
R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Copyright © 2011 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Computational and Theoretical Nanoscience

Vol. 8, 1–8, 2011

Global Surface Parameterization by
Smooth Facet Selection

Ralf Vogelgesang
Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany

We present a global surface parameterization for smooth, star-like domains with asymptotic singu-
larities (edges and corners) whose “sharpness” can be tuned. The basic idea is a novel utilization
of the (near-)maximum norm. For a given parameterized direction, by choosing the largest inverse
distance, it “selects” out of a set of limiting facets the one which is closest. Thus each facet’s orienta-
tion and location can be individually controlled. Assembly of the final surface happens automatically
and C�-smoothly over the entire parameter domain, i.e., the unit circle (2D) or unit sphere (3D). The
resulting surface is directly amenable to fast Fourier transforms and related methods and should
also be useful for many high-order numerical solvers. We demonstrate how to construct general
convex polygons and polyhedra and point out a few possibilities for concave, star-like domains.
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1. INTRODUCTION

This research was inspired by the tremendously growing
variety of methods to fabricate plasmonic nanoparticles1–3

as well as recent advances in measuring4–8 and calculat-
ing their properties with the help of boundary discretiza-
tion methods.9–14 These metallic structures are typically
several tens to hundreds of nanometers in extent and
exhibit strong electromagnetic resonances in the visible
to infrared frequency spectrum. Their optical properties
are widely tunable by controlling the particle size and
shape (see Fig. 1). In colloid-chemical growth methods,
their shape and geometry is often driven by internal crys-
tallographic symmetry, giving rise to, e.g., cubic, tetra-
hedral, octahedral, cuboctahedral, even dodecahedral and
icosahedral particle shapes. These may be extended fur-
ther into platelets or rods of triangular, rectangular, pen-
tagonal, or hexagonal cross sections. This list does not
exhaust the morphological possibilities, though. Specific
thermo-chemical treatment processes allow rounding or
sharpening of edges and corners, site-selective chemistry
allows outward growth of rods (“legs”) from a central par-
ticle, resulting in star-like structures. Further variety stems
from the possibilities of heterogeneous growth of struc-
tures, using different materials, resulting, for instance, in
core–shell structures or segmented rods. In the following,
we present an intuitive, yet general scheme that allows
modelling most of these morphologies of nano-particles.
Among the methods and algorithms available for

numerical solutions of scattering problems in piece-wise

homogeneous media, interface or boundary discretiza-
tion methods are particularly efficient, largely due to the
reduced dimensionality of the problem.15–17 For three-
(two-) dimensional objects only a two- (one-) dimensional
manifold has to be considered. This results in low mem-
ory usage even for scattering objects much larger than
one wavelength. Boundary integral equation methods,18

in conjunction with low operation count methods such
as Fast Fourier Transforms (FFT), render the differential
equations accurately solvable with high-order convergence
even on modern desktop computers. This class of numer-
ical problems has in general two sub-parts. First, a suit-
able geometric parameterization has to be found for the
interface surfaces separating the different spatial domains.
Second, an appropriate representation on these interfaces
is required for the partial fields and/or potentials, which
are then subject to the numerical solution process. In this
report, we focus on the first part exclusively.
Most general approaches to the construction of inter-

faces are based on meshing routines that approximate the
surface by patches of elemental geometry (often triangles).
While extremely flexible, these schemes required consid-
erable effort not only in book-keeping of issues such as
connectivity of the patches, and in ensuring continuity of
global functions, such as potentials, surface shape, etc.
Often they are defined locally on each patch, and special
conditions must be met between neighbouring patches. To
keep computation costs manageable, the resulting repre-
sentations of mesh-parameterized surfaces are usually of
limited continuity, say continuous first-order derivatives,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1. Illustrations of typical shape-changing processes in nano-particle fabrication and the corresponding variations to particle surface geometry.
(a–d) In cubic crystals, the ratio of rates of growth perpendicular to the {100} and {111} facets determines whether the resultant particle shape is a
cube (a), an octahedron (d), or an intermediate case (b, c). (e–h) Growth of a pentagonal rod (h) occurs after stabilization of {100} facets in a multiply
twinned seed crystal (e). (i–l) Thermal annealing may result in rounding of corners and edges. All of these examples have been rendered with the
representation of Eqs. (6), (7).

but discontinuous curvature. This limits their applicabil-
ity to high-order numerical methods for boundary value
problems. Suitable surface representations for use with
high-order numerical methods for boundary value prob-
lems (such as partial differential equation solvers, integral
equation solvers, etc.) require higher order continuity.19

Large area patches have been suggested based on Fourier
analysis to continue smooth portions of piecewise smooth
functions, which can thus cover extremely complex sur-
face geometries.20 Our present goal is less ambitious, in
that we deal with surfaces that can be considered radial
deformations of a single unit circle or unit sphere. The
advantage of this restriction is direct applicability of fast
methods like FFT on the unit circle and Fast Spherical
Harmonics Transform (FSHT) on the sphere.21–23

2. BASIC DESCRIPTION OF SURFACE
PARAMETERIZATION BY SMOOTH
FACET SELECTION

The starting point of our surface representation is the well-
known p-norm for finite-dimensional vector spaces,

�v�p =
( N∑

i=1

�vi�p
)1/p

(1)

where v is an element of an N -dimensional vector space
and p > 0 a real number. One may consider the p-norm
as a convenient way to smoothly parameterize corners.
As is illustrated in Figure 2(a), for higher values of

p, the iso-norm curves of p-length 1.0 asymptotically
approach the shape of a square. Indeed, for p → �, the
infinity-norm is also referred to as the maximum norm,

since it selects the largest of the values {�vi�}. This draws
our attention on the unit vector pointing in the direction
of the associated largest vector component (Fig. 2(b)).
Viewed as an asymptotic limit, the iso-norm curve of the
maximum norm can be viewed as composed of hyper-
surface segments. From Eq. (1), these are given implic-
itly by

vi = v · ei = 1 (2)

which may be generalized to

�v−R� · ei
di

= 1 (3)

Here di is the distance of the i-th surface segment from
the origin R. At this point we dissociate the index i from
the coordinate axes and let it become an index over an

(b)(a)

Fig. 2. (a) ��v��p = 1 iso-norm traces in R2 implicitly defined by Eq. (1),
for different values of p. (b) The “infinity” or “maximum” norm iso-
curve, viewed as composed of hyper-surface segments. The dashed line
indicates the hyper-surface which constitutes one such segment—defined
here as all points in the plane normal to ei that has unit distance from
the origin.
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arbitrary number of facets in the asymptotic surfaces. The
coordinate parameterization is conveniently recovered by
cylindrical or spherical angle coordinates in two- or three-
dimensional space, respectively, which at the same time
become the surface coordinate parameters. For a given set
of surface parameters (���), we impose Eq. (1) as the
determinant for the length r of the vector reaching from
R to v on the asymptotic surface. Let ������ be the
unit vector corresponding to the parameters � and �. Usu-
ally, one will choose the standard cylindrical or spherical
directions, ���� = �cos���ex + sin���ey� or ������ =
�sin��� cos���ex + sin��� sin���ey + cos���ez�, in a static
reference frame. It may be convenient, though, to allow
for a continuously variable reference frame, which then
implies correspondingly varying Cartesian components for
this unit vector. Using this kind of a parameterization, we
can re-write the generalized Eq. (1) as

�	������p = 1=
( N∑

i=1

∣∣∣∣ r	����� · eidi

∣∣∣∣
p)1/p

(4)

That is, with

r�����=
( N∑

i=1

∣∣∣∣	����� · eidi

∣∣∣∣
p)−1/p

(5)

we can specify the location on the surface associated with
(���) as

v�����= R+ r�����	����� (6)

Nevertheless, Eq. (5) is unsatisfactory in one critical
respect: The necessary use of absolute values implies the
loss of a sign. The resulting curves exhibit an undesired
“inversion symmetry.” This is exemplified in Figure 3 for
the case of a triangular asymptotic curve. Here the origin
is R = 0. When r��� is evaluated according to Eq. (5),
one obtains a hexagon rather than a triangle, because any
distinction between hyper-surfaces of distance di and −di

is lost. This has to be re-established explicitly by a modi-
fication of Eq. (5), such as,

r�����=
( N∑

i=1

H

(
	����� · ei

di

)∣∣∣∣	����� · eidi

∣∣∣∣
p)−1/p

(7)

(a) (b)

Fig. 3. The symmetry effect of using absolute values in the p-norm. (a)
An iso-infinity-norm curve for three linear facets, using Eq. (5). (b) The
same as in (a), but using Eq. (7).

where the Heaviside step function H�x� is zero for nega-
tive x and one otherwise. Using Eq. (7), one obtains the
desired triangle (Fig. 3(b)), as expected. Together, Eqs. (7)
and (6) are the central result of this report. They have been
used for generating all subpanels of Figure 1. For exam-
ple, the dodecahedron of Figure 1(i–l) is created with the
following set:


= 2 arctan
(
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ei = 	��i��i�= sin��i� cos��i�ex

+ sin��i� sin��i�ey + cos��i�ez

di = �1�1�1�1�1�1�1�1�1�1�1�1


3. CHARACTERISTICS AND EXPANSIONS

3.1. The Smallest Convex Enclosure Principle

Next we discuss some of the features of surface parame-
terizations using Eqs. (6, 7). For clarity, we only display
two-dimensional cases here. Three-dimensional general-
izations are straightforward. Foremost, one realizes that
the resulting surface may be construed as the smallest con-
vex enclosure of the origin. This principle is illustrated
in Figure 4. For each pair of direction vector and dis-
tance, one can envision the corresponding line (or plane in
three dimensions) drawn. As the surface parameterization
uses cylindrical (spherical) angles, it “tests” all directions
around the origin. The generalized p-norm selects for each
direction the reference line (plane) closest.
One may arbitrarily shift (altering di) and rotate (alter-

ing ei) the reference lines to morph the resulting enclosure

(a) (b)

Fig. 4. Illustration of the smallest convex enclosure principle. A set
of four lines (dotted) is considered. Each line is defined by its normal
direction ei and its distance di from the origin. The red curve is generated
by Eqs. (6, 7) with a modest rounding of corners (p= 9). (a) the distance
of one line ist reduced to near-zero. (b) Continued reduction of the same
distance as in (a) to negative values.

J. Comput. Theor. Nanosci. 8, 1–8, 2011 3
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curve to any desired shape (Fig. 4(a)). Changing the sign
of a distance di is equivalent to inverting the orientation
ei—with corresponding drastic changes (Fig. 4(b)).
Note that under certain conditions, the “enclosing

curve” may be open, like in Figure 4(b). This happens,
whenever for a given � (and �), all the conditionals intro-
duced in Eq. (7) vanish,

∀i � H
(
	����� · ei

di

)
= 0 (8)

and there are “no terms to choose from” for the p-norm.
Also note that a certain line (plane) may lie completely
outside the smallest convex enclosure, which is entirely
composed of the other lines (planes), as is the case,
e.g., for the most negative distance line displayed in
Figure 4(b). Under such circumstances this line does not
contribute anything to the limiting morphology (p →�),
and only a small effect is noticeable for finite p.
The notion suggested by the limiting “maximum” norm

(for p→�) that a certain (the closest) facet is picked out
of all available can be utilized further, to construct also
concave forms. The main idea is that certain facets are
only offered in certain parameter intervals. Algebraically,
this is facilitated by additional conditionals, say

r����� =
( N∑

i=1

H��−�min� i�H��max�i−��H

×
(
	����� · ei

di

)∣∣∣∣	����� · eidi

∣∣∣∣
p)−1/p

(9)

where �min�i and �max�i are the limits of the intervals
of validity for facet i. Figure 5 shows an example. For
more complicated situations, the determination of proper
parameter intervals, however, is not that straightforward,
and control of the roundedness of concave corners is also
awkward.

3.2. Controlling Local Surface Properties

An interesting consequence of the opportunity to shift the
defining lines (planes) is the possibility to re-locate the
entire the structure on a different origin, by redefining

di → di+�R · ei (10)

(a) (b)

Fig. 5. Extension of the smallest convex enclosure principle by condi-
tional faceting. In (a), facets 1 and 2 enter Eq. (9) only when parameter
� is in the interval [�/2�3�/2) and [0��/2), respectively. (b) shows the
result of unconditional inclusion of all facets for all parameter values.

as illustrated in Figure 6(a). For numerical considerations
such a global shift may be useful to manage the parameter
density along the circumference of the resulting shape. Of
course, in view of the previous comments, care should be
taken that none of the distances switch sign by this re-
assignment to preserve the resulting shape.
Let us emphasize the view that the angles � and �

are mere parameters. For example, one may parameterize
the global sharpness p to become a local function p���,
affording us options to increase it locally in the vicinity of
a particular corner by a convenient function such as

p→ p���= p0+pc e
−���−�c�/	��

2
(11)

where �c is the parameter associated with the locus of
the desired corner, and (p0 + pc) is its sharpness (see
Fig. 6(b)). Similarly, we may make use of a “moving
origin” to even out the parameterization density on the
resulting curve (surface). Consider an origin that depends
on � (and � in three dimensions). We employ Eq. (10)
continuously,

r����� =
( N∑

i=1

H

(
������ · ei

di−�R����� · ei

)

×
∣∣∣∣ 	����� · ei
di−	R����� · ei

∣∣∣∣
p)−1/p

(12)

and also use Eq. (6) with the same parameterized origin,
compensating the associated shifts. As shown in Figure 7,
this yields two different representations of the identical
curve (surface)—however, with different distributions of
equidistant parameter points (lines).
Note that, to be meaningful, such a shifting origin

should exhibit the same kind of basic properties as the
parameter space. Specifically, it should be smooth and 2�-
periodic in �, which suggests trigonometric functions in
� as the fundamental parameter in its construction.
So far, we have only considered the case of a limiting

surface composed of flat facets. For some application it
is necessary to consider more general, curved “facets” by
replacing in Eq. (12) the flat-facet term by an arbitrary
function ∣∣∣∣ 	����� · ei

di−	R����� · ei

∣∣∣∣→ Fi����� (13)

(a) (b)

Fig. 6. (a) Relocating the origin by Eq. (10) to shift the entire curve.
(b) Increasing the sharpness of individual corners with Eq. (11).

4 J. Comput. Theor. Nanosci. 8, 1–8, 2011
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(a) (b)

Fig. 7. Use of a moving origin for parameterization of a rectangular
curve with aspect ratio 1:4 and corner rounding parameter p = 5. (a)
Global origin 	R���= 0. (b) Moving origin 	R���= 3cos��� ex .

Figure 8 presents an example, based on that of Figure 7,
where the top facet description given by

Fi�����=
�	����� · ei�q

�di−	R����� · ei�
(14)

Depending on the parameter q, this generates a sym-
metric “dip” or “bump” in the center of of the modified
facet.

3.3. Generating �-Fold Rotationally Symmetric
Curves

As our final extension of the basic Eqs. (6, 7), we consider
an option that utilizes the 2�-periodicity in �. Multiply-
ing this parameter with a positive integer �, increases the
periodicity without sacrificing continuity in the generated
curve (surface),

r����� =
( N∑

i=1

H

(
	������ · ei

di−	R����� · ei

)

×
∣∣∣∣ 	������ · ei
di−	R����� · ei

∣∣∣∣
p)−1/p�2

(15)

An example is shown in Figure 9, where a three-fold
rotationally symmetric shape is generated from a basic tri-
angular shape by setting the distance of one facet to a
near-zero value.

Fig. 8. Generation of curved surfaces. Here, the top facet is altered
by using the flat-facet function Fi����� as indicated in Eq. (14) with
different values for the convexity parameter q.

(b)

(a)

Fig. 9. Higher periodicity curves, generated with Eq. (15). (a) N = 3,
di = 1. (b) The same as (a), but with d1 = 0�001.

The additional factor of �2 in the exponent of Eq. (15) is
a reasonable approximant to render flat facets in the case
of regular polygons. It may also be parameterized with �
(and �), of course, to control the local curvature exactly.
The most interesting applications, however, may indeed be
shapes that grossly deviate from regular polygons (which
may be generated exactly with the help of Eq. (7), any-
way). As is shown in Figure 10, starting from an elongated
rectangular shape, one can generate quad- and hexapods.

3.4. Three-Dimensional Surface Constructions

All of the concepts demonstrated above for the two-
dimensional case apply also to three dimensions. Thus,
a parameterization of arbitrary convex enclosures can be
achieved in terms of the usual spherical angles (0≤ �0≤
2�, 0 ≤ � ≤ �). This offers an intuitive way to con-
struct technologically or scientifically relevant objects. For
instance, in the field of current nano-optical research, the
vast majority of particle shapes encountered is covered.
Unit cell symmetries and chemical growth processes typi-
cally enforce single and multiply twinned crystals, which
are described as cuboids, platelets, rods, spheroids, etc.
(Fig. 11).
An interesting challenge that remains is a more general

control over non-convex structures. Being based on spher-
ical coordinates, it should be possible to parameterize a
rich variety of star-like domains. Based on the principle of
a moving origin (in three-dimensions, it may move on a
parameter surface), it might even be possible to generate
(���)-parameterizations for more complex domain shapes.

Fig. 10. Higher periodicity curves, generated with Eq. (15) without the
additional factor �2 in the exponent.

J. Comput. Theor. Nanosci. 8, 1–8, 2011 5
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(b)(a) (c)

(d) (e) (f)

Fig. 11. Basic three-dimensional shapes created with Eqs. (6, 7). (a–c) Prisms generated from two-dimensional curves with side walls (a) straight-up,
(b) slanted, and (c) individually controlled. (d) Hexagonal platelet with angled side walls. (e) Tetrahedron with tip cut away. (f) General ellipsoid.

Fig. 12. The effect of symmetry order factors in the parameters for the example of a symmetric bar. Note that half-integer �-values yield closed
surfaces only if the basic (�= � = 1) structure is symmetric.

6 J. Comput. Theor. Nanosci. 8, 1–8, 2011
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At this point we mainly have the symmetry extension dis-
cussed in Eq. (15) at our disposal. Its generalization to
the three-dimensional case introduces a multiplier � to the
�-direction:

r����� =
( N∑

i=1

H

(
	������� · ei

di−	R����� · ei

)

×
∣∣∣∣ 	������� · ei
di−	R����� · ei

∣∣∣∣
p)−1/p�2

(16)

Figure 12 displays how, starting from a symmetric bar,
a sequence of highly symmetric star-like structures are
obtained. They do resemble some nano-structures that have
been recently fabricated, however, not very closely. One
would like to be able to control the orientation, length and
shape of individual arms. This might be possible through
continued parameterization of ����p—i.e., making them
intricate functions of � and �.

3.5. Surface Generation from (Measured)
Point Clouds

The cases we have presented above may appear some-
what idealized, in that they were driven by the desire for
an accurate, yet versatile representation of polyhedrons,
which require only a small number of flat facets. It may be
appreciated, though, that there is neither a principal lim-
itation to the number of facets, nor their curvature (see
Eq. (13) and Fig. 8). Both of these aspects suggest the pos-
sibility of construction of a general surface from a point
cloud with this scheme. Figure 13 gives an example. Here,
a cloud of 40× 40 surface locations is used. The surface
representation is generated without concern to any local
properties of the cloud. Each point i in the cloud is asso-
ciated with one independent facet. Its distance di is set
to the length of the vector from the origin to the point,
and the surface normal ei is set to the direction of this
vector. To achieve any concave surface at all, some modifi-
cations such as indicated in Eq. (14) are necessary. We use
a globally constant exponent q = 20 with Eq. (14), whose
outward-pulling, concave effect is manually balanced with
the inward-pulling, smoothing effect of a moderate expo-
nent p = 10 in Eq. (7).
From this particular example, a number of likely issues

are identified that will help obtaining a better represen-
tation in the generic case: Independent knowledge of the
surface normal direction in each point is highly desirable,
instead of a priori assumptions or intricate analysis of the
cloud. The value of q should be made variable over the
index i, as it depends on the local density of input points,
as well as the local curvature to be achieved. Similarly,
p maybe localized in the vein of Eq. (11). Finally, we note
that open surfaces are also directly attainable, using only
sub intervals of the (���) parameter space. In conjunc-
tion with mapping the origin location (Eq. (15)) and/or the

(b)(a)

(c)

Fig. 13. Demonstration of the use of “smooth facet selection” to repre-
sent general surfaces. (a) The ideal surface to be represented. (b) Point
cloud of surface locations used as input for generating a representation
of the original surface. (c) Representation of (a) with Eqs. (6, 7, 13).

local coordinate system, the present method may even be
developed into an alternative to Fourier continuation,19�20

also yielding C�-smooth surfaces essential for high-order
numerical methods.

4. SUMMARY

We have presented a versatile approach to the C�-smooth
global parameterization of the surface of star-like domains.
It is based on the “choosing” quality of the p-norm, which
for p → � becomes the “maximum” norm—verbalizing
this selection process explicitly. Here, the choice falls for
given parameters (���) on one of an arbitrary set of limit-
ing facets, which can thus be oriented completely at will.
The singular limiting facet-joints, i.e., edges and corners,
can be given tunable sharpness.
This scheme is rather different from approaches based

on tensor products or superquadrics.24�25 which neverthe-
less may be combined with our present approach, when
convenient. For example, our two-dimensional representa-
tion may be used with the standard spherical tensor prod-
uct to render straight cylindrical prisms or rotationally
symmetric objects. We have demonstrated a number of
different principles to extend the range of possible applica-
tions of the central Eqs. (6, 7). These functions execute fast
and—as they are known analytically—can be used further
to devise strategies for setting other quantities important to
simulations. For example, gradients and surface normals
may also be expressed analytically, and the local curvature
may be used to define sampling density on the parameter-
ized surface.

J. Comput. Theor. Nanosci. 8, 1–8, 2011 7
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Particular benefits of this modeling procedure are fore-
seen in the evaluation of optical properties of nano-objects.
A close similarity of thermo-chemical growth processes
with the morphing strategies of the present parameteriza-
tion allows for a very intuitive and realistic rendering of
their geometries. Beyond this, many useful applications
are possible with essentially any boundary-type solver for
differential and integral equations.

Acknowledgments: The author would like to acknowl-
edge many fruitful discussions with Ludmila Raguin and
Christian Hafner.
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