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Abstract

Il seguente lavoro[1] riporta un dettagliato studio da principi primi delle proprietà
strutturali, elettroniche e vibrazionali della lega superconduttiva ternaria CaAl2−xSix
considerata nella fase C32. Tale analisi considera sia l’ intervallo di drogaggio 0.6 ≤
x ≤ 1.2 per il quale la lega è stata sintetizzata, sia il limite teorico di elevata concen-
trazione di alluminio o silicio. Nell’intervallo sperimentale di drogaggio, la dipendenza
delle proprietà elettroniche dalla diversa composizione è accuratamente descritta me-
diante un modello a bande rigide che perde invece di validità sia per x ≤ 0.6 che per
x ≥ 1.2. Nel caso di elevate concentrazioni di alluminio, tale fallimento risulta essere
correlato alla comparsa di instabillità vibrazionali e determina importanti differenze
tra il CaAl2 e l’ MgB2.

We report[1] a detailed first-principles study of the structural,electronic and vibra-
tional properties of the superconducting C32 phase of the ternary alloy CaAl2−xSix,
both in the experimental range 0.6 ≤ x ≤ 1.2, for which the alloy has been synthe-
sised, and in the theoretical limits of high aluminium and high silicon concentration.
In the experimental range, the dependence of the electronic bands on composition is
well described by a rigid-band model, which breaks down outside this range. Such a
breakdown, in the (theoretical) limit of high aluminium concentration, is connected to
the appearance of vibrational instabilities, and results in important differences between
CaAl2 and MgB2.

The discovery [2] of superconductivity with a Tc of 39 K in MgB2 in
2001 came somehow unexpected: a simple s − p binary compound, without
d electrons, showed a critical temperature which was higher than the all the
known electron-phonon superconductors and comparable to those of the first
high-Tc cuprates.

The crystal structure of magnesium diboride, known as C32 [3] (Fig. 1),
with hexagonal boron planes intercalated with magnesium atoms, is analogous
to that of graphite, and common to many binary and ternary compounds, some
of which contain light s − p elements.

One of these compounds, the CaAlSi alloy, has been recently synthesized [4]
in the C32 structure in a wide composition range (x), and shown to be super-
conducting at all x, with Tc reaching a maximum [4] of 7.7 K at x = 1.
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First-principles calculations [6] [5] at x = 1 have shown that also in this case
superconductivity is of electron-phonon type, and that the lower critical tem-
perature with respect to MgB2 can be understood because the electronic and
vibrational states involved in the superconducting pairing are different.

However, since these calculations were carried out only at a single compo-
sition, there has been so far no attempt to characterize the complete phase
diagram of this alloy: in this work, we performed an extensive ab-initio anal-
ysis of CaAlSi, both inside and outside the experimental range of stability,
in the limits of high Si (x=2) and Al (x=0) concentrations. The latter is of
particular interest, because, in this structure, CaAl2 would be isoelectronic
and isostructural to MgB2, and thus represent an ideal candidate for the ob-
servation of superconductivity.

The calculations reported in this work were carried out in the framework
of density functional perturbation theory [7] using two different plane-waves
codes, ABINIT [8] and PWSCF [9], and pseudopotentials generated with the
FHI98 code [10]. For the description of doping, we used the Virtual Crystal
Approximation [11], as implemented in the ABINIT code. Further details can
be found in Ref. [1]. Calculations were performed on the CINECA-CLX (IBM
Linux Cluster 1350); an average single run for a linear-response calculation
required 36 hours/node.

Figure 1: Left: crystal Structure of MgB2 (C32 phase): Hexagonal planes of
B atoms (violet) are intercalated by Mg (blue) atoms. Right: For x = 1 the
CaAl2−xSix alloy prefers an ordered phase of lower symmetry, with alternated
Al and Si (white, green) occupying the B sites in the hexagonal plane and Ca
(orange) replacing Mg, but for x 6= 1 the Boron sites are randomly occupied
by Al or Si atoms and on average (VCA) the struture is C32 (left). At x=0,
with 8 valence electrons, CaAl2 is isoelectronic with MgB2. The (c/a) ratio is
1.142 in MgB2, while it varies strongly in CaAlSi (see fig. 4).

In order to investigate the relation between the stability of the C32 struc-
ture and composition, we considered a dense grid of x values between 0 and 2,
and for each of these values we optimized the internal parameters of the crys-
tal structure. In the optimized structure we calculated the band structure and

2



phonon spectrum, to test for the occurrence of dynamical lattice instabilities.
Our results, summarized in Fig 2-5, show that the stability of this com-

pound is governed by an interlayer band, which is empty in MgB2, coupled
to an out-of-plane buckling phonon, which becomes unstable at low x. The
same phonon is also mainly responsible for superconductivity. The coupling
of out-of-plane phonons to interlayer states and their consequent instability
is likely to be a general property of the C32 phase. The main result of this
work is thus that the interlayer band, empty in MgB2, and the “out-of-plane”
phonons (optical B1g and acoustical A2u at Γ), irrelevant for superconduc-
tivity in MgB2, play a major role on the stability and superconductivity of
C32 intermetallic compounds, once the structural parameters c and a assume
appropriate values. This observation goes beyond the CaAlSi family and rep-
resents the starting point for further studies of a wider class of hexagonal,
graphite-like compounds. [14]
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Figure 2: Comparison between the Density of States (DOS) at the Fermi level
of CaAlSi obtained by a fully self-consistent calculation and a rigid band model
(see text). Our results show that the rigid-band model breaks down precisely
at the border of the experimental range of stability of this compound.
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bottom has a prevailing Ca 3dz2
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Figure 4: Optimized lattice parameters of CaAl2−xSix in the C32 structure as
a function of composition x: the a lattice parameter monotonically increases
as x decreases, while c strongly decreases below x = 0.5 until it equals a at
x ∼ 0.3 and then abrupty falls: around x < 0.15 there is a sudden jump in
the c/a ratio, from ∼ 1 to ∼ 0.8. As discussed, for example, by Pearson [13],
compounds which crystallises in the C32 structure are divided in two branches:
the AlB2 branch, with c/a > 0.95 and the UHg2 branch, c/a < 0.90, separated
by a forbidden range of c/a values.
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Figure 5: Selected phonon frequencies of CaAl2−xSix as a function of compo-
sition. The compound is dynamically stable (all frequencies are real) down
to x = 0.15, where the mode involving out-of-plane vibrations of the Al/Si
atoms becomes unstable in the upper half of the Brillouin zone (imaginary
frequencies, here shown as negative). Note that the transition seems to be
first-order, like that in the c/a ratio. Notice also that at x = 0 (CaAl2) the
compound is dynamically unstable.
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