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Objectives / Introduction

During the last two decades, nanostructures of carbon, among them fullerenes and carbon

nanotubes, have attracted keen interest by the scientific community due to their structural
HF-furnace put o richness and potential applications. The high — frequency furnace (HF-furnace) Is an
, - alternative synthesis approach which is based on the inductive heating of a graphite body as
the carbon source.|[1, 2] The possibility of independently co-evaporizing hetero-elements gives
access to fullerene species, i.e. barium endohedral fullerenes and phosphor heterofullerenes
which are not formed with the alternative methods.[3, 4] Exohedrally chlorinated fullerene
species can be obtained directly by evaporating graphite in an atmosphere of carbon
tetrachloride. This procedure gives access to new members of the fullerene family not obeying
the IPR-rule. Moreover both single- as well as multi-walled carbon nanotubes can be
synthesized effectively using the HF-furnace.[5]
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Results
Synthesis of sing Synthesis of chlorinated non- IPR fullerenes
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Conclusions —
> SWCNTs have been synthesized by the high frequency furnace method co- »New non-IPR fullerene species, with C,, , n > 33, have been synthesized by —
evaporating graphite and a metal catalyst introducing CCIl4 as reactive agent during the synthesis process —
# The SWCNTs, both metallic and semi-conducting species, exhibit a diameter #» HPLC/offline MS analysis indicates the presence of either different isomers of

distribution between 1.26 — 0.864 nm and were found In a state of several pm long - some species or different chlorination degrees for the same isomer o
bundles »oignificant yields are obtained suitable for further isolation by HFPLC, crystallization ﬁ
» No MWCNTs were observed in the substrate deposit and X-ray characterization as demonstrated for the first example C,,Cl, Q
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