Heterosite $FePO_4$: Defect Chemistry and Transport Properties

Changbao Zhu, Katja Weichert, Joachim Maier

Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Germany

Introduction

Owing to excellent performance combined with low cost, safety, non-toxicity, and environmental benignity LiFePO₄ [1] has became a promising cathode material for secondary Li-ion batteries. A lot of research regarding doping, coating with conductive media, and particle size minimization has been done on this material to overcome its sluggish transport properties and improve the battery performance. That also includes a detailed study of the point defect chemistry of LiFePO₄, which led to a complex defect model that was established only recently[2]. In contrast, only little information of heterosite FePO₄, which features the same space group as LiFePO₄(*Pnma*), is available. Here we report on our investigations concerning the electronic conductivity of FePO₄ from which we extract a tentative defect chemistry model for this material.

Electronic Conductivity

The step-like voltage increase after applying a constant DC current (Fig. 1a) as well as no Warburg response in the low frequency regime of the impedance spectra (Fig. 1b) indicate a predominant electronic conductivity. Indeed, the electronic conductivity measured by polarization experiments using the ion blocking cell Ti/FePO₄/Ti is the same as the total conductivity derived from impedance measurements as shown in Fig. 1c.

Fig. I: Representative data plots measured by a) galvanostatic DC polarization, and b) AC impedance spectroscopy (frequency range 1Mhz-0.01 Hz). c) Conductivity data derived from both techniques.

Major defects in the LiFePO₄/FePO₄ System

The defect chemistry of LiFePO₄ is dominated by lithium vacancies and holes.[2,3] Delithiation leads to a phase transformation at which lithium saturated FePO₄ is formed. Due to the altered ionic (Fig. 2a) and electronic ground states (Fig. 2b), the lithium ions in FePO₄ have to be treated as interstitial defects which are compensated by excess electrons.

Fig. 2: a) Sketch of the crystal structure of Li deficient LiFePO₄ and Li saturated FePO₄. b) Band structure showing the presence of holes in the valence band (VB) of LiFePO₄ and of electrons in the conduction band (CB) of FePO₄, respectively.

O₂ Partial Pressure Dependence

Õ

Electronic conductivity is decreased with increasing oxygen partial pressure. Since the reaction with oxygen (independent of the exact meachanism) consumes electrons, it can be concluded that the conductivity of FePO₄ is *n*-type. For the reaction with oxygen lithium interstitials (Li[•]) (Eq. 1,2) or oxygen vacancies($V_0^{\bullet\bullet}$) (Eq. 2) can be considered, e.g.:

Solid Solutions $Li_{x}FePO_{4}$ (x ≤ 0.02)

 $h_{\rm e'} \approx 0.2 \, {\rm eV} \, [4]$

 $2\operatorname{Li}_{i}^{\bullet} + \operatorname{O}_{2} + 2\operatorname{e}' \Longrightarrow \operatorname{Li}_{2}\operatorname{O}_{2} \quad (1)$ $2\operatorname{Li}_{i}^{\bullet} + \frac{1}{2}\operatorname{O}_{2} + 2\operatorname{e}' \Longrightarrow \operatorname{Li}_{2}\operatorname{O} \quad (2)$ $V_{0}^{\bullet\bullet} + \frac{1}{2} O_{0} + 2 e' \implies O_{0}^{X} (3)$

$$v_0 + \frac{1}{2}O_2 + 2e - O_0$$
 (3)

 $K_{1} = \frac{[\text{Li}_{2}\text{O}_{2}]}{[\text{Li}_{i}^{\bullet}]^{2}[p\text{O}_{2}][\text{e'}]^{2}}$ $[Li_{i}^{\bullet}] = [e']$

Although the existence of oxygen vacancies at least as minor defects cannot be ruled out, the almost identical activation energies of nominally pure FePO₄ and its solid solutions (see on the right-hand side of the poster) suggest that lithium interstitials and electrons are the main defects.

The theoretical slope amounts to -1/4 and -1/8 considering the formation of Li₂O₂ and Li₂O respectively. The experimental slope of 0.2 is in good agreement with the value of -1/4.

In the solid solutions Li_xFePO₄ --- Li_{0.02}FePO₄ --- Li_{0.01}FePO₄ $(x \le 0.02)$ the electronic -6 Ξ conductivity increases with -∎-FePO, increasing Li content due to the Ś formation of lithium interstitials (σ_{eon}) (Li[•]) and electrons (e[•] corresponds to $Fe^{2+}Fe^{3+}$). -9 *E*_{eon} = 0.65 eV D Associaton (trapping) of these defects is assumed to be responsible for the T-11 dependence of the electronic conductivity. 2.2 2.4 2.6 3.2 2.0 2.8 3.0 $E_{eon} = -\frac{1}{2}\Delta H + h_{e'}$ $1000T^{-1}/K^{-1}$ $Li_i^{\bullet} + e' \Longrightarrow Li_i^{\times}$ $K = \frac{[Li_i^x]}{}$

 $\Delta H \approx -1 \,\mathrm{eV}$

Kröger-Vink Diagrams

[Li_i•][e']

Experimental Data

Polycrystalline LiFePO₄ was chemically delithiated with NO₂BF₄ in acetonitrile solution according to the reaction: $LiFePO_4 + NO_2BF_4 \implies FePO_4 + NO_2 + LiBF_4$. The resulting heterosite FePO₄ contains a residual Li content of ca. 0.03 wt% corresponding to the formula $Li_{0.007}$ FePO₄. Solid solutions Li_x FePO₄ with $x \le 0.02$ were prepared by partial reduction using stoichiometric amounts of Lil in acetonitrile solution. The electronic conductivity was determined using a symmetric ion blocking cell with titanium or platinum electrodes (e.g., Ti/FePO₄/Ti). Impedance as well as DC polarization measurements have been performed.

Conclusions

- + FePO₄ exhibits a predominant electronic conductivity which is *n*-type. + The major defects in chemically delithiated FePO₄ are lithium interstitials and electrons.
- + An association enthalpy of -1 eV could be extracted (assuming a migration energy of electrons of $0.2 \, eV[4]$).

References

[1] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electro-chem. Soc. 144 (1997) A1188 [2] J. Maier, R. Amin, *J. Electrochem. Soc.* **155** (2008) A339

[3] R. Amin, J. Maier, Solid State Ionics 178 (2008), 1831 [4] T. Maxisch, F. Zhou and G. Ceder, *Phys. Rev. B*, **73** (2006) 104301