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ABSTRACT Recent advances in nanolithography have allowed shifting of the resonance frequency of antennas into the optical and
visible wavelength range with potential applications, for example, in single molecule spectroscopy by fluorescence and directionality
enhancement of molecules. Despite such great promise, the analytical means to describe the properties of optical antennas is still
lacking. As the phase velocity of currents at optical frequencies in metals is much below the speed of light, standard radio frequency
(RF) antenna theory does not apply directly. For the fundamental linear wire antenna, we present an analytical description that
overcomes this shortage and reveals profound differences between RF and plasmonic antennas. It is fully supported by apertureless
scanning near-field optical microscope measurements and finite-difference time-domain simulations. This theory is a starting point
for the development of analytical models of more complex antenna structures.
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In the radio frequency and microwave regime, the an-
tenna is a well-established concept.1 (Semi-) analytic
theories, derived from the notion of perfect conductors

that carry only surface currents, continue to guide engineers
in optimizing antennas for many different applications with
profound impact on society. Recent developments in nano-
technology allowed shifting the resonance of antennas into the
visible part of the electromagnetic spectrum.2,3 This new class
of antenna received already great attention due to its abilities
of enhancing4,5 and directing6,7 the emission of single mol-
ecules and it bears great potential for sensing applications and
small volume spectroscopy.8,9 Coupling of specifically chosen
antennas leads to novel resonance effects such as electromag-
netically induced transparency10,11 and gives rise to a new class
of materials, the so-called metamaterials.12,13

In the process of antenna improvement, the pioneers of
radio engineering developed analytical approximations,
which at the same time fostered a deep intuitive understand-
ing. Today, the design and optimization of optical antennas
are largely done with generic numeric Maxwell solvers.6,14

The larger and more complex the investigated structures,
the greater are the possibilities for new fruitful discoveries-
at the expense, however, of rapidly inflating computational
costs for the research. The precise analysis of extended
three-dimensional (3D) plasmonic systems still often ex-
ceeds current computational limits. Accurate analytical mod-
els are very welcome predictors of structure behavior and/

ordeviceperformance.Theyeasethedesignandoptimization
processes as well as extend intuitive understanding. While
the scattering of isolated plasmonic spheres as the simplest
optical antennas has been solved analytically in closed form
by Mie more than 100 years ago,15 equivalent solutions for
most other relevant geometries continue to be elusive.

In this paper, we present a model for another fundamen-
tal building block of plasmonic antennas, the linear thin wire
element. It explains the excitation of such wires by far-field
sources for both, on- and off-resonance conditions and
provides information regarding the amplitude and phase of
the radiation scattered in arbitrary directions. It also predicts
the scattering and directivity of the antennas and has the
potential to simplify modeling of multiwire structures, such
as Yagi-Uda composites.6,7,16,17 At its heart, this theory
describes the longitudinal resonances of the fundamental
transversal wire mode. These longitudinal resonances arise
from the finite length of the wires discretizing the continuous
mode spectrum and lead to Fabry-Pérot resonances. Con-
tributions from higher order transversal modes are sub-
sumed in a small signal offset when fitting our experimental/
numerical results with predictions from the analytical model.
In deriving the model, we let us guide by textbook RF
antenna theory as far as possible.18,19 With the skin depth
being of the same order as the antenna diameter and
larger,20 however, the assumption of surface currents clearly
cannot be upheld. Instead, the fields occupy the bulk of the
antenna and justify our assumption of a homogeneous
volume current. Ultimately, this seemingly small modifica-
tion fully describes the drastically altered coupling behavior
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of plasmonic antennas to the free space radiation, as indi-
cated pictorially at the bottom of Figure 1a.

Our model is verified with data obtained by apertureless
Scanning Near-field Optical Microscope (aSNOM)21 and
finite-difference time-domain (FDTD) simulations.22 As we
showed previously, the near-field amplitude recorded by
cross-polarization aSNOM can be used to map the resonant
responses of single plasmonic antennas,23 which strongly
depend on the illumination direction and may even be
entirely forbidden under certain conditions such as even
order modes are under perpendicular illumination. With this
angle dependence, essentially reflecting the directivity of the
antennas, we can extract the receiving patterns from our
data. The extensive sets of measured and simulated data
covering the complete interval of azimuthal angles we
present here can be interpreted by our powerful yet simple
model with only a handful of physically motivated param-
eters. The excellent agreement of the model with simulations
and experiments instills confidence in a wide range of
applicability for this model.

Analytical Model. To obtain insightful, easy to compre-
hend analytical expressions, we consider cylindrical wires
with a diameter much smaller than the wavelength and skin
depth. The exact diameter and cross-sectional geometry
enters only indirectly through the (complex valued) plasmon
propagation constant of the wire mode kp that is chosen to
accurately reflect the mode constant of the substrate sup-
ported wire.24 We treat the surrounding medium to be
vacuum (εmed ) ε0). Note that throughout this manuscript
we use absolute unit-bearing dielectric constants, not relative
values. The excitation of our wires, which will be described
as currents induced in the wires, depends on the direction
and polarization of the illuminating electromagnetic field.

Our illumination geometry is shown in Figure 1b. The
cylindrical wire with permittivity εant, radius a, and length l
) 2h is aligned parallel to the z-axis and placed in the center
of the coordinate system. Right at the wire surface the three
relevant E-fields (the incident E(inc), the scattered E(sca), and

the field inside of the wire E(inside)) fulfill the boundary
condition Ez

(inc) + Ez
(sca) ) Ez

(inside). As the end facets are small
compared to the cylinder’s side, we neglect them, anticipat-
ing that wire end effects will not be explained by the model
and require an ad hoc parameter.

Assuming a p-polarized plane wave with field strength
E0

(inc) and wave vector k impinging on the wire at an angle of
incidence θ, we find the field component that drives the
plasmonic response:

In the thin-wire limit, it depends only on z but not on the
equatorial coordinates.

The same holds for the induced current density inside the
plasmonic metal wire,25 which we approximate as homo-
geneous over the wire cross section: I(x) ) Iz(z)ez· At 800
nm excitation wavelength, for instance, in the fundamental
mode of a gold wire of a 20 nm diameter, the current density
varies less than 5% across the wire. The scattered field Ez

(sca)

associated with this current density, can be expressed by a
vector potential A(x).18,19 Together with harmonic time
dependence e-iωt (where ω is the angular frequency of the
time harmonic electrical field), in cylindrical coordinates and
Lorenz gauge, it reads

where R ) |x - x′|, V′ is the wire volume, and G(z - z′, r)
is the thin wire kernel.19

At this point, we adopt Pocklington’s ansatz26 for the
kernel evaluation at the wire surface, G(z - z′, r ) a) ≈ Z̃δ(z

FIGURE 1. (a) Contrasting RF and plasmonic antenna theory. RF antenna theory with only a surface current (left) and plasmonic antenna
theory with a volume current (right) that leads to a much shorter (plasmon) wavelength as it can be seen in the dispersion relation (center).
Transferring a fixed length antenna from the RF regime to the plasmonic regime leads to fundamentally different radiation patterns (bottom).
(b) Geometry of the illuminating field. The component parallel to the wire of the incidence E-field Ez

(inc) is responsible for exciting the
longitudinal resonances in the wire.

Ez
(inc)(z) ) E0

(inc) sin θ eik cos θz (1)
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- z′), where Z̃ takes the role of a characteristic impedance
of the wire. Crude as this approximation might seem at first,
it is fully justified by our observations, and it has the
tremendous appeal of being fully analytical. In stark contrast,
exact solutions of the integral (i.e., Hallén’s method of
iteration27) would require numerical efforts to solve it. We
obtain for the scattered E-field outside the wire18

While the previous steps closely followed RF antenna
theory for perfect conductors (|εant| f ∞), we deviate now
by allowing an electric field E(inside) inside of the wire. For the
current density inside of the wire we find

In the thin-wire limit, this current density is nearly homo-
geneous, as can be illustrated with the analytic case of
circular cross sections; the fundamental mode is rotationally
symmetric and Eφ ) 0. For the other E-field components,
we can find an approximation for small radii, |ka| , 1, from
analytical calculations of the fundamental plasmon mode (n
) 0) of an infinitely long cylinder.28-30 The radial compo-
nent is described by a first order Bessel function Er

(inside) ∝
J1(krr), where kr is the radial wavenumber. It can be neglected
in comparison to the longitudinal field component, described
by a zeroth order Bessel function Ez

(inside) ∝ J0(krr). For small
radii a, we may thus regard Ez

(inside) as constant and obtain
for the current density

The three equations of the tangential E-field components
1, 3, and 5 combine to an inhomogeneous differential
equation for the current density Iz(z) in which Ez

(inc)(z) plays
the intuitive role of an external driving term. We solve this
equation by the following ansatz

This ansatz assumes five different current waves traveling
along the wire: First, a current density I|eik|z induced by the
illuminating field with the same wave vector along the wire
(k| ) k cos θ); second, two counter-propagating plasmonic

current densities I+pe+ikpz and I-pe-ikpz, which are not included
in RF antenna theory but have to be expected as the
electronic part of plasmonic modes known to exist on
wires;28,29 last, for completeness’ sake and self-consistency
checking, we include the two standard terms of RF antenna
theory (e.g., refs 19 and 31) I+e+ikz and I-e-ikz, which
represent waves traveling along the wire with vacuum speed
of light. However, inserting this ansatz and comparing the
prefactors immediately forces one to set I+ ) I- ) 0. In
contrast to RF antenna theory, plasmonic antennas cannot
support currents with vacuum phase velocity. Somewhat
surprisingly the following is also directly obtained

In antenna theory, Z̃ is akin to the antenna impedance
and has to be calculated separately. Here it assumes a
natural role as characteristic mode impedance.

At this point, we have to consider the role of the wire end-
caps. As mentioned above, their influence is not amenable
to simple analytic description,32 but they are well under-
stood. To the free charges inside the wire, they are a hard
boundary at which the total current density has to vanish,
leading to:

The electromagnetic fields, however, are not required to
vanish at the physical wire ends. Indeed, their penetration
into the surrounding medium lets the wire mode pick up an
additional phase upon reflection, as if the wire length
increases by lreactance, so that we substitute hf (l + lreactance)/2
in our equations.33 This “apparent length increase” has
already been appreciated in RF antenna theory of microstrip
antennas,34 where it is often formulated as a reactance in
equivalent electronic circuits. For plasmonic nanoantennas,
it cannot be neglected even for thin wires.23,32 Finally, the
influence of all higher order transversal wire modes that do
couple to the exciting radiation is captured by an offset Eoffset,
which will, in general, vary with the illumination angle θ.
From the currents as calculated with these simple analytical
expression all quantities of interest can be derived.

Verification of the Model. The current excited in an
optical antenna can be probed indirectly, for example, with
microbolometers35 or two-photon-luminescence.2,36 Here,

Ez
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we use measured near-field images obtained by cross-
polarized aSNOM and simulated near-field images obtained
by FDTD to determine the response of individual antennas
(see Figure 2). The former has the advantage of imposing
very little perturbation on plasmonic eigenmodes and offers
direct maps of the normal E-field component near the
measured nanostructures.23,37 Above the center of the wire,
this component is equal to the radial component Er that
can be extracted for thin wires from our model as
Er

(outside)(a) ≈ -(aεant)/(2ωεmed Im(εant))/∂zIz (see Supporting In-
formation).

In Figure 3a-d the simulated amplitude and phase near-
field images of the first and third order resonant wires are
shown as obtained by the FDTD method. The first order images
show two lobes with a 180° phase difference and a node in
between them. This is also reflected in the line-cuts of Figure
3e,f, showing that the theory of a first order resonant wire can
model this behavior very well in both amplitude and phase by
matching the analytical expressions to the measured radial field
by adjusting the free parameters kp and E0

(inc) plus a phase offset
reflecting the phase of the excitation field. The model of the
third order resonant wire in Figure 3g,h nicely recovers the four
lobes with three nodes in between as well as the phase
difference between neighboring lobes.

Next we ask, whether our model is able to explain Fabry-
Pérot resonances of the nanowires.23 To this end, we extract

maximum amplitude plots from near-field images of many
wires of different lengths, which immediately reveal several
geometric resonances. Typical examples are shown for
experiment and simulation in Figure 4. A slightly oblique
illumination scheme is taken into account by suitable coor-
dinate transformation (see Supporting Information).

For a given wavelength, a cylindrical cross-section and a
homogeneous surrounding medium the parameters kp and
lreactance can be obtained from numerical solutions of the
pertinent transcendental equation28-30,32 or from approxi-
mated analytical expressions.38 For wires of arbitrary cross-
sectional shape on a surface, one needs numerical mode
solvers. In the present case, we treat kp, lreactance, Eoffset, and
E0

(inc) as free parameters and are able to fit all our data. The
red curves in Figure 4 show the remarkable agreement
between the model and experiment/simulation. Slight devia-
tions at lengths shorter than the dipole resonance (l < π/kp)
are due to the use of a simplified fitting procedure, which
considers incoherent sums of the partial currents to lighten
the numerical burden (see Supporting Information).

The simulation for the rotation angle of θ ) 0° (see Figure
4f) shows no significant peaks and the data points deviate
only little from the constant Eoffset. In the near-field image in
Figure 2f, we identify a clear signal contribution from higher
order transversal modes, but essentially no signal due to the
fundamental mode. We attribute the less than perfect sup-

FIGURE 2. Near-field images of plasmonic wire antennas illuminated by a 911 nm wavelength illumination laser beam from different directions.
(a-c) θ ) 60° and (d-f) θ ) 0°. The length of the 40 nm wide and 25 nm high gold wires on a SiO2 surface varies from 40 to 1630 nm across
the structure. (a,d) The noncontact AFM topography, (b,e) the simultaneously measured aSNOM near-field signal, and (c,f) the according
magnitude of the normal component of the E-field 24 nm above the structure obtained from FDTD simulations. Note: the signal in (b,c,e,f)
exactly above the wire is equal to the radial component Er.
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pression observed in the experimental results in Figures 2e
and 4c to experimental imperfections.

Our model successfully represents not only data for single
illumination angles very well, but allows a total fit to the
complete data sets consisting of 160 wires illuminated in
experiment and simulation from 7 and 19 different angles,
respectively. The resulting values of the three angle inde-
pendent parameters are listed in Table 1. While in simula-
tions the excitation amplitude E0

(inc) is also independent of
illumination angle, variations in laser power and other
experimental conditions necessitate the use of a different
E0

(inc) for each near-field image.
The agreement in plasmon wavelength λp between ex-

periment and simulation is excellent. To our surprise, the
plasmon damping is even smaller in experiment than in
simulation, even though we use thermally evaporated gold

and compare it to the permittivity obtained by Johnson and
Christy39 used in the simulation. One could speculate that
slightly thicker wires in the experiment are causing this
behavior. The influence of the shape of the wire termination
(slightly rounded electron-beam written ones in the experi-
ment and flat ends in FDTD simulation) might also have an
influence on the strength of the losses as well as on the
apparent length increase lreactance.

Applying the Model. As a first application of the model,
we use it to explain the systematic differences that we
observed between simulation and experiment. Figure 5a
compares the resonances for an illumination angle θ ) 15°.
While in the simulated data the third and the sixth order
resonance peaks are missing, a much stronger eighth order
resonance appears than for the experimental data. We
suspect the use of different illumination geometries (focused
vs plane wave illumination) causes these deviations.

By using our model with the illumination angle as an
additional fitting parameter, we extract its dependence on the
nominal angle (see Figure 5b). While the simulation follows the

FIGURE 3. Comparisons between simulated near-field images and the model’s radial E-field component for the first and third order wire
resonance. (a-d) The amplitude and phase of the z-component of the E-field 24 nm above the sample. The rectangles indicate the position
of the wires, and the lines indicate where the line cuts used in (e-h) have been taken.

FIGURE 4. Fitting the geometric Fabry-Pérot resonances of linear wire antennas illuminated by a 911 nm wavelength laser beam. The
squares show the maximum of the measured near-field amplitude above the wire for different illumination angles: (a) θ ) 90°, (b) θ )
45°, and (c) θ ) 0° while the red curve shows a fit of the Er-field of an approximate model. (d-f) show the same for the FDTD simulation
data. The squares indicate the maximum amplitude of the normal E-field component 24 nm above the wire.

TABLE 1. Comparison of Fitting Parameters

λp ) 2π/Re(kp) Im(kp) lreactance

experiment 337.5 nm 0.387 µm-1 22.20 nm
simulation 342.9 nm 0.498 µm-1 47.12 nm
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x) y line, the experiment deviates from it for small θ. Bearing
in mind that a Gaussian focus can be described in angular
spectrum representation40 as an integral over a nearly Gaussian
angular distribution of plane waves, the weaker coupling of the
small angle illuminations (see eq 1) leads to the resonance
curve being influenced more strongly at larger angles (see
Supporting Information). At θ ) 90°, the symmetry of the
illumination neutralizes this effect. Using the coherent sum of
different angle resonance curves weighted with a Gaussian
distribution and fitting the outcome with the plane wave model
confirms this trend. That is, the differences between focused-
beam excited experiment and plane-wave excited simulation
corroborate our model.

In a second application, we look at the emission pattern of
antennas. The model addresses the question of the angle

dependence of the excitability of a nanoantenna which is,
according to the Rayleigh-Carson reciprocity theorem,41 equal
to its emission pattern. This opens up a much larger scope for
our model than just interpreting near-field measurements. It
can for example be used to calculate the emission pattern of a
quantum dot or a molecule coupled to nanorods.42-44

In Figure 6a-c, we use our model to plot the reception/
emission patterns of resonant plasmonic antennas at the
second, third, and fifth order resonance. The antennas are
oriented vertically in these plots and we plot the field
strength E. The squares are the peak heights of the respective
resonance taken from the geometric resonance curves (see
Figure 4). In Figure 6d-f, we plot the equivalent RF antenna
emission patterns (see, e.g., refs 26 and 31).

FIGURE 5. Influence of the illumination geometry. (a) Comparing resonances for θ ) 15°, (b) retrieving the illumination direction by the
fitting algorithm.

FIGURE 6. Comparison between the emission patterns of plasmonic and RF antennas. (a-c) The emission patterns of the second, third, and
fifth order resonant plasmonic antennas. The dots are the heights of the resonant peaks in the geometric resonance curves of the simulation.
(d-f) The emission patterns of the according RF-antennas.
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The second order resonance shows the familiar quadru-
pole emission pattern. The difference between the RF and
the plasmonic regime are very subtle with the main differ-
ence lying in the direction of the main emission. While the
third order RF mode has six lobes, the side lobes of the
plasmonic antenna are so very weak that it resembles a
dipole. The RF emission pattern shows a trend of 2n lobes
for the nth order resonance with the lobes closest to the wire
axis being the strongest. The trend to more lobes with higher
order resonances is also apparent for plasmonic antennas.
Nevertheless, they clearly deviate from the 2n rule due to
the mismatch of k and kp along the length of the antenna.
The odd order modes emit strongest always into the direc-
tion perpendicular to the wire antenna. The even order
modes, in contrast, have here always a minimum due to
symmetry45 and the two lobes neighboring this minimum
are always the strongest. These drastic qualitative differ-
ences that we observe justify the usage of the term “plas-
monicantenna”todistinguishthemfromregularRFantennas.

Summary and Outlook. We presented an analytical
model to describe plasmonic antennas, which can be neither
described by the existing theories for perfect conductor
antennas nor by the ones for dielectric materials.46,47 In
contrast to the RF regime, at optical wavelengths antennas
cannot be described by a surface current only. We therefore
choose the other extreme and assume a constant volume
current to derive an analytic model. As long as the wire
antenna is thin compared to the free space wavelength, its
coupling to electromagnetic waves can be described by an
ansatz of one-dimensional line currents consisting of three
terms.

The approximations introduced to keep the model ana-
lytical are justified by excellent agreement with data ob-
tained from experimental near-field images and FDTD
simulations. The significant amount of high quality data
allowed us to verify essential aspects of the model: near-field
properties of the antennas, Fabry-Pérot resonances, and
reception and emission patterns. As the agreement is not
limited to the resonant wires, it allows also to calculate
emission patterns for off-resonant wires and even the transi-
tion from plasmonic to RF wire antennas (see Figure 1a).

Having obtained the currents induced by electromagnetic
fields, it is easy enough to expand the theory to cover the
whole scattering process by calculating the reemitted light
with the well-known formula for the vector potential.18 In
the far-field limit, we can reduce the equation to an analyti-
cally solvable line integral

In conjunction with this formula, it is possible to formulate
an analytic scattering theory of thin linear wire antennas that
is analogous to the Mie theory for spheres.

With the currents being complex valued, we can calculate
the directionality, amplitude, and phase of the scattered
light. This is crucial for the analytical description of more
complex structures. For instance, in curtain antennas and
antenna arrays consisting of equal length antennas the phase
difference of light emitted by different elements is deter-
mined by distance retardation only, but passive off-resonant
elements have retarding properties on their own. This plays
a major role in the antenna design, for example, for the
directors and reflectors in Yagi-Uda antennas.
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