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ABSTRACT

Individual single-walled carbon nanotube (SWCNT) field effect transistors (FETS) wit h a2 nm thick silane-based organic self-assembled monolayer
(SAM) gate dielectric have been manufactured. The FETs exhibit a unique combination of excellent device performance parameters. In particular,

they operate with a gate —source voltage of only —1 V and exhibit good saturation, large transconductance, and small hysteresis ( <100 mV),
as well as a very low subthreshold swing (60 mV/dec) under ambient conditions. The SAM-based gate dielectric opens the possibility of
fabricating transistors operating at low voltages and constitutes a major step toward nanotube-based flexible electronics.

During the past few years, single-walled carbon nanotubes Here we investigate individual semiconducting SWCNT-
(SWCNTs) have emerged as highly promising components FETSs that employ a simpler gate dielectric comprised of a 2
of nanoscale electrical devices. Among these, SWCNT-basedhm thick organic self-assembled monolayer (SAM) prepared
field effect transistors (FETs) have attracted especially strongin a single process stema 4 nmthick Si0, layer on a
interest due to their excellent device characteristics. Threesilicon substrate used as a back-gate. The &@er results
crucial factors that govern the performance of SWCNT-FETs from a brief oxygen plasma step required to create a
are the chemical nature, the structural quality, and the sufficient density of hydroxyl groups for organic self-
thickness of the gate dielectric. In the most widely used assembly. The SAM is based on (18-phenoxyoctadecyl)-
configuration, a highly doped silicon substrate covered with trichlorosilane, which has been shown to be a suitable gate
thermally grown SiQ (typical thickness 100200 nm; dielectric for the fabrication of low-voltage, high-mobility
growth temperature 700°C) serves as a macroscopic back- pentacene organic thin-film transistér@wing to their low
gate! In order to achieve increased capacitive coupling, formation temperature of less than 20C, SAM gate
alternative gate dielectrics of ultrathin thickness (e.cOAP dielectrics are compatible with unconventional substrates
or high dielectric permittivity (e.g., Zrg** have been such as metalized plastic foils, thereby enabling electronics
investigated, in some cases employing a top-gate geometryOn flexible substrate$One important question is whether
While the corresponding FETs exhibit very high transcon- the SAM is stable under the conditions of electron-beam (e-
ductance and carrier mobility, they often suffer from beam) lithography, which is required for fabricating transis-
pronounced hysteresis in the transfer charactefisiack- tors with a channel length of 200 nm. To date there has only
gated FETs based on random SWCNT networks havebPeen a single report of FETs obtained through e-beam
recently been reported using a thin (16 nm) organic self- lithography on top of a SAM-based dielectric. In this
assembled multilayer gate dielectfitDevices reported in ~ Pioneering work on molecular gate dielectrics, oligoth-
that work show a greatly reduced hysteresis-taice they ~ i0phene-based organic thin-film transistors with carboxyl
are based on SWCNT networkshow inferior on/off drain  9roup-terminated silane-based SAM dielectrics were fabri-

current ratio and mobility. In addition, such devices display Ccated on silicon substratésHowever, no systematic study
relatively large gate leakage currents. of the effect of different electron doses on the structural

integrity of the SAM has been performed.
 Max Planck Institute for Solid State Research. The_structure of our SWCNT-FET devices is apparer_lt
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of the SAM and the Si@ Due to the strongly hydrophobic
character of the SAM-modified surface, a 0.3 nm thick layer
of titanium had to be evaporated onto the samples to allow
spin-coating of the electron-beam resist (PMMA). The
titanium does not form a closed layer as confirmed by atomic
force microscopy (AFM) measurements. Due to the small
thickness and fast oxidation of the titanium layer upon air
exposure, it does not contribute to the electrical conduction
between source and drain, as has been confirmed by electrical
measurement. The contribution of the capacitance of the
oxidized titanium to the total capacitance of the dielectric
stack can be ignored, since titanium oxide has a very large
permittivity (>50) in comparison to the SUBAM stack
(adding the titanium oxide reduces the total capacitance by
about 1%).

Carbon nanotubes (CNI, Houston, TX) were dispersed in

. ) _ an aqueous surfactant solution (1 wt % sodium dodecyl
Figure 1. AFM image of the SWCNT-FET device structure. The

4 nm thin SiQ layer on top of the highly doped silicon wafer (light sulfate) and then purified by C?nmeQaﬂon and de'DOS'ted
gray) is shown in dark gray. Four AuPd electrode lines are deposited ON the substrate after the deposition of the 0.3 nm Ti. Source
onto the SAM (hatched layer) that has formed on the,Sidface. and drain contacts were then fabricated on top of the
A 0.3 nm layer of titanium is evaporated on top of the monolayer SWCNTs by e-beam lithography using a standard double-
AFN mage has been colored to enhance 1s isibiy. The scale YS! POV(methyl methacrylate) (PMMA) resist with a
bar is 208 nm. Inset: Chemical structure of the silane molecule thickness of 200 nm, an electron energy of 25 keV_, and an
used for SAM formation. electron beam dose of 300C/cn?. Electrodes with a
separation of 200 nm were formed through thermal evapora-

oxygen plasma treatment (0.1 mbar, 100 W, 10's, substratetion of 0.3 nm Ti/15 nm AuPd (60/40) and subsequent lift-

at room temperature) of a'pdoped silicon wafer serving as ?ﬁtlhn acet:)n?. Trgjmtmetatll \gl'.rehs vvl'erglcarlefutlly gllue-bonil‘ed
the substrate and gate electrode from the vapor phase (low-° "€ contact pads to establish reliable electrical connections

pressure nitrogen atmosphere) at a temperature of @00 betwgen the device terminals apd the chip carrier. The
Ellipsometry revealed that the plasma activation resulted in glec_trlcal measurements were carried out at room temperature
a~4 nm thick SiQ coating of the silicon substrate. We note in-air.
that plasma activation is required for high-quality molecular ~ In order to determine the extent to which the e-beam
self-assembly in order to generate a sufficient density of €xposure during lithography causes structural damage of the
functional groups at the surface. During the plasma treatmentSAM as well as to evaluate the contribution of the SAM to
the substrate remains at room temperature which in principlethe insulating properties of the SiGAM-dielectric, five
opens up the possibility of implementing the devices on different types of test structures were investigated. These
flexible substrates (in which case a natively oxidizing metal Samples consist of a heavily doped silicon substrate covered
would be used instead of silicon). Compared with silicon by @ thin dielectric (bare or SAM-modified 4 nm plasma-
dioxide formed by thermal oxidation above 700 (ref 11), ~ 9rown SiQ, with or without 0.3 nm oxidized Ti) and a top
our room_temperature p|asma_grown Si©of lower qua"ty, metal contact (patterned either through an evaporation mask
but as far as gate leakage and interface state density ar®’ by e-beam lithography). In Figure 2, the results of
concerned, this deficiency is compensated by the SAM which current-voltage (—V) measurements performed on the
is also created at low temperature (20D). Although the respective samples under ambient conditions are shown. The
SAM adds only~2 nm to the total dielectric thickness (as SiO. dielectric without SAM has very poor insulating
determined by ellipsometry), it reduces the leakage currentpProperties, as apparent from the substantial current density
by more than 3 orders of magnitude, fronmi@ 107 A/lcm? of about 10“ A/cm? at an electric field of 2 MV/cm applied
(measured at a gate field of 2 MV/cm). For a thin (6 nm), between the silicon gate and the metal contact. The leakage
low-temperature (200C), large-area dielectric this is an current does not decrease significantly upon evaporating 0.3
exceptionally small current density. The SAM-covered Nm of Ti onto the 4 nm thick plasma-grown Si@nd
substrate is smooth over large areas as shown by atomic forcéllowing the Ti to oxidize prior to depositing the contact
microscopy (Figure S1, Supporting Information). Scanning Pads. The large leakage currents in the devices without SAM
tunneling microscopy studies have shown that the SAM is originate from the poor quality of plasma-grown Si@s
essentially free of pinholés. compared to high-quality Sikyrown by thermal oxidatioft

The capacitance of the dielectric stack, in which the SAM  In comparison, the test structures including a SAM exhibit
accounts for the majority of the insulating properties, has a significantly reduced leakage current density of less than
been determined by impedance spectroscopy to b@®.5 107 A/cm? at the same electric field. This confirms the
cn?. The relative permittivity of the dielectric is estimated crucial role of the SAM in determining the insulating
to be about 3.3 and is determined mostly by the permittivities properties of the dielectric stack, despite its small thickness.

Heavily doped Si
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A similar conclusion has previously been drawn for organic a 104 i 10.10(9
SAM-containing sandwich devic€42*Comparing the SAM .
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devices with and without a 0.3 nm thick Ti layer evaporated
on top of the SAM shows an increase in leakage current by
a factor of about 2 as a result of the titanium deposition. If
the SAM was significantly damaged or destroyed by the Ti, Figure 3. (a) Output characteristics of a FET device with a SAM-
as has been reported in the literatifreye would expect a based gate dielectric comprising an individual semiconducting
more significant increase in leakage current. In our case SWCNT as channel. (b) Transfer characteristics of the same device.

: s - The gate voltage sweep rate was 150 mV/s. All measurements were
however We_belleve that the.0.3 nm Ti oxidizes suffluently perfc?rmed unger ambi?ent conditions. The measured gate leakage
fast (due to its very small thickness and the residual gas incyrrent resolution is limited by the measurement setup in this
our evaporator) to not inflict substantial damage on the SAM. experiment. Data for the leakage current density should be taken

More intriguingly, the leakage current through the SAM from Figure 1 which shows measurements of the gate leakage
dielectric is found to be virtually the same {07 A/lcm?at  current with a higher accuracy.
2 MV/cm) regardless of whether the top metal contact is
patterned by a shadow-mask technique or by electron-beamSWCNTSs. The output characteristics of an exemplary device
lithography, which demonstrates that the electron dose of (tube diameter 1.2 nm) shown in Figure 3a display p-type
300 uClcn? does not significantly damage the SAM. Due behavior, a common feature of SWCNT-FETS that were not
to its small thickness the electron absorption in the oxidized subjected to further treatmeht’ The drain current vs drain
Ti can be ignored, especially since our AFM measurements source voltage characteristic resembles that of conventional
suggest that the oxidized Ti does not form a closed layer. p-type metal-oxide-semiconductor FETs (MOSFETS). One
At first glance, the good stability of the SAM under e-beam of these features is the saturation of the drain current at higher
exposure appears to be in contrast to literature reports ofVgs For the present device, saturation occurs for example at
considerable damage involving bond rapture and partial a drain—source voltage of approximatety0.3 V and a gate
desorption of molecular fragments after e-beam irradiation source voltage of-1.5 V (also see Figure 4a for a different
of thiol-based SAMs on Au substrat&dHowever, it has to device showing good saturation). From the transfer charac-
be taken into account that the electron energy of 25 keV in teristics, shown in Figure 3b, one finds a transconductdnce
the present study is much higher than the-100 eV used gm = dlg/dVys of about 20uS atVys = —1 V. This value is
in case of the thiol-based monolayers. It is well-documented similar to the highest reported so far for SWCNT-FETs
that higher-energy electron irradiation causes less damageand testifies to the superior gate coupling and to a large
in thin organic films than lower-energy irradiatiéhThis carrier field-effect mobility. The device exhibits a threshold
difference can be attributed to the lower stopping power of voltage between-0.05 and—0.5 V, depending on whether
higher-energy electrons, whereby only little energy is the threshold voltage is estimated from the plot of the square
deposited in thin films. First signs of electron-induced root of the drain current versus gatsource voltage or from
damage of our PMMA resist-covered SAMs, manifested by the plot of the drain current versus draisource voltage.
increased leakage currentsl(0~® A/lcm?), were detected for ~ Moreover, the large on/off drain current ratio of about 10
doses larger than 18QoC/cnr. (at Vgs = —1 V) is particularly remarkable in view of the

Building upon the excellent process stability and insulating small thickness of the gate dielectric and theoretical predic-
properties of the SAM-based dielectric, we were able to tions on drain voltage scaling in SWCNT-FE¥4.22
obtain excellent FETs from individual semiconducting Finally, evaluation of the subthreshold swiig- [dVgdd(log
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of the gate dielectric and the interface state density have to
be optimized. While in most works using high-permittivity
2 -0.2+ dielectrics a large capacitive coupling is realized, the interface
= trap density is often high in comparison to dielectrics with
‘GEJ -0.4 lower permittivity like the one used in this work (see Figure
g S2 within Supporting Information). It is furthermore relevant
2 -0.6 that the device exhibits a very low gate leakage current
g 08 (~100 pA atVyg = —1 V) that is smaller than the drain
’ Gate source current by more than 4 orders of magnitude. This leakage
10 : : voltag?=-2 V. current is an upper limit of the actual leakage since the
10 -08 -08 -04 -02 00 minimum resolution of our measurement device in this
Drain-source voltage (V) measurement is about 100 pA. Figure 2 gives a better idea
of the real leakage current through the gate dielectric.
10°] While the electrical characteristics presented above belong
Drain-source to one of the best devices, we note that only a relatively
107+ voltage = -1V small variation in performance was observed from sample
< . to sample. In particular, all of the devices displayed saturation
= 1071 of the drain current in the output characteristic. The lowest
5 10°4 transconductance and on/off ratio found among the inves-
< tigated devices were 0.6S and 16, respectively, while
g 107"+ subthreshold swings as large as 300 mV per decade were
» measured.
107 The transfer characteristics of the investigated devices

-1.0 0.5 0.0 0.5 (Figure 3b) disclose a hysteresis. This phenomenon is
Gate-source voltage (V) common to SWCNT-FETSs. It has been ascribed to traps
Figure 4. Output (a) and transfer (b) curve of a device at a drain located W'th'r_‘ the bulk S'@ gate. Insulgtor or near the
source voltage of-1 V. Negligible hysteresis is measured under Nnanotube/Si@interface, which get filled with electrons from
ambient conditions. The gate voltage sweep rate was 210 mV/s.the nanotube channel upon sweeping to more positive gate
voltages??2° Similar to other SWCNT-FETS, the present
la9] within the model for MOSFETS yields the value of  devices show forward-type hysteresits magnitude (defined
60 mV/decade in the subthreshold region (between about@s the separation between the forward and backward curves
10710 and 108 A), close to the theoretical limit of the at50% of the maximum sourealrain current) depends on
subthreshold swing at room temperattf&uch a low value ~ temperature as well as tNgs sweep rate and range, whereas
has not been previously reported for undoped Schottky- itis only weakly affected by/us We find a room-temperature
barrier SWCNT FETSs with low operating voltage%, 26 and hysteresis of 900 mV when sweeping the gate voltage
its realization within the present devices is notable consider- between 1.5 and-1.5 V at a rate of 7.5 mV/s. Its value
ing that no attempts were made to reduce the contactdecreases down to 100 mV upon increasing the sweep rate
resistanc& and we work with a global back-gate structure. t0 350 mV/s. Such a decrease in hysteresis with rising sweep
Previous publications have reported subthreshold swings offate of the gate voltage indicates the presence of trap charging
60—70 mV/decade for SWCNT FETs in which the channel On a time scale on the order of several hundreds of
conductance was controlled with a local gate field while the Milliseconds. Moreover, the hysteresis experiences a sig-
contact regions were either Chemica”y dOM electro- nificant reduction when the devices are COO'ed, similar to
statically “doped” by applying a large static field from a the behavior of SWCNT-FETs with a pure Si@ate
global back-gaté?® It is known, that in such devices the insulator®®*
subthreshold swing is not limited by the gate dielectfit. Hysteresis in SWCNT-FETs has previously been consid-
In our devices the low-voltage back-gate controls the entire ered mostly from the viewpoint of potential memory
nanotube and the low subthreshold swing is an indication applications’®32 This task still requires a better control over
for the high quality of the gate dielectric used in this work. the hysteretic effect, although the first promising steps have
From the subthreshold swing the interface state demgity already been taken in this direction, for instance via removal
= (log(e) g SkeT — 1)*C/q of the SAM/SWCNT interface  of the water layer from the SiJgate insulator surfaceA

can be calculated wherg is the electron chargeks prerequisite for efficient operation as a FET, by contrast, is
Boltzmann’s constant] the temperature, an@ the gate the absence of hysteresis. In this regard, it is pertinent to
capacitance per aré&The obtained value dfl = 6 x 10%° note that some of our devices exhibit essentially no hysteresis

cm2V~tis more than 1 order of magnitude lower compared even when measured under ambient conditions, i.e., with the
to other SWCNT transistoté”-1%2'and underlines the high  CNT channel exposed to air (Figure 4). This result is
structural quality of the SAM (see Figure S2 within Sup- outstanding since a vanishing hysteresis has only been
porting Information). It should be stressed, that in order to achieved so far with the nanotube protected from air either
achieve a minimal subthreshold swing, both the capacitanceby inorganic ALD dielectric¥ or when working with a liquid
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Figure S1 Tapping-mode atomic force microscopy (AFM) image of the silicon
substrate covered by the SAM. The layer is very smooth and pinhole free across large
areas. Inset Zoom. The scale bar here is 20 nm, and the colour scale ranges from 0 to

0.5 nm.
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Figure S2 Comparison of the interface state density of gate insulator materials with
different dielectric constants. The interface state density N was calculated from the
subthreshold swing S at room temperature and the capacitance per unit area C of the
gate dielectric by the formula N = (log(e)* g* SkgT-1)*C/g with q as the electron
charge, kg Boltzmann’s constant and T as the temperature. The color scale indicates
the respective year of the publication. It can be clearly observed that for materials of
lower dielectric constant the interface state density is also lower. Furthermore a trend
towards a lower interface state density over the years due to higher quality dielectrics

is visible.
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Figure S3 Transfer curve of two devices: In red a SWCNT FET with a 200 nm SiO;

dielectric. In blue a SWCNT FET with a 100 nm SO, and a SAM on top. The

hysteresis in this case is only 12% of the gate voltage window (determined by the

difference between the minimum and maximum gate voltage) at a gate voltage sweep

rate of 0.38 /s (3.8 x 10* V/icm s).



