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Glossary 

Absorption: Decrease of intensity of electromagnetic waves while traveling through matter 
due to excitation of the absorbing material 
Absorption edge: Frequency of a sudden increase in the absorption spectra of an element due 
to the fact that the incoming energy is exactly equal to the energy for excitation or ionization. 
The scattering close to an absorption edge is called anomalous scattering. 
Atomic form factor: Scattering power of an isolated atom as a function of scattering angle. 
Bragg-Brentano geometry: Geometry of an instrumental setup for powder diffraction in 
reflection mode with variable radius of the focusing circle. 
Bragg equation: Equation describing the condition for X-ray diffraction by crystalline solids. 
Crystallite size: macroscopic dimension of a crystalline grain. 
Darwin width: Smallest possible width at half maximum of a diffraction peak of an ideal 
crystal according to the laws of diffraction physics. 
Debye-Scherrer cone: Diffraction cone of a powder of randomly oriented crystallites with 
opening angle 4Θ. 
Debye-Scherrer method: non-focusing powder method in transmission mode where the 
diffraction cones are recorded equatorially on a cylinder by film or other media. 
Diamond anvil cell (DAC): High pressure cell where the pressure is generated between the 
culets of diamonds. 
Diffraction: Deviation of a wave from the incoming direction due to an obstacle; always 
accompanied by constructive or destructive interference. 
Diffractometer: Device for the measurement of diffracted intensities from a monocrystalline 
or polycrystalline sample. 
Direct lattice: Lattice used to describe the arrangement of atoms in a crystalline solid; 
defined by six basis parameters (a, b, c, �, �, �). 
Direct methods: Method for structure determination which reconstructs the phases of the 
reflections by statistical means using the relationship between normalized structure factors. 
Displacement factor: Factor describing the deviation of the atoms from the ideal position in a 
lattice (due to e.g. thermal motion). 
Domain: Region of a crystal in which an individual vector quantity has the same value. 
d-spacing: Distance between the lattice planes of a crystal. 
Electron density: Distribution of electrons within a unit cell. 
Extinction conditions: Conditions describing the systematic absence of reflections in 
reciprocal space due to the existence of lattice centering, glide planes or screw axis. 
Ewald sphere: Graphical aid for visualization of the diffraction condition. 
Full width at half maximum (FWHM): Breadth of a peak at half of its height. 
Global optimization methods: Real space methods for structure determination like e.g. the 
method of simulated annealing. 
Least Squares methods: Mathematical method for the minimization of the squared 
differences between observed and calculated quantities. 
LeBail method: Method for profile refinement and intensity extraction of powder diffraction 
data using the Rietveld decomposition formula starting from uniform peak intensities. 
Miller indices hkl: Integers describing the orientation of a lattice plane, based on the 
reciprocal ratio of the interceptions of the axes. 
Mineral: Homogeneous, inorganic crystalline solid of natural origin. 
Monochromatic radiation: Radiation of an ideally infinitely small wavelength band. 
Mosaic block: Coherent scattering part of a single crystal with ideal periodicity. 
Neutron diffraction: Diffraction method based on the scattering of neutrons by matter. 
Pawley method: Method for profile refinement and intensity extraction of powder diffraction 
data constrained only by lattice parameters and FWHM distribution. 
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Peak profile function: Mathematical function (e.g. Gauss or Lorentz distribution) describing 
the shape of a peak. 
Phase problem in crystallography: How to identify the atomic positions starting only from 
the modulo of the structure factor. 
Point group: Mathematical group with translations, rotations and roto-inversions as 
symmetry operators used to describe the symmetry in crystallography. 
Reciprocal lattice: Mathematical construction useful in diffraction physics, where the 
reciprocal basis vectors satisfy the following conditions a*=(b�c)/V, b*=(c�a)/V, c*=(a�b)/V 
(see nomenclature). 
Rietveld refinement: Least squares method for profile and crystal structure refinement of 
powder diffraction data based on the entire powder pattern. 
Crystal: An ideal crystal consists of an infinite three-dimensional periodic arrangement of 
atoms. In real crystals, the periodicity is generally disturbed by the formation of mosaic 
blocks or domains. 
Space groups: 230 mathematical groups describing the symmetry of a crystal structure in 
three dimensions. 
Strain: Deformation of a material in space in accordance to its elastic constants caused by 
internal or external stress. 
Structure factor Fhkl: Sum of the scattered waves of all atoms in the unit cell in direction of 
hkl. The modulo is equal to the square root of the intensity Ihkl, whereas the phase is 
determined by the position of the atoms. 
Synchrotron radiation: Radiation emitted during acceleration of charged particles which 
move at a velocity close to that of light. 
Texture: Anisotropic intensity distribution caused by the orientations of crystallites in 
polycrystalline material. 
Unit cell: Basic unit in a crystal lattice, defined by three linearly independent basic vectors; 
the whole crystal is build up from the unit cell by applying translational symmetry operations. 
Wavelength: Minimal distance between two points with identical phase in a wave. 
X-ray: Electromagnetic radiation with a wavelength in the  range of  10-5 – 100Å. 
 
Nomenclature 

a, b, c basis vectors in direct space 
a*, b*, c* basis vectors in reciprocal space 
ApH(2�i)  absorption correction of phase P and reflection H in a Rietveld refinement 
�, �, � angles between the basis vectors in direct space. 
�*, �*, �* angles between the basis vectors in reciprocal space. 
Bj isotropic displacement factor of atom j 
B background of reflection 
Bi(obs) background contribution at step i in a powder pattern  
�hkl FWHM (full width half maximum) in radians 
c velocity of light 
d interplanar lattice spacing 
d* reciprocal lattice spacing 
e charge of electron 
E energy 
f0  atomic form factor at T= 0 K 
f´, f´´ real and imaginary parts of the anomalous dispersion correction of the atomic 

form factor 
Ehkl , EH normalized structure factor 
Fhkl, FH  structure factor for reflection hkl (H)  
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� dilation �d/d (strain) 
Fo, Fc observed and calculated structure factor for reflection hkl (H) 
FWHM full width half maximum 
F(2�) profile function of a powder diffraction peak 
G instrumental broadening function 
� diffractometer angle 
�a, �b, �c  angles between diffracted beam and basis vectors 
�a

0, �b
0, �c

0 angles between primary beam and basis vectors 
	pH(2�i) normalized powder peak profile function of phase p and reflection H 

 peak broadening (FHWM) of a powder peak 

A anisotropic strain contribution to the peak broadening 

G, 
L Gauss- and Lorentz part of the FWHM distribution 
h Planck’s constant 
h, k, l   Miller indices  
H lattice point in reciprocal space 
I integrated intensity 
� diffractometer angle (kappa geometry) 
LP(2�i) Lorentz Polarization correction 
Lhkl  average grain size 
� wavelength 
M, MpH multiplicity (of phase P and reflection H in a Rietveld refinement) 

p angle between precession axis and primary beam in precession geometry 

 linear absorption coefficient 
� diffractometer angle 
P(r) Patterson function 
PpH preferred orientation correction for phase P and reflection H in a Rietveld 

refinement 
� lattice plane 
r=xa+yb+zc position in unit cell   
�(r), �(x,y,z) electronic density function  
r*H vector defining  a lattice point in reciprocal space 
R agreement factor of a least squares refinement 
Shkl refinable parameters describing the anisotropic peak broadening due to 

lattice strain in a powder pattern 
Sp scale factor of phase p in a Rietveld refinement 
�1, �2 –relationship relationships used for phasing in direct methods 
Thkl Debye-Waller factor 
� Bragg angle 
2� diffractometer angle 
�m Bragg angle of monochromator 
U, V, W parameters of the Gauss part of the FWHM 
V volume of the unit cell in direct space 
V* volume of the unit cell in reciprocal space 
V voltage 
W spectral distribution of X-ray radiation 
� diffractometer angle (Euler geometry) 
X, Y parameters of the Lorentz part of the FWHM 
x, y, z  fractional coordinates of atoms  
yi (calc) calculated intensity at position i in a powder pattern 
Z atomic number 
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� mixing parameter describing the fraction of the Gauss part of the FWHM 
distribution to the anisotropic strain broadening 

Summary 

The following article describes the basics of crystal structure determination and refinement 
from X-ray diffraction data with focus on applications in mineralogy. 
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1 Introduction 
Since the performance of the first X-ray diffraction experiments on a single crystal in 1912, X-ray 
crystallography has been of major importance in natural sciences and especially in mineralogy. X-
ray diffraction provided the ideal means to understand structures of minerals (and other crystalline 
matter) on an atomic scale. It thus established relationships between the crystal structure and the 
physical and chemical properties of the material under investigation. In other cases it related the 
crystal structure to the special thermodynamical conditions under which a mineral (or a rock) has 
been formed and thus  provided important information for petrology and geology. In particular the 
powder diffraction method allowed the unambiguous identification of minerals and –with the 
introduction of quantitative phase analysis – also the quantification of the different phases of a 
mixture, e.g. a rock. 
The structure determination of minerals exhibits several typical difficulties. Often the chemical 
composition is quite variable, requiring a distinct contrast in scattering power of the different 
elements to allow for successful identification. Two (or more) chemical elements can occupy the 
same crystallographic site. This frequently leads to different degrees of long and short range 
ordering, which often implies the existence of very weak intensities or diffuse scattering, making X-
ray crystallography on minerals far more challenging than crystallography on synthetic materials. 
This is especially true for the wide range of alumosilicates which include most of the rock-forming 
minerals. 
With the availability of neutron and synchrotron radiation sources, new fields of research were 
developed: The entirely different dependence of the scattering power on the order number of the 
elements for neutron- compared to X-ray diffraction, allows to distinguish between neighboring 
elements in the periodic table. Furthermore, neutron diffraction provides the means to determine 
magnetic structures. On the other hand, the high brilliance, low divergence, and wavelength 
tunability of synchrotron radiation is of crucial importance for the detection of weak intensities, the 
measurement of crystals with very large unit cell, and it allows to make use of the effect of 
anomalous dispersion. In any case, the strongest impact is observed in the field of powder 
diffraction, where the two new sources enhance the resolution of a powder diffraction pattern by 
more than an order of magnitude compared to laboratory sources. Consequently, more complicated 
crystal structures can be solved with increasing accuracy by the powder method. Additionally the 
higher resolution allows extraction of detailed microstructural information on e.g. lattice strain or 
domain size. 
This compact review on modern X-ray crystallography in mineralogy gives a basic introduction to 
the different methods and their applications. Both single crystal and X-ray powder diffraction 
procedures are included, with an emphasis on modern powder diffraction using synchrotron 
radiation. Wherever possible focus is on applications directly related to mineralogical problems. 
Due to the restricted space for literature references only the most helpful sources used for the 
preparation of this review have been cited. 

2 The diffraction of X-rays 
In the year 1912, Friedrich, Knipping and von Laue performed the first diffraction experiment using 
single crystals of copper sulfate and zinc sulfite. Based on these experiments Max von Laue 
developed his theory of X-ray diffraction. At the same time W. L. Bragg and W. H. Bragg 
performed their diffraction experiments and in turn used an alternative though equivalent way of 
explaining the observed diffraction phenomena. Up to now the so-called Laue conditions  and the 
Bragg equation are the basis of X-ray diffraction of crystalline material and it is therefore inevitable 
to start any monograph on X-ray crystallography with a short resume of the investigations carried 
out by these scientists. 
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Like visible light an X-ray beam is an electromagnetic wave characterized by an electric field 
vector E which is perpendicular to the direction of propagation and a magnetic field vector H which 
in turn is perpendicular both to E and the direction of propagation. Yet  compared to an optical 
wave the wavelength of an X-ray beam is considerably shorter: thus the spectra of visible light 
comprises the range from 4000 to 7000 �, while X-rays have typically wavelengths between 0.1 to 
10 �. Due to the fact that X-ray wavelengths are comparable to the interatomic distances within a 
crystalline material one observes characteristic interactions between the X-rays and the ordered 
array of electrons in the crystal structure. These interactions make X-rays the most important source 
for the investigation of crystal structures. The nature of these interactions as well as the  basic laws 
of diffraction will be explained in this chapter. 
If the electromagnetic X-ray waves encounter an object, they are scattered by the electrons of the 
object. The field of the X-rays forces the electrons within the material  to oscillate and the electrons 
are in turn the starting point of secondary waves of the same frequency and wavelength like the 
primary waves. These waves superimpose and if constructive interference occurs give rise to the 
different diffraction phenomena which are generally strong if the distances within the object are 
comparable to the wavelength of the incoming beam. In addition the periodic nature of the atomic 
arrangement within a crystal gives rise to special diffraction phenomena which are in many ways 
comparable to the diffraction of visible light by a refraction lattice.  

2.1 The Laue equations 
To understand diffraction in a three dimensional crystal it is helpful to concentrate on the one-
dimensional case first. Figure 1 shows a one dimensional lattice which consists of a row of pointlike 
scattering centers, which are separated by a periodic distance a. If a plane wave hits such a row of 
points every scatterer gives rise to a new secondary wave, which propagates in a spherical manner. 
The individual scattered waves superimpose and generally extinguish each other. Only along the 
common tangents will the spherical waves oscillate with identical phases and therefore interfere in a 
constructive way forming a common diffracted wave. It can be seen in the figure that  the planes of 
common tangents exist in various directions, which define the different diffraction orders. 

 
Figure 1: Diffraction of a plane wave by a row of pointlike scatterers 

The diffracted waves of all orders have the same wavelength as the incoming primary beam. If one 
completes the figure in the third direction perpendicular to the plane of paper, it becomes evident 
that the resulting wavefront moves along a cone. 
Figure 2 shows the same conditions but now the direction of the primary beam forms an arbitrary 
angle �a

0 with the diffracting array of points. The cone-like wavefront of first order is shown. The 
diffracted beams which are perpendicular to this wavefront form in turn a cone with an opening 
angle of 2�a. The phase difference between two waves which have been diffracted by neighboring 
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points is - in the case of the first diffraction order - exactly equal to the wavelength �: Following  
the figure one can see that the phase difference is given by: 

 ����� ������ )cos(coscoscos 00
aaaa aaats  (1) 

and for the second order 

 ����� 2)cos(coscoscos 00
������ aaaa aaats  (2) 

or generally 

 ����� haaats aaaa ������ )cos(coscoscos 00  (3) 
where h is an integer. Considering now  a three dimensional lattice it is evident that every lattice 
direction requires a similar condition. For the lattice vectors in the direction of the three lattice 
parameters a, b, c these  conditions are: 

 

��� ha aa �� )cos(cos 0

��� kb bb �� )cos(cos 0

��� lc cc �� )cos(cos 0

 

 

 

(4) 

 
Figure2: Diffraction of a plane wave by a row of pointlike scatterers 

These equations are called the Laue equations. �a
0, �b

0 and �c
0 are the angles between the 

incoming primary beam and the three basis vectors while �a, �b and �c are the angles between the 
basis vectors and the diffracted secondary beam; h, k, l are integers. The equations for all other 
lattice directions are linear combinations from the above three and accordingly no further conditions 
have to be defined. 
Diffraction from a three dimensional lattice can only exist if the conditions ( 1 ) are simultaneously 
fulfilled for all three directions. Whenever the condition is fulfilled for the direction of a basis 
vector a cone of diffracted beams is formed which opens in the direction of the corresponding 
vector. For two of these cones which open in different directions a common beam only exists in the 
direction of their mutual intersection. In figure 3 for example the cone formed around the vector a 
and the second cone formed around the  vector b have a common beam in the direction of k. A third 
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cone, which opens around the vector c does not intersect with the former two and does not contain 
the direction k. This proves that not all the three Laue conditions are fulfilled at the same time and 
consequently there is no constructive interference between the three beams. If well defined 
relationships between the lattice vectors, the primary beam direction and the wavelength � exist, a 
common direction k for the three cones of diffracted beams is observed. Only then the three Laue 
equations are simultaneously fulfilled and constructive interference of the diffracted waves occurs. 

 
Figure 3: Representation of the Laue conditions for the diffraction by a crystal lattice 

2.2 The Bragg equation 
An alternative description for the diffraction of X-rays by a lattice plane was suggested by W. L. 
Bragg in 1912 and is known as the Bragg-equation: 

 )sin(2 ����� dn �  (5) 
 with �  as the wavelengths of the X-rays,  as the interplanar spacing of parallel lattice planes, and  

 as the diffraction angle. Figure 4 illustrates this relationship.  
d

�2

 
Figure 4:  Bragg diffraction on two consecutive lattice planes. 



 

11 

As mentioned above the X-rays will be diffracted by the electrons of the atoms which act as 
scattering centers by sending out spherical waves. Equation 5 defines in which directions (2�), at a 
fixed value of � and d, constructive interference of the scattered waves is possible.  
This is exactly the case if the extra distance traveled by ray 2 in figure 4 is a multiple (n) of the 
wavelength. For simplicity, the number n may be included in the indexing of the set of lattice planes 
( (222)= 2*(111) ) and consequently in the d-spacing. 
 
Several relationships in crystallography directly follow from the Bragg equation (Eq. 5). It can be 
shown e.g. that a constant error in 2� has a much stronger impact on the error in d-spacing at low 
scattering angles than it has at high angles. Another consequence of the Bragg equation is that the 
resolution augments with increasing scattering angles. Relationships for strain and domain size can 
also be derived. 

2.3 The Ewald sphere 
The so-called Ewald construction or Ewald sphere is a useful tool to examine whether the 
diffraction condition for a reciprocal lattice point (see chapter 6) is fulfilled or not and is widely 
used in crystallography. Therefore the principle will be briefly outlined here. 
We imagine a sphere of radius 1/� with the primary beam passing through the diameter IO (see 
Figure 5). The origin of the reciprocal lattice coincides with the point O. If the vector r*

H lies on the 
surface of the sphere the corresponding lattice planes hkl lie parallel to IP and form an angle � with 
the primary beam. Now, the necessary condition to fulfill the Bragg equation is that the lattice point 
defined by the vector r*

H  (which corresponds to the lattice planes hkl) must lie on the surface of the 
sphere with radius 1/� which is called the Ewald sphere. 

 
Figure 5 : The Ewald sphere and the limiting sphere (in two dimensions) 

For X-rays and neutrons with wavelengths between 0.5 - 2� the Ewald sphere has an appreciable 
curvature with respect to the lattice planes. If a monochromatic primary beam and a crystal in 
arbitrary orientation is used generally none of the reciprocal lattice points touches the surface of the 
Ewald sphere (excluding the origin of reciprocal space). Therefore, the different experimental 
techniques described below all try to bring as many reciprocal lattice points as possible onto the 
surface of the sphere (i. e. into diffraction position). 
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If r*
H � 2/� it is not possible to observe the corresponding reflection H. This condition defines the 

limiting sphere with the center O and the radius 2/�. Only lattice points within the limiting sphere 
can be brought into diffraction position (this has consequences for the choice of the wavelength in a 
given experimental setup). On the other hand if ��2amax (where amax is the largest period of the unit 
cell) then the diameter of the Ewald sphere is smaller than r*

min (the smallest period of the 
reciprocal lattice) and no lattice node can intercept the surface of the Ewald sphere. 

3 The Generation of the primary beam 
In a conventional X-ray laboratory the X-ray beam is generated within a so-called X-ray tube, a 
schematic representation of which is given in Figure 6. The tube basically consists of two parts: the 
filament A and the water cooled target material B. Between filament and target a large voltage 
difference (20,000 to 50,000V) is produced, while the filament is operated by a small voltage of 
approximately 6-20V. This is sufficient to generate electrons from the filament by thermoionic 
emission. The huge voltage difference between filament and target material accelerates the 
generated  electrons in the direction of the target material. When some of the accelerated electrons 
hit the target material they are stopped abruptly and emit in turn an electromagnetic wave. The 
higher the voltage of the filament  the more intense are the X-rays generated. The shortest 
wavelength �0 of these waves is given by the relationship 

 �0 = hc/Ve (6) 
where V is the voltage drop from filament to target, e is the charge of the electron, h is Planck‘s 
constant and c is the velocity of light. Not all electrons are stopped directly but some have multiple 
collisions with the target and this multiple stoppage leads to a generation of further electromagnetic 
waves of  increasing wavelengths. 

 
Figure 6: Schematic representation of a X-ray tube 
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The radiation which is produced due to the stoppage of the electrons from the filament is 
independent of the target material and is called „continuous radiation“. Yet above this continuous 
spectrum of wavelengths intense peaks appear which are due to processes in the target material and 
characteristic for the material used  (see figure 7). This radiation is consequently called 
„characteristic radiation“. Its generation is best understood if one recalls that an atom is composed 
of a nucleus and various energy levels K, L, M, N in which the electrons are accommodated. If an 
electron within the target material drops for example from an energy level L to an energy level K 
(i.e. a level closer to the nucleus) due to the interaction with the accelerated electrons from the 
filament, it emits energy as radiation. In this special case (K� L) this radiation is called K� 
radiation. If the electron drops from the energy level M to level K the so-called K� radiation is 
emitted.  

 
Figure 7: The characteristic and continuous radiation as emitted by an X-ray tube 

Apart from X-rays two other types of radiation are important in crystallography, synchrotron and 
neutron radiation. The generation of the primary beam for these two radiation sources will be 
briefly explained now. 
Electronically charged particles which move within an accelerator ring with velocities close to that 
of light, emit part of their energy as electromagnetic waves, if they are additionally  accelerated by 
e.g. the Lorenz power of magnets. This emitted radiation is called synchrotron radiation and 
comprises a large range of wavelengths from the infrared to X-ray wavelengths. The radiation is 
distributed around a critical value �c which is given by: 

 �c =  (4�r) / (3 � 3 ) (7) 
with � =E/mc2 , r = radius of the synchrotron ring in meters and E = energy of the particles. It is 
possible to separate a well-defined wavelength out of the continuous spectra of the synchrotron 
radiation using crystal monochromators (for monochromators see chapter 3.1). The intensity of the 
synchrotron radiation is mainly determined by the critical wavelength, the horizontal and vertical 
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focusing of the beam and the reflection qualities of the optical elements within the beampath 
(mirrors and monochromators). The intensity can be  augmented using additional magnets which 
further accelerate the moving particles (wigglers and undulators). 
Synchrotron light is only emitted in the direction of movement of the particle and consequently the 
collimation of the beam is of  extremely high degree (e.g. in comparison with X-rays) leading to a 
better resolution in the diffraction experiment compared to a conventional tube when proper optical 
elements are employed. 
Furthermore due to the fact that the particles within the ring move in bunches, synchrotron radiation 
is therefore emitted in short pulses (10-10s). This provides the means to observe very fast processes. 
The third type of radiation used in modern crystallography is neutron radiation. Diffraction 
experiments using neutrons started in 1945 when the first reactor was developed. Neutrons are 
produced in a nuclear reactor by fission of heavy atoms like e.g. 235/92 U. The neutrons released in 
this reaction have kinetic energies of about 5Mev which corresponds to a wavelength of 
approximately 1.26 x 10-4

�. To obtain neutrons suitable for diffraction experiments they have to be 
slowed down which is achieved by elastic collision with the nuclei of a so-called moderator. If the 
moderator is sufficiently thick the neutrons emerging will have a Maxwellian energy distribution 
with an average kinetic energy of 3/2 KT (with K=Boltzmann‘s constant and T = temperature of the 
moderator). For a moderator at room temperature the kinetic energy of the neutrons is 0.04eV which 
corresponds to a wavelength of approximately 1.5�.  
Within a neutron reactor the flux of neutrons is relatively high. Yet the neutrons move in all 
possible directions and only very few of them (1 out of 105) travel in the direction of the collimator 
which leads to the diffraction experiment. Furthermore, only some of the neutrons which enter into 
the collimator have the correct wavelength to be diffracted by the monochromator crystal. All this 
leads to a comparatively low flux of neutrons at the sample (106 to 107 /cm2/sec) compared to X-
rays (1010 photons/cm2/sec). Due to the lower cross section for neutrons than for X-rays (or 
electrons), the samples for neutron diffraction experiments have to be considerably larger than in X-
ray diffraction and measuring times are usually longer. 
The wavelength range for neutrons (taking into account hot and cold neutrons) lies between 0.5 to 
10�. The collimators in neutron diffraction are more complicated than in X-ray diffraction as the 
distance from the reactor to the samples is greater and cooling of the collimator is required. 
Neutrons have a velocity distribution which follows the Maxwellian laws and there is a direct 
relationship between the wavelength of neutrons and the velocity which with they move. The choice 
of the employed wavelength is often realized using monochromator crystals (comparable to X-ray 
crystallography). Yet due to the relationship between wavelength and velocity of the neutrons it is 
also possible to use mechanical monochromators. The flight time for neutrons between the reactor 
and the sample lies in the range of 10-5 to 10-3sec and therefore is is possible  to use mechanical 
choppers to select the appropriate wavelength.  
Important applications following from the relationship between velocity and wavelength of the 
neutrons are the so-called time of flight experiments. These experiments are based on the fact that if 
a pulse of neutrons of varying wavelength hits a sample, scattering will occur for all the 
wavelengths for which the Bragg equation is fulfilled. The scattered neutrons are counted by a 
neutron detector which is connected to a multichannel time analyzer. From an analysis of the 
distance from the specimen to the detector and the time needed the wavelength of the scattered 
neutrons is determined. 

3.1 Filters and Monochromators 
A beam of X-rays of a continuous wavelength range is called white radiation. While for some 
methods this white radiation is useful (Laue method), in the general application of X-rays for 
diffracting purposes a better monochromatized beam - comprising only a narrow range of 
wavelengths - is desirable. For monochromatization, two general methods are used. As mentioned 
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above, the emission spectra of X-rays is specific for different chemical elements. The same holds 
for the process of absorption of X-rays (see Chapter 7.3.3). Every element has a specific absorption 
curve whose shape can be described by a series of single curves which do not meet continuously. 
The points of discontinuity are known as absorption edges and their position with respect to the 
wavelength is characteristic for an individual element.  
While the absorption for a certain wavelength is high on the lower side of the absorption edge (i.e. 
at smaller wavelengths), the absorption drastically decreases just beyond the absorption edge. This 
effect is utilized in the � - filters (figure 8). For every target material there exists a chemical element 
whose absorption edge falls just between the K� and K�  wavelength of the target material. Figure 8 
illustrates the effect of a Zr-filter for Mo-target material.  
While the K� wavelength is absorbed to a high degree by the Zr filter, leading to a considerable 
drop of intensity for this wavelength, most of the intensity corresponding to K�-radiation passes 
through. The result is an X-ray beam which is more monochromatic and now mainly determined by 
the K� wavelength eliminating most of the unwanted K� . Unfortunately, a loss in the intensity of 
the primary beam is unavoidable. 

 
Figure 8: The action of filters in producing monochromatic X-rays. 
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wavelength. To reduce loss of intensity, the presence of strong diffracted intensities is 
indispensable. The mosaicity of the monochromator crystal determines the divergence of the 
primary beam and therefore the resolution at the sample. 
On the other hand, the intensity I  of the primary beam - especially in the case of synchrotron or 
neutron radiation  -is mainly given by the width of the wavelength band which is cut out by the 
monochromator crystal(s)  (I � ��m). 

3.2 Detectors 
The first diffraction pattern was recorded in 1912 on a photographic plate. When an X-ray photon 
strikes the film it excites a silverhalide particle which, when the film is developed, produces a black 
silver grain on the film. The advantage of a photographic plate is that a lot of reflections can be 
recorded at the same time, yet the principal drawback (up to the invention of the densitometers) was 
the difficulty in relating the blackness of the film to the intensity of a reflection. With the invention 
of the Weissenberg camera in 1924 and the precession camera in 1942 recording and estimation of 
X-ray diffraction intensities on photographic film  became the standard method for the 
determination of crystal structures for many years. 
With the development of the automatic single crystal diffractometers the point detectors 
(scintillation and proportional counters) became the main devices to measure the intensities of X-
rays. The main advantage of the point detectors is the higher precision in comparison to the film 
methods). The main drawback is that the reflections have to be measured one by one. 
Modern area detectors (imaging plate and the CCD detectors) combine the high precision of the 
point detectors with the possibility to record more than one reflection at a time and thus 
considerably shorten the measuring times.  
An imaging plate is essentially a storage phosphor. An X-ray photon produces on the plate a latent 
image that is excited by stimulation with a laser. This phenomena is called „photostimulated 
luminescence“. The photostimulable material covering the plate is generally BaFBr:Eu2+. When a 
photon hits the plate Eu2+ is oxidized to Eu3+. The emitted electrons are trapped in Br vacancies (so 
called F centers) of the crystal. The electronic transition in these ions generates luminescence whose 
intensity is proportional to the intensity of the X-ray beam. The storage phosphor is read by an 
image reader which releases  the information with the help of a laser and transmits it to a 
photomultiplyer tube. This tube converts the radiation to an electric signal. Afterwards the image 
plate is exposed to visible radiation which restores the initial conditions. 
CCD detectors have a different way of operation (CCD  stands for silicon chip charge-coupled 
device). Here  X-ray photons are converted to visible photons by a phosphor. This signal is 
transferred to a CCD chip. The signal is stored in the pixels of the chip via the generation of 
electrons. The electrons are maintained by an imposed voltage till the readout when the charge 
stored is shifted to a readout amplifier. Every single row of pixels is then read out. A stationary 
controller converts the positions of the pixels with their charges to x, y coordinates on the detector 
face with corresponding intensities. These data are then written to a storage device. 

4 Single crystal methods 

4.1 The rotation method 
One of the first film methods used in X-ray diffraction was the rotation method. To obtain a rotation 
photograph of a crystal, the crystal is mounted on a glass pin or in a capillary which is fixed to a 
goniometer head. The goniometer head allows for the necessary motions to center the crystal and to 
adjust one of its principal axes. In the first step one of the direct lattice axes has to be oriented 
normal to the incident beam direction. When this adjustment has been achieved a family of 
equidistant reciprocal lattice planes is parallel to the incident beam direction.  
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With a position of the crystal only very few points fulfill the diffraction condition and therefore to 
obtain more diffraction spots from other planes the sample is rotated with the rotation axis 
perpendicular to the primary beam.  
Whenever a reciprocal lattice point passes through the Ewald sphere a diffracted beam passes in 
turn through this point. These points lie on equidistant circles of decreasing radii when one moves 
away from the center of the Ewald sphere. A cylindrical cassette with photographic film is placed 
around the crystal with the cylinder axis coinciding with the rotation axis. The circles then project 
undistorted unto the film and if the film is unrolled straight lines of diffraction spots appear. These 
diffraction spots are arranged in exactly horizontal layer lines provided the crystal is well adjusted.  
(Figure 9, 10). 
The layer line that passes through the undeviated beam stop is the zero layer line; the others are 
numbered above and below accordingly. For a crystal rotated along c* the Miller indices of these 
layer lines are hk0, hk1, hk2 etc. and accordingly the value of  c* can be calculated from the line 
spacing of the corresponding rotation photograph. 
The oscillation method is practically the same only that the crystal is not rotated by a full 1800 but 
only 5-200 degrees to avoid overlap of reflections  and reduce exposure time. 

 
Figure 9: Schematic rotation diagram on a cylindrical film. 



 

 
Fig .10: A typical rotation photograph. 

4.2 The Weissenberg camera 
In a rotation photograph one of the indices of reflections (corresponding to the  layer direction) is 
trivial to assign. Yet the other two indices within the layer are complicated to determine as a whole 
layer is projected onto one line. To overcome this difficulty the Weissenberg method was invented 
in 1924. Two main differences with respect to the rotation method are as follows: Firstly, layer line 
screens are introduced which block all other layers but the one to be examined. Secondly, the 
rotation of the crystal is coupled to the translation of the photographic film systematically. As a 
consequence a Weissenberg photograph is a mapping of one single reciprocal lattice plane onto the 
film plane.  
A schematic drawing of a Weissenberg camera is given in figure 11. Worm A moves the film from 
left to right  while worm B rotates the crystal synchronously with this translation. Due to  the 
translation of the film the spots from a chosen layer are distributed over the entire film and not 
projected onto a single line as in a rotation photograph. If Worms A and B are uncoupled a simple 
rotation photograph can be accomplished.  
To produce a Weissenberg photograph the crystal is centered and a lattice plane is pre-adjusted 
optically. With the help of oscillation photographs one lattice plane is perfectly adjusted and the 
lattice parameter corresponding to the distance between different layers can then be extracted. Now 
one of the lattice planes is separated with the layer line shields. Normally the zero plane is first 
recorded. In the case of z  as rotation axis the zero layer plane would correspond to the hk0 plane.  
In the Weissenberg film (see figures 12 and 13) two main reciprocal lattice axes are projected as 
straight lines. Furthermore festoon families can be observed. A single festoon  corresponds to one 
reciprocal space line and therefore all reflections on it have one index in common. With the help of 
a special net the diffraction spots on the film can be easily indexed and the corresponding d-values 
can be calculated.  
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Figure 11: Schematic drawing of a Weissenberg camera. 

A hk0 layer Weissenberg photograph yields three lattice parameters: a, b and the corresponding 
angle between them (= �). To record higher layers (hk1, hk2…) a Weissenberg camera has further 
adjustment possibilities. Thus the rotation axis of the crystal can be turned  away from the normal-
beam direction. This movement requires the translation of the layer line shields. 

 
Figure12: A schematic representation of a Weissenberg photograph  



 

 
Figure 13: Zero level Weissenberg photograph of the mineral cancrinite. 

4.3 The Precession camera 
In the Weissenberg method the reciprocal lattice planes are projected in a distorted way. On the 
other hand, the precession method produces an undistorted picture of reciprocal lattice planes which 
can easily be interpreted. A disadvantage with respect to the Weissenberg method is the limited 
information about the higher � range and the existence of blind regions spots i.e. the impossibility 
to record certain parts of reciprocal space. 
For the precession method one of the axes is adjusted parallel to the X-ray beam. Then a set of 
lattice planes is tangent to the Ewald sphere. The crystal is then  rotated in such a way that the 
normal of this plane makes a precessing motion i.e. the normal always keeps a constant precession 
angle 
 around the primary beam. The film is moved in an identical way and is thus always adjusted 
parallel to the reciprocal lattice plane (Figure 14). 

 
Figure 14: A schematic representation of a precession camera. 

When a full revolution of the plane normal about the X-ray beam has been completed the 
intersection of the reciprocal lattice plane with the Ewald sphere describes a circle with the radius r 
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= 2 sin 
p / � and all points of the reciprocal lattice which are within this sphere have produced 
diffraction spots on the film. Every point crosses the Ewald sphere twice and they will only 
superimpose exactly if the reciprocal lattice plane is perfectly adjusted. If this is the case the 
precession photograph is an undistorted recording of a reciprocal lattice plane ( see Fig 15). 
Accordingly from one photograph two lattice parameters as well as the angle between them can be 
determined. 

 
Fig 15: Zero level precession photograph of the mineral cancrinite. 

To record only one layer at a time line screens must be used. To record higher layers the film center 
has to be moved and the distance between crystal and film cassette has to be adjusted. The 
corresponding 
p is calculated and employed. It is an innate property of the method that in higher 
layers a blind spot occurs close to the primary beam spot on the film.  

4.4 The automatic single crystal diffractometer 
The main advantage of a single crystal diffractometer in comparison to film methods is the higher 
precision and the better estimation of the standard errors of the measured intensities. The main 
disadvantage is that point detectors can record only one reflection at a a time (this is mainly 
overcome by the use of CCD detectors and Imaging plates). 
A single crystal diffractometer consists basically of four parts: the X-ray tube, the X-ray detector, 
the goniometer for orienting the crystal and the computer for registration and evaluation of the 
obtained data. The X-ray tube and the generation of X-rays as well as the main types of detectors 
have been described in chapter 3. 
A four circle diffractometer has generally equatorial geometry i.e. the diffracted beams are 
measured in the horizontal plane which is defined by the primary beam and the rotation of the 
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detector. The detector moves in this plane  and forms an angle of 2� with the primary beam. A 
lattice point in diffraction position cuts the Ewald sphere and produces a secondary beam which can 
only be detected if it is in the equatorial plane of the detector. Therefore to observe the diffracted 
intensity the reciprocal lattice points have to be brought to the 2� circle. The detector is then moved 
to the appropriate position to receive the diffracted intensity.  

 
Figure 16: Schematic drawing of a single crystal diffractometer with Euler geometry. 

Two main geometries are used for single crystal diffractometers: the Euler and the Kappa 
geometries. In the first (Figure 16) the � circle carries the goniometer head with the crystal. The 
main axis of the goniometer is normal to the equatorial plane and to the incident and diffracted 
beam. The rotation of the cradle around this axis defines the angle �. The rotation around the 
spindle axis of the goniometer head defines �  and is basically equivalent to the rotation axis in film 
methods. � is the angle between the spindle of the goniometer head and the main instrument axis. 
Thus � and � describe the rotations of the crystal, while � characterizes the rotation of the cradle. 
Finally 2� is the angle that defines the rotation of the detector.  
The  two rotations � and � are necessary to bring a reflection onto the Ewald sphere and the 
rotation around � is then used to move the reflection into the equatorial plane (Figure 17). At last 
the detector is moved into the appropriate 2� position  to record the diffracted intensity.  
The alternative to the Euler geometry is the Kappa geometry. Here the � circle does not exist and is 
substituted by  the � arm. This arm can rotate about the � axis which forms an angle of 
approximately 500 with the main instrument axis. The advantage of this geometry is that more space 
is available to mount e.g. cooling or heating devices. Since more rotations are possible and less 
collisions do occur, more data points can be measured. 



 

23 

 
Figure 17:  Necessary steps to bring a lattice node to the intersection of the Ewald sphere and the 

equatorial plane of the diffractometer. 

A diffractometer measurement normally follows the same basic scheme which will be briefly 
outlined here. The crystal is mounted on a goniometer head and the orientation matrix is 
determined. This matrix describes the position of the main crystallographic directions with respect 
to the diffractometer axes. Once the orientation matrix is known it is possible to calculate the angles 
and to bring any hkl into diffraction position. It is important that the entire volume of the lattice 
node passes through the Ewald sphere. 
To obtain the integrated intensity from the measured profile the linearly estimated background of 
the peak is simply subtracted form the total counts. Far more sophisticated profile analysis is also 
applied in some cases. The so calculated integrated intensities have to be corrected for several 
physical correction factors (see chapter 7.3). 
The main disadvantage is that not the whole reciprocal space is recorded but just some well defined 
positions which are calculated via the orientation matrix. Thus if this method is not combined with 
e.g. film methods diffuse scattering or weak reflections can easily be overseen. With the 
introduction of area detectors in automatic single crystal diffractometers this disadvantage is mainly 
overcome. 
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5 Powder diffraction 

5.1 The characteristics of a powder diffraction pattern 
A powder can be regarded as a polycrystalline mass (figure 18) with crystallites in all possible 
orientations. 1cm3 of powder contains approximately 109 particles for 10
m crystallites and 1012 
particles for 1
m crystallites. 

 
Figure 18: Schematic view of different orientations of the crystallites in a powder. 

Due to the large number of orientations of the crystallites in a powder, the single crystal reciprocal 
lattice is smeared into spherical shells (figure 19). In other words, the three dimensional reciprocal 
space Q is projected onto the one dimensional 2� (= Q ) axis. In real space (crystal space), the 
information of reflections having the same d-spacing is distributed over so called Debye-Scherrer 
cones (figure 19) 
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Figure 19: Powder diffraction in  reciprocal space  
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Figure 20: Debye-Scherrer cones in real space. Suitable 2-dimensional detectors are film or image 
plates. 1-dimensional detectors are i.e. scintillation detectors or 3He tubes (neutrons). 

Despite the early development of the powder diffraction method in the year 1916, just 4 years after 
the first single crystal diffraction experiment, the method was used for almost half a century almost 
exclusively for qualitative and semi-quantitative phase analysis. This changed completely with the 
development of the Rietveld method, a technique for the refinement of crystal structures using the 
entire information of a powder diffraction pattern, in the year 1969. Starting in the middle of the 
seventies, ab-initio crystal structure determinations from powder diffraction data using basically 
methods adapted from single crystal structure determination are found occasionally in the literature. 
Nowadays, a variety of new algorithms for structure determination from powder diffraction data 
have been developed and crystal structure determination of complex framework structures (e.g. 
zeoliths) or even molecular crystal structures of pharmaceuticals is becoming a routine procedure. 
The recent success of the powder method is due to three advances: the optimization of the 
measurement, the accurate description of the profile of a powder diffraction peak and the data 
reduction algorithms. It is noteworthy that the general availability of synchrotron radiation 
advanced the powder method considerably. Because of the parallel, highly monochromatic very 
intensive synchrotron X-ray beam, neighboring Bragg reflection can be well separated and their 
individual intensities can be determined with high precision. The logical result is higher accuracy in 
the determination of atomic positions and bond lengths, allowing a better interpretation of the 
mechanisms of bonding and reactions. Another advantage, which is particularly valuable for 
mineralogical work is the qualitative and quantitative analysis of extremely small amounts of 
material. Last but not least, the possibility to quickly change the wavelength over a large energy 
range enables the use of anomalous dispersion to distinguish between elements with almost equal 
scattering power and so called “depth profiling” of thin coatings due to the energy dependence of 
the penetration depth. The latter is useful e.g. in apatite coated artificial limbs. 
A physically meaningful description of the powder reflection profile in combination with high 
resolution data allows the extraction of details of the microstructure like lattice strain, domain size 
and disorder (e.g. stacking faults in clay minerals). As a side effect of the better description of the 
powder peak profile, structural details like the positions of extremely weak scattering hydrogen 
atoms (as in the case of high pressure minerals with hydroxy-groups) become visible. 
Two competitive type of algorithms for structure determination from powder diffraction data are 
available which operate either in direct or in reciprocal space. The conventional methods like 
Patterson- and Direct Methods rely on the number of precisely determined integral intensities of 
individual Bragg reflections, which restricts their use in powder diffraction to crystal structures with 
a maximum of 20-30 atoms in the asymmetric unit. Recently, so called direct space methods (not 
to be confused with direct methods) like the simulated annealing technique have been developed 
which are capable of solving more complex structures in a short period of time. The only drawback 
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of direct space algorithms is that the connectivity of atoms must be known a priori, which is not 
always the case for mineralogical problems.  
Recently, the substitution of X-ray sensitive photographic films by image-plates with short 
exposure times and a huge linear dynamic range allows structure refinements and -determinations 
as a function of pressure, temperature and during chemical reactions in situ, which opens new 
perspectives for experimental mineralogy. 
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Figure 21: Content of information of a powder diffraction pattern. 

Figure 21 illustrates the amount of information which can be extracted from a powder diffraction 
pattern. The goal for a systematic evaluation of a powder pattern is to extract as much information 
as possible in a routine manner.  

5.2 Measurement of a Powder Pattern 

The resolution of a powder diffraction pattern is defined by the full width at half maximum of the 
individual Bragg reflections (FWHM). The breadth of a peak is a function of the optics of the 
diffractometer (instrumental broadening) and the sample (sample broadening). 



 

 
Figure22: Modern Bragg-Brentano laboratory diffractometer in reflection geometry with bent 

(focusing) primary beam monochromator M, primary soller slit P.S.S., divergence slit 
D.S., scattering slit A.S.S., secondary soller slit S.S.S and receiving slit R.S. 

One possibility to improve the resolution of a powder diffraction pattern in order to gain more 
information for the determination of crystal structures is the minimization of the instrumental 
broadening. The basic requirements for good instrumental resolution are monochromatization and 
collimation of the X-ray beam which can be achieved using primary- and secondary beam 
monochromators simultaneously. The lower limit of the resolution is then given by the intrinsic 
Darwin widths. In a typical laboratory instrument with divergent beam from a X-ray tube, typically 
a bent focusing single crystal primary beam monochromator after Johansson is used (figure 22). 

 
Figure 23: Parallel beam geometry in Debye-Scherrer mode using a double monochromator (DM) 

and an analyzer crystal (A) at a synchrotron as realized e.g. at BM16 (ESRF) or X3B1 
(NSLS)  

Secondary beam monochromators for laboratory instruments are mainly used to reduce fluorescent 
scattering. A combination of both types of monochromators would result in an unacceptable 
decrease of scattered intensity and is usually not used in the home laboratory. For the comparatively 
divergent X-ray beam, the achievable resolution is mainly determined by the opening of the 
receiving slit (R.S. in figure. 22) in front of the detector. The minimum FWHM of the geometry as 
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shown in figure 22 using Cu-K�� radiation is close to 0.035���. At a high resolution powder 
beamline at a synchrotron with parallel beam geometry, the resolution is not determined by slits but 
by the d-spacing of the analyzer crystal (secondary beam monochromator) which is typically an 

order of magnitude better, 4101 �

��

d
d�  (figure 23). It should be noted that the FWHM strongly 

depends on the energy (wavelength) of the X-rays, although the resolution is nearly the same. 
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Figure 24: Direct comparison of the FWHM of tetrakistrimethylsilylsilan in transmission geometry 

at room temperature, measured at a  Synchrotron (X3B1, NSLS) (solid line) and in the 
laboratory (PDS120 of Nonius BV) (dashed line). 

A direct comparison of the instrumental resolution between a typical laboratory diffractometer with 
primary beam monochromator in transmission geometry and a high resolution synchrotron 
instrument is possible when FWHM is expressed in a wavelength independent term like sin�/�, 
pretending that the standard sample has virtually no sample broadening effects.  
Besides the high intensity and brilliance as well as the high angular and energy resolution of the 
synchrotron radiation, the better reflection to background ratio, the negligible instrumental 
contribution to the FWHM and the possibility to perform transmission measurements at very high 
energy (low wavelength) are important arguments to prefer the synchrotron source to conventional 
X-rays (figure 24). 
In general, reflection geometry (Bragg-Brentano) is the method of choice for strongly absorbing 
sample with the disadvantage of being sensitive to grain size and preferred orientation effects 
(figure 25). These effects are reduced in transmission mode (Debye-Scherrer) mode which on the 
other hand is sensitive to the effect originating from the absorption of the sample. Until recently, the 
only way to reduce the absorption for samples containing strong scatterers was the dilution of the 
material with amorphous material like powderized cork in combination with thin capillaries. With 
the availability of high energy synchrotron beamlines like ID15 (ESRF) virtually any sample can be 
measured in transmission geometry without the need for absorption corrections. 
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Figure 25: Powder diffraction patterns  of the same  pigment measured in reflection geometry at 

beamline X3B1 (NSLS) (top) and in transmission geometry at beamline BM16 (ESRF) 
(bottom) (Note the difference in the angular scale due to different X-ray wavelengths). 

Another advantage of synchrotron radiation is the possibility to quickly tune the wavelength within 
a wide energy range which allows the use of the anomalous dispersion effect (see chapter 7.1) to 
distinguish between heavier elements with almost identical number of electrons or to perform so 
called ‘depth profiling’ by making use of the energy dependency of the penetration depth of the 
radiation (see chapter 11.3). 
Furthermore, synchrotron radiation is almost 100% polarized and parallel beam geometry produces 
simple line shapes (see chapter 8.1) suitable for the analysis of the microstructure. 
It should be noted that the real width of a Bragg reflection is mainly determined by the sample 
induced broadening due to grain (domain) size (see chapter 8.3.1) and by microstrain (see chapter 
8.3.2). Therefore, there is no advantage in measuring poorly crystalline powder at a synchrotron. 

6 The position of a Bragg reflection 
The dimensions of the unit cell exactly defines the  positions of the Bragg-reflections. If the unit 
cell parameters are known, indexing of the diffraction pattern can be done by applying the general 
formula: 
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where a, b, c ,�, �, �, and V are the lattice parameters and the volume of the unit cell, whereas the 
superscript * denotes their values in reciprocal space. Indexing of a single crystal diffraction pattern 
is usually trivial if one employs methods like Weissenberg or precession (see chapter 4.2, 4.3). On 
the single crystal diffractometer the indexing is equivalent to determining the orientation matrix of 
the crystal (see chapter 4.4). Problems which are  encountered  when using indexing routines for a 
single crystal pattern are normally due to twinning i. e. the existence of several single crystalline 
individuals in different orientations.  
The indexing of a powder pattern without knowing the lattice parameters is a non-trivial task. There 
is no guarantee that a powder pattern can be indexed and it is commonly necessary to try out 
different computer programs employing different algorithms. The method of choice strongly 
depends on the symmetry of the crystal system. The difficulty lies in the proper selection of 
reflections for the determination of the reciprocal lattice parameters. A large number of 
combinations must usually be tested before the correct lattice can be found. 
After indexing of a sufficient number of reflections the lattice parameters can be refined using the 
method of least squares. Once a set of lattice parameters has been obtained, it is strongly 
recommended to check them against all measured reflection positions e.g. by applying a Pawley- 
(chapter 10.2.3) or LeBail-fit (chapter 10.2.2). 
The positions of Bragg reflections in a powder diffraction pattern are often affected by systematic 
aberrations arising either from the sample itself or from an improper setting of the sample or 
diffractometer. These shifts relate to errors having a constant, a cos� and a sin� dependency, 
respectively. The corresponding errors originate from  different physical or/and geometrical 
problems depending on the diffraction geometry. Here, the sample displacement error is one of the 
largest systematic errors affecting line positions and is based on the fact that  the sample surface is 
displaced with respect to the axis of the goniometer. 



 

7 The intensity of a Bragg reflection 

7.1 The atomic form factor 
Atoms are not point-like objects in a mathematical sense. Their 'radius' is of the order of X-
ray wavelengths and  as the electrons are distributed over the entire atomic volume, there will 
be phase differences which decrease the intensity of the scattered wave with increasing 
scattering angle � (figure 26). This decrease is described by the atomic form factor f0. 

 
Figure 26 Phase difference of X-rays which are scattered at different locations within an 

atom. 

The numerical values for the atomic form factors (figure 27) for most atoms and ions are 
tabulated in volume III of the International Tables for Crystallography. 
In contrast to X-rays, neutrons interact with the atomic core, making them sensitive for light 
elements like hydrogen and oxygen. The ‘visibility’ of elements for neutrons does not depend 
on the number of electrons like in the case of X-rays (figure 28) and elements which are 
neighbors in the periodic system may have entirely different neutron scattering cross sections. 
The tabulated form factors (figure 27) are only valid at T= 0K. Therefore a correction term 
Thkl, the so called Debye-Waller or atomic displacement factor was introduced. This factor 
describes the thermal motion of the atoms which destroys the ideal phase relation between the 
atoms of the lattice planes and decreases the scattering amplitude (figure 29). 
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where u  describes the average elongation of the atom perpendicular to the reflecting lattice 
plane. 
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Fig 27:  Atomic form factors as a function of sin�/� for atoms (charge 0). The numbers of 

the y-axis correspond to the atomic number Z of the elements. 
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Figure 28: ‘Visibility’ of selected elements for X-rays (top) and neutrons (bottom). 
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Figure 29: With increasing temperature (energy E), atoms swing between two energetic 

equivalent positions R and R', creating additional phase differences which 
decrease the intensity of the scattered radiation. 

The average thermal motion of an atom does not have to be equal in all directions and 
therefore anisotropic displacement parameters are used to achieve a better description. 
Generally, the anisotropic displacement factor is expressed by a tensor of second order, yet 
more anharmonic conditions can be described using tensors of higher order. 
A good estimation of the anisotropic displacement parameters requires an excellent parameter 
to observation ratio. This is normally not the case in powder refinement and therefore only 
isotropic displacement parameters are refined here (often it is even enough to refine an overall 
temperature factor common to all atoms).  
In single crystal refinements the anisotropic displacement parameters are normally refined for 
nearly all atoms (exceptions are very light atoms). Due to intrinsic characteristics of the 
refinement process, which will not be explained here, the displacement parameters are very 
sensitive to systematic errors in the data set (absorption, extinction). Disorder in the structure 
or imprecise coordinates of the atoms  are also reflected in the displacement parameters. 
Reasonable values for these parameters are therefore a good indication for the correctness of a 
structure determination. 
The atomic scattering factor f is not only a function of the scattering angle 2� but also of the 
X-ray wavelength � (figure 30). If the energy of the incoming beam is high enough to expel 
electrons from their energy levels around the atom, an instant decrease of scattering power 
occurs, similar to the 'resonance catastrophe' in mechanics. Resonance can occur between X-
rays and the K, L and M levels of the atoms. 
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Fig 30: Variation of the anomalous scattering factors  f‘ und f‘‘ of Bi with X-ray energy. 

As an approximation, the structure factor can be separated into the following components: 

 � � � � � � � �����
'''/sin, iffff a �����  (10) 

where f denotes the normal structure factor, whereas f‘ and f‘‘ are named the real and the 
imaginary part of the anomalous scattering term. Numerical values for f‘ and f‘‘ are available 
in Tables or  on the WWW. The effect described here is utilized for the construction of filters 
(see chapter 3.1). A typical application for anomalous dispersion in  diffraction methods is the 
increase of contrast for the form factors of elements with similar atomic number (i.e. Bi, Pb). 
This often allows an unambiguous identification of the element which occupies an  atomic 
site. 

7.2 The structure factor 
The structure factor can be expressed as the Fourier sum over all atoms j in a unit cell,  

 � �� ��
�
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j
jjjjhkl lzkyhxifF

1
2exp � = � ��iF exp  (11) 

with the phase �  of the reflection. The intensity of a diffraction peak is proportional to the 
squared value of the structure factor (= multiplication of the structure factor by its conjugate 
complex). 
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Because of the squaring, the differences in scattering power of the atoms are magnified, 
which has important consequences. Thus if heavy atoms are present in the crystal structure, 
the phases of diffraction peaks are mainly determined by these strong scatterers and the 
determination of the  positions of light atoms is in this case of limited precision. 
Equation 12 clearly shows that the intensities do not contain any direct information about the 
phases of the structure factors, which are needed to reconstruct the electron density. 
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This is known as the phase problem in crystallography and its solution is the challenge in 
every structure determination. For a centrosymmetric structure, the sine term of equation 13 
vanishes and the values of the phases are restricted to 0 and 180º. If a sufficient number of 
individual intensities of Bragg reflections are measured, the phases can usually be 
reconstructed using e.g. Direct Methods or the Patterson function (see chapter 9).  

7.3 Intensity corrections 
When the intensities are extracted from a single crystal  or powder diffraction pattern, several 
systematic errors have to be taken into account and the intensities have to be corrected 
accordingly. In the following a brief overview of the most important corrections applied will 
be given.  

7.3.1 Polarization correction 
The oscillation of electrons is only possible perpendicular to the beam direction. Therefore, 
the component of the oscillation vector in the plane of incoming and diffracted beam is 
decreasing with increasing diffraction angle 2� and a correction for this effect is 
indispensable.  

7.3.2 Lorentz factor 
Diffraction arises when a reciprocal lattice node crosses the Ewald sphere. This node has a 
non-negligible volume and remains in diffraction position for some time. The intensity  is of 
course proportional to the time that the lattice  node  remains on the Ewald sphere. The so-
called Lorentz factor takes this effect into account and corrects for it. 

7.3.3 Absorption factor 
Absorption of X-rays in a crystalline material decreases the intensity depending on the length 
of the path  through the sample. The intensity of the diffracted X-rays is thus reduced by the 
factor 

 I / I 0 = e- � x (14) 
where x is the total pathlength and 
 is the linear absorption coefficient of the material. 

7.3.4 Warming up process of the X-ray generator  
Among others factors influencing the intensity of a diffraction pattern, it is crucial to know 
about systematic errors which are due to the diffractometer. It is good practice to wait at last 
for 12 hours after turning on the X-ray tube to full power, before a measurement is started as 
during the warming up phase, intensity changes of more than 15% can occur. 

7.3.5 Overspill effect (specific for powders) 
In flat plate powder diffraction geometry, it frequently happens that the X-ray beam spills 
over the sample at low diffraction angles 2� which causes an underestimation of peak 
intensities (figure 31).  
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Figure 31: Overspill effect for flat plate samples in parallel beam geometry with the thickness 

of the beam d, and the length of the sample l. 

7.3.6 Grain size effects (specific for powders) 
The effect of the grain size on a powder diffraction pattern can be easily understood using a 
two dimensional example. Let’s assume a 2D single crystal in an arbitrary orientation and its 
2D diffraction pattern (figure 32). 

  

 

   
Figure 32: One, four and a large number of 2D- single crystals in random orientation and 

their corresponding diffraction pattern below.  

If the number of crystallites in random orientation increases the diffraction patterns are 
superimposed and  form one or more arcs depending on the orientation of the crystallites. In 
case of a ‘real’ powder with several million grains, the points degenerate to uniform rings in 
2D and uniform cones in the 3-dimensional case. In an ‘ideal’ powder without preferred 
orientation, the diffracted information at each point of the Debye-Scherrer cone is identical 
and it is sufficient to scan the diffraction cones equatorially with a one-dimensional detector 
(i.e. scintillation counter). If, on the other hand, the powder consists only of very few grains or 
if the individual grains are too large, the rings recorded with an area detector (i.e. image plate 
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system) become spotty  and it is clear that a simple equatorial scan would result in  
meaningless intensities.  

7.3.7 Multiplicity factor (specific for powders) 
The multiplicity M stands for the number of reflections of a face set � , which have 
identical d-spacings and therefore overlap systematically in a powder diffraction pattern (i.e. 
in case of a cube, � �

�hkl

� � � � � � � � � � � �100,001,010,010,001,100100 �  ). Depending on the crystal 
system, M can take values from 2 to 48. Values for M can be found in the International Tables 
of Crystallography.  

7.3.8 Preferred orientation (specific for powders) 
Grains in a powder are often not spherical but needle- or platelike depending on the preferred 
cleavage of the crystals. Therefore in a powder sample for flat plate geometry (reflection 
geometry), there will be no equal distribution of all orientations in space but one or more 
preferred orientation(s) are frequently encountered. This leads to an increase of the intensities 
of all those reflections with plane vectors (hkl) similar to that of the preferred orientation(s).  

8 The profile of a Bragg reflection 
In single crystal diffraction the correct treatment of the  peak profile naturally plays an 
important role to extract good correct integrated intensities; yet in powder diffraction the 
correct treatment of the profiles is of vital importance for the successful solution and 
refinement of the structure and therefore some details about this subject will be given in the 
following. 
The profile of a powder diffraction peak consists of three parts: the background B, the 
integrated intensity of the reflection I and the profile of the reflection, which can be regarded 
as a folding (*) of the spectral distribution of the X-ray radiation W with the instrument G 
(instrumental broadening) and the real structure of the sample (sample broadening) like grain 
size and lattice strain (figure 33). 

 � � � �� � BSGWI2F ���� **  (15) 

 
Figure 33 Contributions of instrumental components to the  profile of a powder diffraction 

peak. 

The determination of the pure sample related components of the peak profile is possible by 
Fourier transformation of the function which can be obtained by dividing the background 
corrected and Fourier transformed function F by the product of the Fourier transformed 
functions W and G. This method is time consuming and requires the prior knowledge of W 
and G or W*G, which is seldom available. An experimental determination of W*G is only 
possible, if a sample completely free of sample broadening has been measured. Strictly 
speaking such a sample does not exist but for daily work, the NBS peak profile standard 
lanthanum heaxaboride (LaB6) can be used. 
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A flexible and physically meaningful description of the profile function of a powder 
diffraction peak is crucial for the precise determination of peak parameters like the position, 
the full width at half maximum (FWHM) and the intensity. This is particularly important for 
strongly overlapping reflections where the distance between consecutive diffraction peaks is 
less than 50% of their FWHM. Especially for intensity extraction from single peak or whole 
powder pattern fitting the selection of the 'correct' peak profile function mainly determines the 
quality of the result. 

8.1 The (pseudo-)Voigt function 
If all geometrical and physical properties of the X-ray source, the diffractometer and the 
sample were known,  it would be straightforward to calculate the peak profile function. Yet in 
practice the realization of such a „fundamental parameter profile fitting procedure“ is quite 
complicated and not completely elaborated. In daily work, semi-empirical functions are used, 
which describe the entire profile of a powder pattern using only very few refinable and 
physically meaningful parameters. Since most contributions to the line profile can somehow 
be related to Lorentz- (i.e. Darwin profile) or Gauss- functions (i.e. crystallite size & micro 
strain), a 'mixture' between Gauss and Lorentz distribution (figure 34) is often used, the so 
called pseudo-Voigt function. 

Lorentzian

Gaussian  

 
Figure 34 Schematic drawing of a Gauss and a Lorentz distribution. 

8.2 Asymmetry due to axial divergence 
Powder diffraction peaks usually show a certain asymmetry, which is predominantly caused 
by axial divergence (figure. 35). 
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Figure 35: Asymmetric broadening of powder diffraction peaks due to axial divergence in 

Debye-Scherrer geometry using a divergent beam from a laboratory source. 

2�

H S

2�min 2�infl

2�

. 
Figure 36: Schematic drawing of axial divergence. The half-axes of the ellipsoids are 

exchanged for clarity In the range 2�>2� and 2�<2�min no intensity will be 
detected; up to the angle 2�infl the amount of sample as seen by the detector 
increases. 

Axial divergence can be explained as follows: The diffracted radiation in X-ray powder 
diffraction is distributed over cones (Debye-Scherrer cones) with opening angle 4�. The 
receiving slit of the detector is located on the surface of a cylinder of radius L (= distance 
between sample and detector. The intersection of the diffraction cone and the surface of the 
cylinder are ellipsoids. Since the height of the receiving slit is 2H, only those segments of the 
ellipsoids will be measured which are located on a band of height 2H. The smaller the 
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diffraction angle, the smaller is the radius of the diffraction cones and  the larger is the 
bending of the ellipsoids and therefore the asymmetry of the recorded diffraction peaks. The  
asymmetry is further increased by the height 2S of the sample, which causes additional 
diffraction cones with axes above and below the central cone (figure 36). 

8.3 Sample broadening 

8.3.1 Crystallite size 
According to Scherrer, it is possible to determine the average grain size of spherical 
crystallites by measuring the FWHM of the diffraction peaks corrected for the contributions 
from the diffractometer. The thickness of a crystallite consisting of p lattice planes of 
thickness d calculates to Lhkl= p�d. The relation between Lhkl and the FWHM of the diffraction 
peak (hkl) can directly be derived from the Bragg equation  

 �
�

�

�
��

cos
89.0

cos2
4.144 2/1

hkl
hkl Lpd

�

�

�
��  (14) 

With the average grain size Lhkl of a powder (for grain sizes below 0.1 
(= 1000Å)) and the 
FWHM  in radians.  hkl�

8.3.2 Lattice strain 
Strain in a crystal lattice is a distribution of lattice parameters around an average value caused 
by defects, not by an external force (figure 37). A sample with isotropic strain produces peak 
broadening in reciprocal space which is augmenting with increasing distance of the reflections 
from the origin (figure 37). 

This is.

�d/d

This is not
anisotropic
microstrain

�l/l

 
Figure 37:  Left: schematic drawing of the difference between strain induced by external 

forces and internal lattice strain due to defects in the crystal structure. Right: 
schematic drawing of peak broadening in reciprocal space due to lattice strain. 
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Each grain is described by a
particular set of lattice
parameters, {a, b, c, �, �, �},
so there could be a
6-dimensional distribution of
these metrics, deviating from
their average values.

(a and b have negative correlation, � � 90)  
Figure 38: Schematic drawing of a distribution of lattice parameters for an assembly of 

grains. 

The Bragg equation (equation 5) directly relates the broadening Γ of a Bragg reflection to 
(uniform) lattice strain: 

 
1tan �

���
�

d
d  (15) 

If d*hkl is the inverse of the lattice plane distance d of the reflection (hkl), then d*2 is bilinear 
in the Miller indices and can be developed in expressions which have a relation to the 
covariances of the lattice parameter distribution. Each crystallite is considered to have its own 
set of lattice parameters which are different from the average values (figure 38). This leads to 
a multidimensional distribution of lattice parameters over the entire powder sample. The 
width of each diffraction peak can be expressed by the moments of this distribution. This 
leads to an expression for the anisotropic broadening �  in which the variance of d*A

2 is 
equivalent to a sum of 15 different combinations of Miller indices up to the fourth order: 
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In the profile fitting process, the parameters Shkl are refinable. The number of parameters 
varies due to symmetry restrictions from 15 in the triclinic to only 2 in the cubic crystal 
system. The anisotropic contribution to the peak broadening of a powder diffraction peak is 
given (in radians) by  
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Figure 39: LeBail fit and microstrain distribution of the orthorhombic high temperature 

phase (295 K, top) and the monoclinic low temperature phase (50 K, bottom) of 
Bi2CdGeO6 . 

It is important to note that anisotropic peak broadening due to lattice strain contains gaussian 
as well as lorentzian components, which therefore must be refined simultaneously in order to 
achieve a good fit to the powder diffraction pattern. This is achieved by introducing a mixing 
parameter � to the anisotropic extension of the Gauss part of the FWHM distribution 

 � � 1/22
A

22
G )hkl)(1WVtan(Utan ������� ���  (17) 

and of the lorentzian part of the FWHM distribution 

 � �hklYX AL ����� ��� cos/tan  (18) 
in which U, V, W, X, Y denote refinable parameters. The obvious advantage of a physically 
meaningful description of anisotropic peak broadening is a better Rietveld refinement which 
yields more structural details (in special cases even the determination of hydrogen atom 
positions). In addition, phase transitions with large hysterisis are sometimes easier to detect by 
the analysis of the microstrain distribution than by refining lattice parameters (e.g. if a 
monoclinic angle is very close to 90.0°).  An illustrative example are the high and low 
temperature phases of the ternary compound Bi2CdGeO6 (figure 39). 

9 Crystal structure solution 

9.1 The Patterson function 
Two substantially different approaches are used in crystallography to solve the phase 
problem. While one tries to determine the phases of the reflections directly (direct methods) 
by using statistical methods, the other makes use of the so-called Patterson function which can 
be calculated from the experimental intensities. In general lines Patterson methods are 
successful whenever one or few  heavy atoms are found within a structure, while Direct 
Methods work  the better the more similar the atomic species. Normally one of the two 
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methods yields the solution of the phase problem, yet there are still some cases where the 
solution can be hard or even impossible to find. 
The solution of the phase problem is practically identical with the determination of the 
coordinates of the atoms. Thus, the appliance of Patterson or Direct Methods yields a more or 
less sophisticated model which contains the coordinates of a fraction of the atoms within the 
structure. The subsequent use of refinement programs in combination with difference Fourier 
synthesis (see chapter 10.1) leads to the final results. 
Patterson suggested in 1935 to use the function which was afterwards  named after him as an 
aid for the solution of the phase problem. The Patterson performs a Fourier transformation of 
the squared absolute values of the structure factors and  is defined as : 

 P( r ) = 1/V |FH|2 exp(-2� H r) (19) 
With r = xa + yb + zc as a position in the unit cell space and H = hx + ky + lz as a lattice point 
in reciprocal space. Mathematically the Patterson function is a self convolution of the 
electronic density function �(r). The Patterson function is a real function and therefore the 
above equation simplifies to: 

 P ( r ) = 1/V �h�k�l |FH|2  cos 2 �(hu + kv + lw) (20) 
The function has n (n-1) peaks (neglecting the origin peak) if there are n-atoms in the unit 
cell. These maxima  correspond to the interatomic vectors in the crystal structure. The height 
of these maxima is given by the product of the atomic numbers of the two atoms concerned 
multiplied by the multiciplicity of the interatomic vector. 
The Patterson function can be easily calculated from the experimental data as the |FH|2 values 
follow directly from the experiment. The difficulty is the interpretation of the calculated map 
in which one has to recognize the repeated configuration of maxima  corresponding to 
molecules or coordinated complex groups. Several strategies which are employed in the 
practice for the solution of crystal structures follow straightforwardly from the Patterson 
method. 
The so-called heavy atom method makes use of the fact that one or  few heavy atoms within 
a crystal structure which is mainly composed of light atoms will produce high maxima in the 
Patterson map, making it easy to identify the corresponding interatomic vector and to 
determine the heavy atom positions. Once these positions are obtained  as a starting model the 
rest of the structure is generally simple to determine via refinement and difference Fourier 
methods. 
Other methods employed to interpret the Patterson map are the so-called vector methods. 
Here the superposition method is no doubt  of special importance. In this procedure a 
Patterson map is superimposed on itself with a displacement vector  which is chosen from the 
map and has to  coincide with  an interatomic vector of the real structure to obtain a suitable 
solution. In the two superimposed maps the set of coincident peaks reveals one or more 
images of the structure. If just one image is produced the solution is straightforward. If a 
multiple image is produced the process is repeated with an additional superposition vector. 
The problem of the superposition method is that it works well for Patterson functions of 
theoretical point atom structures but in practice the function is continuous and it is not trivial 
to evaluate the degree of coincidence between the peaks of superimposing maps. To 
overcome this difficulty the so-called image seeking functions are employed. 
Additional methods mainly used in combination with Patterson methods are the isomorphous 
or molecular  replacement methods and the determination of crystal structures using the 
effect of anomalous dispersion. The latter makes use of the fact that the scattering power of 
an atomic species changes abruptly at its absorption edge and consequently the heights of the 
peaks in a Patterson map change. By evaluating the differences in the Patterson maps 
calculated with data measured at two different wavelengths (close to and far away from the 
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absorption edge), it is possible to draw conclusions of the type and position of the atomic 
species in question. 
The Patterson search method  was especially developed for powder data. It is based on the 
fact that molecular fragments of known geometry have a particular set of interatomic vectors. 
This set of vectors can be rotated and translated until it fits into the Patterson map. 
Summarizing the above it is evident that the Patterson method is extremely valuable to solve 
structures which contain one or few heavy atoms and in this case normally is the method of 
choice for structure solution. Yet also for structures containing geometric molecules which are 
characterized by a set of parallel vectors, the superimposing of all the parallel vectors in the 
Patterson map will lead to high maxima and the solution can be straightforward. 

9.2 Direct Methods.  
Direct Methods try to derive the structure factor phases directly from the observed Fhkl using 
mathematical relationships. Two important properties of the electron density function form 
the basics of Direct Methods. Firstly the electron density is always positive and secondly it is 
composed of discrete atoms. Since the establishment of the first mathematical relationship 
between the phases in 1948 by Harker & Kaspar, Direct Methods have developed rapidly and 
a lot of specialized literature on the subject is available. Here we will therefore concentrate on 
the principal ideas. 
Direct Methods basically comprise the following steps: 
1. Normalization of the structure factors 
The normalization of the structure factors takes into account the decrease of the scattering 
power with Θ. The normalized structure factors EH simulate a structure with point-like atoms, 
the scattering power of which does not  depend on � 
2. Fixing the Origin 
While |FH| and |EH| depend only on the distribution of the atoms in the unit cell the phase is 
also dependent on the selection of the origin i.e. the phase changes when the origin of the 
crystal structure is changed. To fix the origin suitable reflections (generally with large |EH| 
values) are chosen and their phase is fixed. 
3. Establish relationships between the normalized structure factors  
By far the most important relationship used for phasing in direct methods is the so called 
triple product or �2 -relationship which is based on the equation of Sayre: 

 FH= �H / V �H´ F H´ FH-H´ (21) 
From this equation follows the �2 –relationship  

 EH  = �H´ E H´ EH-H´ (22) 
This means that the phase of EH is determined by the phases of E H´  and  EH-H´. Figure 40 
illustrates the relationship which is described by this equation. If the electron density is 
concentrated around the regions A,B,C,D then the amplitudes of the three structure factors are 
large. Solid and dashed lines represent positive and negative maxima respectively for the 
reflections. In each case the product of the three structure factors is positive. The �2 condition 
establishes a relationship between the phases of three structure factors which is true with a 
certain probability. 
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Figure 40: Large amplitudes for Fh, Fk and Fh-k are produced it the electron density is 

concentrated in the regions ABCD.  The product of the three structure factors is 
always positive. Solid and dashed lines correspond to positive and negative 
maxima for the three reflections. 

Other relationships between structure factors can also be established (e.g. �1 relationship or 
negative and positive quartets). Expressions for the probabilities of the correctness of the  
relationships established between the phases can be found in literature. 
4. Determine new phases/symbolic addition  
Using the reflections that fix the origin and the corresponding phases, one searches all the 
possible triple products and in this way determines the phases of additional reflections. If not 
enough phases can be determined, more reflections are chosen, whose phases are represented 
by symbols. These symbolic phases are then also expanded (symbolic addition). Often 
relationships between the symbols are found in this process and the number of additional 
symbols can be reduced. If finally a certain number p of symbols is unknown the 
corresponding Fourier maps are calculated for all the possible combinations symbol/phase and 
ensuing maxima are interpreted. 
5. Seeking the right solution from a series of suggestions  
The last step yields a set of possible solutions for the structure. For each of them figures of 
merit (e.g. weighted sums between calculated and observed structure factors) can be 
calculated and generally the identification of the right solution is straightforward. 

9.3 Specialized methods for powder diffraction  
In a powder pattern  information is lost due to the projection of the 3-dimensional reciprocal 
space on a 1-dimensional Q

�

 axis, which results in systematic and/or accidental overlap of 

reflections. 
Therefore, all structure solving methods which rely on the exact determination of individual 
peak intensities are limited to either very high resolution powder diffraction data or relatively 
small crystal structures.  
In general, the common structure determination algorithms can be divided in two major 
categories. The first group is called ‘classical’ methods and uses the algorithms which have 
been developed for the structure determination of single  crystals (see chapters 9.1 and 9.2) 
and then have  been modified to satisfy the needs of powder diffraction data. These classical 
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methods rely on the precise determination of individual peak intensities. Therefore the strong 
overlapping of reflections in a powder pattern limits the complexity of crystal structures 
which can be solved with these methods. The use of high resolution synchrotron radiation or 
the improved extraction of peak intensities has extended this limit. Furthermore, iterative 
algorithms can be used to improve the derived structure information by recycling the 
extracted peak intensities and vice versa. 
The second group of methods – the so-called direct space methods - were developed recently 
and work in a completely different manner. Here, the structural model is first postulated 
independently of the powder diffraction data. From this model, either individual Bragg 
intensities or the entire powder pattern is calculated and then compared with the observed 
data. Improvement of the model can then be achieved in various ways using energy 
minimization, global optimization or a simple grid search. The basic requirement of these 
methods is the prior knowledge of the connectivity of the atoms and the kind and number of 
degrees of freedom which is normally known for molecular crystal structures.  
 
Grid search in crystal (direct) space  
During a grid search the degrees of freedom (translation, rotation, torsion etc.) of structural 
fragments are varied systematically in the unit cell. To improve the simulated model, the sum 
of the differences between observed and calculated structure factors and/or powder patterns is 
minimized. It is often possible to limit the degrees of freedom using chemical knowledge (e.g. 
short distances between neighbor molecules, ranges for torsion angles, chain lengths etc.).  
 
Method of Maximum Entropy (MEM) and likelihood ranking  
The method of maximum entropy (MEM) enables the calculation of high quality electron 
density maps and ideally enables direct phasing. Starting from an initial electron density 
which is equally distributed over the unit cell volume, the most probable electron density is 
calculated step by step using an iterative procedure. Likelihood ranking indicates the way of 
growing of a phasing tree with which the most probable phases of Bragg reflections will be 
determined. 
 
Monte-Carlo methods and simulated-annealing  
These methods are based on the same principle as a grid search, but each variation of the trial 
structure is based on the previous variation. Within certain limits, the variations are random. 
The different algorithms differ in the way of their acceptance criterion for variations. In the 
case of simulated annealing, variations which lead to a worsening of the agreement factor are 
also accepted with a certain probability which is reduced during the structure determination 
process. This trick allows jumping out of local minima to ensure proper sampling of crystal 
space. 
 
Lattice energy minimization (molecular modeling)  
The sum of the electrostatic and the Van-der-Waals interactions between molecules is 
minimized in addition or independent to the information of a powder diffraction pattern. 
starting from random packing of the molecules. This can be done by grid search and/or least 
squares methods. 
 
Genetic algorithms  
The principle of genetic algorithms is based on the Monte Carlo procedure, whereas the 
variation of the structural model is performed according to the principles of genetics. 
Modified models which have ‘survived’ are crossed and mutated in order to form new 
‘populations’ of which the ‘weak members’ are sorted out after a test.  
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Periodic nodal surface (structure-envelope)  
A few Bragg peaks at low diffraction angle with known phases are enough to split the unit 
cell into regions of high and low electron density. This information can be used as a geometric 
restriction for a grid search. 
 
Pseudo-atom-method  
More or less cyclic molecular fragments can be substituted by the sum of spherical shell form 
factors. Using grid-search techniques and Rietveld refinement it is possible to determine the 
centers of gravity of these fragments. The missing orientation of the molecular fragments can 
then be determined by a grid search after back-substitution. This procedure drastically reduces 
the number of degrees of freedom at the beginning of a crystal structure determination. 
 
In case of powder diffraction, Direct Methods are mainly used for the determination of 
inorganic crystal structures, whereas global optimization methods in real space like simulated 
annealing are applied to molecular structures. 

10 Crystal structure refinement  
The partial solution of the crystal structure yielded by any of the above described methods 
must usually be completed by a combination of least-squares refinement and difference 
Fourier synthesis. 
For the explanation of the least-squares refinement strategy one assumes an error free set of 
observed structure factors and an almost correct set of atomic coordinates and displacement 
parameters. For simplicity a centrosymmetric structure and isotropic displacement parameters 

are considered. The structure factors calculated from the model are: 
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The correct parameters for the j-th atom can then be expressed as Bj+�Bj , xj+�xj, yj+�yj, zj+� 
zj  and one can write:  
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If the errors in the parameters are small one can write  
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An equation of this type can be produced for every reflection H and in general there 
are more equations of this type than refinable parameters. The least square solution for the set 
of equation is such that the quantity 
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(26) 
is a minimum. 
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If one takes into account that the observed structure factors have different experimental errors, 
it is reasonable to weight the above mentioned equations according to the expected reliability 
of the quantity �FH. Different weighting schemes are employed in structure refinement. 

10.1 Difference Fourier synthesis 
Normally the model from the structure solution does not yield the position of all the atoms in 
the structure. To complete and refine the structural model further, difference Fourier synthesis 
is widely used. For this a Fourier series of the type 

 )2exp()(1)( c
H
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H
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H iHrFF

V
r ��� ����� �  (27) 

is employed. If in the model an atom is missing �calc(r) is zero while �obs(r) shows a 
maximum. Therefore ��(r) also shows a maximum. Similarly other errors in the model like 
errors in the atomic positions or in the displacement parameters give rise to maxima in the 
function � �(r).  

10.2 Powder Pattern Profile Fitting 

10.2.1 The Rietveld Method 
The Rietveld method is considered a milestone in structure refinement from powder 
diffraction data. The basic idea behind the Rietveld method is the calculation of the entire 
powder pattern using a variety of different refinable parameters. The calculated intensity 
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at point i of the powder pattern is calculated from the contributions of all phases p 
contributing to the powder pattern and all Bragg reflections H of phase p, with the scale factor 

, the multiplicity , the absorption correction , the preferred orientation 

correction , the squared absolute value of the structure factor
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, the Lorentz-

Polarization correction , the normalized profile function  and the 
background contribution . 
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The parameters can roughly be divided into three categories: structural parameters, which 
mainly affect the intensities of the Bragg reflections, profile parameters, which are determined 
by the instrument and the sample, and background parameters. For the calculation of any 
single point i in the powder pattern, all reflections H contributing to this point as well as the 
height of the background  must be taken into account. The scale factor  is used for 

quantitative phase analysis, the intensity 

)(obsBi pS
2

)(calcFpH  for refinement of the crystal structure 

and the profile function �  for the refinement of the microstructure (microstrain, 
domain size). 

)i2(pH �

The weighted sum of the squared differences between the observed and the calculated powder 
pattern is minimized by refining a selection of parameters using least squares methods. 
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Figure 41: Reflected light micrograph (field width: 250 mm) of RM 8486 cement clinker (top) 

containing alite (A), belite (B), ferrite (F), aluminate (Al), and periclase (M). and 
corresponding quantitative Rietveld refinement. 

Many different statistical agreement factors have been proposed for judging the quality of a 
Rietveld refinement . The most common one is the so called weighted profile R-factor which 
is defines as  
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The graphical representation of a Rietveld refinement, the ‘Rietveld plot’ shows the observed 
powder pattern, the best Rietveld fit profile, the reflection positions and the difference curve 
between observed and calculated profiles as the trace below. Due to the decrease of scattering 
power at higher diffraction angles, the high angle part is often enlarged. 
The major advantage of the Rietveld refinement procedure is the iterative improvement of the 
structural information. On the other hand, a reasonably good structural model is required in 
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advance to ensure the convergence of the refinement. Nowadays, even the Rietveld 
refinement of small protein structures from powder diffraction data is possible. 
In the case of phase mixtures, the Rietveld technique can be used for ‘standardless’ 
quantitative phase analysis, provided the mass absorption coefficients of the phases are 
similar. 
The performance of mixtures containing several (often polymorphic) phases like cement 
clinker is mainly governed by its mineralogy and not its absolute chemical composition. Since 
X-ray diffraction is related to the crystallographic structure of all phases present in a sample, 
XRD is the only tool for qualitative and quantitative analysis (figure 41). 
The key problem in Rietveld analysis is the refinement strategy. In general, the profile, the 
background and the crystal structure parameters should be determined and refined separately 
in the beginning of the refinement. A typical strategy is to start with the refinement of the 
peak positions (lattice), followed by the profile parameters, the structural parameters, and 
finally the microstructure parameters like microstrain and domain size. Finally, all variable 
parameters should be refined simultaneously to obtain mathematically correct variances and 
covariances. 

10.2.2 The LeBail Method 
Nowadays, the LeBail-method is a widely used technique to refine the total envelope of a 
powder pattern without knowing the crystal structure and to extract intensities which can later 
be used for crystal structure determination by e.g. Direct Method programs. The basic idea 
used is relatively simple as the Le Bail method iterates the Rietveld decomposition formula. 
Where calculated structure factors |F| are entered in the Rietveld decomposition formula a set 
of identical |F| is given instead. The Rietveld refinement calculates a set of "|Fobs|" from the 
decomposition formula, which are then used as new |Fcalc| and so on. 

10.2.3 The Pawley Method 
Another widely used method which allows intensity extraction from powder diffraction data 
is the Pawley method, which basically is a full profile refinement. Besides the profile and 
lattice parameters all intensities are refined individually in the least squares process. Although 
this procedure is much slower than the LeBail method, it has a particular advantage for direct 
space methods on structure determination from powder diffraction data. The covariance 
matrix of the Pawley fit describes the degree of correlation between the individual intensities 
of neighboring reflections and can actively be used in the calculation of the level of agreement 
between the measured intensities and those of the trial structures in a global optimization 
process like simulated annealing. 

11 Powder diffraction at non ambient conditions 

11.1 Micro-Reactor 
Many decomposition or solid-vapor reactions which are common in mineralogy cannot be 
fully understood due to the lack of structural information of the intermediate phases which 
often have a limited range of stability. A solution to this problem are powder diffraction 
measurements at reaction conditions using a micro reaction cell for in situ studies (figure 42), 
e.g. hydrothermal synthesis. 
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Figure 42: Micro reaction cell for in situ studies of hydrothermal synthesis at the high 

resolution powder  X-ray beamline BM16 (ESRF). 

A recent example is the investigation of the decomposition of silver carbonate, Ag2CO3, to 
metallic silver via silver oxide, Ag2O. Before the decomposition of silver carbonate to silver 
oxide, two high temperature modifications of Ag2CO3 exist (�-Ag2CO3 and �-Ag2CO3) In 
order to determine the crystal structures of these high temperature phases it was necessary to 
stabilize the pure phases for prolonged periods of time, making it possible to collect high 
quality powder diffraction data at beamline BM16 at ESRF. The sample was kept under 4 
atm. carbondioxide pressure in order to shift the decomposition to higher temperatures. The 
temperature was slowly raised and powder diffraction patterns of the different phases for 
structural analysis were collected (figure 43). 

 
 
Figure 43: Translating Imaging Plate (TIP) Camera for Time Resolved Synchrotron X-ray 

Powder Diffraction 
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11.2 High Pressure Powder Diffraction 
Diffraction studies at high pressures provide an opportunity to investigate the behavior of the 
chemical bonding of solids as a function of decreasing inter-atomic separation, without the 
complications introduced by changing chemistry. Using in situ high pressure powder 
diffraction experiments the structural changes of minerals depending on pressure can be 
investigated and the pressure conditions of the earth mantle can be reproduced in the 
laboratory. 

 
Figure 44: Selection of modern diamond anvil cells (DAC), available at beamline ID30 

(ESRF) 

In general, powder diffraction methods at high pressures yield data of lower quality than that 
which are obtainable at ambient conditions. When planning a X-ray powder diffraction 
experiment at high pressure, the angle dispersive technique at a third generation Synchrotron 
source is the method of choice. First of all, a suitable type of pressure cell must be chosen. For 
low pressures (up to 6 kbar), large volume gas pressure cells may be used. For higher 
pressures (up to the Mbar range), there exists a variety of different diamond anvil cells (DAC) 
(figure 44). 
The diamonds are separated by a tungsten or steel gasket which must be pre-pressed in the 
empty DAC at moderate pressures and a hole of 0.1..0.2 mm diameter must be drilled. The 
sample is placed in the hole together with a (hydrostatic) pressure transmitting medium. 
Depending on the desired pressure range and the reactivity of the sample, different pressure 
media like silicon oil, ethanol-methanol mixture, nitrogen and argon are used. The pressure in 
the DAC will be measured using an internal pressure standard like quartz or externally by the 
ruby fluorescence method. A highly focused X-ray beam must be carefully aligned in order to 
avoid hitting the gasket. Due to the small amounts and the graininess of the samples, image 
plate detectors are widely used which allow the integration and averaging over the entire 
powder rings (figure 45). Recently, high pressure and low temperature experiments down to 
10 K have been combined by placing the DAC into a cryostat. For high temperature annealing 
of samples in the DAC, a laser can be used. So called membrane DAC’s allow in situ pressure 
variation.  
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Figure 45: Image plate readout of a new recrystallized (note the ‘spotty’ circles) high 

pressure phase (left) and corresponding LeBail fit (right). 

11.3 Energy Dependent Powder Diffraction 
The free selection of the X-ray wavelength over a large energy range at the synchrotron 
enables so called depth profiling of polycrystalline layered samples due to the energy 
dependence of the penetration depth of the X-rays. An interesting application which 
demonstrates the usefulness of this method are plasma sprayed hydroxyapatite coatings which 
are used as bioactive surfaces for increasing the fixation of bones as dental implants or 
orthopaedic protheses. The variability in the performance of these coatings is partly attributed 
to the chemical phases which form at high temperatures in the plasma or alternatively to fast  
cooling rates upon deposition. Hydroxyapatite can be accompanied by an amorphous phase 
constituent, tricalcium phosphate, tetracalcium phosphate, calcium oxide or the rarely 
mentioned, oxyapatite. 
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Figure 46.  Detection of oxyapatite in X-ray diffraction patterns (left) and the amount of 

oxyapatite in proportion to both apatites (hydroxyapatite and oxyapatite) as a 
function of coating depth (right). 
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The high temperatures in the plasma produce a hydroxyl depleted layer on the outside of the 
traversing hydroxyapatite particle. It is this dehydroxylated area which may form oxyapatite 
upon deposition. Higher cooling rates produce an amorphous phase but a lower cooling rate 
will lead to the formation of oxyapatite. This presence and varying amounts of oxyapatite 
with coating thickness can influence the dissolution and mechanical performance of the 
coating for dental and orthopaedic prostheses. 
Examination of the coating at various depths with X-ray diffraction reveals a higher 
oxyapatite content in the underlying layers (figure 46). 

12 Texture, Stress and Microdiffraction 

12.1 Texture 

 
Figure 47.  Schematic drawing of the orientation of crystallites in a polycrystalline sample, 

angle between incoming X-ray beam and sample surface �, scattering angle 2� , 
normal of the sample rotation �-axis and tilting of the sample�. The orientation 
of the crystallite under investigation is described by its normal  n�

The intensity of a Bragg reflection for an ideal powder, where the crystallites uniformly 
occupy all orientations in space, only depends on the scattering angle 2� but not on the 
rotation � or tilting � of the sample (see chapter 5.1) (figure 47). In reality, the orientations 
of crystallites in polycrystalline material often produce anisotropic intensity distributions 
(textures) which can be visualized (pole figures) at constant 2� by rotating � and �. 
Generally, the pole figures of at least 3 linear independent lattice planes (hkl) are required to 
quantitatively calculate the orientation distribution function (ODF) in 3-dimensional Euler 
space.  

12.2 Stress 
A typical pole figure of a sputtered Cu layer on silicon (100) substrate is given in figure 48. 
During sputtering, the Cu crystallites prefer to orient their close packed (111) planes parallel 
to the (100) plane of the silicon substrate. The texture influences material properties like 
conductivity. The texture in figure 48 is called fiber texture and shows a rotationally 
symmetric intensity distribution with respect to the surface normal with an intensity  
maximum at �= 0°. 
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Figure 48.  Pole figure of a sputtered Cu layer on silicon (100) substrate, showing a (111) 

fiber texture 

To perform texture and (macroscopic) stress measurements (see below), the diffractometer 
must be equipped with an Eulerian cradle. The primary X-ray beam hits the sample and the 
reflected beam is then picked up via crossed soller slits so that the angular window within the 
pole figure is small enough in the plane of dispersion to enable good angular discrimination 
and is large enough in the vertical plane to collect as much intensity as possible. A typical 
setup is shown in figure 49. 

 
Figure 49  Diffractometer set up for texture and (macroscopic) stress measurements  

X-ray powder diffraction is also a powerful method to analyze macroscopic stress in all 
directions in space by exact measurement of the d-spacing of a Bragg reflection (hkl) in 
dependence of the inclination of the lattice plane Ψ to the sample surface. In the case of a 
material under stress, the d-spacing is not independent of the orientation of the crystallites in 
the sample. When drawing the dilation ε=∆d/d in dependence of sin2Ψ, the slope m = 
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∂ε/∂(sin2(ψ)) reveals the stress direction and in combination with the elastic constants the 
amount of mechanical stress. The method has been used to study thermally induced stress in 
metals. 

12.3 Microdiffraction 
The detection of very small amounts of material plays an important role in mineralogy. With 
the availability of synchrotron radiation and image plate or CCD detectors, the detection limit 
of polymorphic phases is as low as 0.1 weight %. An exotic example, demonstrating the 
power of modern CCD technique in the laboratory is given in figure 50, where tiny grains of 
the secondary mineral vivianite, an iron-phosphate, could be identified in the skin of an 
ancient mummy found in the Austrian alps. 

 
Figure50: Tiny grains of vivianite (upper right) in the skin of the „Oetzi“ mummy (tyrolean 

mummified glacierman) (left) identified by X-ray microdiffraction using a 
laboratory CCD system (lower right) 
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