Selected research reports

New compounds and phase transitions

Direct access to the order parameter: Parameterized symmetry
modes and rigid body movements as a function of temperature
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Introduction

Many crystalline phases can be viewed as low-
symmetry distortions of real or hypothetical
higher-symmetry parent structures (i.e.. aris-
totypes). In such cases, a group-subgroup re-
lationship must exist between the two struc-
tures, so that all symmetry elements of the low-
symmetry phase are also present in the high-
symmetry phase. The low-symmetry phase will
generally have more structural degrees of free-
dom than the parent phase, and may involve
some combination of magnetic, displacive, oc-
cupancy and strain degrees of freedom. Using
group-representation theory, these degrees of
freedom can always be parameterized in terms
of basis functions of the irreducible representa-
tions (irreps) of the parent symmetry, which we
refer to as symmetry-adapted distortion modes,
or more simply as symmetry-modes. The sym-
metry modes of a given type (e.g., lattice strain.
displacive, occupancy or magnetic) belonging
to the same irrep collectively comprise an ‘or-
der parameter’. The key order parameters that
define a structural transition have zero ampli-
tude on the high-symmetry side. and take on
non-zero amplitudes on the low-symmetry side.
These order parameters tend to place the daugh-
ter atoms of a given parent atom onto more gen-
eral Wyckoff sites and often split a parent atom
across multiple unique daughter sites. In many
cases, the symmetry-adapted description is the
most natural parameter set, because nature’s or-
der parameters are usually selected to break a
specific set of symmetries.

In case of framework crystal structures, whose
structural distortions involve rigid polyhedral
units, the most natural description comprises
tilt modes that leave the polyhedra undistorted.
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To account for this additional chemical infor-
mation, one uses rotations, translations, and
torsions as adjustable parameters. If the voids
of the framework are occupied by guest atoms
or molecules. these entities may also translate
and/or reorient. The rigid-body (RB) descrip-
tion is more restrictive than the symmetry-mode
(SM) basis, which is helpful when only RB
behavior is observed. But a single symmetry-
adapted order parameter will often approximate
a rigid-body mode for small mode amplitudes:
and a linear combination of symmetry modes
can achieve any possible distortion, including
RB distortions.

If the distorted structure has a lower point group
symmetry than the parent structure, the dis-
tortion can be referred to as ferroic. A fer-
roic distortion can be further classified as fer-
roelastic if it changes the shape of the unit
cell in such a way as to alter the crystal sys-
tem. A ferroelastic distortion can be described
in terms of spontaneous macroscopic strains
(es) of the parent unit cell parameters. The fer-
roelastic transition then marks the boundary
between the low-symmetry ferroelastic phase
and a higher-symmetry paraelastic phase that
supports only disordered local strains. Landau
theory describes the main physical features of
most ferroelastic phase transitions, wherein the
thermodynamic state of the system and the
free-energy difference that stabilizes the low-
symmetry phase (the excess Gibbs free energy)
are expressed in terms of thermodynamic or-
der parameters [1]. Here. we will treat the lat-
tice strains as linear combinations of symmetry-
adapted gamma-point order parameters, which
may also be coupled to additional displacive or-
der parameters.
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In Landau theory. an order parameter decreases
continuously to zero at a second-order (a.k.a.
continuous) phase transition, whereas an order
parameter can abruptly ‘jump’ to a non-zero
value at a first-order (a.k.a. hysteretic) transi-
tion. For a continuous transition, the order pa-
rameter’s dependence on temperature can be
modeled by an empirical power law of the form

O=f|Tee—T [P @

where Tt 15 the transition temperature, f is
the critical exponent, and f is a temperature co-
efficient. Typical values of § are 1/2 for ordi-
nary scalar second-order transitions, or 1/4 for
a transition at the tricritical point that marks the
boundary between first and second-order tran-
sitions. Values between 1/4 and 1/2 might be
obtained for a variety of reasons. The Landau
critical exponent is derived by calculating the
first derivative of the power series expansion of
a truncated Gibbs free energy with respect to the
order parameter and setting it to zero, a simplis-
tic approach that is really only valid in a small
temperature interval around 7;;. But near a tri-
critical point, one obtains f =~ 1/4 for tempera-
tures near 7. p~ 1/2 for temperatures far be-
low T.4:. and an intermediate ‘effective’ value
when attempting to fit over an extended temper-
ature range that includes both extremes. How-
ever, it has also been shown that non-standard
power-law exponents obtained from fits over
extended temperature ranges are often due to
temperature-dependent energy-expansion coef-
ficients of order four or higher and have noth-
ing at all to do with critical phenomena. And
finally, attempting to fit a power-law to an order
parameter that is only approximately second or-
der. will artificially suppress the exponent do to
the unusually rapid descent near the transition.

The most common method of characterizing
structural phase transitions is the powder X-ray
or neutron diffraction. Modern lab instruments
and advanced scattering facilities now provide
for the rapid collection of high-resolution pow-
der diffraction patterns as a function of param-
eters like temperature. pressure or simple time.
1D or 2D position sensitive detectors allow for

efficient measurements of a series of powder
pattern near a phase transition. Usually, pow-
der diffraction patterns are refined individually,
followed by a post-refinement analysis of lattice
parameters or atomic coordinates as a function
of external variables. But with the availability of
flexible self-programmable Rietveld programs
like TOPAS, the simultaneous refinement of a
single parametric model against multiple data
sets has now become possible [2]. User-friendly
software packages that allow one to automati-
cally re-parameterize a low-symmetry structure
in terms of symmetry-adapted order parameters
of a higher symmetry structure have also be-
come available (e.g.. ISODISPLACE [3.4] and
AMPLIMODES). and require only a very ba-
sic knowledge of group theory. Together. these
developments have enabled fast and stable para-
metric refinements of physically-meaningful or-
der parameters that were previously impracti-
cal.

Here, the ferroelastic phase transition of
CsFeO; is investigated in detail via parametric
Rietveld refinement as a function of tempera-
ture. Both displacive and strain order parame-
ters are modeled using power-law trends below
Teit- The displacive order parameters are ana-
Iyzed using both the RB and SM descriptions
for comparison purposes.

Method

Both RB and SM distortion models have been
used to study the ferroelastic phase transition of
CsFeO» from a cubic (space group Fd3m) par-
ent structure to an orthorhombic (space group
Pbca) low-symmetry structure (Fig.13). We
describe the SM approach first. Starting with
Fd3m and Pbca CIF-structure files that were
derived from single-crystal X-ray diffraction
data from isotypic RbFeO; [5]. the ISODIS-
PLACE software was used to perform an au-
tomatic symmetry-mode decomposition of the
low-symmetry distorted structure into modes of
the high-symmetry cubic parent. In the cubic
phase, despite having a total of 32 atoms in the
conventional face-centered unit cell, the struc-
ture of CsFeO» has no free atomic coordinates.
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Figure 13: An g-axis projection of the low-temper-
ature (Pbca) crystal structure of CsFeOs.

The cubic cell contains one unique atom of each
type. each of which lies on a special Wyck-
off point. In the orthorhombic phase. however,
there are 24 free atomic coordinates. Because
the symmetry-mode basis is related to the tradi-
tional atomic-coordinate basis by a linear trans-
formation, there must also be 24 displacive
symmetry modes. For convenience, we number
these modes from 1 to 24.

Equation (3) shows how the atomic positions r;
of the low-symmetry (LS) and high-symmetry
(HS) phases are related.

1} =154y Cm Ome(j|m) 3
m

The j index indicates an atom in the low-
symmetry supercell, the m index runs over all
of the modes associated with its parent atom,
g(j|m) is the j® component of the unnormal-
ized (i.e.. nice-looking) polarization vector of
the m® mode, and the ¢jp, are normaliza-
tion coefficients such that Y ; cj%m e(j|m)*=1.
Om is the amplitude of the m™ mode, and
equals the root-summed-squared displacement,
summed over all supercell atoms affected by the
mode. ISODISPLACE essentially used group-
theoretical methods to compute the symmetry-
mode polarization vectors and normalization
coefficients, and then saved the results as a sys-
tem of linear equations in TOPAS .str format [3].
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Ten of the 24 displacive symmetry modes were
identified as being necessary to describe the
phase fransition: two (a2 and a4) for cae-
sium, two (@9 and «10) for iron and six (al4,
als, al6, al7, al8 and al9) for oxygen. The
a2-mode affects the y-coordinates of both Cs
atoms, while a4 only affects the x-coordinate of
Csy. The a10 mode influences the y-coordinate
of the Fel and Fe2 atoms while the 10 mode
influences only the x-coordinate of the Fel
atom. Oxygen modes al4 to al9 cooperate to
describe the rotation of the FeOy4 tetrahedron.
which should not be substantially distorted.
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Figure 14: Rigid body consisting of the crystal-
lographically independent atoms of the structure
building double tetrahedron in CsFeO, exhibiting
three internal parameters: 7, tilt-1 and tilt-2.

Next, we describe implementation of the rigid-
body model. in which the low-symmetry distor-
tion was defined in terms of polyhedral tilt an-
gles that left the polyhedra themselves undis-
torted. A suitable rigid building unit that de-
scribes both the low- and high-temperature
CsFeO; structures consists of two regular
corner-sharing FeQy tetrahedra that are tilted
with respect to each other as shown in Fig. 14.
Taking symmetry equivalent positions into ac-
count, the resulting rigid body consists of four
oxygen and two iron atoms with two tilting an-
gles and the average Fe—O distance () as inter-
nal degrees of freedom, as illustrated in Fig. 14.
The two tilt angles are (1) the Fel-Ol-Fe2
(tilt-1) bond angle and (2) the O4-Fe2—01-Fel
tortion angle (tilt-2) between the two tetrahedra.
For the Rietveld refinement, the rigid body was
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set up in form of a z-matrix that naturally de-
scribes the position of each atom in terms of its
distance, angle and torsion angle relative to pre-
viously defined atoms. The bridging O1 oxygen
atom of the two tetrahedra was used as the cen-
ter of the rigid body. The orientation and po-
sition of the rigid body relative to the internal
coordinate system of the crystal was held con-
stant over the entire temperature range of inves-
tigation and only the three internal degrees of
freedom were subjected to refinement. As the
two Cs atoms in the voids of the framework
are independent of the rigid body, their crystal-
lographically relevant atomic coordinates were
refined separately.

The technique of parametric Rietveld refine-
ment [2] was applied to both the SM and RB
models. This technique enables the refinement
of various (e.g.. thermodynamic) parameters di-
rectly from diffraction data. Prior to parametric
refinement. preliminary refinements were per-
formed at each temperature individually. and
the temperature dependence of each candidate
symmetry mode or z-matrix parameter was ex-
amined in order to identify the parameter subset
that captures the principle features of the distor-
tion. Then, for the parametric refinement. these
crystallographic structural parameters were not
refined directly, but were rather modeled as
power-law temperature trends (Eq. (2)). so that
each one possessed a temperature-independent
power-law exponent and coefficient [1]. Each
z-matrix parameter in the RB model possessed
an unique refinable coefficient and exponent.
In the SM model, however, all modes belong-
ing to a single order parameter (labeled ac-
cording to irrep) shared the same power-law
exponent. The temperature-independent power
law exponents and coefficients were then sub-
jected to parametric refinement, simultaneously
against diffraction patterns collected at all tem-
peratures. Topas (Version 4.1: Bruker AXS)
was used to perform the refinements [6].

The characterization of the lattice strain below
the ferroelastic phase transition is also impor-
tant here. Strain is a symmetric second rank ten-

sor that can be represented by a 3 x 3 matrix
which for the orthorhombic symmetry (actual
supercell) reduces to a diagonal matrix with the
following diagonal elements:

e11 :ﬁ—lzi—l
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with the lattice parameters of the supercell as.
bs.. ¢s and the isothermal lattice constants agg,
b, and cy. The isothermal lattice constants can
be given as well in dependence on the isother-
mal lattice constant of the cubic parent cell ayp.

In the present parametric refinements. the su-
percell strain parameters were modeled as
power-law trends vs. temperature. They are
viewed as independent coupled order parame-
ters and each possesses their own power-law
exponents and coefficients (Eq. 5). In the para-
metric refinement, a conditional statement de-
fined the region below the transition where the
order parameters were permitted to have non-
zero values.

If (T < Tuit) then ep(T) =fr (Teit — T)PT,

else er=0 (5)

During parametric refinement the exponents
and coefficients of the strain (Eq. (4)) were used
to calculate the supercell lattice parameters at
each temperature. It was necessary to treat the
cubic parent cell parameter as a temperature-
dependent quantity, ao(T) . and to linearly ex-
trapolate it into the region of the low-symmetry
phase in order to correct for the additional ef-
fects of thermal expansion. The slope (mp) and
intercept (fp) used for this extrapolation were
also part of the parametric refinement.

Experiment

Powder diffraction measurements were per-
formed at the Materials Sciences (MS-Powder)
beamline of the Swiss Light Source using syn-
chrotron radiation of a wavelength of 0.49701 A
using the Microstrip Detector Mythen-II.
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Figure 15: Logarithmic plot of temperature-dependent parametric symmetry-mode refinement of CsFeO; in

the temperature ranges from 303 K to 409 K. Observed, calculated and difference traces for all temperatures
used (1 K steps) are shown in a stacked arrangement.

The sample was sealed in a Hilgenberg quartz-
glass capillary with a diameter of 0.3 mm. The
diffraction patterns were collected on heating
the powder sample from 303K-409K with
steps of 1K using a STOE capillary furnace.
The powder patterns were recorded for 40 sec-
onds (4 scans of 10 seconds each) in the angular
range from 3.0°—53.38° 26.

Results and Discussion

The dependence of the crystal structure of
CsFeO; on temperature in the temperature
range from 303K to 409K was investigated
by sequential and parametric Rietveld refine-
ment. Both symmetry mode (SM) and rigid-

| 1 ’ .I ‘!‘ T I T T T T T ]

body (RB) refinements were performed. Fig- ;g E s -
ure 15 illustrates the results from a temperature- 0'0 - e e ]
dependent parametric symmetry-mode refine- X [ /; ]
ment against all available data sets throughout 2 _4of = % = 321;355: N
the temperature range investigated. B asf : :338 sm
Lok 2 s ]

= 20 ; * eMgRB ]

The parametric model produced diffraction 8 -2.5 - /.»" v e22,RB
patterns that agreed well with correspond- §. S0 / e33sRB
ing experimental patterns at each temperature, % jz -

demonstrated the effectiveness of the paramet-
ric approach and the inclusion of an adequate
structural-parameter set. Including additional
parameters did not significantly improve the
quality of the fit.
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For both types of parametric Rietveld refine-
ments (SM., RB) the lattice parameters var-
ied only slightly. Below the phase transition.
all strain order parameters (Fig.16) and lat-
tice parameters exhibit the anticipated power
law trends. while above the transition. the lat-
tice parameters can be adequately fitted using a
linear function within the investigated temper-
ature range. The strain order parameters exhib-
ited essentially the same development when ap-
plied to the SM and RB models. Observe that
the magnitude of the strain component e;; is
significantly higher as the magnitudes of e
and e33. which are of comparable size.
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Figure 16: Temperature-dependent supercell strains
for CsFeO; as calculated from their parametrically-
refined power-law models.
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The temperature dependencies of the displacive
degrees of freedom are plotted in Fig. 17. These
power-law curves were calculated using the
parametrically-refined coefficients and expo-
nents.
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Figure 17: Comparison of the root squared sum of
the DTS5+, SM2+ and L2+ with the normalized in-
ternal RB parameters in dependence on tempera-
ture. Temperature-dependent symmetry-mode am-
plitudes for CsFeO; as calculated from their para-
metrically-refined power-law models.

If one views the set of all possible distortions
possessing the requisite supercell and Pbhca
symmefry as a multi-parameter vector space,
the traditional atomic-coordinate (TAC) and
SM descriptions both span the entire distortion
space.

In contrast, the RB description is much more
restrictive because it only allows distortions that
preserve the shapes of the rigid polyhedra. Thus
the RB description has far fewer free parame-
ters. While the SM description has just as much
freedom as the TAC description, only a rela-
tively small fraction of the available symmetry
modes tend to be important to a specific phase
transition. And in the case of CsFeO». a rela-
tively small number of symmetry modes can ap-
proximately reproduce the rigid-body motions
observed.

Ideally, we would expect all of the modes as-
sociated with a single symmetry-adapted or-
der parameter to evolve together. sharing the
same power-law exponent, and have assumed
this to be the case in defining the SM model of

CsFeO;. The key displacive order parameters
that contribute to the low-temperature CsFeO»
distortion appear to be DT5+(As5). SM2(Z>)
and L2+(L§). ISODISPLACE was used to de-
termine that any two of these could comprise
a potentially primary (i.e.. capable of produc-
ing the symmetry of the distorted phase) pair
of coupled order parameters. In general, cou-
pled order parameters can arise at different tem-
peratures and follow different trends. Or they
can be strongly coupled, arising at nearly the
same temperature and following very similar
trends. Because sequential single-temperature
refinements indicate that each of the important
order parameters of CsFeO; arise withina 1K
temperature range, we assumed they all appear
at the same temperature (352 K). Because the
DTS5. SM2 and L2+ order parameters must co-
operate in order to preserve the shapes of the
FeOy tetrahedra, we can reasonably assume that
they are strongly coupled by physical bonding
constraints. Thus, we might expect them to ex-
hibit similar temperature evolutions. The al5
and @19 symmetry modes, for example, must
cooperate to mimic the RB tilt-2 angle. and
therefore are coupled with the same power-law
exponents. Because the SM and RB models are
roughly equivalent, it is not surprising that the
DT5/L2+ power-law exponent is similar to that
of the RB tilt-2 angle itself. Other relationships
between the two models include the 410 sym-
metry mode, which approximates the RB tilt-
1 angle, and the a2 and a4 symmetry modes
which are related to the Cs positions of the RB
model. In each of these cases. the power-law
exponents of geometrically-related SM and RB
parameters are within three standard deviations
of one another.

Based on Landau and renormalization-group
theory considerations, ISODISPLACE deter-
mined that none of the DT5+. SM2 or L2+ or-
der parameters of the CsFeO; distortion are ca-
pable of producing continuous transitions when
acting alone, and certainly not when acting si-
multaneously. Though the transition appears to
be approximately second order in nature, first-
order distortions that evolve too quickly below
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the transition do provide a simple explanation
the unusually-small power-law exponents that
we observe.

Conclusions

We have demonstrated the semiautomated para-
metric refinement of structural order parame-
ters that arise at the cubic-orthorhombic struc-
tural phase transition of CsFeO;. This para-
metric refinement against diffraction patterns
collected over a wide range of temperatures
yielded power-law exponents and coefficients
describing the evolution of the atomic displace-
ments and the ferroelastic lattice-strains that
contribute to the distortion. Two different pa-
rameterizations of the distortion, the symmetry-
adapted distortion mode description and the
internal rigid-body (i.e.. z-matrix) description.
proved to be closely related due to the natural
tendency of symmetry modes to produce poly-
hedral tilts like those observed in CsFeO,. With
both models. the automated parametric refine-
ment greatly increased the speed of the refine-
ment and post-refinement analysis. To charac-
terize power-law frends in structural order pa-
rameters, it was crucial to collect diffraction
patterns at a sufficient number points above
and below the phase transition, which is rou-
tinely possible at modern synchrotron sources.

In the case of the present work. the interpre-
tation of the power-law exponents was diffi-
cult due to fact that this structural phase tran-
sition is weakly first order. Yet, the parametric
Rietveld refinement of symmetry modes and in-
ternal rigid body parameters as a function of ex-
ternal variables proved to be a powerful tool for
investigating structural phase transitions. The
principle benefit lies in the flexibility and con-
venience of identifying, testing and comparing
candidate order parameters. The development
of third party software for further automation
of this rather complicated process is under way.

In Collaboration with:
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Predicting crystalline solids exploring energy landscapes
on ab initio level

K. Doll. J.C. Schén and M. Jansen

One of the great challenges in preparative solid
state chemistry is the transformation of the
field from an inductive to a deductive science
by predicting the stable compounds. and their
polymorphic modifications. for a chemical sys-
tem and subsequently achieving their synthesis.
These possible structures correspond to the lo-
cally ergodic regions on the energy landscape
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of the chemical system. i.e., the hypersurface of
the potential energy as function of the atom ar-
rangements. At low temperatures. these regions
can be associated with individual minima on the
landscape, while at elevated temperatures they
often encompass many (closely related) min-
ima. Over the past two decades [1]. we have de-
veloped a general methodology to predict solid



