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Diamond is usually considered the prototype of band
insulators: it came as a big surprise, therefore, when it
was shown that, under extremely high boron doping (i.e.
3 %), diamond undergoes a superconducting transition
with a critical temperature of 4 K [1]. After the ini-
tial report in polycrystalline samples, the result has also
been confirmed in thin films, with Tc’s as high as 11 K.
Besides creating an obvious technological interest, as dia-
mond is a promising material for application in electron-
ics, these findings posed fundamental questions concern-
ing the superconducting mechanism and the possibility of
observing superconductivity in other doped semiconduc-
tors. Our investigations based on first-principles elec-
tronic structure calculations suggest that the observed
superconductivity in hole-doped diamond is due to an
electron-phonon mechanism. We assume that at these
doping concentrations, which are one order of magnitude
larger than those at which an insulator-metal transition
takes place, B-doped diamond can be described as a de-
generate metal. A similar point of view has been adopted
in several other subsequent works [2], while in Ref. [3]
a purely electronic mechanism valid for impurity bands
was proposed. Our results not only show that electron-
phonon is a very likely explanation for the observed su-
perconductivity, but also allow us to discover an unex-
pected similarity between hole-doped diamond and the
record electron-phonon superconductor MgB2.

We have performed first-principles calculations of the
electronic and phononic properties of hole-doped dia-
mond and other tetrahedral group-IV semiconductors,
silicon and germanium, using Savrasov Linear Response
LMTO program. In the following we shall focus mainly
on diamond, but, unless differently stated, the arguments
and results apply to all the tetrahedral semiconductors
studied. To model the effect of doping we used the Vir-
tual Crystal Approximation (VCA): we approximated
the real lattice, in which a fraction x of Carbon atoms is
randomly replaced by Boron atoms, with a regular lattice
of virtual atoms with a non-integer number of protons
(Zvirt), which is a weighted average of those of Carbon
and Boron: Zvirt = (1−x)ZC +xZB . This allowed us to
evaluate the physical properties of hole-doped diamond,
silicon and germanium for different doping, up to x = 0.1.

Even at x = 0.1, the band structure of hole-doped
diamond, shown as solid blue lines in Fig. 1, is still almost
identical to that of the pure material: the 4 sp3 hybrids
on each C atom form 4 bonding (valence) and 4 anti-
bonding (conduction) bands, separated by a large gap.
The exceptional hardness of diamond derives from the
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FIG. 1: The band structure of hole-doped diamond in the
VCA approximation (blue solid line) is almost identical to
that of the pure material, even at x = 0.1; however, boron
doping drives holes into the valence band, which couple
strongly to the bond-stretching phonon at q ' 0. The red
dotted line shows the effect of a frozen optical zone-center
phonon on the band structure.

fact that the only states which are full are all of σ bonding
character, and these form bonds which are among the
strongest in nature.

With boron doping, electrons are removed from the
crystal and holes form at the top of the triply-degenerate
valence band: diamond becomes metallic, with the holes
forming three distorted spherical Fermi surfaces around
the center of the Brillouin zone. The average radius of
the spheroids grows with doping as kF ' (x/3)1/3kBZ ;
the Density of States (DOS) has a typical 3d behaviour,
and its value at the Fermi level, N(εF ), grows as x2/3.
This picture has recently been confirmed by the
ARPES measurements of B-doped diamond films
by Yokoya et al.[1], who have shown that around
EF the band structure of B-doped diamond is
very similar to that of the pure material, with
EF moving to lower energies with doping.

The effect of doping on the phonon spectrum is shown
in Fig.2: there is a sizeable reduction (softening) of the
frequency of the zone-center optical phonon; as x is in-
creased, the softening increases and extends to a larger
region in q-space. This effect can easily be understood
in terms of the standard electron-phonon theory: in met-
als, the interaction of conduction electrons with a phonon
causes a reduction of its frequency, which grows with the
strength of the interaction; also, the theory shows that
only phonons with q < 2kF are allowed to couple. Fig. 2
thus shows that in this system only the optical mode
is coupled, with a strength increasing with doping. A
simple physical argument explains why in this material
electrons couple strongly to some lattice vibrations: the
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FIG. 2: Phonon dispersion of pure and hole-doped diamond
for different values of boron concentration x: we observe a
pronounced softening of the frequency of the zone-center op-
tical phonon with respect to the pure case, which increases as
a function of x.

optical phonon, which at the zone-center has the same
symmetry as the electronic states at the top of the va-
lence band, is a bond-stretching mode which distorts the
stiff σ bonds. In fact, when the ions are moved along the
eigenvector of the Γ optical mode, the triple degeneracy
of the top of the σ band at the Γ point is removed, with
one band moving to lower and one to higher energies,
the third band being fixed (dotted red lines in Fig. 1
correspond to a frozen distortion of reduced amplitude
u = 0.05Å). As discussed by Cardona [2], this mechanism
is also responsible for the zero-point renormalization of
the optical gap in pure semiconductors. The same, strong
coupling between bond-stretching phonons and holes at
the top of doubly-degenerate σ bonding bands is at the
basis of the exceptional superconducting properties of
Magnesium Diboride. Hole-doped diamond is, after five
years of intense theoretical and experimental research in
the field of MgB2, the first example of an existing mate-
rial which is similar to MgB2 that the theoretical knowl-
edge derived there can be applied and tested.

In MgB2 a surprisingly close estimate of the total elec-
tron phonon coupling λ, is given by the Hopfield formula,
which is exact for parabolic bands with kF << kBZ :

λ =
N(εF )D2

Mω2
, (1)

where N(εF ) is the density of σ states at the Fermi level,
M is the reduced mass of the optical bond-stretching
phonon, and Du is the energy splitting of the doubly-
degenerate top of the σ band produced by the displace-
ment eu of the same bond-stretching phonon, with nor-
malized eigenvector e. There is a feedback effect between
λ and the phonon frequency, since ω is renormalized with
respect to its bare value ω0 by the interaction with elec-
trons: ω2 = ω2

0/(1 + 2λ).

Once ω and λ are known, the critical temperature can
be evaluated using the formula:

Tc = ω exp

(

−1
λ

1+λ − µ∗

)

(2)

These results can be generalized to diamond, with a few
differences due to dimensionality. MgB2 is in fact a lay-
ered material very similar to graphite, the 2D form of
carbon, which unlike diamond is based on sp2 bonding.
Instead of four σ bands, there are three σ and one π band;
the top of the σ band, which contains the superconduct-
ing holes, is doubly degenerate, with the same symmetry
as the bond-stretching phonon mode. In MgB2 all the
σ electrons couple to each of the degenerate phonon vi-
brations, whereas in diamond only 2 bands out of 3 are
coupled to each degenerate phonon vibration. Therefore,
the formula for the renormalization of the phonon fre-
quencies in diamond reads: ω2 = ω2

0/(1 + 2
(

2

3

)

λ).

N(εF ) D ω λ0 λ λnum

MgB2 0.15 12.4 536 0.33 1.01 1.02

C 0.00 21.6 1292 0 0 0

3%C 0.07 21.1 1077 0.21 0.30 0.30

5%C 0.08 20.8 1027 0.25 0.37 0.36

10%C 0.11 20.4 957 0.32 0.57 0.56

Si 0.00 6.8 510 0 0 0

5%Si 0.17 6.3 453 0.13 0.16 0.30

10%Si 0.24 6.1 438 0.17 0.22 0.40

Ge 0.00 5.8 317 0 0 0

10%Ge 0.20 4.4 282 0.08 0.09 0.32

TABLE I:

Values of the parameters which determine the total
electron-phonon coupling λ according to the Hopfield

formula (1). N(εF ) is in states/eV/spin/f.u., D is in eV/Å

and ω in cm−1. The total electron-phonon coupling
obtained by the numerical integration of the full Eliashberg

function (λnum) is also reported.

Eq.1 shows that the total electron-phonon coupling is
determined by material-dependent parameters, such as
the density of states at the Fermi level and the defor-
mation potential, and to a large extent by the phonon
softening, which in turn is dominated by dimensional-
ity. To discriminate between these two effects, it is use-
ful to introduce a bare electron-phonon coupling λ0 =
N(εF )D2/Mω2

0 , which only contains material-dependent
parameters: while D is a measure of the geometrical dis-
tortion of the electronic bands due to phonons, ω0 mea-
sures the hardness of the material. The total electron-
phonon coupling is then λ = λ0

1−2αλ0

, with α = 1 in 2D
and 2/3 in 3D. Tab. I contains the values entering the
definition of λ according to Eq.1 for MgB2, diamond, Si
and Ge and the relative λ0. It can be noticed that, even if
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at x = 0.1 due to the compensating effect of a larger de-
formation potential and phonon frequency, diamond has
the same λ0 as MgB2, its effective electron-phonon cou-
pling is much lower (0.6 instead of 1.0); this reduction is
completely due to dimensionality effects, represented by
the factor α. The value of λ in diamond grows sensibly
with doping, following the increase of N(εF ).

In the same table, the value of λ obtained by the
numerical integration of the total Eliashberg function
α2F (ω), evaluated on a very fine (1/12)3 grid in q-space
is also reported (λnum). In diamond, the agreement be-
tween the approximate Hopfield formula and the numer-
ical result, which takes into account the full complexity
of the electronic and vibrational spectrum, is striking. In
fact, the shape of the Eliashberg function indicates that
the electron-phonon coupling is actually concentrated in
the bond-stretching phonon branch.
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FIG. 3: Critical temperature Tc (Eq.1) as a function of x for
hole-doped diamond, Si and Germanium, in comparison to
MgB2.

As far as the other tetrahedral semiconductors are con-
cerned, their bare and total electron-phonon coupling pa-
rameters are always lower than the corresponding ones of
diamond, mainly because the deformation potentials are
lower. Furthermore, in this case the agreement between
the Hopfield formula and the numerical estimate of λ is
less good, as the Eliashberg function shows that other
phonon branches are involved in the coupling.

Finally, Fig.3 shows the critical temperatures for hole-
doped diamond, silicon and germanium given by formula
2; given the approximations in the formula for Tc and in
the determination of doping, the results for diamond are
in reasonable agreement with the experiment, indicating
that electron-phonon coupling is a likely mechanism for
the superconductivity in this system. Our results show
that, unless very high doping levels can be obtained, it is
very unlikely to observe superconductivity in Si or Ge.
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