid at energies
E�EBCBMoEGap.

Importantly, the LDOS corresponding to this 2DES can be
measured by STS, since only a small amount of the surface is
covered by adsorbates. In between these adsorbates the 2DES of
the substrate can be probed in dI/dV images measured within the
bulk band gap of the semiconductor. The results at two different
strengths of the disorder potential are discussed next.

At strong disorder, some of the electronic wave functions of
the 2DES get strongly localized, i.e. they are completely confined
within a single valley of the potential disorder. Approximating the
potential trough marked by a red dot in Fig. 3(d) as parabolic with
an extension of r¼15 nm at 75 meV, i.e.

Vðx,yÞ ¼ 0:75
meV

nm2
ðx2þy2Þ ð19Þ

one gets single particle energies EnC ðnþ1=2Þ � 40 meV, which is
reasonably smaller than the height of the potential trough. Thus,
confinement of about the first two single particle levels is
expected and, indeed, observed [60]. Fig. 3(f) shows a dI/dV curve
exhibiting two sharp peaks with an energy distance of 20 meV. A
dI/dV map at the corresponding energies, which are plotted here
for another trough, is shown in Fig. 3(g) and (h) exhibiting an
Fig. 4. (a)–(d) dI/dV images at the voltages of n-InAs(1 1 0) (ND ¼ 1:1� 1022 m�3) c

transformation of the real space data with preferential 9k9 vector marked by a red arr

induced quantum dot state as shown in Fig. 2(c)–(e); (f) preferential 9k9 values as dedu

structure as calculated within k � p-approximation; (g) dI/dV image at V¼0 V of p-InS

Vmod ¼ 1:0 mV), lower inset: Fourier transformation of the real space data, upper inset: S

the dark dots in the dI/dV image are caused by the Cs atoms; (h) ARPES data of p-

approximation of the band of InSb with effective mass marked (dashed line) and the

T¼6 K (a)–(g); T¼80 K (h) [59,68]. (For interpretation of the references to color in this
elliptical LDOS distribution for the lower peak and a lobe-like
distribution as known for p-states at the upper peak. Thus, the
strongly localized states are similar to confined states within
parabolic quantum dots [60]. The quantitative discrepancy of the
confinement energy is probably caused by the nonparabolicity of
the potential trough. Notice that the black spots within the LDOS

wave functions are caused by the presence of the Co islands,
which are Coulomb blocked.

Next, we discuss the LDOS data obtained at lower disorder.
Fig. 4(a)–(d) shows the LDOS images recorded for the potential
shown in Fig. 4(e) exhibiting fluctuations of about 20 meV only.
The total intensity in each image corresponds to 40 complete
electronic states, but since the scattering length of individual
states is about the image size, more states contribute to the LDOS

with part of its intensity distribution.
The LDOS images exhibit corrugations decreasing in length

scale with increasing voltage. The corrugation patterns are rather
complicated and do not exhibit the simple circular ring structures
found in the InAs 3DES [115] or found for parabolic surface states
on the surface of metals [134,135]. Fourier transforms (FTs) of the
LDOS (insets) reveal the distribution of contributing k-values. At
low voltages a circle is visible, which at higher voltages is
confined by a ring. A plot of the k-values corresponding to the
rings and, thus, dominating the spectrum is shown as a function
of voltage in Fig. 4(f). At low voltages where the ring is not
apparent the outer diameter of the circle is taken. For comparison
the E(k)-dispersion of InAs according to k � p theory (see Eqs. (15)
and (17)) is drawn which exhibits good agreement with the data.
However, we do not observe a ring only, which is due to the
mixing of states by the disorder potential according to Eq. (12).
The same conclusions can be drawn from Fig. 4(g) and (h) which
show the LDOS at the Fermi level of a p-InSb surface covered with
1.5% Cs. Again a regular wave pattern not exhibiting simple ring
overed with 0.8% Fe (Vstab ¼ 0:1 V, Istab ¼ 0:3 nA, Vmod ¼ 1:8 mV), insets: Fourier

ow in (d); (e) potential landscape of the same area determined by the lowest tip

ced from the Fourier transformations in comparison with unperturbed InAs band

b(1 1 0) (NA ¼ 122� 1024 m�3) covered with 1.5% Cs (Vstab ¼ 0:3 V, Istab ¼ 0:2 nA,

TM image of the same surface (I¼30 pA, V¼0.3 V) shown to scale and proving that

InSb(1 1 0) (NA ¼ 122� 1024 m�3) covered with 1.5% Cs, hn¼ 21 eV; a parabolic

preferential 9k9-values from the Fourier transformation of STS data are included;

figure caption, the reader is referred to the web version of this article.)
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like structures is visible and the Fourier transform exhibits a ring
with additional intensity in the center. The resulting k-values of
the ring are compared with ARPES results directly and with a
calculated parabolic dispersion using mn ¼ 0:022 (Fig. 4(h)), both
resulting in good agreement. Thus, obviously the wave pattern
belongs to the adsorbate induced 2DES. Moreover, it is clearly
visible that the adsorbates only marginally disturb the image
quality of the 2DES appearing either as white spikes in Fig. 4(a)–
(d) or as black dots in Fig. 4(g).

Interestingly, the corrugation of the LDOS pattern is distributed
rather homogeneously across the sample surface. The corrugation
strength, defined by the ratio between spatially fluctuating dI/dV-
intensity and averaged dI/dV-intensity according to

CLDOS ¼
dI=dVmean�dI=dVmin

dI=dVmean
, ð20Þ

with dI=dVmin and dI=dVmean determined as sketched in Fig. 5(d),
is of the order of 5075% as shown by the scaled histogram in
Fig. 5(b) and (c). This value is much larger than the corrugation
strength in the 3DES, which is 370.5% as shown in Fig. 5(a) [115].
Moreover, the corrugation can be reproduced by the single
particle calculation according to Eq. (12) (see Fig. 5(c)). Both
results reflect the much higher probability of multiple scattering
of an electron within a 2DES which eventually leads to weak
localization [136]. Thus, many different scattering paths contain-
ing each many scattering events contribute to the LDOS leading to
more intricate patterns. The fact, that the probability for back
scattering is enhanced in 2D, results in the stronger corrugation
[137]. Since we map the LDOS and not individual states, we
cannot determine the localization length as long as it is larger
than the average distance between localized states contributing
to an LDOS image. This distance is about 65 nm in Fig. 4(g) to be
compared with the scattering length of about 300 nm. However,
the transition between strong localization and weak localization
can be determined by the change of LDOS corrugation. This
is demonstrated in Fig. 5(d) showing histograms for different
Fig. 5. (a) Histogram of dI/dV values obtained on n-InAs(1 1 0) (ND ¼ 1:1� 1022 m�3) af

inset: part of the dI/dV image used for evaluating the histogram; (b) same as (a) for

Vmod ¼ 1:8 mV); (c) histogram of dI/dV values of n-InAs(1 1 0) (ND ¼ 1:1� 1022 m�3) co

histogram of calculated LDOS by diagonalizing the Hamiltonian with the experimen

experimental curve is stretched by 5%; (d) histograms of dI/dV values obtained on p

(Vstab ¼ 0:43 V, Istab ¼ 0:7 nA, Vmod ¼ 5 mV); mean and min as used for the determination

histograms shown in (d); T¼6 K [59,60].
voltages of the Co/p-InAs(1 1 0) system. The low dI/dV peak at
high voltages corresponds to the Co islands and, thus, not to the
2DES. Obviously, the 2DES peak starts at dI=dV ¼ 0 nS at low
energy, but gets distinct from the peak of the Co islands at higher
voltage. The corrugation strength CLDOS drops from about 100% to
about 50% at a sample voltage of 50 meV, where the electrons
become free from local confinement, i.e. strong localization.
Although we do not have a quantitative understanding of this
drop, it appears to be a strong indication of the transition
between strong and weak localization.

Obviously, disorder potential and LDOS of a 2DES can be
mapped rather precisely. This is a crucial result, since the
typically known band parameters [112], the potential landscape,
and the electron density completely determine the appearance of
the LDOS. Thus, detailed comparison with theoretical models
becomes possible.
6. Localized and extended states in the quantum Hall regime

One of the most surprising effects of a 2DES is the quantum
Hall effect (QHE) [43], which is often used to determine the
quality of a 2DES. Applying a magnetic field B perpendicular to
the 2DES and driving a current I through the 2DES, one finds
certain B-field regions, where the voltage drop parallel to the
current vanishes, i.e. Vxx ¼ 0 V, while the voltage transversal to
the current direction VHall exhibits plateaus exactly at

VHall ¼
h

e2 � i
� I, ð21Þ

where i, the so-called integer filling factor, is the integer closest to
h � N2DES=ðeBÞ. The value of RH ¼ VHall=I is based on fundamental
constants only and independent of the details of the 2DES. It is
used, e.g., as a resistance standard [138] and discussed as an
ingredient with respect to a mass standard [139].
ter cleavage with corrugation CLDOS marked (V¼0.05 V, I ¼ 0:4 nA, Vmod ¼ 8:5 mV),

n-InAs(1 1 0) (ND ¼ 1:1� 1022 m�3) covered with 2.7% Fe (V¼0.10 V, I ¼ 0:3 nA,

vered with 0.8% Fe (V¼0.10 V, I ¼ 0:3 nA, Vmod ¼ 1:8 mV) in comparison with the

tally determined disorder potential using antiperiodic boundary conditions; the

-InAs(1 1 0) (NA ¼ 4:6� 1023 m�3) covered with 15% Co at the voltages marked

of CLDOS are marked; (e) corrugation CLDOS as a function of energy deduced from the
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The Hall resistance of an adsorbate induced 2DES is shown in
Fig. 6(a) for different electron densities with the plateaus for i ¼

1–4 marked.
The origin of the QHE is an interplay of Landau quantization

and disorder [140–142]. Without disorder the single particle
energies of the 2DES are quantized according to

Em,n,s ¼ ðnþ1=2Þ �
_eB

mnðEÞme
þs � gðEÞmBBþEm, ð22Þ

with s¼ 1=2,�1=2 being the spin quantum number, n¼

0;1,2, . . . , m¼ 1;2, . . . being integers and mB ¼ 5:8� 10�5 eV=T
being the Bohr magneton. Do not confuse m with mass, which
is abbreviated by me and mn throughout the paper. The first two
terms in Eq. (22) are dubbed Landau quantization and spin
quantization and Em is the subband energy of the 2DES discussed
in Section 2. Thereby, the energy dependent quantities mnðEÞ and
Fig. 6. (a) Hall resistance of p-InSb(1 1 0) (NA ¼ 122� 1021 m�3) covered with Ag of t

(13 Hz), T¼2 K (courtesy of R. Masutomi, Tokyo) [64]; (b) grayscale plot of dI/dV intensit

spin-down Landau levels of first (E1) and second (E2) subband, respectively, Landau le

(Vstab ¼ 0:15 V, Istab ¼ 0:1 nA, Vmod ¼ 1:5 mV); (c) grayscale plot of dI/dV intensity as a fu

Istab ¼ 0:13 nA, Vmod ¼ 1:3 mV); (d)–(j) dI/dV images at B¼12 T and at the voltages i

�92:4 mV, �89:0 mV, i.e. across the lowest spin-down Landau level, white arrows in (d

states on potential hills, red and yellow arrows in (f), (h) mark remaining intensity at

Vmod ¼ 1:0 mV); (k) calculated LDOS at the center of LL0 k at B¼12 T, crosses and re

corresponding to the images in (d)–(j) as marked, black arrows mark the spin direction

references to color in this figure caption, the reader is referred to the web version of t
g(E) require an iterative, self-consistent calculation of Landau and
spin levels Em,n,s. The development of these energies with B field
can be probed by STS as shown in Fig. 6(b). The measured dI/dV

intensity at a single point is shown as a function of V and B

exhibiting two fan-like ensembles of lines, which are labeled by
subband energies Em. The different Landau levels (LLn) and spin
levels (m, k) are visible as marked and the linear energy depen-
dence on B field is discernable. The corresponding single particle
states without disorder are highly degenerate and can be
described as rings with different radii for different LLn encircling
a single flux quantum F0 ¼ h=e each. This leads to a level
degeneracy of Nn,m,s ¼ eB=h independent on the Landau level
number or the spin direction.

However, these states are subject to random potential disorder
within a semiconductor. Thus, they change their energy as a
function of position as demonstrated in Fig. 6(c), where the pairs
he amount indicated, the resistance is measured by four-probe lock-in technique

y as a function of voltage and applied magnetic field B, green and yellow lines mark

vel (LL) numbers and spin directions of the first subband are marked on the right

nction of voltage and tip position with respect to the surface (B¼6 T, V stab ¼ 0:15 V,

ndicated in (l): V ¼�116:3 mV, �111:2 mV, �104:4 mV, �100:9 mV, �99:2 mV,

), (e), (i), (j) mark drift states in potential valleys, green arrows in (i), (j) mark drift

saddle points; crosses in (g) mark saddle points too (Vstab ¼ 0:15 V, Istab ¼ 0:1 nA,

d arrows have the same meaning as in (f)–(h); (l) spatially averaged dI/dV curve

of the lowest Landau level LL0; (b)–(j), (l): T¼0.3 K [66]. (For interpretation of the

his article.)
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of Landau levels belonging to different spin quantum numbers
meander in energy as a function of position. The fact that the
meandering amplitude is larger for the lower lying Landau levels
mimics the fact that the radius of the rings called cyclotron radius
rcn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þ � _=ðeBÞ

p
increases with the Landau level index.

Thus, the LDOS of higher Landau levels probes the potential on a
rougher length scale [143]. In 2D, the disorder potential has
primarily a semiclassical effect [140]: the electrons perform the
fast cyclotron rotation within the electrostatic disorder, which
leads to additional drift motion along the equipotential lines of
the disorder potential [144]. Basically, the electrons are acceler-
ated and decelerated, if they move downhill or uphill within the
potential disorder during their cyclotron rotation. This results in
different radii of curvature of the electron path at lower and
higher potential energy, directly implying a motion perpendicular
to the gradient of the potential as long as the gradient direction
remains similar on the length scale of the cyclotron radius.
Quantum mechanically, so-called drift states meander along
equipotential lines with a width of about the cyclotron radius
rcn [141,145], which indeed can be probed experimentally [146].

If the potential energy of the state is low (high), the drift states
are closed trajectories around potential minima (maxima), i.e.
they are localized and represent insulating electron phases. Thus,
whenever the Fermi level is located at energies belonging to
localized states, the longitudinal conductivity sxx vanishes for
T-0 K. Since the longitudinal resistance rxx is

rxx ¼
sxx

s2
xxþs2

xy

ð23Þ

and the Hall conductance is sxya0 S at non-zero B-field, rxx

vanishes as well.
Only, in the center of a LL, the equipotential lines of adjacent

potential valleys and hills merge at the saddle points of the
potential Vðx,yÞ leading to an extended state. It can be shown that
exactly one equipotential line traverses the whole sample in the
limit of infinitely large samples [142]. It is known that the state
meandering along this line is the quantum critical state of the
integer QH transitions and responsible for the finite longitudinal
resistance between quantized values of the Hall conductance
[140–142,147]. This quantum phase transition between localized
states in the valleys via an extended state towards localized states
at hills of the potential disorder is repeated for each (m,n,s)
energy level of Eq. (22). The transition is universal, i.e. the energy
dependent localization length xðEÞ of the states, defined as

/9Ciðx�x
0,i
92
Þ � dðE�EiÞSipe�9x�x

0
9=xðEÞ

ð24Þ

(x
0,i

: center of mass of 9Ci9
2
) is independent of details of the

disorder being

xðEÞp9E�Ecrit9
nc , ð25Þ

with Ecrit being the energy of the extended state and nc being the
universal, critical exponent. The calculation requires that each
wave function amplitude is referred to its center of mass firstly
and then the squared amplitudes are averaged with respect to the
distance to the center of mass as symbolized by 9x�x

0
9 in Eq. (24).

The value of nc is not known analytically, but has been evaluated
numerically, which results in ncC2:422:6 [148–150]. Another
aspect of the universality is the universal, multifractal spectrum
of the critical state [151,152].

The corresponding transition is shown for the LDOS of the
lowest energy (m,n,s) level of an adsorbate induced 2DES in
Fig. 6(d)–(h) [66]. The spatially averaged dI/dV curve is shown
in Fig. 6(l) exhibiting the single peak of LL0k. The energies of the
LDOS images are marked. In the low-energy tail of the peak (Fig.
6(d)), the LDOS exhibits spatially isolated closed-loop patterns
with averaged full width at half maximum (FWHM) C6:9 nm
close to the cyclotron radius rc0 ¼ 7:4 nm. These are localized drift
states of the n¼ 0, m¼ 1, s¼�1=2 level LL0k, which align along
equipotential lines around a potential minimum. Accordingly, at
slightly higher energy [Fig. 6(e)], the area encircled by the drift
states increases indicating that each drift state probes a longer
equipotential line at higher energy within the same valley. In
contrast, the ring patterns at the high-energy tail, marked by
green arrows in Fig. 6(i) and (j), encircle an area decreasing in size
with increasing voltage. These states are attributed to localized
drift states around potential maxima. Notice that the structures in
Fig. 6(d) and (e) appear nearly identical in Fig. 6(i) and (j) as
marked by white arrows. The latter structures are the LL0m states
localized around potential minima, which energetically overlap
with the high-energy LL0k states localized around potential
maxima. When the voltage is close to the LL0k center
[Fig. 6(f) and (h)], adjacent drift states coalesce and a dense
network is observed directly at the LL center [Fig. 6(g)]. This is
exactly the expected behavior of an extended drift state at the
quantum Hall transition as described above [141,142].
Fig. 6(k) shows the calculated LDOS around an extended state at
B¼12 T in a 2DES of InSb with a random distribution of dopants of
the experimentally known densities ND ¼ 9� 1021 m�3 and
NA ¼ 5� 1021 m�3. Each dopant as usual is surrounded by a
screened Coulomb potential. The Hartree approximation [153] is
used for the diagonalization of the matrix. Good qualitative
agreement with the measurement is achieved supporting the
interpretation of the coalesced LDOS patterns as caused by the
presence of an extended state. Albeit, the disorder in the calcula-
tions is obviously smoother, which could be traced back to a
remaining influence of the Cs chains that partially form on the
surface [66]. The crosses within Fig. 6(g) and (k) mark the saddle
points of the potential appearing as extended LDOS areas due to
the vanishing steepness of the potential at the saddle points. The
same points are marked in Fig. 6(f) and (h) by arrows. A remaining
intensity is found at these saddles. It has been argued initially that
this intensity is related to the quantum tunneling across the
saddles which is decisive for the value of the critical exponent n
[142,150], but numerical calculations revealed that this is not the
case [154]. Instead, it reflects only the energy resolution of the
experiment of 2.5 meV being significantly larger than the expected
dEC3:3 � kBT ¼ 0:1 meV [66]. This might be related to the slow
Coulomb glass dynamics in localized systems [67,155], but further
experiments are required to clarify this issue.

Similar transitions between localized and extended states have
also been observed on the surface of highly oriented pyrolytic
graphite (HOPG) [156] and on turbostratic graphene on top of
graphite on SiCð0 0 0 1) [71,79,157]. Recently, it was also inves-
tigated in higher Landau levels of the InSb 2DES, where an
additional nodal structure of the LDOS perpendicular to the
equipotential lines was revealed and explained [146].

Importantly, the LDOS across a universal quantum phase
transition, the quantum Hall transition, can be directly mapped
within the adsorbate induced 2DES. Improved theoretical tools
using vortex states within the framework of real-time Green’s-
functions allow, on the other hand, a direct calculation of LDOS

properties for sufficiently smooth disorder [143,154,158]. Thus, a
one-to-one comparison of LDOS patterns pinpointing to the local
signatures of the influence of particular interactions appears
possible.

Of course, the quantum phase transition explains only the
vanishing conductivity sxx at most B fields but not the quantiza-
tion of the Hall conductance. This can either be explained rather
elegantly in terms of Chern numbers [159–161] or less abstract by
the presence of the so-called edge states [162]. The latter
explanation is based on the fact that the drift states at the edge
of the sample are meandering along the edge and, thereby,
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connect different leads. Moreover, they are chiral, i.e. they are
allowing electron motion only in one direction and not in the
opposite one, which corresponds to the drift direction explained
above. If the Fermi level is within the localized states of the
Landau level, the edge states at the Fermi level are the only ones
which can carry the current. Since backscattering is not possible
within these states, no voltage drop can appear along the edge
states. Moreover, only a voltage imbalance between states on the
left hand side of the sample carrying the forward electrons and on
the right hand side of the sample carrying the backward electrons
can lead to an effective current I through the sample. It is
straightforward to calculate that the relation between effective
current I and voltage imbalance VHall is I=VHall ¼ e2=h for each pair
of edge states. Moreover, each critical state below the Fermi level
requires one of these edge states crossing the Fermi level at each
side due to the rising confinement potential at the edge. These
two facts together lead to

RHall ¼
h

e2 � i
, ð26Þ

with i being the number of critical states below EF. So far the edge
states have not been probed by STS, but by other scanning probe
techniques as scanning gate microscopy (SGM) [163], electro-
static force microscopy [164], scanning capacitance microscopy
(SCM) [165], scanning near-field optical microscopy (SNOM)
[166], and a scanning single electron transistor (SSET) [167].
However, all these techniques exhibit a much worse lateral
resolution well above 100 nm. Thus, it would be interesting to
probe the edge states by STS, too. SSET has also been used to
map properties within the fractional quantum Hall regime,
which is guided by electron–electron interactions. These experi-
ments showed rather directly the fractional excitation charge of
DQ ¼ e=3 [168].
7. Probing the exchange interaction

One of the most simple type of electron–electron interaction is
the exchange interaction. For a system of two particles, it reads

/C1ðx1
Þ �C2ðx2

Þ9Veeð9x2
�x

1
9Þ9C1ðx2

Þ �C2ðx1
ÞSx

1
,x

2
, ð27Þ

where VeeðDxÞ is the electron–electron interaction potential.
Due to symmetry of the many particle wave function, the

exchange interaction is attractive for parallel spins and repulsive
for antiparallel spins. Thus, an electron within a spin-polarized
2DES exhibits a lower effective electron–electron repulsion
energy, if parallel to the spin-polarization, than an electron of
the same spin that is embedded into a spin neutral 2DES. An
electron with antiparallel spin to a spin-polarized 2DES exhibits
an even stronger electron–electron repulsion.

Applying a magnetic field to a 2DES leads to an oscillating spin
polarization. In case, the filling factor n¼ hN=ðeBÞ is odd, the spin
polarization is maximum, i.e. only the half of the highest Landau
level with the spin moments antiparallel to B is filled with
electrons. This leads to a spin density Ns ¼ s � eB=h or to a
magnetization MCmB � eB=_ � b=3¼ 1:4 A=m � B ðTeslaÞ. In case of
an even n, there is no spin polarization, since the same amount of
m levels and k levels are filled with electrons.

In the case of spin polarization, the lower energy spin levels of
a Landau level will gain energy with respect to the ones in the
higher energy spin level. Thus, the splitting of the two spin levels
will be larger than gðEÞmBB in the case of spin polarization, and
exactly gðEÞmBB without spin polarization, i.e. at even n. This leads
to an oscillatory effective geff(B)-factor determining the spin
splitting DEssðBÞ ¼ geff ðBÞ � mB � B as a function of B. The increased
spin splitting at odd n is called exchange enhancement [170,171].
Within the QH regime, exchange enhancement is a rather local
effect, since the expression in Eq. (27) requires an overlap of
different localized wave functions. Consequently, the exchange
enhancement depends on the local spin polarization mostly
within a single valley or hill region of the potential disorder.
Exchange enhancement has, however, previously only been mea-
sured without lateral resolution, e.g., by capacitance spectroscopy
[172].

Fig. 7(a) shows the band structure of an adsorbate induced
2DES on p-InSb(1 1 0) at low doping. One observes that the band
bending reaches about 600 nm into the bulk of the sample. This
implies an insulating region of more than 500 nm thickness
between the 2DES at the front of the sample and the conducting
bulk region of the InSb. Consequently, the screening of the bulk
electrons can be neglected on the scale of the electron–electron
distance within the 2DES being only about 10 nm. This increases
the strength of Vee. Additionally, the insulating barrier cannot be
penetrated by electrons, thus the current between tip and 2DES
must flow through the 2DES, which had to be contacted on the
side by a silver wire [67]. Since localization reduces the con-
ductivity of the 2DES in the QH regime, one has to be careful that
the tunneling electrons, which tunnel from the 2DES to the tip,
are replaced in between individual tunneling events, i.e. the
current must be low enough such that local equilibrium is probed
by each tunneling event. Otherwise, the remaining local charge
will give rise to an additional local band bending and, thus, to a
locally modified and time-dependent filling factor. Experimen-
tally, we found that a tunneling resistance above 1 G O could
fulfill this requirement up to B¼7 T and down to T¼5 K, i.e. the
band bending by this so-called spreading resistance remains
significantly less than the distance between adjacent levels [67].

Fig. 7(b) shows dI=dVðVÞ spectra of such a 2DES taken at a fixed
position while ramping the magnetic field B. A Landau fan similar
to Fig. 5(b) is visible. However, the lines of conductance maxima
are obviously wavy and not straight. The reason for waviness is
the fixed electron density N2DES which has to adapt to the
degeneracy of the Landau levels. Thus, the distance between EF

and the lowest Landau level jumps each time, EF has to move into
the next lower Landau level. Since EF is fixed in the tunneling
experiment a wavy movement of all the Landau levels with
respect to EF results.

More importantly, the distance between adjacent spin levels
DESS deviates from gðEÞmBB. To analyse this effect, barely visible in
Fig. 7(b), in more detail, we concentrate on the lowest LL around
�120 mV, which gives the highest accuracy in determining DESS.
We adapted two Gaussians for all 386 spectra between 3.5 T and
6:1 T. The Gaussians, having equal width and height, were fitted
using a nonlinear least squares method and a trust-region algo-
rithm as implemented in Matlab [173]. The fits are good as can be
seen in the inset of Fig. 7(c) and by the large confidence value of
R2
¼ 0:94 (0.97 above 5 T). The error for the resulting DESS is about

0:2 meV. The resulting spin splitting DESSðBÞ as function of B is
shown in Fig. 7(c) in comparison to a straight line corresponding
to ordinary Zeeman splitting of 9gðEÞ9mBB with 9gðEÞ9¼ 42.

Fig. 7(d), finally, shows the deviation DðBÞ from the straight
line. It oscillates around 0 meV with maxima (minima) around
odd (even) filling factors as expected for the exchange enhance-
ment. Negative values of DðBÞ are probably caused by slight
deviations from a spin splitting linear in B due to increased
spreading resistance with increasing B, which leads to super-
linearity, and nonparabolicity of InSb leading to a smooth
decrease of g(E) with B, thus, supralinearity. However, both effects
are, in first order, monotonic in B and cannot explain the
oscillations. One could imagine that the spreading resistance
depends oscillatory on filling factor. But then, it would be largest
at even filling factors, where EF has the largest energy distance to



Fig. 7. (a) Band bending as calculated by a Poisson–Schrödinger solver for p-InSb(1 1 0) (NA ¼ 1:1� 1021 m�3) covered with 1.1% Cs, valence band maximum (blue),

conduction band minimum (red), Fermi level EF and 9CnðzÞ9
2

of the first two subbands are shown in the direction perpendicular to the surface, inset: magnification of the

near surface area; (b) grayscale plot of dI/dV-intensity as a function of magnetic field B and applied sample voltage V; Fermi level (dashed line) and two spin levels of LL0

are marked (T¼5 K, V stab ¼ 0:3 V, Istab ¼ 0:4 nA, Vmod ¼ 1:6 mV); (c) energy splitting between m and k level of the lowest Landau level LL0 (black line) in comparison with

the splitting expected at 9gðEÞ9¼ 42 (red line), inset: dI/dV curve (black) in the region of LL0 in comparison with two Gaussians colored yellow and leading to the

transparent red dI/dV curve, B¼5.5 T; (d) difference between black and red curve from (c) (black line), smoothed curve is shown in green, scale bars mark the exchange

enhancement at the corresponding filling factors calculated within the random phase approximation; (e) colorscale plots of dI/dV intensity of graphene on SiC(0 0 0 1) as a

function of voltage and tip position with respect to the surface for different magnetic fields B and local filling factors n as indicated, levels corresponding to different spins m

and k and K/K0 combinations are marked (T¼0.01 K, Vstab ¼ 0:25 V, Istab ¼ 0:2 nA, Vmod ¼ 0:05 mV) (courtesy of J. Stroscio, NIST Gaithersburg) [67,169]. (For interpretation

of the references to color in this figure caption, the reader is referred to the web version of this article.)
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the next critical state. This would lead to an oscillation of DðBÞ
with maxima at even filling factor in contrast to the experimental
observation. Thus, the oscillatory B field dependence of the spin
splitting is in accordance with an exchange enhancement of about
0.5–0.7 meV.

To substantiate this assignment, we calculated the expected
exchange enhancement in the lowest Landau level using a
random phase approximation (RPA). This approximation neglects
the dielectric screening at other frequencies than the exciting one
[174,175]. This is well justified since the electron density in the
2DES N2DES is large compared to the scale set by the effective Bohr
radius, i.e. N2DESC25 � ðmn=ðEaBÞÞ

2 [171,176], respectively, the
rs-parameter is much smaller than one. We performed the
calculation using mn ¼ 0:02 and gðEÞ ¼�42 as deduced from the
Landau level distance and spin level distance visible in Fig. 7(b).

The 2D bare Coulomb potential represented in Fourier space is
given by

VðqÞ ¼ FðqÞ
2pe2

eq , ð28Þ

with the form factor F(q) accounting for the finite extension of the
2DES in z direction [171]

FðqÞ ¼
3

8x
þ

3

8x2
þ

1

4x3
, ð29Þ

with

x¼ 1þ
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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32
N2DESþNDopant

� �
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s , ð30Þ

with the dielectric constant of InSb e¼ 16:8, and N2DES ¼ 2:7�
1016 m�2 as well as NDopant ¼ 8� 1014 m�2, the 2DES density and
the density of ionized acceptors, respectively.

Restricting ourselves to the static response of the 2DES to
perturbations, the dielectric screening of the potential requires to
replace V(q) by

VRPAðqÞ ¼
VðqÞ

1�VðqÞP0ðqÞ
, ð31Þ

with

P0ðqÞ ¼
1

2pr2
c0

X
n,m

Pn,mðq
2r2

c0=2Þ
X

s

f ðEn,sÞ�f ðEm,sÞ

En,s�Em,s
, ð32Þ

here f ðEÞ ¼ ð1þexpððE�EFÞ=ðkBTÞÞÞ�1 are Fermi functions evaluated
at T¼5 K, En,s are the energies corresponding to the n. Landau
level and spin level s, and

Pn,mðxÞ ¼ ð�1Þnþme�xLn�m
m ðxÞLm�n

n ðxÞ, ð33Þ

with Lm�n
n ðxÞ being associated Laguerre polynomials. The total

exchange energy for an electron in Landau level n with spin s then
reads

Ss
n ¼�kBT

Z
qdq

2p
X

m

Pn,mðq
2r2

c0=2Þ
X
Ol

VRPAðqÞ

iOl�Em,sþEF
, ð34Þ

where Ol ¼ ð2lþ1Þ � p � ðkBTÞ (l: integer) are Matsubara frequencies.
The filling factor dependent exchange enhancement EEnðnÞ

within the lowest Landau level (n¼0) is then

EE0ðnÞ ¼ ðSk
n ¼ 0�S

m
n ¼ 0Þn�ðS

k
n ¼ 0�S

m
n ¼ 0Þn�1: ð35Þ

This leads numerically to, e.g., EE0ðn¼ 11Þ ¼ 0:76 meV and
EE0ðn¼ 15Þ ¼ 0:55 meV. The calculated EE0ðnÞ for filling factors
n¼ 15;13,11;9 are added as vertical bars in Fig. 7(d) showing very
good agreement with the experimental data. It has been checked
that the static screening approximation used here is sufficient to
reproduce the results of more elaborate approaches [176] on a
quantitative level. Moreover, the results for EE0 barely change, if
the system parameters g(E) and mn are varied within reasonable
limits. For example, the change of EE0 is less than 1% for
gðEÞ ¼�38 and still below 10%, if mn is doubled to mn ¼ 0:04 [67].
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The fact that magnitude and oscillation phase of DðBÞ compare
favorably with a parameter free calculation of the exchange
enhancement is strong evidence that this short-ranged electron–
electron interaction effect is quantitatively probed by STS, despite
the screening properties of the close-by tip. Notice that the
potential disorder and the second subband of the 2DES are not
included within the calculations and, thus, are of minor impor-
tance for the exchange interaction which happens on the length
scale rcC10 nm smaller than the correlation length of the
disorder potential (30–50 nm).

The same 2DES also exhibited a Coulomb gap at EF, which is a
sign for the presence of long-ranged Coulomb repulsion [177–179].
Here, however, the screening by the tip had to be taken into
account, in order to describe the observed Coulomb gap
quantitatively [67], i.e. the tip is described as a screening gate
8.6 nm away from the plane of the 2DES. This stresses the need for
less screening tips, as e.g., tips made from low-doped semiconduc-
tors [180].

Exchange enhancement has also been observed on the system
graphene on graphite on SiC(0 0 0 1) [83]. At very low tempera-
ture (T¼13 mK), graphene shows spin splitting and valley split-
ting. This is demonstrated by the color plots in Fig. 7(e), where
four lines belonging to a single Landau level meander in energy as
a function of position. Notice that the plots are rotated by 901
with respect to Fig. 6(c), i.e. position is along the vertical and
energy along the horizontal axis. Moreover, plots recorded at
different B, as marked on the right, are plotted above each other.
At B¼12 T, one pair of lines separated by the Zeeman energy of
1.4 meV is observed above EF and one pair of lines appears below
the Fermi level. Each pair corresponds to one of the sublattices of
graphene at the measurement position, i.e. to a different,
mutually orthogonal, combination of the two valleys K and K 0 as
marked. All four lines belong to the n¼1 Landau level. By
decreasing the magnetic field, the degeneracy of each line nLL

decreases according to nLL ¼ eB=h and the levels, which are above
EF at higher B must cross EF. At the crossing point of the first spin
level, the distance between the spin levels increases by about
4 meV and it decreases again, if both spin levels have crossed EF.
This is an even clearer example of the exchange enhancement,
which profits from the low bare g-factor g¼2 of graphene making
the bare spin splitting smaller and of the smaller extension of the
graphene electrons in z direction enhancing their Coulomb inter-
action significantly according to Eqs. (28) and (29). Careful
inspection of Fig. 7(e) reveals a weak third line (marked by
arrows) at half-valued filling factor, which is interpreted as an
interaction effect with the quantized 2D system of the underlying
graphene layer [83].

The experiments on exchange enhancement so far have not
been used to probe local differences of the exchange enhance-
ment at the same B, which is the obvious strength of STM, and,
thus, outlines an interesting subject for future research. A proto-
type experiment has been done using the spin splitting of states
within the TIQD, where a non-local correlation of the exchange
enhancement with the disorder potential has been found [121].
8. Probing the local Rashba effect

As mentioned in the Introduction, the exchange interaction
between electrons is used within spin based qubits [34], which
allows to manipulate the spin degree of freedom electrically via
the tunable overlap of wave functions in adjacent quantum dots.
For propagating electrons, also the spin–orbit coupling, which
eventually is a relativistic effect originating from the Dirac
equation, can be used to manipulate spins via electric fields [1].
The Rashba term within the Schrödinger equation can be written
as [5,4]

HRashba ¼ aÊ � ðk � sÞ, ð36Þ

with k being the wave vector of the electron, r being the Pauli
matrices and Ê being the unit vector along the electric field
typically perpendicular to a surface or an interface. In first order,
the Rashba-parameter a within III–V semiconductors depends on
the strength of the electric field E, the energy gap EGap, the
effective mass mn and the spin–orbit splitting DSO within the
valence band, which is large for crystals made of heavy atoms. A
good approximation based on an eight-band k � p description of
the band structure is [130,181]

a¼ _2

2mnme
�
DSO

EGap
�

2EGapþDSO

ðEGapþDSOÞ � ð3EGapþ2DSOÞ
� e9E9: ð37Þ

Since In and Sb are heavy 5p-atoms, they exhibit a large
DSO ¼ 0:8 eV at T¼4 K. Moreover, as described in Sections 2 and
5, band gap EGap ¼ 0:23 eV and effective mass at the band edge
mn

0 ¼ 0:0135 are quite low, such that a relatively large prefactor of
a with respect to E results:

a¼ 5:1� 10�18 eVm2

V
� 9E9: ð38Þ

Notice that the spin–orbit term DSO within binary, ternary or
quaternary alloys of Bi, Sb, Se, and Te can even lead to a band
inversion, i.e. part of the p-type band becomes the conduction
band while the part of the s-type band becomes a valence band.
This leads to the currently celebrated topological insulators
[88,89,182–184], which exhibit, at least, one surface state with
spin chirality within the fundamental band gap, which, moreover,
is protected by time-reversal symmetry.

In order to get a strong a, one needs, in addition to the
prefactor, a strong electric field. An interesting question is, if
charge neutrality prohibits the presence of electric fields within a
2DES. Winkler has shown that the relevant property for a is the
effective field within the valence band, which remains present
due to different band parameters in valence and conduction band,
and that this more correct description is except for prefactors,
which are close to one, identical to the quantitative description
given above [185]. The strongest field is found at the surfaces of
metals (108

2109 V=m). Consequently, the strongest a have been
found for surface states on metals, e.g., for Bi(1 1 1), one has found
a¼ 0:55� 10�10 eV m [186], while for Bi alloys even a¼ 3:05�
10�10 eV m has been obtained [187]. The latter value is partly
attributed to additional interatomic electric fields [187]. However,
within metals the electric field can barely be controlled by gates.
Thus, spins cannot be manipulated on ns time scales as required
for information processing. Most likely, InSb is the semiconductor
with the largest possible prefactor of a not being a topological
insulator.

The first consequence of HSO is a modification of the band
structure. Assuming a parabolic dispersion of the kinetic energy
as for the conduction band of InAs and InSb, the origin of the
parabola in k is offset from the G-point, which marks the center of
the Brillouin zone, by

9Dk9¼
amnme

_2
: ð39Þ

The k-direction of offset is different for the states with spins
pointing to the right with respect to k and for the spins pointing
to the left with respect to k. Thus, spin degeneracy is lifted and
the eigenstates of the spin are always oriented perpendicular to
k and E. The resulting two parabolas for one k direction are
rotationally symmetric leading to a circular trough in the EðkÞ

dispersion with radius 9Dk9. A cut through k space in EðkÞ using
the plane perpendicular to E and energies above the bottom of the
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trough exhibits two circles with chiral spin texture perpendicular
to k. Opposite spin directions distinguish the two different circles.
The difference between the radii of the circles is exactly the 9Dk9
of Eq. (39), i.e. independent of energy as long as mn is independent
of energy.

The Rashba-split EðkÞ dispersion has been measured directly
by ARPES, but so far only for metals [70,186–189] or for metal/
semiconductor interface states [190–194], but not for intrinsic
states of a semiconductor. The reason is the low mn, e.g., for InSb,
that results in small 9Dk9C1:3=V � 9E9 between the two circles.
This requires excellent angular resolution in ARPES of the order of
0.11. Instead, the Rashba effect in III–V-semiconductors has been
probed by the beating pattern of Shubnikov-de-Haas-oscillations
[19,20,195] or by the analysis of weak antilocalization [79,196].
The beating can be explained by the two different circles in k

space at the Fermi level, which are both not spin degenerate.
Since each circle with radius 9k9F,i (i¼1,2) encircles a density of
ni ¼ 9k92

F,i=ð4pÞ k-points and the degeneracy of a spin polarized
Landau level is eB=h, the number of filled Landau levels (within
the circle) is

ni ¼
h9k92

F,i

4peB
: ð40Þ

Each time, when ni is an integer, the Landau level highest in
energy is completely filled and the conductivity exhibits a mini-
mum. In contrast, a half-valued ni, i.e. a Fermi level in the center
of a Landau level leads to a maximum in conductivity. If, both, n1

and n2 are integers the corresponding minimum is deep, while if
n1 is an integer and n2 is half-valued, the minimum disappears.
From this beating of the oscillation in conductivity one can
determine 9Dk9 and, thus, a [20].

The same effect leads to a beating of the density of states
which can be probed by STS. A node of the beating will be
obtained at an average 9k9-value of the two circles kn, respectively
an energy Ên ¼ _2k

2
=ð2memnÞ with respect to the subband energy

according to

nþ1=2¼ n1�n2, ð41Þ

nþ1=2¼
hðknþ9Dk9=2Þ2�ðkn�9Dk9=2Þ2

4peB
, ð42Þ

nþ1=2¼
2hkn9Dk9

4peB
, ð43Þ

) kn ¼
eB

_9Dk9
� ðnþ1=2Þ ¼

_eB

amemn
� ðnþ1=2Þ, ð44Þ

) Ên ¼
_4e2B2

2a2mn3m3
e

� ðnþ1=2Þ: ð45Þ

Using a¼ 10�10 eV m, B¼6 T, and mn ¼ 0:03, one gets
Ên ¼ 150 meV � ðnþ1=2Þ, i.e. the first node of the beating must
be about 75 meV above the subband onset. Notice that the energy
position of the beating node depends quadratically on B-field and
quadratically on the inverse of the Rashba parameter a.

A more sophisticated description considering Zeeman splitting
and Rashba spin splitting on equal footing has been given by
Rashba in his first publication on the effect [4]

En,s
i ¼ Eiþ_ocðnþ2sðd2

þg2nÞ1=2
Þ, ð46Þ

g¼ að2mnme=_
3ocÞ

1=2, ð47Þ

d¼
1

2
1�

mngðEÞ

2mn

0

� �
, ð48Þ
here n¼ 0;1,2, . . . is the Landau level index, s¼ 1=2 for n¼0, and
s¼ 71=2 for n¼ 1;2,3, . . . being the spin index, i is the subband
index and oc ¼ eB=ðmnmeÞ.

Fig. 8(a) shows the Poisson–Schrödinger result for a 2DES,
which is induced by 1.5% Cs on the strongly p-doped InSb(1 1 0).
The strong doping results in a strong electric field (Z107 V=m)
within the 2DES and, thus, according to Eq. (38) to a large Rashba
coefficient of aC10�10 eV m. A more sophisticated calculation
taking the curvature of the bands and its overlap with C1ðzÞ into
account [67,181], but still neglecting the penetration of the C1ðzÞ

into vacuum, leads to aC9� 10�11 eV m. This value is larger than
the a-values observed in InAs inversion-layers or heterostructures
by transport measurements (324� 10�11 eV m) [197]. It should
be noted that the calculated Rashba parameter is an upper
estimate because of the ignored barrier penetration of the
electronic wave functions. Furthermore, a is only the lowest order
of an inversion asymmetry induced spin splitting and it is known
that higher orders lead to a reduced effect [198].

Fig. 8(d)–(i) shows spatially averaged dI=dVðVÞ spectra of the Cs
covered InSb(1 1 0) at different B. The curves are averaged from
144 curves recorded on a regular grid covering an area of
ð300 nmÞ2. The onset of the first subband at about �50 mV and
the onset of the second subband at about 150 mV can be identified
as steps in the dI/dV signal. The energies are in reasonable
agreement with the result from the Poisson–Schrödinger equation.
Obviously, only the first subband is occupied by electrons. The
electron concentration of the 2DES is N2DESC6:5� 1015 m�2. On
top of the steps oscillations are visible due to Landau quantization,
which feature, in addition, a changing amplitude. The minima of
the oscillation are marked by arrows. The distance of the peaks is
in agreement with the expected distance of Landau levels. Thus,
the spin splitting is not visible in the spatially averaged curves.
This is different for single curves as shown for two examples in
Fig. 8(b), which also reveals clearly that the energy shift by
disorder of about 20 meV is too large to observe spin splitting in
the averaged curve. Importantly, the beating of the spatially
averaged Landau level intensity is quantitatively reproduced by
the calculations described in Eq. (46) using a¼ 7� 10�11 eV m,
mn ¼ 0:035, gðEÞ ¼�21 and a disorder broadening of the levels as
marked in Fig. 8(d)–(i). Thereby, mn and g(E) have been calculated
as an average within the first subband up to the onset of the
second subband from Eqs. (17) and (18). The parameter FWHM is
in excellent agreement with the strength of the disorder potential
being about 25 meV peak-to-peak and shows the expected
trend that it is coarsened by rcnp1=

ffiffiffi
B
p

. The remaining fitting
parameter a is only slightly lower than the estimated one
probably because of neglected barrier penetration and higher
orders in k � p-description as mentioned above. The nice corre-
spondence between the measured and the calculated node posi-
tions at different B is strong evidence that the Rashba spin
splitting has been detected by STM [68].

Notice that the Rashba spin splitting is not directly visible in
quasiparticle interference patterns probed by STS, as one would
naively expect from the two Fermi circles. If only single scattering
is considered theoretically, the scattering leads to a wave vector
of the standing waves of exactly k, the average of the radii of the
two circles [199]. Subtle changes of the quasiparticle interference
appear, if multiple scattering becomes relevant, e.g., within
quantum corrals [200], and a very complex spin distribution
within the standing wave should appear, if magnetic scatterers
are used [201]. Indirect ways to probe the Rashba effect by STS
used, e.g., the increased density of states at the band onset of the
Bi/Ag(1 1 1) and Pb/Ag(1 1 1) surface alloys [202]. This method
reveals the Rashba parameter from the strength of the peak at the
band onset, but it might be very sensitive to details of the
tip density of states. Another method used the complex band



Fig. 8. (a) Band bending as calculated by a Poisson–Schrödinger solver for p-InSb(1 1 0) (NA ¼ 1:5� 1024 m�3) covered with 1.5% Cs, conduction band, valence band, and

band gap are marked, 9CmðzÞ9
2

of the first two subbands are shown in yellow and electric field E is marked in red, field value and resulting Rashba parameter a are given;

(b) dI/dV curves recorded at different positions of the sample, spin directions are marked (B¼7 T, V stab ¼ 0:3 V, Istab ¼ 0:2 nA, Vmod ¼ 1:0 mV); (c) relation between the peak

voltage of the lower spin level and the determined spin splitting; rings mark two different areas where spin splitting is observed and indicate that it is only observed in hill

and valley regions of the potential; (d)–(i) spatially averaged dI/dV curves (area for averaging: (300 nm)2) at B-fields indicated (Vstab ¼ 0:3 V, Istab ¼ 0:2 nA, Vmod ¼ 1:0 mV)

in comparison with calculated DOS using mn ¼ 0:035, a¼ 7� 10�11 eV m, gðEÞ ¼ �21, and a Gaussian level broadening with FWHM as marked, double arrows mark

positions of nodes in DOS and dI/dV curve; T¼5 K [68]. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this

article.)
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structure of Bi(1 1 1), which exhibits six spin-split Fermi circles,
and detects that quasiparticle interference requires spin conser-
vation and, thus suppresses some of the naively expected features
in the Fourier transform of STS images [203]. This method allows
to prove spin textures in complex band structures and has also
been used for topological insulators [91], but does not give access
to the spin–orbit parameters.

Local differences of the Rashba spin splitting have not been
reported so far, although they are of large relevance for spin
relaxation processes [69,204–206]. Fig. 8(b) shows that the spin
splitting indeed varies with position. For a number of curves the
spin splitting has been evaluated by the same type of fits as
shown in the inset of Fig. 7(c) and the resulting spin splitting is
shown as a function of the first peak position in Fig. 8(c).
Obviously, the average spin splitting is larger at higher potential
energies, i.e. at hills of the disorder potential. The difference in
average values of the two circles is about 2 meV, although the
spread is much larger than the uncertainty of the individual fits
and, thus, depends on unknown details of the potential landscape.
The stronger spin splitting at higher energy has to be contrasted
by the reduced g(E) with increasing energy. Using gðEÞ ¼�31 as
calculated for the subband onset from Eqs. (17) and (18) in
combination with the result from the Poisson–Schrödinger equa-
tion and the average values of the spin splitting within the left
circle at around �57 mV, which is DESS ¼ 13:5 meV, and the right
circle at around �43 meV, which is DESS ¼ 15:6 meV, we obtain
Rashba coefficients of a¼ 5� 10�11 eV m and a¼ 9� 10�11 eV m,
respectively. The extrema of the spin splitting in Fig. 8(c) require
a values of a¼ 3211� 10�11 eV m. Thus, the Rashba parameter
fluctuates by more than 750% within the potential disorder.
A detailed understanding of this fluctuation requires further
experiments, but a simple estimate offers a tentative explanation
for the general effect. First, one has to understand that a is a local
parameter, which depends on the local electric field only [69].
Since the band shift at the surface is constant at high enough
adsorbate density and the z-extension of the band bending is

proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1

Dopant

q
(N2DES is negligible at such large doping),

the electric field and, thus, a is roughly proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDopant

p
.

Thus the question is, how many dopants contribute to the local
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band bending within the area of a single localized state. The
length scale of the potential fluctuation is 20 nm, which corre-
sponds to the lateral extension of localized states, while the
extension of the electric field in z direction is about 20 nm, too,
leading to about ND ¼ 10 dopants in the electric field area of a

single state. The standard deviation of 7
ffiffiffiffiffiffiffi
ND

p
¼ 73:2 leads to a

fluctuation of ND of about 730%, respectively, a FWHM of the a
distribution of 30%, which is slightly lower than the experimen-
tally averaged value of 725%. Importantly, already a moderate
doping leads to a strong fluctuation of aðx,yÞ, which will lead to
spin dephasing in spintronic devices independent of the well-
known Dyakanov–Perel mechanism [207].
9. Conclusions

In conclusion, the adsorbate-induced 2DES on InAs(1 1 0) and
InSb(1 1 0) have been used to detect the relevant spin parameters
for semiconductor spintronics on the local scale. In particular, the
exchange splitting of electrons has been measured firstly. It
depends on the local filling factor and is as large as 0.7 meV
already at rather high filling factors above n¼ 10 for a state far
away from the Fermi level. Future experiments will investigate
the spatial dependence in more detail using systems with lower
filling factor, which naturally would lead also to lower distances
to EF and, thus, larger exchange energies. Using the conducting
bulk of Fig. 7(a) as an additional gate would be the best way to
reduce the filling factor maybe even down to n¼ 1 or n¼ 2.
Secondly, the Rashba parameter has been measured showing a
rather large value of a¼ 7� 10�11 eV m on p-doped InSb(1 1 0)
covered with Cs. Large fluctuations up to 750% of the Rashba
parameter have been observed within a disorder potential fluc-
tuating by about 20 meV. This is relevant for spintronic devices
using the Rashba effect, since it limits the effective spin life-time
implying a need for more detailed studies. Importantly all the STS
measurements can be done on a 2DES where the potential
disorder can be measured independently using the tip-induced
quantum dot. Also the other parameters like surface band shift
and 2DES density can be probed by ARPES. Thus, full control on
the relevant parameters allows to tackle the influence of disorder
in great detail.

Another interesting field with respect to semiconductor spin-
tronics are the ferromagnetic semiconductors, where room-tem-
perature ferromagnetism is still a matter of debate [208–210].
Mostly, the III–V semiconductors doped with Mn have been
studied so far by STS, showing, e.g., the anisotropic shape of the
Mn acceptor wave function resembling a butterfly [211], its
persistence up to nearest neighbor Mn–Mn distances, where the
local deviation from a simple overlap of butterflies is everywhere
less than 30% [212], the additional mirror asymmetry of the wave
function shape appearing at distances up to eight monolayers
from the (1 1 0) surface [213,214], the exchange interaction
between neighboring Mn on the surface [215], and the critical
properties of the wave functions across the energy dependent
metal–insulator transition at a Mn doping of 1.5% [216]. Here, the
interplay of disorder and spin properties is again very relevant,
most likely also for the ferromagnetic transition temperatures
[217]. This calls for detailed studies by STS also on other types of
possible ferromagnetic materials with low conductivity.

Following the proof-of principle experiments on spin proper-
ties in disordered two-dimensional electron systems as shown
above, we also expect a more extensive use of spin-polarized STS
[47] on these systems in the near future. This can lead to a direct
probing of the canted spin orientation of Rashba states in
magnetic field, the direct probing of skyrmion textures and there
interaction with disorder around filling factor one or a mapping of
the complex spin distribution of ferromagnetic semiconductors
and insulators. Also, the novel two-dimensional materials like
graphene, silicene or topological insulators could profit from this
technique, in particular, with respect to clarifying the origins of
symmetry breaking of degenerate Landau levels at high B-field or
the consequences of the spin textures of topological surface states
for scattering and confinement properties. Thus, STS probing the
spin properties of two-dimensional electron systems will sin-
cerely remain an important and technologically relevant branch
of research in the near future.
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