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Abstract

This thesis studies apertureless Scanning Near Field Optical Microscopy, a technique

that uses the apex of a very sharp tip to obtain local optical information with lateral

resolution much beyond the diffraction limit. Both theoretical and experimental results

are discussed.

The theoretical work is a significant advance towards the quantitative convergence of

experiments and theoretical predictions, and should be useful in aiding the interpretation

of measured images. Extended tips and substrates are used, and the detector is also

carefully modeled. A static tip in vacuum serves to study the influence of the tip

and illumination geometry on the far fields and on the near fields in the proximity of

the tip apex, the volume used to probe the sample. Including a gold substrate and

the commonly used demodulation scheme allows to study the discrimination of the

components carrying the local information. A very good discrimination is verified for

silicon tips and small oscillation amplitudes, as far as the tip interacts closely with

the substrate and the oscillation remains highly sinusoidal. The imaging process is

studied by including patterned substrates. The obtained signal is mostly sensitive to a

few nanometers of depth into the sample, and the influence of the scanning conditions

on the level of signal, background suppression and lateral resolution is characterized.

Further, a closer look into the behavior of the extended physical detector reveals the

influence of the spatial inhomogeneities of the scattered fields and, for interferometric

measurements, the large significance of the optical phase.

Experimentally, different techniques are first described that can facilitate images

with clear local information. A cross polarization scheme is introduced which is very

useful for non-perturbative measurements. It is applied to the mapping of the the field

distribution surrounding plasmonic structures, for both the phase and the amplitude.

Beyond dipolar resonances, I also study coupled dipoles and quadrupole field distri-

butions. When imaging artifacts are avoided, the obtained images closely resemble

theoretical expectations.

Keywords: Apertureless; SNOM; Realistic simulations; modeling; MMP; Imaging;

Plasmonics; Nano-Optics; Non-perturbative; Demodulation; Quantitative; Nearfield;

Farfield; Experiments; Higher harmonics; Optical Phase; Extended detector; Extended
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tips; Strong interaction; Scanning Probe Microscopy.



Résumé

Cette thèse étudie le Microscope Optique en Champ Proche à sonde sans ouverture, une

technique qui a recours à l’apex d’une pointe très fine afin d’obtenir une information op-

tique locale avec une résolution latérale largement meilleure que la limite de diffraction.

J’examinerai tant les résultats théoriques qu’expérimentaux.

L’étude théorique est une avancée importante vers la convergence quantitative des

expériences et des prédictions théoriques et devrait faciliter l’interprétation des im-

ages mesurées. J’utilise des substrats et pointes étendues spatialement et le détecteur

est également modélisé soigneusement. Une pointe statique sous vide sert à étudier

l’influence de la géométrie de la pointe et de l’illumination sur les champs lointains

et sur les champs proches à proximité de l’apex de la pointe, ce qui constitue le vol-

ume utilisé pour sonder l’échantillon. L’inclusion d’un substrat d’or et le schéma de

démodulation utilisé habituellement permettent d’étudier la séparation des composants

qui contiennent l’information locale. Une très bonne séparation est vérifiée pour les

pointes de silicium et les petites amplitudes d’oscillation, pour autant que la pointe in-

teragisse étroitement avec le substrat et que l’oscillation demeure hautement sinusöıdale.

Le processus de formation de l’image est étudié en incluant des substrats pré-structurés.

Le signal obtenu est sensible principalement à quelques nanomètres de profondeur à

l’intérieur de l’échantillon et j’étudie l’influence des conditions de balayage sur le niveau

du signal, sur la suppression du signal de fond et sur la résolution latérale. Un examen

plus approfondi du comportement du détecteur physique étendu spatialement révèle

l’influence des inhomogénéités spatiales des champs diffusés et, concernant les mesures

interférométriques, la grande importance de la phase optique.

Sur le plan expérimental, je décris premièrement différentes techniques qui peuvent

aider à obtenir des images avec une information locale claire. Un schéma faisant appel

à deux polarisations perpendiculaires est inclus, ce qui s’avère très utile dans le cas

de mesures non perturbatrices. Il s’applique à la mesure de la distribution du champ

qui entoure les structures plasmoniques, tant pour la phase que pour l’amplitude. Au-

delà des résonances dipolaires, j’analyse les champs de distribution dipolaires couplés et

quadripolaires. Lorsque je parviens à éviter les artéfacts d’imagerie, les images obtenues

se rapprochent nettement des attentes théoriques.

Mots-clés Sonde sans ouverture; SNOM; Simulation réaliste; Modélisation; MMP;
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Chapter 1

Introduction

Conventional optical microscopy has been extensively used to gain ample information

about material properties. However, it cannot resolve features much smaller than the

wavelength used, and the search for new techniques to circumvent this limitation con-

tinues today [1–7].

An important family of solutions utilizes the higher confinement of electromagnetic

density possible in the near field. First proposed in the twenties [8], half a century was

necessary for the required technological advances [9]. In particular, the first solution

valid at optical frequencies, Scanning Near Field Optical Microscopy (SNOM), uses

tapered optical fibers [10–12] and allows to obtain a lateral resolution on the order of

λ/10, but additional improvements have proved challenging.

This thesis focuses both experimentally and theoretically on a technique developed

to go beyond this limit, apertureless SNOM (aSNOM) [13–21]. It utilizes a dielectric

or metallic tip to concentrate the light near the apex. Lateral, evanescent and strongly

focused illumination perpendicular to the sample have all been used. It allows to obtain

resolution around 10 nm, largely independent of wavelength. It is a very general tech-

nique, for wavelengths ranging from the visible to the microwave [22–31]. Beyond elastic

scattering, extinction [32], Raman scattering [33, 34], two photon processes [35, 36] and

fluorescence can all be measured [37–41]. Ferroelectric [42–44] and magnetic informa-

tion [45, 46] can also be gained. A particle is sometimes attached to the apex for a
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2 CHAPTER 1. INTRODUCTION

better control of the apex shape [47]. Designs that combine aperture and apertureless

characteristics also exist [48, 49]. I will consider in this thesis aSNOM for visible or

near infrared illumination, lateral illumination and detection of the elastically scattered

fields.

1.1 aSNOM working principles

Broadly speaking, aSNOM utilizes a tip to locally probe a sample which is illuminated

by an external laser. The resolution is essentially determined by the size of the tip apex,

which can be very small for sharp Atomic Force Microscope (AFM) tips. It is a scanning

technique, meaning that the information about a sample is obtained pixel by pixel. A

more detailed description is given below.

1.1.1 Passive and active measurements

To understand the origin of the signal obtained with aSNOM , I distinguish between

two limiting modes, both treated in this thesis. In passive mode, near fields which are

already present in the substrate [50–52] are to be measured. The tip should not perturb

them, serving only as a scattering center to convert the near fields into propagating

radiation that can be read at the far field. If the volume effectively probed by the tip

apex is small, the lateral resolution achievable is high.

For an active mode measurement, tip and substrate strongly interact via the near

fields forming a coupled system . The result is not only strong electromagnetic density in

the gap [53], but also scattered radiation that can be collected by external optics [54,55].

The interaction typically increases considerably for reduced distances between the tip

apex and the structure to be measured, and high spatial resolution is possible.
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1.1.2 Near Field discrimination

As mentioned, aSNOM was developed to resolve sample features much smaller than

the wavelength, but to discriminate this information is often challenging. To facilitate

the discussion, terms such as “near field signal” or “near field information” will be used

in this thesis to refer to the fraction of the detected signal which is strongly affected by

the volume of the studied system in the immediate proximity of the tip apex, making

high lateral resolution possible. “Background fields” will refer to all other contributions,

which often dominate the scattered signal.

By the given definition, the near field signal will be strongly affected by the tip posi-

tion, which can be exploited to discriminate it even in the presence of strong background

fields. One possible scheme, which also helps to avoid topographical artifacts [20,56–59],

uses an oscillating tip and higher harmonic demodulation [58, 60–63]. In a simplified

picture valid for small oscillation amplitude and more critically examined in Ch. 5,

demodulating the signal at the n − th harmonic of the tip oscillation frequency is pro-

portional to the n− th derivative of the detected signal with respect to the direction of

the tip vibration. If the amplitude is small enough to describe the background fields as

linear over the trajectory of the tip, they are perfectly suppressed at the higher harmon-

ics. As the near field signal is strongly dependent on position, their higher derivative

contributions can be significant, and the desired information is correctly discriminated.

Unfortunately, the level of signal obtained is also strongly dependent on the oscillation

amplitude, and too small values result in a signal too low to be detected in practice. For

large values, the influence of the demodulation is more complicated and, in particular,

the evolution of the background cannot be described as linear and is not as efficiently

suppressed [41,62,64]. The amplitude should thus be chosen with care, as illustrated in

Chs. 3,4.

During this thesis, an interferometric detection scheme is typically considered. It

combines the signal scattered by the tip-substrate system with an external laser to

obtain phase information and to enhance the signal read at the lock-in amplifier. The



4 CHAPTER 1. INTRODUCTION

contribution from the interferometric term of the combined signal, for the n-th harmonic,

is equivalent to calculating

Hn ∝
1

T

T∫

0

I∗(d(ts)(t))einwtdt (1.1)

which is in general complex-valued because it contains information about the amplitude

and the phase of the signal detected. I will refer in this thesis to the amplitude of Hn

unless otherwise mentioned. w refers to the angular frequency of oscillation of the tip

and T to the period associated with it, or a value tending to infinity. d(ts) parameterizes

the position of the tip, and for a sinusoidal oscillation perpendicular to the sample takes

the form d(ts) = dmin + A[1 + cos(wt)], where A is the oscillation amplitude and dmin

is the position of the tip when closer to the substrate. I∗ corresponds to the signal

generated by the detector at a certain position of the tip, described by d(ts), and can

be written as I∗ =
∫

Adet

|E(r)| exp(−i arg [E (r)]) dr. It represents an integral of the

field distribution, written as a function of the position r, over the area of the detector.

In principle, the vectorial character of the fields should be considered, but due to the

symmetry to be described in Sec. 1.2, only the component contained in the plane of

incidence of the detector does not integrate to zero and I can consider the fields to

be described as scalar. A more detailed discussion of the detection scheme, including

the conditions under which the expression given for I∗ applies and the consequences of

demodulating at the n − th harmonic for interferometric detection, is given in Ch. 5.

1.1.3 Silicon as tip material

Several tip materials are possible for aSNOM . In this thesis, silicon tips are used both

for passive and active measurements. In the former case, the silicon tips are used without

removing the oxide layer, and are a promising alternative to the carbon nanotube tips

used in [50], as demonstrated in Ch. 6.

For the active configuration, metallic tips are discussed in most of the recent litera-

ture, due fundamentally to the large signal attainable when their plasmonic resonances
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are excited [13, 65]. However, together with this significant advantage, there are also

some drawbacks. Beyond the difficulty of optimizing the resonance [66] for tips shapes

which are often not well controlled, plasmonic resonances are sensitive to small changes

(for example in the substrate during the scanning). If the whole spectrum is not mea-

sured [47], the interpretation of images can be difficult [67]. Further, the coating steps

involved in the fabrication of typical metallic AFM tips make obtaining a sharp apex,

and thus ultimate resolution, challenging. Other approaches, such as electrochemical

etching, are also demanding [68].

To excite plasmonic resonances, however, is not essential, and phenomena such as

the lightning rod effect or material contrast can also be exploited to facilitate near field

discrimination. These effects are expected to be less sensitive to the exact experimental

conditions, and are also present for other materials. In particular, silicon tips [32,37,69–

71] make use of a very mature technology offering commercial products with apex radii

< 10nm, and are thus promising for ultimate lateral resolution [72]. Silicon tips could

also diminish the quenching influence in fluorescence imaging [73]. I demonstrate both

experimentally and theoretically how clear images can be obtained with silicon tips. In

the active configuration, I first remove the native oxide to reveal the bare silicon.

1.2 Theoretical work

Copious theoretical work has allowed to better understand aSNOM . The phenomena

of interest include the influence of the shape of the tips [74,75], the interaction between

tip and substrate [76, 77], the influence of higher harmonic demodulation [64] and the

contrast and resolution expected over patterned samples [55, 78, 79]. The focus is often

set in one or a few of them, and the others are simplified or not considered. To include all

of them simultaneously, without recurring to 2-dimensional models or simplified forms

of the Maxwell equations, is computationally demanding

My objective in the theoretical part of this thesis is to arrive at a model approaching

typical aSNOM experimental conditions and solved by the full 3 dimensional Maxwell
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Figure 1.1: Illustration of the geometry used. The scattered radiation is collected by a lens
and detected at the photodetector. The reference beam is used when interferometric detection
is simulated.

equations. An incremental approach is taken, to gradually study the influence of dif-

ferent phenomena. I start in Ch. 2 by considering realistic tips and illuminations, and

include in Ch. 3 a gold substrate to study the (strong) interaction between the tip and

the substrate and the effect of demodulation at higher harmonics. In Ch. 4, a pat-

terned substrate is introduced and the imaging process is analyzed. Care is taken in the

model of the detector, and Ch. 5 takes a closer look at its behavior to reveal interesting

aSNOM phenomena. Thus, the final model allows to study imaging at higher harmonic

in the presence of strong tip-substrate interaction, for tips, samples and detectors that

approach reality.

1.2.1 The geometry of interest

I describe here briefly the characteristics of the tip, illumination and substrate that will

be regularly used later on the thesis. An example of the geometry used is shown in

Fig. 1.1. For the interferometric detection, a reference beam described as a planar wave

will be mixed with the field scattered by the tip and substrate. The values cited here

are typical, and changes will be mentioned in the adequate places throughout the thesis.
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Silicon tips (ǫSi = 17.76 + 0.508i [80]) embedded in vacuum are considered, shaped

as C1-continuous cones capped by two hemispheres. The radius of the smaller is 10nm

and the half angle of the cone is 10◦. Tip lengths of 500, 1400 and 3000nm will be

predominantly encountered. When a substrate is present, it is homogenous gold (ǫAu =

−3.95+2.58i [81]) or a gold sphere of 10nm radius included in a glass substrate (ǫglass =

2.1). The precise details will be given in Chs. 3,4.

As illumination, I consider planar waves or fifth order corrected [82–84] gaussian

beams with 500nm waist radius, the latter focused at the tip apex or, when a substrate

is present, at the surface of the substrate just below the apex (x = y = z = 0).

λ ∼ 514.5nm, linear polarization on the plane of incidence (plane xz) and Θ = 70◦

angle between the propagation vector and the tip axis are used. The intensity of the

excitation is such that the maximum value of its complex-valued electric field module is

unity.

The far field signal of interest is either the intensity or the signal generated interfer-

ometrically by the detector. The signal is typically collected by a lens situated in the

far field and of NA ∼ 0.342, representative of experimental conditions, and is assumed

to remain unchanged by the propagation to the detector, which is flat and oriented

perpendicularly to the propagation direction. The lens is spherically symmetric with

respect to the point labeled O in Fig. 1.1, and assumed to be perfect, i.e. a spherical

wave with origin at x = y = z = 0 results in a beam of constant phase over the area of

the detector, without any loss of intensity. Notice that this implies compensating the

phase, which avoids its very fast dependence on position if the lens is not considered.

The perfect symmetry of the model with respect to y = 0 justifies ignoring the out

of plane electric field component (parallel to the y axis) for the interferometrically de-

tected signal, as for this component the given expression (Sec. 1.1.2) integrates to zero1.

Beyond the scattered fields, the near field enhancement is also of interest, defined as

the maximum of the module of the complex-valued electric field in the proximity of the

1This is not the case for the Poynting vector, and both in plane and out of plane components are
considered in this case
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apex. Excepting the beginning of Ch. 3, I ignore for both near and far field the constant

contribution obtained if the large sphere used as substrate is considered in isolation, as

it depends on the exact characteristics of the sample. I do include the contribution from

the gold inclusion as part of the detected signal.

1.2.2 The mathematical tool

Solving the Maxwell equations for the complicated geometries typical of aSNOM stud-

ies can be computationally demanding. Numerous techniques have been utilized [85],

including perturbative techniques [86,87], Green functions [79,87,88] Finite Differences

Time Domain [89,90] , Finite Elements [91,92], the reciprocity theorem [64] and multiple

multipoles [70, 93].

I have used in my thesis a multiple multipole technique (MMP), in particular as

implemented by the numerical platform MAX-1 [94, 95]. Near and far field can be

simultaneously obtained and it is well adapted to geometries with features both much

smaller (tip apex radius, tip-substrate distance) and much larger (tip and substrate

size) than the wavelength. It utilizes a set of bulk solutions (expansions) of the three

dimensional monochromatic Maxwell equations to describe the fields in each domain of

homogenous dielectric constant. Each expansion is parameterized by a certain number

of free coefficients, determined by which orders and degrees are included. The values

of these coefficients are optimized to minimize the error on the boundary conditions at

the discretized interfaces. Neither the position nor the degree/order of the expansions

is automatically selected by the numerical platform, and care must be taken to avoid

numerical interdependencies and minimize the computational requirements.

To gain confidence on the obtained results, I only accept those simulations that

simultaneously verify two criteria. First, the average relative error in the matching points

used for the minimization must be below 0.5 %, and comparable at other positions.

Second, when the number of free coefficients describing the expansions is increased

(typically a 50% or a 25%) only minor corrections are observed on the obtained results.



1.3. EXPERIMENTAL WORK 9

In particular, the intensity of the collected far field integrated over the detector area

varies less than 1%. An example of the convergence achieved for a complex geometry

is shown in Ch. 4, where the challenges involved in converging the results after high

harmonic demodulation are also discussed.

1.3 Experimental work

The experimental set-up used for my measurements is described in Ch. 6. I also discuss in

some detail different alignment techniques developed to facilitate obtaining an adequate

near field signature. As the results are very sensitive to the exact alignment conditions,

I typically do not compare the absolute values between different images but how the

patterns vary; the color scales are chosen to improve the appearance of each individual

image.

The obtained results can be divided into two categories. The first directly relate the

measurements with the theory presented in this thesis, and appear mostly in Ch. 5, with

some in Chs. 6,3. Indeed, theoretical and experimental work was frequently intertwined:

experimental observations can often be better understood with simulations or simple

analytical modeling, which can guide following experiments.

The second set of results are shown in Ch. 7. Here, the measurements do not

pursue a better understanding of aSNOM by itself but information about a specific

sample system of interest. In particular, I analyze the near field distribution near

plasmonic structures that are interesting for the design of metamaterials and nanosensors

for biological applications.
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Chapter 2

Simulations of isolated tips

In this chapter I discuss the behavior of a tip situated in vacuum, i.e., without any

substrate. A large number of experimental parameters are varied systematically to

learn about their influence on both near field enhancements and scattered far field.

The tip shape has already been shown to be of considerable influence [74,75,96,97].

Many studies have focused on maximizing the achievable near field enhancement by

utilizing plasmonic resonances in a metal. For the reasons already discussed in the

introduction, I focus on silicon tips.

Of special interest in this thesis are tips long enough to resemble those used in

experiments. I study the evolution from small spherical tips to elongated tips several

wavelengths long, enough to closely approach experimental conditions. For long tips, I

change afterwards other parameters of relevance. The influence of the tip apex radius

is studied, from a relatively blunt tip to a very sharp apex of 2 nm radius. Further,

the characteristics of the illumination beam are systematically changed, which adds

possibilities to increase the near field enhancement and gives interesting insight into the

relation of the local fields and scattered far field. Also, not only the maximum value of

the fields, but also their spatial distribution are discussed and described with a simple

equation. I find that the field distribution scales with apex radius and is very robust

with respect to changes in experimental conditions, which should help to obtain stable

measurements.

11
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(a) (b)

0 3

200 nm

0 3

200 nm

Figure 2.1: Geometry of the model tips considered and example of field patterns obtained. (a)
Conical Si tips of length L and apex radius R are illuminated in vacuum by a Gaussian beam
at an angle θ with respect to the tip axis. The scattered far field is recorded in backscattering
direction. (b) Module of the average electric field for a typical simulation tip, exhibited in
linear scale. A standing wave pattern inside can be distinguished, but the fields are weak for
the upper part of the tip.

The geometry used for this chapter is shown in Fig. 2.1(a). I introduce a coordinate

system useful for the discussion. Unless stated differently in the text, 1400nm long tips

as described in Sec. 1.2 are used. The scattered fields are assumed to be collected in

the backscattered direction at a distance of 1 m, clearly at the far field. At this stage,

the collected radiation is reduced to the integral of the Poynting vector over a a circular

lens of NA ∼ 0.342. Fig. 2.1(b) illustrate the field distribution for a given tip. Due

to propagation, the fields are nonnegligible even in the very weakly illuminated top

cap [98].
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Figure 2.2: Near field enhancement and scattered far field when the length of the tip is
modified, for Gaussian beam (a), and planar wave (b) illumination.

2.1 Results

2.1.1 Tip shape

Fig. 2.2 illustrates how the tip length L influences the near field enhancement and scat-

tered far field. Considering (a) gaussian and (b) planar wave illumination is almost

equivalent for tips much shorter than the wavelength. For micrometer long tips, the de-

pendence with tip length is much stronger for plane wave illumination. This is specially

relevant for the scattered fields, attributed to the influence of a strongly illuminated top

cap. To avoid this undesired effect, gaussian beams of 500nm waist radius focused at

the apex (Sec. 1.2) are used in the rest of this chapter when not mentioned otherwise.

As the tip is increased up to L ≈ 200nm constructive contributions to the near field

enhancement result in an almost linear increase of the near field enhancement. The

scattered far field intensity scales approximately with the volume V in a power law with

exponent 2.55. I trace the difference with the V 2 expectation from Rayleigh scattering

theory to the the transition from a spherical tip (L = 20nm) to an elongated conical

shape (L = 200nm). If the tip is scaled uniformly the familiar V 2 law is regained.

For L & 200nm resonances appear. The position of the first maximum, at a length

slightly bigger than λvac/2, reminds of classical antenna theories [99], a behavior al-

ready observed for the 2-dimensional case [100]. Resonances are observed not only on
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Figure 2.3: (a) Evolution of the near field enhancement and scattered far field with tip length
for tip dielectric constant equal to 8 and gaussian beam illumination. (b) Fourier transform
as a function of the wavector k of the traces in (a) for tips between 1µm and 1.8µm after
subtracting the average value in this range. For clarity, the scattered far field trace is shifted
vertically. (c) is a typical plot of the fields in linear scale for one of the considered tips.

the length scale of λvac/2 but also of λmatter/2, the wavelength inside the tip material

(silicon), attributed to the presence of standing waves (Fig. 2.1(b)). As the tip gets

larger, the resonances loose in significance and the λmatter/2 seem to become more im-

portant: the Fourier transform of the near field enhancement and scattered far fields for
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Figure 2.4: Evolution of the near and far field for apex radius varying between 2 and 60nm.

tips between 1µm and 1.8µm shows a high spectral density close to 2π/(λmatter/2). It

is in particular clear for briefly considered absorption-free tips, with dielectric constant

equal to 8 (Fig. 2.3). Without energy loss in the material, standing waves gain in im-

portance, and a strong oscillation in the length scale of λmatter/2 is observed even for

long tips.

Referring again to the usual silicon tips, for tip lengths larger than approximately

three times the wavelength and the illumination beam waist radius (∼ 1500nm), waves

are efficiently damped and the semispherical top cap is not efficiently illuminated. The

variation from the average value becomes quite small. Between 2.8 µm and 3µm, it is

less than ±4 percent.

The influence of the apex radius R is studied next. Fig. 2.4 shows the evolution of the

near field enhancement and the scattered far field intensity for R between 2 and 60nm,

i.e., from extremely sharp to relatively blunt tips. L ∼ 3µm is used to minimize the

influence of length-related resonances. Two values of near field enhancement are given

here, the maximum of the complex-valued field module near the apex and the value

just below the tip. They are almost identical for sharp tips, but differ for the larger

radii because the position of the maximum shifts. The diverging expression 13.2 −

2.83 ln(R/nm) corresponds to an empirical fit and describes almost perfectly the near

field enhancement for radii R between 2 and 30 nm. Although the scattered far field

also increases for smaller radii, it saturates.
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Figure 2.5: Near field enhancement and scattered far field intensity for different radii of the
Gaussian excitation beam, asymptotically approaching those of a planar wave excitation for
increasing beam waist radius. (a) for the usual value of θ = 70◦ and (b) for θ = 20◦

2.1.2 Illumination parameters

For gaussian beams, waist radius, angle of incidence and the relative location of tip apex

and focus center will all influence the tip response to the illumination, an influence that

is studied here. Broadly speaking, due to collective retardation effects, these parameters

affect not only how strongly each part of the whole tip is excited, but also if the different

partial volumes contribute constructively or destructively to the signal.

Fig. 2.5 shows the effect of variable beam waist radius for constant field amplitude

at the focus –and thus varying beam intensity. θ = 70◦(a) and θ = 20◦(b) are consid-

ered. The evolution of the near field enhancement and the scattered far fields is even

qualitatively different. A monotonous increase with waist radius is observed in the sec-

ond case, due to predominantly constructive contributions. For θ = 70◦, destructive

interference [101] results in a local maxima for tight illumination. Contributions from

the hemispherical region at the top of the tip gain importance for less confined focus,

and probably explains why at ∼ 700nm the scattered far field intensity stop decreasing

and start increasing with waist radius (Fig. 2.5(a)). In the limit of infinite beam waist

radius the traces converge to the planar wave illumination case.

The influence of θ on the results is systematically shown in Fig. 2.6, for a 3µm

long tip. As expected, the near field enhancement is minimal for the electrical field
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Figure 2.6: Near field enhancement and scattered far fields as a function of the angle θ
between the beam propagation direction and the axis of a 3µm tip. An optimal near field
enhancement around θ ∼ 40◦ is found.

perpendicular to the axis of the tip [90, 93, 102, 103](θ = 0◦ and 180◦). The maximum

is, however, not observed for the electrical field vector parallel to the axis of the tip

(θ = 90◦) but at a different angle [104], here θ ∼ 40◦. The scattered far field intensity

presents four maxima. Two of the maxima, at θ = 0◦ and 180◦, can be explained by

the strong scattering from the top semispherical cap. The third maximum, at ∼ 100◦

degrees, corresponds to illumination perpendicular to the side surface of the cone. The

fourth maximum is at the approximate position of the near field enhancement maximum,

∼ 40◦, and is likely the most relevant for aSNOM .

Last, I consider illumination focused not exactly at the tip apex. The near field

enhancement and far-field intensity for a displacement of the focus along the z direction

is presented in Fig. 2.7(a). As long as the top cap is not strongly illuminated both values

scale quite closely with the local field modulus of the excitation at the apex of the tip

– with the square in the case of the scattered far field intensity. Similar conclusions are

obtained when the illumination beam is displaced along the x and y direction, as seen

in Fig. 2.7(b,c). This suggests a method to characterize beams [105–107], which I found

useful in experiments and will be discussed in Ch. 6.
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(a) (b)

(c)

Figure 2.7: (a) Near field enhancement and scattered far field intensity for displacements of
the focus along the z axis. Zero displacement corresponds to the location of the apex of the
tip. Displacements towards positive values correspond to illumination of the upper part of the
tip. The additional maxima at ∼ 1.25µm are attributed to the direct illumination of the top
cap. For comparison, I plot in a dotted line the appropriately scaled modulus of the excitation
field at the apex of the tip (for the near field enhancement) and its square (for the scattered
far field intensity) for the corresponding displacement of the focus. (b) and (c) are equivalent
to (a) but for displacements along x and y axis

2.1.3 Field distribution near the tip apex

Beyond the scattered far field intensity and the maximum of the near field modulus, the

local distribution of the near field is also of interest [101,108–110]. Fig. 2.8(a) presents

the strength of |E| for different radii, along the x axis, for z = −R/2. It shows that the

normalized fields scale spatially quite accurately with the radius. Just below the apex

the fields are predominantly vertically oriented –along the z axis–, as can be appreciated

in Fig. 2.8(b).

In this subsection, I will study further how the module of the complex-valued field

|E| evolves near the apex of the tip. I find that its evolution changes only slightly for a
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Figure 2.8: (a) Near field modulus (normalized to the maximum) along a horizontal cut at

R/2 below the apex for different radii. (b) Instantaneous distribution of ~E for R = 10nm and
y = 0

wide range of simulated conditions, and the entire range can be described with a single

equation. I have already described in [111] the case of a cut along x. A good fit was

obtained using a Lorentzian equation

|E| ∝ E0 +
1

Z2
0 + x2

(2.1)

where E0 and Z0 are fitting parameters. The coordinates, here and in the following,

refer to Fig. 2.1(a). In this section, a more general equation will be used, valid for the

volume just below the tip apex. This equation takes the form

|E| = K



a +
1

(
ρ2+(|z|−αR)2

R2

)β/2



 (2.2)

where ρ =
√

x2 + y2 and a, β, K and α are the fitting parameters. K represents

a proportionally constant and Ka an uniform offset. R correspond to the tip apex,

as before. For β = 2 and fixed y and z, Eq. (2.1) is recovered. Two things can be
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immediately seen from Eq. (2.2): there is usually a very good rotational symmetry, and

the fields scale approximately with R (Fig. 2.8(a)).

A main result is this subsection is that the spatial evolution of the near fields near the

apex is little sensitive to the exact experimental conditions. To stress this conclusion,

I set α = 0.9 and β = 2.07 and fit only the offset parameter a and the proportionality

factor. I will show that a very good fit with the simulated near field distribution is

obtained for a large range of tip and illumination geometries. Allowing β and α to vary

does not seem to significantly increase the applicability range of Eq. (2.2).

The simulated field distribution will be thus compared with

|E| = K



a +
1

(
ρ2+(|z|−0.9R)2

R2

)1.035



 (2.3)

For aSNOM measurements, it is very important that the fields are strongly confined

around the tip apex, as this confinement is important to explain the good lateral res-

olution achievable [70, 112]. It can already be appreciated from Eq. (2.3), but for a

more quantitative discussion I use the full width half maximum value (FWHM) of the

simulated values, calculated after subtracting the offset Ka for a line crossing x = y = 0

and situated in a plane perpendicular to the z axis. In principle, the FWHM depends

on which direction inside this plane is considered , but this effect is minor for the val-

ues that will be given here, due to good rotational symmetry. For a near field spatial

distribution following exactly Eq. (2.3) and z = 0, FWHM = 1.758R, much smaller

than the wavelength, which illustrates why a sharp tip can be used as “nanolamp” in

aSNOM .

The distribution of the fields around the apex of a typical tip is shown in Fig. 2.9.

Fig. 2.9(a,b) shows the simulated |E| and the fit of the values given by Eq. (2.3). The

fit is indeed very good. The FWHM increases for bigger values of |z|, and for example

for z = −4nm, FWHM ∼ 2.5R is obtained (to compare with FWHM ∼ 1.7R for

z = 0), suggesting small tip-substrate distance being favorable for improved resolution.
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(a) (b)

(c) (d)

Figure 2.9: Evolution of the fields around the apex of a tip, for the typical tip geometry
(R = 10nm). The different traces given are for z = 0,−1,−2,−4,−7,−10nm, the upper
curves in each graph corresponding to the smaller values of z (a)|E| for x = 0, (b)|E| for
y = 0, (c) arctan(

√
(|Ex|2 + |Ey|2)/|Ez|) for x = 0 and (d) for y = 0. Discontinued lines in

(a) and (b) correspond to fitted values

Fig. 2.9(c,d) show arctan(
√

(|Ex|2 + |Ey|2)/|Ez|) for different values of z and for the

planes x = 0 and y = 0, respectively. It is seen that the field is oriented predominantly

along the the z axis in the proximity of the apex [24, 113]. In the following I will

concentrate on |E|.

Fig. 2.10 illustrates the obtained field distribution for different geometries. The fit

is usually worse when the rotational symmetry is lost, which in one-dimensional cuts

is appreciated in a lack of symmetry with respect to the z axis for y = 0, but not for

x = 0. I focus on geometries in which the fit with Eq. (2.3) has slightly deteriorated but

is still good. As the only parameters fitted are the offset and a proportionality constant,

all curves presenting a good fit are similar between themselves and scale well with the

apex radius. I discuss next the large range of tip and illumination geometries following
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Figure 2.10: Shape of the fields around the apex for different characteristics of the tip and
illumination beam. Parameters not mentioned below correspond to the description in Sec. 1.2
(tip length 1400nm, R = 10nm, θ = 70, Silicon tip, λ = 514nm, 10 degrees cone half angle,
gaussian beam of 500nm waist radius focused at the apex). Continued lines correspond to
the simulated near fields, and dashed lines to the obtained fit. The different curves given are
z = 0,−1,−2,−4,−7,−10 ∗ R/10nm, the bigger values of |E| corresponding to the smaller
values of |z|. (a) 200nm long tip, (b) tip with 2nm apex radius, (c) cone with 30 degrees
half angle, (d) planar illumination, (e) illumination with θ = 130 degrees (f) focus of the
beam situated at x = 1800nm, (g) λ = 600nm and (h) silver tip with 5nm apex radius. (b,e)
correspond to 3µm long tips.

Eq. (2.3) quite accurately, by individually changing different parameters.

• The influence of the tip length is studied first. Sufficiently long tips present a good

fit with Eq. (2.3), as illustrated in Fig. 2.10(a) for the 200nm long tip. For a 50nm

long tip the fit is worse, and for a sphere the rotational symmetry is considerably

lost and the field distribution is not correctly described by Eq. (2.3). Short tips

also results in smaller FWHM .

• A good fit is also obtained for sharp tips, independently of the exact tip radius,
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which illustrate how the field around the apex scale almost perfectly with R. The

case R = 2nm is shown in Fig. 2.10(b). For R = 50nm a worse fit and rotational

symmetry was observed.

• For semi-angle of aperture between 5◦ and 30◦ a good fit is observed. The largest

deviation is found for 30◦(Fig. 2.10(c)).

• The results are almost unaffected by the waist radius of the beam. The planar

wave illumination case is shown in Fig. 2.10(d).

• The fit remains good for illumination angles θ between 15◦ and 110◦. It is

worse outside of this range, being very bad for the limiting cases of 0◦ and 180◦.

Fig. 2.10(e) shows the obtained fit for 130◦.

• A good fit is obtained when the beam focus is situated close, but not exactly, at

the apex of the tip. As the focus is moved further from the apex, the behavior

of the fields depend on the direction of the displacement. The obtained fit for

x = 1800 is shown in Fig. 2.10(f), where only a slight asymmetry is observed. The

fit is much worse, for example, for z = 800nm. Notice that in the latter case the

top hemisphere is more strongly illuminated than the tip apex, which may explain

the observed behavior.

• Changing the wavelength between 400 and 600 nm, and accordingly changing

the dielectric constant, does not significantly affect the near field distribution.

Fig. 2.10(g) represent the obtained fit for wavelength 600nm.

• To study the effect of a more dramatic change of the dielectric constant, silver

tips are also considered (ǫAg = −9.448 + 0.209i) [114]. For a geometry otherwise

identical to the typical in in this chapter, the fit is worse than for silicon as tip

material. If, however, the tip length is reduced to 500nm or the apex radius to

5nm, Eq. (2.3) apply again. Fig. 2.10(h) shows the fit for the 5 nanometer apex

radius.
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2.2 Discussion

Values of scattered far field intensity and near field enhancement have been calculated for

a tip in vacuum and different geometries of interest. The scattered far field is the physical

magnitude directly measured in experiments and often facilitates the understanding of

the physical processes involved. However, before the substrate and the demodulation

are introduced, it is often difficult to establish the contribution from the tip apex –of

special interest because it interacts most closely with the sample– to the total scattered

field. Thus, to gain further information about the apex volume the near fields around

it are also analyzed.

Typical values of near field enhancement obtained here are in the 5-10 range. This

is in the low spectrum of field enhancements reported in related studies, which range

from values less than 10 up to many tens [91, 93, 100, 115]. The variation derives from

different illumination and tip characteristics. Notice that I have considered a dielectric

tip, which does not exhibit the plasmonic resonances often utilized for high near fields.

The results from this chapter allow to determine experimental values which result

in stronger near fields in the vicinity of the apex. For aSNOM imaging purposes, it

is interesting to know how such conditions translate into the tip-substrate interaction.

Although a direct proof requires the inclusion of a sample in the simulations, a high

near field enhancement for the tip in vacuum is promising for strong interaction. Notice

that the physical phenomena that enhance the field around the apex in this chapter

–lightning rod effect, material contrast and antenna resonances –, are likely to be less

affected by the presence of the substrate than plasmonic resonances (Sec. 1.1.3) .

The tip length is the first parameter which I have systematically varied. The de-

pendence of the near field enhancement and scattered far field with tip length may be

looked at from two different perspectives. First, one can follow a typical approach in the

literature and choose the conditions that result in “optimal”, i.e. biggest enhancement.

Selecting a length close to the ∼ λ/2 antenna resonance indeed increases the near field

enhancement. However, fabricating such a tip is a significant challenge, and the ob-
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tained excess increase of 60 percent over the long-tip value make the effort questionable

for this particular structure. Besides, the increase in the observable far field scattered

intensity (more than 4 times the value of very long tips) likely results from all of the

small tip’s volume. This could complicate the extraction of the contribution from the

apex volume.

The second perspective is to keep in mind the long tips actually used in typical

aSNOM . The longer tips simulated here, under tightly focused illumination, are weakly

sensitive to further increases of length and should be comparable to large experimental

tips. The effect of simulating too short a tip can be estimated from Fig. 2.2. For a given

tip length and geometry, I found several relevant length scales:

• λvacuum: the wavelength of the light in vacuum. Antenna resonances are found as

long as the tip length is comparable with low order integral multiples of λvacuum.

• λmatter: the wavelength in the tip material. Oscillations with this periodicity

are found in both scattered far field and near field enhancement. Their strength

is related with the absorption of the material. A small but finite absorption

coefficient ensures that waves generated near the apex do not travel too far inside

the domain up to the top cap and generate standing wave patterns extending over

the complete tip volume.

• Waist radius of the beam: If it is comparable of bigger than the tip length, the

upper termination of the tip gains in significance, a contribution often negligible

in real experimental conditions.

Another relevant geometrical parameter is the tip apex radius. I find that the near

field diverges with decreasing tip radius, which can be related to the infinite near field of

perfectly sharp conical tips [116]. The strong near fields suggest that highly sharpened

tips will interact strongly with the substrate, albeit in a smaller volume. The scattered

far field also increases with decreasing tip radius, but it does not diverge for reasons

of energy conservation. The increase of scattered far field is nonetheless relevant, as it
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occurs when the strong fields near the apex are actually more confined spatially [30].

For high resolution imaging it is indeed desired to obtain stronger signal for sharper

tips, but the tip-substrate interaction and the eventual use of a demodulation scheme

must all be included for reliable predictions.

Not only the tip geometry, but also the illumination characteristics are relevant for

aSNOM . It offers new options to optimize the near field enhancement. I study here

the influence of angle of incidence, waist radius and position of the focus. I find that, for

example, the optimal angle of incidence θ differs from the case of polarization exactly

along the tip axis. θ ∼ 40 is found for the considered isolated tip, but for aSNOM

measurements the optimal value can be influenced by the substrate [115].

Displacing the position of the focus in the proximity of the apex shows a simple

proportionality relationship between the square of the local fields at the apex and scat-

tered radiation. It suggests a focus characterization technique, to be discussed in Ch. 6.

Notice, however, that absence of a substrate was assumed, which avoids the influence

of strong tip-substrate interaction and strongly spatially inhomogeneous near fields.

Besides near field enhancement and scattered far field, I have also analyzed the dis-

tributions of the fields just below the tip apex. In particular, I found that Eq. (2.3)

describes very well the field distribution for a large range of geometries. The equa-

tion implies a good rotational symmetry and a simple scaling of the fields with apex

radius, at least up to moderate values [113]. Reducing the radius could thus result

in a proportional improvement in resolution. The rotational symmetry may simplify

mathematically deconvoluting the effect of the instrument response function.

It is illustrative to compare Eq. (2.3), obtained for a rounded cone, with some limiting

cases. The critical term in Eq. (2.3) is of the form (d/R)−α, with R being the apex radius,

d the distance to a point close to the center of the apex, and alpha a fitting parameter

close to 2. Infinite, perfectly sharp cones of real dielectric constant are known to exhibit

a dν−1 behavior, with d being the distance to the apex and ν > 0 the critical exponent,

which depends on the cone angle as well as the dielectric material. ν < 1 indicates that
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the strong fields are infinitely confined in a point [116]. For sharp tips (either perfectly

sharp or not), the tip axis is an axis of symmetry. On the other hand, E near a simple

dipole polarizable sphere scales as (d/R)−3, with the direction of ~E being an axis of

symmetry. R is the radius of the sphere and d the distance to the center of the sphere.

The difference in the coefficient of the power law for long rounded cones and spheres

illustrates how short tips result in stronger confinement of the field. A too optimistic

estimation of achievable resolution for simulations using short tips is illustrated in Ch. 4.

Strong near fields near the apex seem to be important for Eq. (2.3) to apply. For

silicon tips and beam focus at a position where the fields at the tip apex are significantly

stronger than at the top cap, a good fit has been obtained when the maximum strength

of the scattered fields at the apex is & 5−6 larger than the excitation fields at the same

position. For illumination focused at the apex, this is the same as saying that the near

field enhancement as defined in this thesis must be& 5 − 6.

This conclusion does not apply to off-focus illumination, as a good fit is possible

even for much lower values, but notice that, in this case, the local fields in the proximity

of the tip apex can still be large in comparison with the excitation strength near this

volume. In this case, Eq. (2.3) seems to apply if the strength of the near fields near the

apex is enhanced by contributions from the lower region of the tip (not the top cap).

The applicability of Eq. (2.3) for changes of the dielectric constant is also of interest.

For a silver tip 1400 nm long and with a 10nm apex radius, Eq. (2.3) results in a worse

fit that could be expected from the obtained > 5 near field enhancement. If the length

is reduced to 500 nm long tip, or the apex radius to 5nm, the near field enhancement

increases more than twofold, and Eq. (2.3) regains its validity. A strong near field

enhancement looks still important for Eq. (2.3) to be valid, but I believe that it is

important to consider how strong a role is played by the elongated shape of the tip, and

not, for example, by dielectric contrast. A more quantitative analysis, valid for a large

range of materials, requires further study, perhaps considering the separate influences

of antenna resonances, lighting rod effect, material contrast and plasmonic resonances.
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The small observed variation in the field distribution is promising for experiments, as

it implies reproducibility in the presence of small changes of the experimental conditions.

For imaging purposes it should be verified, however, that this holds also in the presence

of a substrate.

2.3 Conclusion

In this chapter I have studied how both near and far fields of optically excited conical

tips evolve with tip geometry and illumination conditions.

A strong tip-length dependence of the near field enhancement and scattered far field

intensity is observed for short tips, but it levels out for tips that are long compared to the

beam waist radius and the wavelength. Appropriately long tips and focused illumination

should be simulated if typical experimental conditions are to be approached. Too short

tips also result in more confined fields for a tip in vacuum.

For decreasing apex radius the near field enhancement grows without bounds. The

detectable scattered far field intensity, i.e., the quantity measured in experiments, re-

mains finite in accordance with energy conservation. Smaller apex radius also gives rise

to a proportional increase in near field confinement, which is expected to translate to

better lateral resolution. Besides this scaling effect, the field distribution remains ap-

proximately constant for many geometries and experimental conditions. If extrapolated

to the presence of a substrate, this will facilitate obtaining robust experimental images.

The fields present a very good rotational symmetry and can be described by a simple

equation.

For strong near field enhancement and scattering, θ ∼ 40◦ is optimal. Different tip

materials or geometries, of the presence of a sample surface, will likely alter the exact

value, and simulating other scenarios is required. Notice, however, that the obtained

angle will not necessarily realize an electric field vector parallel to the tip’s axis.

The simple relationship between the scattered far field intensity and the local fields

at the apex suggests a convenient method for three dimensional focus characterization
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and for optical alignment in aSNOM experiments.
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Chapter 3

Simulations of tips over homogenous

substrates

Up to now I have treated a tip in vacuum, without considering any substrate. This

allowed to systematically study the influence of several tip and illumination properties.

To vary all these properties together in the presence of a substrate would have consid-

erably increased the computational effort, particularly if the demodulation needed to

discriminate the near field information is included. I expect many of the results to carry

over when a sample is present, as discussed in Sec. 2.2.

However, a complete understanding of how aSNOM works does require including

the substrate. This is the objective of the present chapter. At this stage, I focus on the

tip-substrate interaction and how the near field information contained in the scattered

fields can be recovered from the considerable background signal. The actual imaging

process is covered in the next chapter.

The so-called dipole model [44,117–119] is frequently used in aSNOM to discuss the

tip-substrate interaction. A tip, situated over a perfectly flat surface, is approximated

by a subwavelength-sized polarizable sphere, whose radius corresponds to the effective

curvature at the tip apex. If retardation effects are neglected and a quasi-static dipole

proportional to the local field is assumed to be excited at the sphere, a simple analytical

expression can be obtained for the effective polarizability of the tip-substrate system [60].

31
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




αeff
⊥

αeff
‖


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
=

α (1 ± β)

1 − 3±1
2

αβ
32πǫ0(d

(ts) + R)3

(3.1)

with

α = 4πR3ǫ0
ǫt − ǫ0

ǫt + 2ǫ0
(3.2)

β =
ǫs − ǫ0

ǫs + ǫ0
(3.3)

Here αeff
⊥ and αeff

‖ correspond to the effective polarizability obtained for polarization

perpendicular and parallel to the surface. ǫt, ǫs and ǫ0 are the dielectric constants of

tip, substrate and vacuum, respectively, d(ts) is the distance between the lower edge of

the tip and the substrate and R is as usual the radius of the tip. The interaction for

polarization perpendicular to the surface is usually stronger. Assuming finally that the

detectable far field intensity is proportional to the square of the effective polarizability

of the coupled system, the dependence on ǫs illustrates how material contrast can be

obtained in aSNOM [20, 60, 77, 120, 121]. When the tip approaches the substrate to

distances d(ts) on the order of its radius R a nonlinear increase in the scattered field

strength is predicted.

This simplified model disregards, however, many relevant phenomena. A dipolar

approximation is insufficient for small tip-substrate distances, and expansions of higher

order are required even for a spherical sub-wavelength tip [76,122]. Further, the tip shape

(Ch. 2) is also relevant here, both for the near field enhancement [70, 90, 92, 115, 123]

and the detectable far field signal [77, 124, 125].

I simulate the interaction between tip and substrate for a scenario that resemble

those from experiments. In Ch. 2, where no sample was considered, I gave both near

field enhancement and scattered far field equal attention, partly because the latter is
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(a) (b)

Figure 3.1: (a) Illustration of the geometry used. The reference beam is used in interfero-
metric detection. (b) Evolution of the models simulated in the present paper, from two small
spheres to a more realistic tip and substrate

the measurable quantity but the former is helpful to estimate expected tip-substrate

interaction strength. Once the substrate, and thus the interaction, is included in the

simulations, I concentrate on the scattered fields. References to near field enhancement

will be occasionally made.

Further, just to consider the field scattered by a static tip is often not enough. For

strong background fields, a demodulation technique [58, 60–64] helps to retrieve the

information from localized near field interactions (Sec. 1.1.2). I show here that the

information from the near fields can indeed be discriminated for a sharp silicon tip.

In addition I discuss how too big an oscillation amplitude or a slightly anharmonic

oscillation of the tip can significantly complicate the discrimination of the near field

signal.

3.1 Transition from the dipole model towards real-

istic models

The scenario I am ultimately interested in is conveniently displayed in Fig. 3.1(a). A tip

several wavelengths long (typically 1.4µm) and a substrate consisting of a homogenous

gold sphere of 2µm are considered. To avoid the influence of the top cap, a gaussian

beam illumination is used when long tips are of interest. The distance between the tip
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and the substrate d(ts) is varied between 1nm and several hundreds nanometers. The

fields are collimated at 1mm, i.e. in the far field region. I first consider the scattered

intensity, and afterwards (Sec. 3.2) the interferometric signal demodulated at higher

harmonics. Other details are given in Sec. 1.2.

Instead of directly presenting the results for this model, I start by discussing some

simple cases that allow to gain insight into the origin of the different signal contributions

and confidence that the final model closely describes the experimental situation. I briefly

consider the well known system of two small and closely situated spheres illuminated

by a planar wave(frequently used in studies of SERS [122]), and proceed via a “sphere

over a surface”to an “elongated tip over surface” model [Fig. 3.1(b)].

Even for two spheres of 10nm radius illuminated by a planar wave, using dipoles

is insufficient to correctly describe the strong interaction present at short distances.

I have simulated this geometry by placing at the center of each spheres a multipole

expansions (for the fields at the exterior of the spheres) and a Bessel expansions (for

the interior). One sphere is interpreted as the Si tip and the other as a Au substrate.

For short separations, a large number of orders is required to achieve convergence of

the numerical description. In this case, for d(ts) & 1 nm multipoles up to ∼ 15th order

are required. Due to the interaction, the near fields in the gap scattered by the two

spheres system are considerably stronger for short distances, up to more than 20 times

the excitation strength at 1nm. A steep increase of the scattered far field intensity can

also be observed in Fig. 3.2.

I increase next the radius of the sphere serving as substrate up to 2µm, still for

planar wave excitation (Fig. 3.2). The constant contribution from the isolated substrate

is ignored, as in the rest of this thesis. For d(ts) & R and large substrates, a modulation

of the far field intensity in the length scale of λ appear, due to retardation effects. First,

a standing wave will be obtained in the proximity of the surface. Second, the field

scattered directly by the tip and via reflections at the substrate surface can interfere

constructively or destructively. For large substrates, the traces are qualitatively similar.
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Figure 3.2: (a) Scattered far field intensity(in linear arbitrary units) as a function of tip-
substrate separation for different radii of the spherical gold substrate. The tip is modeled as
a silicon sphere of 10 nm radius. (b) represents a zoom of (a), normalized to the value at
d(ts) =1nm.

The sharp increase of the far field intensity with decreasing distance for d(ts) .

R is, as before, indicative of the near field interaction. It can be better appreciated

in Fig. 3.2 (b), a zoom for small d(ts) normalized to the value at 1 nm distance to

facilitate comparison. The localized character of the interaction is credited with the high

achievable resolution (Sec. 1.1). Notice also the asymptotic behavior at short distances

for increasing substrate radius. Under these conditions, the surface is essentially flat in

the proximity of the apex, and the interaction becomes numerically similar to the flat

substrate case. In the following, I use a substrate sphere diameter of 2 µm.

To arrive at our final model, the length of the tip is increased. A focused beam is

used to avoid the strong scattering from the top cap for the larger tips. It also represents

the experimental conditions more closely than planar wave illumination. As expected,

both near field enhancement and scattered fields are affected. In particular, the near

field enhancement in the gap at d(ts) = 1 nm for the 1400nm long tip is up to ∼ 65,

more than 5 times larger than that of the spherical tip.

The far field is even more dramatically affected, as a small sphere has a scattering

cross section orders of magnitude smaller than a large tip. At d(ts) = 1 nm the scattered

field intensity exhibits ratios of ∼ 34000 : 1300 : 1, for 1400 nm, 150 nm and spherical

(20nm) tips, respectively. For 1 mW incident power, ∼ 1.5 µW, 60nW and 45pW are



36 CHAPTER 3. SIMULATIONS OF TIPS OVER HOMOGENOUS SUBSTRATES

(a)

0 100 200 300 400
0

1

2

3

N
or

m
al

iz
ed

 S
ca

tte
re

d 
Fa

r F
ie

ld

d(ts)(nm)

Tip Length(L)
 1400 nm
 150 nm
 20 nm
 Dipole model

L

(b)

0 100 200 300 400
0

20

40

60

N
ea

r F
ie

ld
 E

nh
an

ce
m

en
t

d(ts)(nm)

Figure 3.3: (a) Scattered far field intensity(normalized to the 1nm value) as a function of
tip-substrate separation for silicon tips of different length and the prediction of the quasi-static
dipole model. The substrate is a gold sphere of 2µm diameter. (b) Near field enhancement as
a function of tip-substrate separation for a 1400nm long tip

collected. Fig. 3.3(a) shows the scattered far field obtained for different tip lengths, as

well as the predicted values for the dipole model, normalized to the value at d(ts) =1 nm

for comparison. The scattered far field obtained for tips 1.2, 1.6µm long are similar to

those shown for 1.4µm. Notice also that while a very strong signature of the interaction

is observed for the near field enhancement(Fig. 3.3(b)), it is much less clear in the far

field, which points to the need of an effective discrimination scheme.

3.2 Near field optical contrast

A demodulation scheme to discriminate the near field information was already described

in Ch. 1. Its main idea is to detect the signal at higher harmonics of the tip oscillation

frequency. I will show how the background can be effectively suppressed and how the

characteristics of the tip oscillation are very important for aSNOM . Interferometric

detection is assumed.

In an optimal experimental measurement, only the scattered fields containing near

field information would be detected after demodulation, with all the background being

effectively suppressed. Consequently, if the tip is separated from the substrate, the

signal will die out. This is the idea behind the so-called approach curves [121,126–128],
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Figure 3.4: Approach curves for the first (dotted), second (dashed), and third harmonic
(continuous). Plotted are the demodulated signals as functions of dmin for (a) a 1.4 µm tip,
(b) the dipole model and (c) tips of variable length. All traces are scaled to the same arbitrary
linear scale, except for the dipole model. Notice that the values for the spherical tip are much
smaller. The oscillation amplitude is 20 nm. The very weak third harmonic in (a) is better
appreciated in (c) in the graph corresponding to 1.4 µm. For readability, only second and
third harmonic are displayed on (c).

in which the amplitude of the demodulated signal is plotted for different tip-substrate

distances. A satisfactory approach curve will show a rapidly increasing detected signal

for dmin . R.

To numerically simulate them, it is necessary to obtain the evolution of the scattered

fields as a function of d(ts) and subsequently compute the integral Eq. (1.1) for different

positions of the oscillating tip, described if not otherwise stated as d(ts) = dmin +A[1 +

cos(wt)], where dmin is the minimum value of d(ts). As discussed in Sec. 1.1.2, only the

component contained in the plane of incidence of the detector is considered. Fig. 3.4(a)

shows simulated approach curves for the 1400nm silicon tip, distances up to 300nm and

20nm modulation amplitude. The second and especially the third harmonic present

a considerable signal increase when dmin is small, as desired. Higher harmonics offer

better background suppression and are promising for higher lateral resolution [63, 64],

but the signal level is smaller, an interplay further discussed in Ch. 4.
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Figure 3.5: Approach curves for the second harmonic (a) for a 1400 nm tip changing the
oscillation amplitude, (b) for tips of different lengths and 30 nm oscillation amplitude.
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Figure 3.6: Approach curves for third harmonic demodulation with increasing anharmonicity
b, modeling (a) a spherical tip, (b) a 1400 nm long conical tip. Both tips have an apex radius
of 10 nm and the modulation amplitude is 10nm.

To obtain good background suppression, it is important to correctly choose the

experimental parameters. In particular, the oscillation amplitude A was already men-

tioned in Sec. 1.1.2 to be important. Fig. 3.5(a), where approach curves for different A

at the second harmonic are plotted, shows how increasing the amplitude can increase

the level of signal but also deteriorate the background suppression, which requires a

compromise [129]. Here, it is convenient to use amplitudes not much above R, as the

background increases considerably faster than the near field contribution.

Experimentally, the tip oscillation is not perfectly sinusoidal [130–132]. Even for

small oscillation amplitude, the background suppression can be inadequate in the pres-

ence of anharmonicities in the movement of the tip. Consider as an example a tip
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motion described by d(ts) = dmin + A[1 + b + cos(wt) + b cos(3wt)], with b a parameter

that describes the anharmonicity. The approach curve for the 1400nm long tip at the

third harmonic, plotted in Fig. 3.6(b), clearly show how an anharmonicity of just a few

percent gives rise to noticeably deteriorated background suppression. Thus, the anhar-

monicity should be kept at acceptable levels or a more sophisticated scheme must be

used to extract reliable near field optical information [43,61].

I study next how the approach curves are affected by considering other tip lengths.

They have been calculated for the dipole model and for several tip lengths (Fig. 3.4(b-

c)). I concentrate in harmonics higher than the first and dmin up to 80 nm the conditions

more relevant to near field optical microscopy. Beyond the much smaller signal obtained

for the spherical tip, the evolution of the signal with dmin, and thus the background sup-

pression, depends on tip length even for tips larger than the wavelength. The tips that

are longer than one or two wavelengths behave qualitatively similar, but a dependence

with length is observed even for the longer tips here considered. This conclusion is fur-

ther stressed by Fig. 3.5(b), which shows approach curves at the second harmonic for

A = 30nm and different tip lengths, normalized to the maximum value for readability.

Last, I study the influence of considering too short tips when the effect of the an-

harmonicity is of interest. Fig. 3.6 shows how for the spherical tip the deterioration of

the approach curves is much smaller than in the 1400nm case, which is attributed to

the stronger background for the long tips. Thus, to model an adequate tip length is

important for accurate predictions and in particular to establish the exact influence of

oscillation amplitude and anharmonicity.

3.3 Experimental Results

Although this chapter focuses on numerical simulations, it is closely related to experi-

ments. With this in mind, I have used the experimental set-up in our group (Ch. 6), to

measure approach curves similar to the ones presented here, for bare silicon tips.

Fig. 3.7(a) exemplifies an approach curve in the third harmonic over the metallic
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Figure 3.7: Example of measured results illustrating the possibility of using silicon tips for
aSNOM. (a) Measured approach curve in the third harmonic. The modulation amplitude is
roughly 13 nm. In both images λ ∼ 820 nm is used (b) Image of a metallic structure on glass.
The glass appears black in the picture due to the much smaller level of received signal. The
image size is 3x3 µm.

(AuPd) substrate shown in (b), to be compared with Fig. 3.4. As the tip is separated

from the surface, the signal decays in ∼ 20nm to the background level, a clear near field

signature. It looks qualitatively very similar to the simulations shown in this chapter.

A complete quantitative agreement cannot be expected at this stage as it would require

a perfect knowledge of tip and illumination characteristics.

The approach curve measured indicates a good near field discrimination, which fur-

ther strengthes the claim that silicon tips can be used successfully in aSNOM. This is

confirmed in Fig. 3.7(b), an experimental measurement for a metal structure over a glass

substrate1. In the big structure, two smaller particles are observed. The topography

indicates that they are significantly higher than the rest of the structure, and SEM

images suggest that they are made of AuPd left-overs from the fabrication process. As

expected, the signal is clearly stronger over the metal and the resolution is significantly

superior to the diffraction limit. Comparable signal is obtained at the small particles

and at the rest of the metal structures, independent of the considerably different height,

as desired for measurement dominated by the optical interaction. At the steep edges,

other effects may appear [22, 133, 134].

1Fig. 3.7(b) was measured following the homodyne approach given in Sec. 5.1.3, and Fig. 3.7(a) a
slightly modified scheme. Both are exactly identical for the assumed perfectly sinusoidal tip oscillation.
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3.4 Discussion and conclusion

Quantitative estimates have been obtained of expected near field enhancement and

scattered far field signal for a realistic scenario. I concentrate on the latter, which is the

measurable signal in aSNOM experiments. I illustrate how the near field signal can be

discriminated with a convenient demodulation scheme and adequate tip oscillation.

To quantitatively model a typical experimental scenario, large tips and substrates are

necessary. A compromise between approaching realistic tip sizes and achieving numerical

convergence in a reasonable time is found for a spherical substrate of 2µm diameter,

which can be considered locally flat, and a 1400nm long tip. An exact convergence with

the very long tips used in experiments requires even larger lengths (Fig. 3.4).

Considering not small spherical tips but long rounded cones is important to include

the increased near field enhancement due to the lightning rod effect and the much larger

cross section characteristic of big particles. For long tips, a near field enhancement of

∼ 65 has been found for dmin = 1nm. For 1 mW incident power, solid angle of detection

NA = 0.342 and 500nm beam radius, ∼ 1.5µW scattered signal is expected.

Both theoretical and experimental results in this chapter illustrate that a good dis-

crimination of the near field signal is indeed possible with silicon tips, whose advantages

were discussed in Sec. 1.1.3. In my simulations, second and third harmonic demodulation

results in a good near field discrimination with amplitudes similar to the apex radius.

Much larger amplitudes significantly increase the background without a proportional in-

crease of the near field signal detected. Anharmonicities in the tip movement must also

be carefully controlled. This exemplifies the importance of an adequate choice of the

experimental parameters to improve the discrimination of the local optical information.

The model in the present chapter demonstrates that it is possible to fully accounts for

the tip-substrate interaction of realistic tips and substrates. A very good discrimination

of the near field information is possible for sharp silicon tips. Anharmonic tip motion

or too high vibration amplitudes are found to deteriorate the near field discrimination.

The natural next step is to study the imaging of structured substrates, as will be done
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in the next chapter.



Chapter 4

Simulations of the imaging process

In Ch. 3, I have studied aSNOM by simulating the oscillation of the tip over a fixed

point of the substrate. To better understand experimentally obtained images, it is

meaningful to simulate scans over patterned substrate. Much work in the literature is

not specific to aSNOM , but insofar as it concentrates on the near field distribution,

it relates also to it. The localized nature of the near fields [135, 136], the convenience

to scan near the sample [88, 137] and the influence of optical and topographical con-

trast were all studied. Additional studies continued this work [54,55,138–140] for more

specific aSNOM scenarios. However simulating the imaging process with the complete

3-dimensional Maxwell equations, for tips and substrates approaching realistic geome-

tries, strong interaction and high harmonic demodulation is still challenging. Such

results are presented in the present chapter.

4.1 Modeling

Details of the geometry are shown in Fig. 4.1. I choose 500 nm long silicon tips and planar

wave illumination as a reasonable compromise between numerical requirements and the

desire to resemble typical experimental conditions. Specifically, near field enhancement

and scattered far field intensity can be expected to be comparable to those of much

longer tips(Chs. 2,3). I also expect the spatial field distribution in the proximity of

43
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Figure 4.1: Illustration of the geometry used. The reference beam is used for the interfero-
metric detection

the apex of the tip to be almost unaffected by further increases in length or the use of

focused illumination, which assumes that the results from Sec. 2.1.3 remain true in the

presence of a substrate.

The substrate is a glass sphere of 2µm diameter and ǫglass = 2.1, with a 10nm gold

spherical inclusion situated at a few nanometers of the glass-vacuum interface, d(i). The

origin of the coordinate axis is situated at the point of the glass vacuum interface exactly

over the center of the inclusion. The detector is situated at 1 mm distance as in Ch. 3

and, as usual for the demodulated results, I only consider the component of the field

in its plane of incidence and ignore the contribution from the glass substrate. The

remaining parameters correspond to the description from Sec. 1.2.

The substrate has been chosen with several things in mind. First, it should contain

some structure –the gold inclusion– much smaller than the wavelength, to illustrate the

lateral resolution capabilities of aSNOM . The inclusion should be, however, big enough

for the interaction with the tip to scatter strongly enough for correct discrimination of

the local information after demodulation. Second, the substrate and inclusion material,

glass and gold, present very different values of the dielectric constant, with gold expected

to result in a considerably stronger optical signal than glass [126]. Third, no point from

the given geometry is adjacent to three regions of different dielectric, and there is no
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infinitely sharp corner or edge, which simplifies numerical simulations. Last, changing

the distance between the inclusion and the vacuum-glass interface, d(i) provides a natural

way to study how deep into a sample aSNOM can probe.

In this chapter, the evolution of the amplitude of the demodulated signal as the

tip moves along the x is typically discussed. For each x, simulations are solved for

different tip positions along the axis z, to account for the tip oscillation (described

as d(ts) = dmin + A[1 + cos(wt)] except for anharmonic movement of the tip). The

minimum tip-substrate distance dmin is kept constant, i.e. I work in constant distance

mode, which allows to obtain topography-free signal [59]. The units of the obtained

signal are arbitrary, as they depend on the reference signal power or photodetector

sensibility, but they are directly comparable to last chapter’s.

I discussed in Sec. 1.1.2 that I call near field signal to the contribution influenced

by the substrate volume in the immediate proximity of the tip apex. In this chapter, it

reveals itself most clearly in a steep increase of the signal when the tip interacts strongly

with the gold inclusion. Near field information can also be generated by the tip-glass

interaction, but is typically weaker and a strong signal for large |x| is attributed to the

influence of the background.

In this chapter I study the influence of the inclusion depth, d(i), and other experi-

mentally relevant parameters on expected level of signal, background suppression and

achievable resolution. I also compare the simulated images from the long tip with those

from a spherical, 10 nm radius sphere, to better understand the limitations of simulating

too short tips.

4.2 Results

4.2.1 Numerical Convergence

I already discussed in Sec. 1.2 the need of good numerical convergence. For aSNOM ,

besides scattered far field intensity and near field enhancement, the signal after demod-
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Figure 4.2: (a) illustrates the difference between two sets of solutions of the Maxwell equa-
tions, the second using ∼ 25 percent more free coefficients in the expansions. The signal
generated at the photodetector by the interferometric term was calculated for each positions
of the tip along a 2-dimensional map. The modulus of the relative signal change is plotted in
percentage. (b) corresponds to the demodulated signal amplitude for 1-dimensional scans, for
the second and third harmonic, A = 20nm, dmin = 1nm and d(i) = 1nm. The continued line
have been obtained using fewer free coefficients than the dotted one.

ulation is also important. The latter is a not just a function of the signal in a particular

tip position, but on how the signal changes along the tip trajectory. Small numerical

error between two closely situated tip positions can make a considerable difference on

the derivatives. I illustrate here the convergence that can be achieved for the complex

geometries considered in this chapter, in particular for 500nm long tips and inclusion

depth d(i) = 1nm

Fig. 4.2(a) shows the difference on the results obtained interferometrically before

demodulation for two sets of solution of the Maxwell equations, the second using 25

percent more parameters to minimize errors. I plot the modulus of the relative change

of the (complex-valued) simulated signal for different positions of the tip, considered

static here. A variation smaller that 1 percent is obtained, i.e., for the signal before

demodulation, the obtained discrepancies are negligible.

Fig. 4.2(b) shows the simulated signal amplitude for a 1-dimensional scan at the

second and third harmonic. The signal amplitude is plotted for the two mentioned sets

of solutions, for dmin = 1nm and oscillation amplitude A = 20nm. The behavior of the

obtained scans is discussed below, I just stress here that both solutions are highly similar,
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Figure 4.3: (a) Example of the field distribution of the average scattered electric field in

the proximity of the tip apex, for 500nm long tip and d(i) = 1nm. The colors indicate values
between 0 and 15, the stronger fields in white, where the excitation field strength is 1. The
insert indicate the amplitude of the interferometric term of the signal before demodulation,
for 1nm distance to the substrate. (b) Example of the obtained amplitude for one-dimensional
scans of the samples, for the first (dotted), second (discontinued) and third (continuous)
harmonics, the geometry described in (a), dmin = 1nm and A = 10nm. For visibility, the first
harmonic signal is scaled by 1/5.

ultimately giving confidence in the convergence of the demodulated signal obtained in

this thesis. The relative difference is, however, still bigger than the very small error in

Fig. 4.2(a).

4.2.2 General characteristics of the obtained signal

The tip and the inclusion can interact strongly, and very strong near fields are possible

in the gap, as can be seen in Fig. 4.3(a). As indicated in the insert, however, the

obtained signal at the far field before demodulation does not present a clear signature

of the presence of the inclusion. I illustrate first how for adequate oscillation of the

tip (dmin = 1nm, A = 10nm) the near field information from the inclusion can be

discriminated at the higher harmonics, and I discuss some peculiarities of aSNOM

imaging.

The 1-dimensional scans at the first three harmonics are plotted in Fig. 4.3(b).

Although not in the first harmonic, the presence of the inclusion is clearly revealed at

the second and third harmonics by clear signal maxima. The width of the maxima is

much smaller than the wavelength, illustrating the possibility of lateral resolution much
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Figure 4.4: One-dimensional scans of the sample when a small spherical tip is considered,

for the first (dotted), second (discontinued) and third (continuous) harmonics. d(i) = 1nm,
dmin = 1nm and 10nm oscillation amplitude are used.

below the diffraction limit. For a more quantitative study I will use the full width at

half maximum FWHM . To concentrate on the information with high spatial resolution

content, an approximate value for the level of the slowly varying signal for large |x| is

subtracted first. More exactly, I subtract the average of the values at x = −39nm and

x = 39nm. This definition is somewhat arbitrary, but its exact form does not seem

critical for the cases discussed here. Note that a FWHM was already introduced in

Sec. 2.1.3 in a different context, namely the confinement of the fields around the apex

for a tip in vacuum.

For Fig. 4.3(b), FWHM =∼ 17nm and ∼ 21nm are obtained for the second and

the third harmonic, respectively. The signal contrast between tip close and far from the

inclusion is also better for the third harmonic. The second harmonic, however, presents

a stronger signal level, so that the optimal choice is not obvious a priori.

4.2.3 Tip length and inclusion depth

aSNOM studies often consider small tips to simplify modeling. In particular, a spherical

tip of same radius as the tip apex is frequently discussed. The consequences of this

simplification are illustrated with Fig. 4.4, where except for the tip shape identical

conditions as in Fig. 4.3(b) were used. Several important differences are observed besides
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Figure 4.5: Influence of the depth of the inclusion, for the third harmonic, on the amplitude of
the signal for 1-dimensional scans. 500nm long tip, oscillation amplitude 10nm and dmin = 1nm
are considered.

the expected decrease in received signal (Ch. 3). For example, the central maximum

dominates the obtained signal even for the first harmonic.

The maxima obtained are also narrower for the spherical tips. For the given condi-

tions and the third harmonic, the FWHM found for the spherical tip is ∼ 15 percent

smaller than for the long tips at the third harmonic. It is also interesting that the

maxima in Fig. 4.4 are not situated at x = 0, i.e., the asymmetry introduced by the

illumination has a strong influence. It differs from the long tip case (Fig. 4.3(a)), where

the near field signal is much more symmetric.

The influence of the depth of the inclusion, d(i), is studied next [126, 141]. The

simulated images for the long tips are shown in Fig. 4.5. The amplitude of the third

harmonic is considered for dmin = 1nm and a 10 nm oscillation amplitude. It is readily

seen that the level of signal rapidly diminishes when d(i) is increased, so that the tip-

substrate interaction is mostly sensitive to distances less than approximately the apex

radius. For 5nm distance, the contrast between the signal for the tip directly over

and far from the structure decreases to approximately a third. Not only the signal

level diminishes with increasing d(i), but a less narrow maximum is also obtained, from

FWHM ∼ 17 to ∼ 21nm at a distance of 1 and 5nm, respectively.
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Figure 4.6: Influence of the oscillation amplitude on the obtained signal amplitude for the

second (a) and third (b) harmonics. d(i) = 1nm and dmin = 1nm. The insert in (b) shows the
influence of the amplitude on the FWHM of the central maximum.

4.2.4 Scanning parameters

It was already discussed in Ch. 3 that a correct choice of oscillation characteristics is

necessary to properly discriminate the near field information. Approach curves were

used there, but as there was no lateral structure the consequences on imaging could

not be quantified, the objective of the present subsection. As the limitations of using

spherical tips to model typical experiments have just been illustrated, from now on only

the 500nm long tips will be considered.

I study first the influence of the oscillation amplitude [41, 129], for d(i) = 1nm and

dmin = 1nm. Fig. 4.6(a) shows the second harmonic amplitude for increasing oscillation

amplitude. In the infinitesimal amplitude case, the signal will be proportional to the

square of the oscillation amplitude. For the smaller amplitudes considered here, up to

values on the order of the apex radius, the dependence is weaker than quadratic but still

important. For much larger values, however, the main effect is a shift of the whole curves

towards larger signal, as the increase for the slowly varying background dominates over

the comparatively small change in the near field signal. The ratio between the signal at

the maximum and for large values of |x| diminishes, making the discrimination of the

near field from the inclusion more difficult.

A similar trend is observed when the third harmonic is considered, Fig. 4.6(b). The
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Figure 4.7: Influence of dmin on the signal amplitude for 1-dimensional scans at the second

(a) and third (b) harmonics. d(i) = 1nm and the oscillation amplitude is 10nm. The insert in
(a) represent approach curves for x = 0 and −x = 25nm.

main difference is that slightly bigger oscillation amplitudes are acceptable, up to values

on the order of twice the apex radius. The insert illustrates how increasing the amplitude

also affects the FWHM [62,64], which in this case is a ∼ 60 percent larger for A = 20nm

than for 2nm.

Next, I consider the influence of changing the minimum distance between tip and

substrate dmin, for d(i) = 1nm and 10nm oscillation amplitude [142]. Fig. 4.7 shows

the amplitude for second and the third harmonic. Increasing dmin rapidly diminishes

the overall quality of the detected signal, with the central maximum getting consider-

ably weaker and a moderate increase in the FWHM (at the second harmonic, from

FWHM ∼ 21nm at dmin = 1nm to FWHM ∼ 25nm at dmin = 4nm). Inciden-

tally, the fast increase of signal observed for decreasing dmin even for large |x| points

to the presence of a weak but measurable signal from the tip-glass interaction. It is

further illustrated by the insert of Fig. 4.7(a), approach curves for the tip at x = 0 and

x = −25nm. The latter remains approximately unchanged for −39nm > x > −25nm

indicating that the influence of the inclusion is small. The increase for x = −25nm and

small tip substrate distance, although much smaller than for the tip directly over the

substrate, is originated by the tip glass interaction.

Last, an anharmonicity component in the tip oscillation is introduced. As already

done in Sec. 3.2, I consider the tip oscillation as not perfectly sinusoidal but according
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Figure 4.8: Influence on 1-dimensional scans of anharmonic movement of the tip, represented

by b. The amplitude of the third harmonic signal is considered, for d(i) = 1nm, dmin = 1nm
and 10nm oscillation amplitude.

to equation d(ts) = dmin + A[1 + b + cos(wt) + b cos(3wt)] where b is the parameter

used to change the strength of the anharmonicity. Fig. 4.8 shows the simulated images

for the second and the third harmonic, considering d(i) = 1nm, dmin = 1nm and 10nm

oscillation amplitude. Already for a value of b of 1 percent, a increase of signal for large

x is observed. For a value of b close to 10 percent a dramatic change is observed, with

a much less clear central maximum. The change can be attributed to mechanical [61],

and not optical, contributions, and is generally undesired for aSNOM measurements.

4.3 Discussion and conclusions

In this chapter, I have simulated aSNOM imaging in a one-dimensional cut over a

patterned sample, in particular a spherical gold inclusion situated in a glass substrate.

The influence of several relevant experimental parameters has been discussed. A silicon

tip was used, to further illustrate the validity of such tips for aSNOM .

I have also discussed the convergence achievable with the numerical method used for

this thesis. Although it can be worse for the demodulated results than for the scattered

field intensity, it is still very satisfactory. In general, I have observed that changes in
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the parameterization of the simulations (e.g., to the number of orders considered in the

multipole expansions) for two closely situated tip positions can transfer into an abrupt

change of the signal and introduce a significant error into the final demodulated signal.

It is convenient to avoid abrupt changes in the way the simulation is being performed

when the tip is moved along z.

To judge the quality of aSNOM images, the achievable resolution, the strength of the

received signal and the degree of discrimination of the information from the inclusion

are all relevant. For most of the presented images, the signal amplitude for the tip

laterally approaching the position of the inclusion increases sharply, which indicates a

very good discrimination of the desired near field information. For large |x|, a slowly

varying signal is obtained with contributions from the background and the weaker tip-

substrate interaction, which can be approximately separated by approach curves like

those in Fig. 4.7. In general the signal from tip-glass interaction is weaker than from

tip-gold interaction, and if the signal at large |x| and for x = 0 are comparable, either

the interaction between the tip and the inclusion is small or the background is not

suppressed as desired. In simulations, without noise and a perfectly defined geometry,

near field information can in principle be also obtained for large background, but this

is greatly complicated under typical experimental conditions.

To estimate resolution, I use the width of the central maximum, here quantified by

the FWHM . Resolution is typically defined as the minimum distance at which two

small objects can be distinguished. The obtained FWHM does not directly correspond

to the definition, but it seems clear that both are closely related, and a FWHM as small

as possible is desired. As mentioned, an offset has been subtracted before calculating

the FWHM , to focus on the signature from the inclusion. If this were not done, the

cases with large background would show an increased FWHM , which would in general

accentuate the trends discussed in Sec. 4.2.

A FWHM as low as ∼ 12.5nm has been found, less than λ/40 and on the order

of both the tip and sphere diameter. For comparison, a topography image of a 10 nm
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radius hemisphere scanned by an AFM tip with 10 nm apex radius will result in FWHM

more than twice larger, which further illustrates the high resolution achievable with

aSNOM [143]. In general, to keep the tip close to the inclusion (small A, dmin and d(i))

seem favorable to improve the resolution. As an intuitive explanation, a displacement

of the tip along x under these conditions results in a fast relative increase of the tip-

inclusion distance, and thus a steep reduction of the obtained signal.

I have focused on comparing how the signal level evolves when the characteristics of

the substrate or of the scanning are changing. The significance of the absolute level of

the obtained signal depends on aspects such as the experimental noise, the intensity of

the beams used or how the beams interfere (Ch. 5), which requires further work.

The FWHM increases and the signal level sharply decreases for depths of the gold

inclusion or dmin on the order of half the apex radius or larger. For the geometry

here, the signal is thus mostly sensitive to the region close to the interface. aSNOM

measurements sensitive to larger depths has been predicted [139] and observed [144],

but the structures imaged were significantly bigger than in the present study, which add

further phenomena such as a modified substrate reflectivity. Larger apex radii could

equally result in increased sensitivity to larger depths.

The tip should ideally oscillate close to the substrate, not only to improve resolution

but also to strengthen the tip-substrate interaction, and thus the near field signal. Also,

a perfect sinusoidal movement of the tip is desired, at least if no alternative scheme

is utilized to separate optical and mechanical contributions. Both are not completely

independent in a realistic experimental set-up: if the attempt to reduce dmin results

in too strong a contact between the tip and the surface, anharmonicities in the tip

movement and fast wear of the tip apex ensue [61].

It is not possible to give an optimal value of oscillation amplitude valid for all experi-

mental conditions, even considering ideal oscillation. A small value reduces the FWHM

and improves the background suppression, but it also considerably diminishes the level

of signal. Ideally, one would desire to use the smallest amplitude that results in a suffi-
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cient signal to noise ratio. As a coarse rule, amplitudes on the order of the apex radius

seem a reasonable compromise for the presented geometry.

Notice also that for the same oscillation amplitude, the third harmonic can result

in better background suppression and smaller FWHM but also in smaller signal level.

For a given value of desired signal, it is generally possible to use a smaller oscillation

amplitude for the second than for the third harmonic. Simulations like those presented

here are useful to determine the optimal choice. For example, if dmin = 1nm and

d(i) = 1nm, imaging at the second harmonic with 5nm oscillation amplitude result in a

similar image than 20nm oscillation amplitude at the third harmonic, except that the

FWHM is a ∼ 10 percent smaller. In this particular example, the second harmonic

measurement is slightly favorable.

The results in this chapter also allow to study significant limitations of models con-

sidering short tips. A clear near field signature is achievable for both short and long

tips, but significant differences exist. As expected, both background and near field signal

increase markedly for the long tips. The background increases in a bigger proportion,

though, and discriminating the near field information is more challenging. Further, the

central maximum presents a clear asymmetry with respect to x = 0 for the spherical, but

much smaller for the 500nm long, tips. In particular, considering a short tip induces to

expect a shift between the position of the inclusion and the measured signal maximum,

shift likely to be quite small in typical experimental measurements. The asymmetry is

introduced by the illumination and is small for the long tips, whose axis contribute an

additional symmetry. Last, a better FWHM is observed for the spherical tips, which

points to the interaction being more spatially confined for short tips [145] and reminds

of their larger field confinement observed in vacuum(Sec. 2.1.3).

I expect the shape of the tip apex to be a critical parameter for the discussed results

[126]. It will influence, for example, the achievable resolution, the sensitivity for sub-

surface imaging or the optimal amplitude. Due to this, many results have been discussed

not only on absolute terms, but relating them to the apex radius.
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This chapter studies imaging in aSNOM , including signal demodulation. I show the

shortcomings of using the spherical tip approximation and obtain demodulated images

for long tips. For the given conditions, the near field signal is sensitive to the first

nanometers of the substrate. A very good discrimination of the local information from

the inclusion is possible for small oscillation amplitude, scanning close to the substrate

and highly harmonic tip oscillation. Simulating scans along 2 dimensions is a natural

next step, but it could not be subject of this thesis due to the the high computational

requirements.



Chapter 5

Studying the detector response:

Interferometric measurement over

extended areas for oscillating tips

Up to now, I have directly used Eq. (1.1) to simulate the demodulation. I derive in

the present chapter this equation, and discuss in more detail how the optical phase and

optical amplitude combine over the whole area of the detector to result in the measured

value. I show that failing to account for the phenomena involved can easily result in

inaccurate predictions.

5.1 The model

5.1.1 The considered geometry

Different scenarios will be considered in this chapter, including the interference between

idealized beams or the scan of a beam focus by the tip. The most complex scenario,

in which the strong interaction between a tip and a sample is of interest is illustrated

in Fig. 5.1. The sample is homogeneous gold (Ch. 3), or a gold inclusion inserted in a

glass substrate (Ch. 4). The fields are collected by a lens considered perfect.

57
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Figure 5.1: Illustration of geometry used in this chapter. The scattered radiation is collected
by a lens and detected at the photodetector, usually after going through an aperture. The
reference beam is included for interferometric detection. To ease the discussion, I define one
axis system over the substrate and a second where the detector is placed.

Most relevant parameters have already been discussed in Sec. 1.2. Here, it will be

of interest to obtain the local fields at each position −→r of the detector area. This is

equivalent to considering a quadratic aperture which blocks most of the cross section

of the parallel beam. Both infinitesimal and finite apertures will be considered in this

chapter. As discussed, I consider only the component of the electric field contained in

the plane of incidence of the detector for the interferometric signal and I ignore the

constant contribution from the substrate (but not from the inclusion).

5.1.2 Modeling the detector response for each tip position

The expression used for the signal generated by a photodetector is derived here. I first

consider the signal generated by the detector for a particular position of the AFM tip.

The effect of oscillating the tip and detecting at the n−th harmonic of the tip frequency

is included next.

I start by considering the contributions to the total photocurrent from each areal

detector element. They are assumed to be proportional to the square of the local field
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modulus

I(−→r , d(ts)) ∝ |
−−→
Eref(

−→r ) +
−−→
Escat(

−→r , d(ts))|2 (5.1)

where
−−→
Escat refers to the fields scattered by the tip-sample system,

−−→
Eref to the fields

from an external reference source, and I to the signal generated by the photodetector.

I include explicitly the dependence on tip position d(ts) and the location −→r of the

photodetector element. In the following, I will use
−−→
Escat = |Escat| exp i (Ωt + Θscat) ê

and
−−→
Eref = |Eref | exp i (Θref + ϕ) ê. As was mentioned, I only consider the component

of the fields contained in the plane of incidence (linear polarization along ê). The phase

of the reference beam is divided into the absolute part, Θref , which is constant for a

given tip position and depends on the exact experimental conditions, and the relative

phase ϕ, which can be well controlled by changing the path length difference at the

interferometric arms and will be useful for homodyne detection (Ω=0). Ω 6= 0 refers to

the finite difference in frequency between the two beams used in a heterodyne scheme.

In typical experiments, |Eref | ≫ |Escat| and only the interferometric term
−−→
Escat ·

−−→
Eref , where the second factor is the complex conjugate of

−−→
Eref , is both significant and

dependent on d(ts). The signal obtained can be written as

I(−→r , d(ts), t) ∝ I0(
−→r , d(ts)) cos

(
Ωt + Θ(−→r , d(ts)) − ϕ

)
dr (5.2)

in which I0 = |Escat||Eref | and Θ = Θscat − Θref have been redefined to lighten the

notation. Although the signal from Eq. (5.1) will be positive, Eq. (5.2) refers to the

interferometric component and can be both positive and negative, relative to the large

constant contribution from |Eref |
2. Contributions from different positions −→r can thus

partially cancel, which turns out to be important for experiments.

Finally, I obtain the signal from the complete area of the detector as an integral over

the different contributions
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I∗(d(ts), t) ∝

∫

Adet

I(−→r , d(ts), t)dr (5.3)

It includes the influence of the interferometric phase and the extended nature of the

detector. This expression is strictly valid only for a static tip, but it is an excellent

approximation as long as the tip movement (∼ 105 Hz) is much slower than the time

dependence of the optical field (∼ 1015 Hz) , which is clearly verified in experiments.

Under such circumstances, the only change in Eq. (5.3) is that d(ts) is a function of time.

5.1.3 Modeling the detector response for an oscillating tip

In aSNOM the tip is typically oscillated at a frequency w ∼ 105 and the n−th harmonic

signal is measured. The signal obtained under such conditions is analyzed here.

To detect the n − th harmonic signal, a lock-in amplifier is used with a ref-

erence frequency Ω + nw, where Ω ∼ 108 is included for heterodyne detection

(Ω = 0 for homodyne detection). The lock-in response is modeled by the integral 1

1
T

∫ T

0
I(t)exp(i(Ωt + nwt + Θlock))dt. The result is a complex number, which carries in-

formation about both the amplitude and the phase. Θlock is a phase shift between the

electric reference signal and the internal phase of the lock-in amplifier, which will just

add to the final phase. Experimentally, T is often an interval much larger than the

periods associated with Ω and w. Considering Eq. (5.3), a very general expression is

directly obtained

Hn =
K

T

T∫

0

∫

Adet

I0(
−→r , d(ts)) cos

(
Ωt + Θ(−→r , d(ts)) − ϕ

)
ei(Ωt+nwt+Θlock)drdt (5.4)

The movement of the tip is often modeled as an oscillation along the z axis described

by d(ts)(t) = dmin +A[1 + cos(wt)], where dmin is the position of the tip when closest to

1The sign of the exponential can be chosen as positive or negative, and depends on the particular
implementation of the lock-in.
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the substrate, A the oscillation amplitude and w the corresponding angular frequency.

However, the equations obtained in this section apply to generic periodic movements,

i.e., they also describe the case of anharmonic motion.

Eq. (5.4) can be further developed for two relevant experimental set-ups, heterodyne

interferometry and a homodyne scheme that uses two measurements in quadrature. I

will show that for typical conditions they result in exactly the same algebraic expressions:

Which set-up to use is then a question of experimental convenience. The heterodyne

scheme requires two beams of slightly shifted frequencies, while the homodyne scheme

needs two successive measurements.

Heterodyne detection scheme

The heterodyne case corresponds to Eq. (5.4) for two beams of different frequency

(Ω 6= 0). Here ϕ is constant and is considered to be zero. Writing the cosine as a

sum of two exponentials, two terms of the form exp
[
i(2Ωt + nwt + Θlock + Θ(r, d(ts)))

]

and exp
[
i(nwt + Θlock − Θ(r, d(ts)))

]
appear in the time integral. The first exponential

integrates to zero for large T and the final expression is obtained

Hn ∝
eiΘlock

2T

T∫

0




∫

Adet

I0(
−→r , d(ts))e−iΘ(−→r ,d(ts))dr



 einwtdt (5.5)

which corresponds to Eq. (1.1) and completes the derivation.

Homodyne detection scheme

Homodyne schemes are characterized by Ω = 0. The path length phase difference ϕ

is assumed controllable by changing the optical path of one of the beams. I consider

a typical technique which combines at each pixel two measurements taken for ϕ and

ϕ+π/2. Alternative techniques modulate ϕ continuously, or measure for more than two

values of ϕ, but the general concept is similar [146]. More explicitly, I define the final

signal as Hn(ϕ = 0) ± iHn(ϕ = π/2), where each term refers to the result of Eq. (5.4)



62 CHAPTER 5. STUDYING THE DETECTOR RESPONSE:...

for the corresponding value of ϕ. The resulting expression is of the form

Hn ∝
1

T

T∫

0




∫

Adet

I0(
−→r , d(ts))

[
cos

(
Θ(−→r , d(ts))

)
± i sin

(
Θ(−→r , d(ts))

)]
dr



 ei(nwt+Θlock)dt

(5.6)

The cosine and sine terms can be combined into a complex exponential. If the minus

sign is chosen, Eq. (5.5) is again obtained, which shows the fundamental equivalency of

homodyne and heterodyne detection schemes. This only holds as long as the signal from

the interferometric term predominates, an assumption typically verified for aSNOM

measurements. Notice also the equality only holds because measurements from several

values of ϕ are combined, otherwise homodyne and heterodyne measurements present

considerable differences [147].

5.2 Results

In this section, I first compare briefly interferometric and noninterferometric detection.

Afterwards, I emphasize three aspects of the former that can be deduced from Eq. (5.5)

and that are important for measurements. First, in addition to the intensity, the phase

is also modulated by the oscillation of the tip. Secondly, the change of phase over the

area of the detector results in constructive and destructive interferometric contributions

to the integral which diminishes the magnitude of the total signal. And last, as the fields

are in general a function of −→r , using an aperture to select a particular area affects the

signal generated by the photodector. I will consider here several experimentally relevant

situations which serve to illustrate the importance of these phenomena for aSNOM .

Instead of directly evaluating the complex Eq. (5.5), I will select for each example the

terms responsible for the effect under analysis.
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Figure 5.2: Simulated amplitude detected for a scan over a gold inclusion, as described

in Ch. 4. Second harmonic demodulation, A = 10nm, d(i) = 1nm and dmin = 1nm were
considered. The traces are normalized to the values at x = 0. The continued line corresponds
to interferometric detection, and the dashed to noninterferometric detection.

5.2.1 Interferometric and noninterferometric detection

Interferometric detection is used throughout this thesis, because it typically results in a

stronger signal and allows to obtain information about the optical phase. I discuss here

how images obtained with an interferometric and a noninterferometric scheme can differ

even qualitatively, with the near field signal from a gold inclusion more easily detected

with the interferometric scheme [128].

Writing the lock-in amplifier response as Hn ∝ 1/T
∫ T

0
I∗ exp (inwt), I∗ =

∫
Adet

I0(
−→r , d(ts))e−iΘ(−→r ,d(ts))dr corresponds to an interferometric scheme(Eq. (5.5)). For

noninterferometric detection, I∗ =
∫

Adet

−−−−−−→
S(r, d(ts))d

−→
A is considered, i.e, the integral of

the Poynting vector average over the area of the detector.

I illustrate in Fig. 5.2 the simulated amplitude obtained for interferometric and

noninterferometric scans over a gold inclusion. For the interferometric measurement,

the maximum from the tip-inclusion interaction clearly dominates the demodulated

signal. A very different behavior is observed for the noninterferometric scheme, where a

signature of the interaction appears near |z| = 0 but is not the global maximum of the

signal for the scanning conditions chosen. It seems easier to discriminate the near field

signal from the background for the interferometric scheme.
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5.2.2 Phase modulation for an oscillating tip

For lock-in detection and sufficiently low oscillation amplitude, a Taylor series expansion

of the signal as a function of tip position can be used to express the n-th harmonic as

proportional to the n-th derivative, in the direction of oscillation of the tip, of the

complex valued signal generated at the detector. However, the amplitude read at a

lock-in amplifier is not proportional to the n-th derivative of the optical amplitude,

which is shown here by explicitly dividing the complex-valued signal into real valued

amplitude and phase. I obtain an analytical expression for the scan of beams in vacuum

which serves to illustrate the consequences of the phase modulation to experiments,

also under more general conditions. Some of the phenomena have also been discussed

in [148].

As I am not interested here in the spatial field distribution over the detector area, I

write Eq. (5.5) as

Hn ∝
1

T

T∫

0

|I∗(d(ts))|e−iΘ∗(d(ts))ei(nwt+Θlock)dt (5.7)

in which |I∗|e−iΘ∗

represents the result of the integration over r. At this level of analysis,

it is enough to know that they depend on the position of the oscillating tip (and thus

on time).

Planar waves

I consider a simple case first, in which the amplitude of the fields |I∗(d(ts))| = |I∗
cte|

is kept constant and the phase Θ∗(d(ts)) is considered to vary linearly with the phase.

This corresponds to a tip in vacuum under planar illumination. Assuming a perfectly

harmonic movement of the tip, Θ∗(d(ts)) = Θlock − α + βA cos(iwt), where α and β are

real constants. Eq. (5.7) becomes
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Hn ∝
1

T

T∫

0

|I∗
cte|e

inwt+iα−iβA cos(iwt)dt (5.8)

Using the equality

e−iβA cos wt =
∞∑

m=−∞

i−mJm(βA)e−imwt (5.9)

where Jn is the bessel function of order n, a sum of terms appears in the integral. All

integrate to zero except for m = n and finally

Hn ∝ i−n|I∗
cte|e

iαJn(βA) (5.10)

Even in the considered case of constant amplitude of the fields, the phase modula-

tion results in a signal contribution from all the harmonics. The amplitude for the

n-th harmonic is proportional to the field amplitude (and not its derivatives, as when

complex-valued signals are considered) and to the Bessel function of order n, Jn(βA).

|βA| may be interpreted as the change of phase from the center to the outer points of

the oscillation.

The obtained equation is illustrated in Fig. 5.3, in which the evolution of the different

harmonics as a function of the amplitude is plotted. Although the illumination is not

strictly planar, it varies sufficiently slowly for Eq. (5.10) to be approximately valid.

An excellent fit is obtained, with the slightly bigger deviation in the zeroth harmonic

probably due to residual background contributions. Only two fitting parameters have

been used for the four plots, β and a scaling factor for the intensity. A proportional error

between the estimated and the real oscillation amplitude (Sec. 6.3) is also corrected by

the fitting of β. Notice that if β is known, the obtained curves may be used to calibrate

the oscillation amplitude ( [149]).

Gaussian beams

To illustrate the behavior of the solution for spatially variable amplitude of the field,

I choose an example which is relevant for experiments and which allows to obtain a
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(a) (b)

(c) (d)

Figure 5.3: Theoretical (line) and measured (dots) modulus of the signal amplitude detected
from a harmonically oscillated tip under weakly focused illumination. The oscillation am-
plitude is changed for the (a) 0th, (b) 1st, (c) 2nd and (d) 3rd harmonics. One set of two
parameters was used to fit all the curves

relatively simple analytical expression: the scan of a weakly focused beam by a tip

whose oscillation amplitude is sufficiently small. Such scans can be useful for the correct

optical alignment (Sec. 6.2).

In the considered scenario, |I∗| is assumed proportional to the local fields at the

apex at least for illumination polarized in the plane of incidence (plane xz)2 . Scanning

a beam thus serves to characterize its field distribution. I develop |I∗| in a Taylor series

around the center of oscillation and assume sufficiently small oscillation amplitude, A,

obtaining

|I∗(t)| =

∞∑

k=0

1

2kk!
I∗(k)Ak cos(kwt) (5.11)

where I∗(k) refers to the kth derivative. For a sufficiently weakly confined beam, the

variation of the phase with tip position may be modeled as linear. If the exponential

2From Sec. 2.1.2 and assuming that the integral over the field amplitude is proportional to the
square root of the integral over the intensity A correction could be present for inhomogeneous field
distribution(Secs. 5.2.3,5.2.4).
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exp
(
−iΘ∗(d(ts))

)
is expanded again in a series of Bessel functions,

Hn ∝
eiα

T

T∫

0

∞∑

k=0

1

2kk!
I∗(k)Ak eikwt + e−ikwt

2
einwt

∞∑

m=−∞

i−mJm(βA)e−imwtdt (5.12)

is obtained. Only the terms k = |m− n| remain after the integration for large T, which

gives

Hn ∝
eiα

2

[

I∗0i−nJn(βA) +

∞∑

m=−∞

1

2|m−n||m − n|!
I∗(|m−n|)A|m−n|i−mJm(βA)

]

(5.13)

The first term of the sum accounts for the special case m = n. As expected, the obtained

equation simplifies to Eq. (5.10) in the limiting case of infinitely slow spatial variation of

the fields (I∗(|m−n|) −→ 0 for m 6= n). However, when the derivatives cannot be ignored,

the amplitude and the phase read in a lock-in amplifier will be a complex combination

of contributions from both the optical amplitude and phase. Even for small oscillation

amplitudes, the n-th harmonic is not simply proportional to the n-th derivative of the

(real valued) optical amplitude. Also, the phase read at the lock-in amplifier is in general

not simply the phase at the center of oscillation.

I illustrate next how Eq. (5.13) helps to interpret experimental scan images of focused

beams. Considering only the terms of order A for the first harmonic, and remembering

that Jm(βA) is of order Am for small amplitudes, the first harmonic can be written

H1 ∝
eiα

2

[
1

2
I∗(1)AJ0(βA) − 2I∗(0)iJ1(βA)

]
(5.14)

For sufficiently slow variation of the fields, the first term may be ignored and the mea-

sured signal is basically proportional to I∗(0) and thus to the local fields. Such behavior

can be seen in Fig. 5.4(a), a typical first harmonic scan near the focus. It does indeed

look like an oblique (to account for the angle of incidence) cut through the focus of a
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(a) (b)

Figure 5.4: Scans of the beam at the first harmonic. (a) represents a typical scan, (b) has
been done under the same conditions as (a) but with as oscillation amplitude close to the
first zero of the bessel function of zeroth order. The signal is considerably weaker in (b), and
different color scales are used for better visibility. The image size is 20x20 µm in both cases.

gaussian beam.

However, if the oscillation amplitude is chosen such that the first order bessel function

approximately cancels (and assuming that it is still small enough for Eq. (5.14) to

be valid), the signal is then approximately proportional to the derivative of the field.

Fig. 5.4(b) illustrates how the image obtained can indeed completely change. Two lobes

are now obtained, with a minimum near the position where the maximum was found

before. Notice that at the position of the focus, a global maximum, the first derivative

is indeed expected to cancel.

5.2.3 Phase distribution over the detector

In this section I examine some consequences of the dependence of the fields on the

position at the detector −→r . In particular, the absolute value of

∫

Adet

I0(
−→r , d(ts))e−iΘ(−→r ,d(ts))dr (5.15)

can be much smaller than for a constant phase. The reason is that the phase can

vary quickly between 0 and π radians, and constructive and destructive contributions
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Figure 5.5: Scheme illustrating the interference between (a) two planar waves with slightly
different incidence angle and (b) two gaussian beams with wave fronts of different radius of
curvature. Linear (a) and concentric (b) fringes can be observed at the detector due to the
succession of constructive and destructive interference. (c) represents the evolution of the
integral over the area of the detector in the scenario illustrated in (a), as a function of φ

will partially cancel. Notice that although the contribution from each position of the

detector will be positive for the complete signal, only the interferometric term is being

discussed here, which can be both positive and negative.

Phase distribution for planar waves and gaussian beams

I begin with some examples which are not specific to aSNOM but more general to

interferometric measurements. They are well known and I discuss them only briefly

here. First, I consider two planar waves that are identical except for a slightly different

propagation direction. This scenario is sketched in Fig. 5.5(a). An interference pat-

tern is observed at the detector, with bright (dark) horizontal fringes at the positions

of constructive (destructive) interference. The integral over the interferometric term

Eq. (5.15) is proportional in this case to

I∗(d(ts)) ∝ a
sin

(
|~k|a

2
sin(φ)

)

|~k|a
2
sin(φ)

(5.16)

where φ refers to the difference of angle between the beams and a to the lateral size of

the detector. The detector is normally much bigger than the wavelength (|~k|a ≫ 1),

and even for relatively small values of φ the complex exponential oscillates very fast and

contributions with π radians phase difference cancel. As an example, the dependence of
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Figure 5.6: Measured amplitude (a) and phase (b) of the signal at the photodetector by
changing the place of an iris blocking the beam except at the desired area. The scattered
beam was collected by a lens with solid angle NA ∼ 0.25. λ ∼ 865nm.

the integral with φ is plotted in Fig. 5.5(c), for λ = 514nm and a = 1mm.

Next, I consider two parallel gaussian beams, as schematically shown in Fig. 5.5(b).

Real beams cannot be perfectly collimated, and thus the wave fronts exhibit finite

curvature radii. If these values differ between the two beams used, the phase difference

will not be constant over the area of the detector. For otherwise identical beams,

concentric interference rings appear. Positive and negative contributions to the integral

ensue again, and the total total signal generated by the photodetector will be smaller

than for constant phase difference.

Both effects may in principle be avoided with an adequate beam alignment. Fig. 5.6

illustrates a typical situation in my measurements in which a perfectly constant phase is

not achieved, as will be discussed in Ch. 6. I used an iris to block the beam except in a

small region, which allows for a spatial map of both the amplitude (Fig. 5.6(a)) and the

phase (Fig. 5.6(b)) of the interferometrically measured signal. The phase is projected

onto the interval [0..360), which explains the abrupt jumps on the signal. It illustrates

the radial variation expected from the previous discussion. At the center of this radial

pattern the phase changes slowly, the signal integrates (mostly) constructively over all

the area of the used iris and a strong lock-in amplitude signal is obtained. Under the
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Figure 5.7: Calculated phase (−Θscat) distribution at the detector for a tip over a gold
inclusion in a glass substrate for the tip situated at (a) 1nm and (b) 50nm above the substrate.
The inclusion is at depth dmin = 1nm, and the tip at x = y = 0. (c) Signal detected considering
just the phase distribution on (a), as a function of the size of the side of an aperture used
to block most of the beam. The different curves corresponds to changing the position of the
aperture, the numbers referring to the locations indicated in (a). “phase=0” correspond to
the idealized case in which the phase is constant over the detector.

conditions plotted here, increasing the size of the iris will not increase the signal from

the photodetector if the additional signal is of opposite sign.

Phase distribution for the backscattered beam

For perfect alignment and gaussian beams, it is possible to obtain a constant phase

difference over the complete area of the detector. However, this could be impossible in

an aSNOM measurement, as the fields scattered by the tip-substrate system can present

a complex spatial variation that depends on the tip position. To study this case, the

scattered fields calculated for the geometry illustrated in Fig. 5.1 are used.

The phase distribution of the scattered fields on the detector is represented in

Fig. 5.7(a) for a 500nm long tip. The sample consists of a glass substrate with a spher-

ical gold inclusion at depth dmin = 1nm. The tip is situated 1nm above the substrate

directly over the inclusion(Ch. 4).

The observed phase is not homogeneous, but presents a fringe-like pattern. Moreover,

the phase distribution depends on the exact experimental conditions, as illustrated in

Fig. 5.7(b). Here, the tip has been displaced to a 50nm distance to the substrate,

where no strong near field interaction is present. The main difference between both

distributions is a larger variation of the phase in Fig. 5.7(a) for z′ ∼ 200µm. I have also
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verified that for a tip at a 1nm distance of a homogeneous gold substrate, horizontal

fringes are still obtained on the phase distribution, but the variation of the phase over

the area of the detector is slower than for the gold inclusion.

To illustrate the consequences of the phase distribution, I simplify I0(
−→r , d(ts)) in

Eq. (5.15) to a constant and set the phase of the reference beam to zero. A term of

the form
∫

Adet

e−iΘscat(r,d(ts))dr is left, Adet corresponding here to the area of the aperture

in Fig. 5.1. The module of this integral will be smaller than for a constant phase. In

particular, contributions to the integral with a π radians phase difference will add up

destructively

The behavior of the module of the integral is illustrated in Fig. 5.7(c), for the phase

distribution from Fig. 5.7(a). The integral is calculated as a function of aperture size,

for three different positions of the aperture, all for y′ = 0 and for increased values of

z′. For comparison, I also obtain the signal to be obtained for a homogeneous phase

distribution. As expected, the signal for a realistic phase distribution and finite aperture

is smaller than if the phase were constant all over the detector. In some cases, a larger

aperture does not result in a noticeable larger signal.

5.2.4 Location of the detector area element

I concentrate here on another important consequence of the dependence of the fields on

−→r [150]. The inhomogeneity of the field distribution has been suggested to improve the

aSNOM signal to noise ratio [151]. I show here for a realistic imaging scenario, including

demodulation, how the position of the aperture can affect the simulated images not just

with a uniform global factor in the intensity but also pixel by pixel with a variable

factor.

With this goal in mind, I calculate the demodulated signal obtained from the detector

element at −→r

Hn(−→r ) ∝
1

T

T∫

0

I0(
−→r , d(ts))e−iΘ(−→r ,d(ts))einwtdt (5.17)

It corresponds to considering a minute aperture whose position is being changed. The
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(a) (c) (e)

(b) (d) (f)

Figure 5.8: Distribution of the amplitude of the signal over the detector, in arbitrary units.
The first row correspond to the continuous component, and the second to the signal demod-
ulated by the lock-in amplifier for the third harmonic. For the demodulation, an oscillation
amplitude of 10nm is considered. (a,b) correspond to a tip strongly interacting with a homo-
geneous gold substrate, with the minimum distance dmin = 1nm and (c,d) to dmin = 100nm.
(e,f) correspond to a tip directly, dmin = 1nm, over a gold inclusion situated in a glass substrate
at 1nm depth, d(i). The positions marked will be used as a reference in later graphs.

phase and module of the reference beam is assumed to be constant over the area of the

detector and polarized along the z′ axis. The amplitude and phase for the scattered

beam are simulation results, where also the z′ component is considered.

Fig. 5.8(a) shows the amplitude of the continuous component generated by the pho-

todetector (equivalent to calculating H0 in Eq. (5.17)) as a function of −→r for a 1.4µm

long tip situated at 1nm distance above a gold substrate. Fig. 5.8(b) shows the distribu-

tion of the third harmonic signal for a 10nm oscillation amplitude and dmin = 1nm. In

both cases, fringe-like patterns parallel to the horizontal y′ direction appear [151], with

clear changes along the z′ axis. The positions where maximum and minimum signal

is obtained is however a function of the harmonic. The first and the second harmonic

present also fringe-like patterns, with the second harmonic being similar to the third.

The field distribution also depends strongly on other experimental parameters.
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Figure 5.9: Spatial distribution of the fields at the detector, measured by displacing the
position of an aperture and recording the amplitude read at the lock-in amplifier. (a,b) are
measured with the tip oscillating close to a metallic substrate, for the first (a) and third
(b) harmonics. (c) correspond to the first and (d) to the second harmonic without a closely
situated substrate for noninterferometric detection. Commercial Silicon tips are used; in (a,b)
the native oxide layer have been etched to increase the strength of the interaction between the
tip and the substrate. λ ∼ 820nm is used. The scattered beam was collected by a lens with
solid angle NA ∼ 0.25. Different color scales are used in the images.
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Fig. 5.8(c,d) show the continuous component and third harmonic over the area of the

detector for conditions as before except dmin = 100nm. Fig. 5.8(e,f) are the equivalent

plots for the tip strongly interacting with a spherical gold inclusion in a glass substrate.

Fringes are always obtained, but their width, visibility and the position of the minimum

and maximum depend on the exact conditions considered. In particular, a faster varia-

tion along z′ is observed for the tip over the gold inclusion than over the homogenous

gold. Notice that the third harmonic signal for short tip-substrate distance is dominated

in both cases by a very similar physical phenomenon, the near field interaction between

a silicon tip and a gold structure.

I have found experimental indications of some of the phenomena above. Fig. 5.9(a,b)

show the field distribution measured interferometrically for the first and third harmon-

ics, for a tip oscillating directly over a metallic substrate. Fig. 5.9(c,d) represent a

different set of measurements for the first and second harmonic without any closely sit-

uated sample, measured noninterferometrically, which avoids the complications involved

in optimizing the interferometry over a large area of the cross section of the beam. Each

pixel corresponds to a different position of an iris which blocks the scattered and ref-

erence beam except for the area to be measured. As in the simulations, the positions

of the maxima and minima of the signal are a function of the observed harmonic. In

Fig. 5.9(a,c), indications of a fringe structure of the pattern are also observed.

The maxima and minima on the third harmonic clearly indicate that the position of

the aperture can affect the strength of the detected signal. Further, Fig. 5.8 shows the

signal over the area of the detector to be a function of the environment of the tip -which

can change, for example, by scanning a sample. The question arises to what degree the

position of the aperture will affect the general appearance of obtained images.

To further explore this aspect, I simulated the imaging of a gold inclusion in a

similar way as in Ch. 4. Instead of the integrated signal over the detector area, I use

here the fields at single points of the detector. The demodulated signal for the second

and third harmonics are presented in Fig. 5.10(a,b), for an inclusion at 1nm depth, 10nm
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Figure 5.10: (a,b)Simulated amplitude detected at the lock-in when scanning a gold inclusion
on a glass substrate for demodulation at the second (a) and third (b) harmonics, for an
aperture situated at different points of the detector. 10nm oscillation amplitude and 1nm
closest distance between tip and substrate have been chosen. The labels refer to Fig. 5.8(e-f).
(c,d) is calculated with identical conditions than (a,b), but after setting the value of the optical
phase to zero.
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Figure 5.11: Simulated phase detected at the lock-in when scanning a gold inclusion on a
glass substrate for demodulation at the second (a) and third (b) harmonics, for an aperture
situated at different points of the detector. 10nm oscillation amplitude and 1nm closest dis-
tance between tip and substrate have been chosen. The indicated labels refer to Fig. 5.8(e-f).
Each trace is shifted a different amount vertically for better visibility.
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oscillation amplitude and a minimum distance to the substrate of 1nm. The different

traces correspond to several points at the detector situated at y′ = 0 and increasing

z, as indicated in Fig. 5.8 (e,f). The position clearly influences the strength of the

detected signal. Also, an effect beyond a simple scaling is found (Fig. 5.10(a,b)), as

clearly apparent in the second harmonic. In particular, the ratio between the signal

obtained for the tip directly over the inclusion and far from it can be maximized by

adequately choosing the detector position. The qualitative behavior of the image is,

however, mostly independent of the position of the aperture, which is promising for

experimental reproducibility.

As the optical phase is included in the calculations, it is possible to obtain the phase

that would be measured with a lock-in amplifier, and in particular its dependence on

the aperture position. Notice, for example from combining the cosine and sine terms in

Eq. (5.6) into an exponential, that there is a certain arbitrariness on phase sign, which

depends on the exact experimental implementation. An example of the phase is shown

in Fig. 5.11 for the second and third harmonic for the same positions of the aperture.

A signature from the tip interaction with the gold inclusion is observed, and thus the

phase also allows to obtain local information about the substrate. The change of phase

due to the presence of the inclusion is, however, small.

To conclude, I study the effect of neglecting the phase on the imaging process.

Fig. 5.10(c,d) shows simulated images obtained in the same way as Fig. 5.10(a,b), but

with the optical phase set to zero. While some curves in Fig. 5.10(c,d) look qualita-

tively similar to those in Fig. 5.10(a,b), with a clear maximum when the tip is situated

directly over the inclusion, others present a weaker maximum or not maximum at all.

It illustrates the importance of including the phase for reliable simulation results.

5.3 Discussion and conclusion

In this chapter, I first compare interferometric and noninterferometric detection to illus-

trate that how the scattered fields are detected can influence the obtained images. While
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in both cases near field information is achievable, the simulated images which assume

interferometric detection show a more clear signature from a gold inclusion, a further

advantage beyond the usually discussed enhancement of signal strength and capability

to obtain phase information.

Secondly, I use Eq. (5.5) to study diverse aspects of the aSNOM interferometric

imaging process. In particular, the detector signal results from different contributions

from each area element and it is affected by the interplay of optical phase and amplitude.

For a better understanding of the consequences of the optical phase dependence

on tip position, I chose a model that allows to arrive at a relatively simple analytical

expression, Eq. (5.13), sufficient to describe fields of low spatial frequencies. It provides

a key message also valid for more general interferometric conditions: both the optical

phase and amplitude of the local fields affect simultaneously and in a nontrivial manner

the amplitude and phase read at a lock-in amplifier. To disentangle the contributions

from the optical phase and amplitude, a more sophisticated scheme has to be used.

Fig. 5.10 directly illustrates for a scan over a patterned substrate the importance of

including the optical phase to accurately simulate the amplitude read at the lock-in

amplifier.

When Eq. (5.13) is applied to beam scans (Eq. (5.14)), it illustrates, together with

Fig. 5.4, the possible dramatic changes in the nature of the detected signal: it changes

from being mostly proportional to the local field amplitude to being sensitive to its

first derivative merely by varying the tip oscillation amplitude. A method to cancel

background components, at least those of approximately constant amplitude and linearly

varying phase, has been suggested on the basis of similar considerations by Gucciardi

et al. [148].

It is also necessary for a complete understanding of aSNOM to notice that the fields

at the detector are not necessarily homogenous, with a different contribution to the total

signal from each area element. As a simple example, it explains why a precise alignment

of the interfering beams is crucial. Differences of the incidence angle or the wavefront
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curvature radius between the interfering beams severely decrease the strength of the

received signal.

I have further shown that, independently of the alignment, the fields scattered by

the tip do not have to be homogeneous over the detector. Horizontal fringe patterns

clearly appear on the simulations for both the optical amplitude and phase, and promis-

ing experimental indications have also been found. To obtain a good correspondence

between both, a detailed knowledge of the experimental conditions is important. As a

hypothesis, sharp and geometrically regular tips may be necessary to obtain a fringe

visibility in the experiments as good as in Fig. 5.8. The influence of the experimentally

used lens has also been suggested to spread the pattern [151]

Ideally, the contribution from each area element of the detector would be separately

recorded and processed, thus obtaining different signal channels. The images obtained

depend on the channel being considered, the influence going beyond the strength of

the obtained signal. The changes on the overall shape for the examples presented in

this chapter were not dramatic, mostly qualitative, but certainly not given by a simple

uniform factor. Further studies are necessary to check whether this holds true for other

tip sample geometries (and also other illumination and light collection schemes) or if

more dramatic effects are possible. As an example, I have obtained a different spatial

distribution of the signal over the detector when the tip is interacting with a gold

homogenous sample, or with a small gold inclusion. The channel being considered is

thus influencing the signal ratio between structures of the same material but different

shape.

The multichannel scheme described is experimentally very challenging, but it is easy

to select one channel of interest by using an aperture. This often implies a weaker

intensity of the remaining radiation, but assuming the aperture is large enough for a

good signal to noise ratio, this is not necessarily a critical concern. The extra degree

of freedom obtained by changing the position of the iris could then compensate the

decrease on signal level.
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Further, due to the interferometric nature of the measurement, the decrease on the

signal strength due to the aperture is in general smaller than if the phase in Eq. (5.5)

were constant over all the detector. If different contributions partially cancel because of

a ∼ 180◦ phase difference, it is even possible to increase the signal level by reducing the

effective detector area with an aperture of adequate size. Indeed, with my experimental

set-up, a nonmonotonic dependence of the strength of the signal with the size of the

aperture has often been observed. Here, the changes on the phase difference over the

detector were probably predominantly introduced by difficult to avoid imperfections in

the experimental conditions, such as different wavefront curvature of the beams. An

additional contribution is to be expected from the spatial variation of the scattered

beam’s phase, as discussed in Sec. 5.2.3. In Fig. 5.7, the decrease on the achievable

signal due to this source of phase variation was small, but may gain in significance for

other geometries.

Lastly, the possibility to image using the lock-in amplifier phase was also considered.

Comparing Fig. 5.10(a,b) and Fig. 5.11 suggests that the lock-in amplifier amplitude

is more convenient to identify the presence of sub-surface structures, as the phase sig-

nature from the inclusion is relatively weak. Phase imaging was, however, useful for

some experimental aSNOM studies [23, 152], and the capacity to obtain it is a further

advantage of my simulations.

In this chapter I have shown that a complete modeling of the signal given by a detec-

tor, including phase modulation and the different contributions from different areas of

the detector, is necessary to accurately model aSNOM , and offer new ways to optimize

experiments.



Chapter 6

Experimental Set-up and

procedures

In the previous chapters I have already presented several experimental results that

illustrated the connection between the different theoretical scenarios considered and

real measurements. Many of the characteristics of the used set-up have already been

described [153]. A brief overview is given in this chapter, together with a more detailed

description of an alignment procedure that I developed to reduce the time required

for convenient near field discrimination. Last, I discuss the influence of excitation and

detected polarization on the experiments, and show how a careful control can facilitate

passive measurements. The measurements in Ch. 7 will make use of the techniques

described here.

6.1 General description of the set-up

Fig. 6.1 shows a scheme of the experimental set up typically used in this thesis. It

corresponds to a homodyne scheme that makes use of two consecutive measurements in

phase quadrature. Fig. 5.3 was obtained with a heterodyne scheme [153, 154]. I have

shown in Sec. 5.1.3 that both are equivalent under typical experimental conditions.

The laser radiation from a tunable Ti:Sa laser is transmitted by a fiber optic and

81



82 CHAPTER 6. EXPERIMENTAL SET-UP AND PROCEDURES

K
S
1

K
S
1

K
S

1

Periscope

Photo-
Detector

Atomic Force Microscope

AFM
Head

Reflector

Focussing
Lens 1

Nanopositioning
Stage

Beam-
splitter 1

Beam-
splitter 2

Reference Beam

100 mm

Fiber Output
Collimator

Excitation Beam

Focussing
Lens 2

Polarizer 2

Polarizer 1

Detected
Beam

Iris
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collimated at the output. The beam is split at the first beam-splitter, and two beams are

obtained labeled excitation and reference beam. After going through a linear polarizer,

the excitation beam is focused near the apex of the tip and the backscattered radiation

is collected and collimated by the same lens used for the focusing. It is then mixed with

the reference beam at a second beam splitter, the resulting interference beam being

referred to as detected signal. After choosing the analyzed polarization at a second

linear polarizer, an iris allows to select which area of the cross-section of the beam

is actually used for the measurement. As the area of the photodetector is relatively

small in our experiments, a final lens focuses the signal to ensure that all the remaining

beam –for any position and size of the iris– is utilized. The electrical signal from the

photodetector is fed to a dual phase lock-in amplifier that discriminates the signal at

the n − th harmonic of vibration of the tip.

One of the guiding principles when deciding the position of the different optical

components was to have independent control over the excitation, reference and detected

beam: the different paths are long enough to allow modifying the original beams. Here,

I have made use of this freedom to control the polarization of the detected and exci-

tation beams [155, 156]; more complex transformations are also possible. Beyond the

applications described below, control of the polarization in aSNOM can be used, for

example, for magnetic measurements [45].

The desired signal is a combination of two different measurements (Sec. 5.1.3), which

differ by a ∼ 90◦ phase change of the reference beam. The optical path is controlled by

the mirrors labeled ”reflector” in Fig. 6.1, which are mounted on a piezo stage controlled

by the computer. To be able to determine which voltage must be applied to achieve the

90◦ change, a first calibration measurement is taken in which the voltage is continuously

changed over a sufficiently large range. It can be seen from Eq. (5.4) (for Ω = 0) that

a periodic signal is obtained, from which the relationship between applied voltage and

difference of optical phase can be extracted.

For the measurements, the distance between tip and sample has to be carefully
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controlled. Here, a standard atomic force microscope (AFM) mechanism is used, in

which the tip is vibrated perpendicularly to the sample ( z direction) at a fixed frequency.

By monitoring the position along z that is required to keep the oscillation amplitude

constant, the topography is obtained together with the optical information.

aSNOM is a scanning technique, in which values have to be recorded for each pixel

of an image, i.e., for each position of the nanopositioning stage. The latter is displaced,

not the tip, to avoid altering the optical alignment between the tip and the focus of

the excitation beam. As explained, the tip is moved along the z axis to follow the

topography, but the displacement required is typically much smaller than the waist

radius of the beam.

To speed up the measurement, a complete line is obtained for a given reflector posi-

tion by continuously moving the nanopositioning stage while recording the lock-in signal

periodically. Afterwards, the complete line is taken again with the shifted reflector po-

sition and each pair of values corresponding to the same location is mathematically

combined as required. I usually take two images simultaneously (i.e. four values are

measured for each location), the first in the forward direction and the second for the

backward direction. I have verified that the influence of the scanning direction in the

images discussed in this thesis is small and do not affect their interpretation. A me-

chanical artifact [133,134] sometimes present in aSNOM measurements is thus of little

significance in this thesis.

6.2 Optical alignment

For aSNOM , it is desired to place the apex of the tip near the focus of the illumina-

tion, which increases the energy density at this crucial region of the tip and diminishes

it elsewhere. Further, the backscattered fields from the apex will be then efficiently

collected by the same lens as used for the focusing. Afterwards, the collected radiation

is led to interfere with the reference beam, a process that also requires careful control.

In this section I will describe the techniques used during my work to better handle these
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Figure 6.2: Example of a beam scan, for noninterferometric detection at the first harmonic
and illumination polarized in the plane of incidence. The complete picture corresponds to a
20 × 20µm area.

experimental steps. They are usually necessary after each tip change, so that speed and

reproducibility are important considerations. If the final measurement requires both

polarizers to be oriented at mutually perpendicular directions (Sec. 6.4), the alignment

is performed for a different orientation of the second polarizer. Otherwise the signal is

greatly diminished and the alignment complicated.

6.2.1 Characterizing the focus volume

As mentioned, it is important to locate the position of the focus with respect to the tip,

and ideally to characterize its field distribution. The method described here was found

to be useful.

With the help of cameras to observe the general area under illumination, and the

cantilever shadow, it is possible to obtain a first rough alignment by moving the relevant

mirrors. Afterwards, successive scans of the beam [105,106] at different tip heights are

obtained, and a 3-dimensional view of the scattered fields emerges. Knowledge about

the local fields can be obtained by assuming that the scattered intensity is proportional

to the square of the electric fields at the position of the tip apex, as suggested by the

results in Sec. 2.1.2 at least for illumination polarized in the plane of incidence (plane
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xz).

While an interferometric measurement is possible, it requires to have a correct align-

ment, something more easily done after the focus is found. Thus noninterferometric

measurements are used, typically at the first harmonic. For sufficiently small oscillation

amplitude, the first harmonic is approximately proportional to the first derivative of

the detected signal with respect to the direction of oscillation. Notice that the signal of

the detector for a noninterferometric scheme is a function of the (real valued) scattered

intensity and the discussion in Sec. 5.2.2 does not apply.

For the assumed proportionality relationship between the square of the local fields

and the scattered fields intensity, a horizontal map of the fields across the focus of a

gaussian beam will show a zero at the center and two lobes at either side. Such pattern

is indeed observed in Fig. 6.2, where a beam diameter of a few micrometers can be

estimated. Fig. 5.4 and Fig. 6.2 serve to compare interferometric and noninterferometric

schemes. The idealized interferometric measurement is proportional to the local fields

amplitude or to its derivative, the latter for a particular oscillation amplitude. The

idealized noninterferometric measurement is proportional to the derivatives of the square

of the local fields. Thus, only for adequate oscillation amplitude is the interferometric

measurement strongly sensitive to the derivative of the local fields and the corresponding

image can be similar to those from noninterferometric schemes.

Experimentally, a strong signal is also obtained when the beam is focused at certain

locations of the cantilever far from the the apex. This could be due, for example, to a

strong scattering from corners. With the help of cameras and some knowledge of the

tip and illumination geometry, such undesired maxima of signal can be recognized and

avoided.

Once the fields have been mapped, it remains to decide where to place the tip.

Although the estimated center of the focus looks as a promising first choice, I have

found experimental indications of an improved near field discrimination when the tip is

placed close but not exactly at this position– in my case, at the upper frontal region of
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the focus volume. At this stage, the reason of this observation is not clear.

6.2.2 Interferometry

I discussed in Sec. 5.2.3 how, even for the interference between two ideal gaussian beams,

imperfections in the alignment result in a phase difference which is no longer constant

over a cross-sectional area of the resulting detected beam. To characterize the phase

difference distribution, and improve the alignment if necessary, two techniques are rou-

tinely used in my measurements.

The fastest technique just involves projecting the beams onto a screen, as depending

on the phase difference constructive or destructive interference ensues and an interference

pattern is observed. It requires to be working with wavelengths that can be observed by

the naked eye or an external camera. Temporarily attenuating the reference beam can

help to obtain a better visibility of the interference patterns, but care must be taken

not to affect the alignment conditions. It is also convenient to maintain the tip fixed or

with small oscillation amplitude, as the fast signal modulation can blur the interference

pattern. Similarly, this technique can be impractical for a heterodyne set-up, as the

difference of frequency Ω between the two beams is equivalent to a shift phase too fast

to observe visually, 2πΩ rad/s with Ω = 80Mhz being a typical value.

For a more accurate measurement of the spatial phase difference distribution, valid

for heterodyne and homodyne schemes and any wavelength, the iris in Fig. 6.1 is used.

With a small-sized aperture size, the iris is placed at different positions of the detected

beam and the corresponding amplitude and phase are characterized with a lock-in am-

plifier, for example at the first harmonic of the vibration of the tip. An example of a

typical spatial phase difference distribution was already shown in Fig. 5.6. The direction

of propagation is close to identical for the two beams, as neither horizontal nor vertical

fringes patterns are observed. The phase difference is however nonconstant, with an ap-

proximately radial distribution, which could originate in a different wavefront curvature

of the two beams. Once a satisfactory phase distribution has been achieved, I typically
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chose the position where it is nearly constant to place the iris aperture. For an adequate

iris size the interference is mostly homogeneous over all the effective area.

6.3 Amplitude calibration

As discussed in previous chapters, the oscillation amplitude of the tip is crucial for

aSNOM imaging; too small a value can result in a too weak obtained signal, but

increasing it complicates the discrimination of the near field component.

Unfortunately, the oscillation amplitude reported by the commercial AFM I use is

not calibrated, and seems to differ even between tips of the same type by as much as

a factor of 2. I briefly propose here a scheme that can help to solve this problem. A

similar idea has been recently studied by Gucciardi et al. [149].

As shown in Sec. 5.2.2, the signal obtained at the nth harmonic under weakly confined

illumination conditions is proportional to the bessel function of order n, Jn(βA). A is

the oscillation amplitude and β a constant corresponding to the change of the phase of

the detected signal for a unit displacement of the tip along its oscillation direction. By

slowly increasing the amplitude and monitoring the signal at the lock-in amplifier , the

value of βA which corresponds to the first zero of the bessel function can be determined.

Once β is known, a proportionality factor between A and the amplitude given by the

AFM software is easily obtained. Last, this factor is assumed to hold for other oscillation

amplitudes, an assumption supported by the excellent fitting on Fig. 5.3.

β depends on the wavelength and the angle between the excitation and the direction

of oscillation of the tip. The former is easily measured, so that if the latter, macroscopic

parameter is assumed to be constant for tips of the same kind, β needs to be charac-

terized only once. This can be done with a detailed knowledge of the geometry, or by

some other technique. Here, a rough estimate of β was deemed sufficient.
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Figure 6.3: Scheme of the polarization of the beams considered in this thesis. The vertical
polarization is usually analyzed. The excitation polarization is typically vertical for strong
interaction between tip and substrate and horizontal for nonperturbative measurements

6.4 Controlling the polarization

As described in Sec. 6.1, I can choose the linear polarization for the excitation of the

sample and for the detection. The vertical component is typically analyzed (Fig. 6.3), as

for an elongated tip the near fields perpendicular to the substrate are expected to be the

most relevant, and to be preferentially scattered with vertical polarization [105,147,155].

Results below and in the next chapter are in agreement with these expectations.

The focus here is thus on the polarization exciting the sample, and how it is possible

to influence the strength of the interaction between tip and substrate and switch between

predominantly passive and active configurations. The scheme in Fig. 6.3 illustrates the

two possibilities considered.

In aSNOM , a strong interaction between the tip and the substrate is frequently

desired, as it can maximize the scattered signal and can be very helpful, for example,

to determine material contrast [60, 121]. Vertically polarized excitation is then usually

preferred. A simple dipole model explains why maximum near field signal is expected

under such conditions (Ch. 3). Including the elongated form of frequent AFM tips

further strengthen the advantages of vertical over horizontal polarization [93, 102]. As

an example, for Fig. 3.7 strong interaction was desired.

A very different situation arises when a non-perturbative measurement is desired.

In this case, strong near fields are already present in the sample. A sharp tip is used
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as a scattering center, which converts the near field into far field radiation to be de-

tected by external optics. Ideally, the tip does not alter the field distribution that was

originally present. To reduce the interaction, the excitation beam polarization is chosen

as horizontal [157], i.e., perpendicular to the analyzed polarization. I will refer to this

configuration as cross-polarization scheme. Notice that horizontal polarized excitation

excites a different response in the sample [142, 147] than vertical polarization. I dis-

cuss in Ch. 7 that, when combined with oblique illumination, it can be used to directly

observe resonances of higher order than the dipolar.

A further and very significant advantage of the second polarization scheme is its

capability to improve the discrimination of the near field signal. Much of the radiation

scattered by the tip-substrate system does not contain information about the local-

ized near fields. Fortunately, it is also predominantly polarized in the direction of the

excitation, and thus is suppressed to a large extent by the vertically polarized analyzer.

I illustrate next some of the advantages of the cross-polarization scheme. I discuss

measures on structures consisting of two closely situated gold disks, in which plasmonic

resonances can be excited. They will be described in detail in the next chapter. At

this point, it is sufficient to accept Fig. 6.4(a) and Fig. 6.5(a) as examples of good

measurements, which serve as comparison standard. Both images are not identical

because of differences in the structures, the wavelength and the tip apex (Ch. 7).

Fig. 6.4(a) illustrates a measurement at the second harmonic using a silicon tip

covered by its native oxide. The height represents the topography, and the texture the

detected signal amplitude. The near fields are concentrated at the edges of the structure

and exhibit mirror symmetry. The negligible signal when the tip is situated far from

the structures indicates a good background suppression, facilitated by both the cross

polarization and the high harmonic demodulation. It is nonetheless interesting that,

with the described scheme and under favorable conditions, it is possible to get near field

information even at the first harmonic, as illustrated in Fig. 6.4(b). The background

has increased but localized near field contributions are still clearly visible.
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Figure 6.4: Measurements of plasmonic structures, consisting of two stacked gold disks sepa-
rated by a 40nm spacer, the larger disk of ∼ 170nm diameter, which will be described in more
detail in the next chapter. The indicated ~E and ~k correspond to the approximate polarization
of the excitation and projection of the propagation vector into the sample, respectively. The
angle between the incident illumination and the substrate normal is∼ 65− 70◦. The measure-
ments are obtained for λ ∼ 865nm, some tens of nanometers towards the red from the low
energy resonance maximum of this particular sample. The height information represents the
topography and the texture the detected optical amplitude. In (a,b) the vertical polarization
is analyzed, in (d) the horizontal, and (c) represents an intermediate case in which the polar-
izer is shifted ∼ 30◦ with respect to the vertical position. (a,c,d) are measured at the second
harmonic, and (b) at the first. Silicon tips covered by the native oxide layer were used. An
area of 1µm × 1µm is plotted.
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Figure 6.5: Measurements of the optical amplitude detected at the third harmonic for plas-
monic structures formed by two gold disks separated by a 20nm spacer. The larger disk can be
of ∼ 170 or ∼ 190nm diameter. They will be described in more detail in the next chapter. The
same sample and the same etched Silicon tip was used for both images. The indicated ~E and
~k corresponds to the approximate projection of the electric field and the propagation vector
into the sample, respectively. The angle between the incident illumination and the substrate
normal is∼ 65 − 70◦. λ ∼ 820nm was used, approximately at the position between the two
observed dipolar resonances. (a) corresponds to horizontally and (b) to vertically polarized
excitation.

To study the influence of the analyzer, I change its orientation for the second har-

monic measurements. From the previous discussion, the horizontal polarization of the

scattered fields is expected to contain weaker near field signal, and much enhanced

background. Indeed, a ∼ 90◦ shift of the analyzer polarization results in a com-

pletely degraded signal, in which no clear remanent of near field information is observed

(Fig. 6.4(d)). If shifted ∼ 30◦ instead of ∼ 90◦, the near field component is just mod-

erately influenced, but the background increases considerably, and the quality of the

measurement deteriorates, as illustrated in Fig. 6.4(c). Here, the near field signature

was strong and can still be distinguished. Besides the orientation of the polarizers, I

have observed that other aspects, such as the position of the iris or the location of the

tip with respect to the focus [158], can influence the achieved background suppression.

I study next the capabilities of the cross-polarization scheme to facilitate nonpertur-

bative measurements (Fig. 6.5). A bare silicon tip is chosen, as I have shown in Chs. 3,4

that for vertical polarization they can interact strongly with the substrate. The exci-

tation beam polarization is changed between vertical (b) and horizontal (a) excitation.

Fig. 6.5(b) is of completely different nature than Fig. 6.5(a), the results presented on the

following chapter or images from other groups for similar systems [50, 157]. To include
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a strong tip-substrate interaction is likely needed to explain the obtained pattern. On

the other hand, the image taken under horizontal polarization (Fig. 6.5(a)) presents the

expected mirror symmetry and are in general close to the expectations for nonperturba-

tive measurements for a broad tip (Sec. 7.3). Bare silicon tips were used here but they

are covered by the native oxide, which is transparent and of low dielectric constant, in

my typical measurements, further strengthening my confidence on the non-perturbative

nature of the measurements.

6.5 Tip choice

In this section I briefly comment on the tips used, and in particular on why different

tip materials can be convenient depending on the specifics of a measurement. I have

used commercial Silicon advanTECTM AFM tips, whose tip orientation facilitates direct

illumination of the apex by the focused excitation beam.

As discussed in Ch. 1, when a strong interaction between the tip and the substrate

is desired, both metallic and silicon tips are possible choices. Silicon tips are promising

for ultimate lateral resolution. To etch the native oxide layer and temporarily passivate

the surface, HF is used.

Tips with an adequate metallic surface do not oxidize and can be used longer, but the

fabrication of sharp tips is challenging (Sec. 1.1.3). Although I concentrate on Silicon

tips in this thesis, I verified the possibility to obtain near field signal using tips fabricated

by metallic coating of commercial silicon tips.

For a passive probe, the tips can be used directly without any processing steps.

The low and real dielectric constant of the native oxide reduces the tip-sample interac-

tion. The tips can be very sharp, offering the possibility of very high resolution. The

downside of sharp tips with small dielectric constant is the weak near field signature

expected. Higher harmonic demodulation and the cross polarization scheme are used to

discriminate it.



94 CHAPTER 6. EXPERIMENTAL SET-UP AND PROCEDURES

6.6 Discussion and conclusions

In this chapter I have described in more detail the experimental set-up used during

my thesis work. I have focused on ways to facilitate the optical alignment and the

discrimination of a near field signal. Comparing the obtained alignment for different

tips can also help to improve reproducibility.

To place the tip, the beam is scanned without a sample. The discussion of Secs. 2.1.2

suggests that for vertical polarization the intensity of the scattered fields is proportional

to the square of the fields at the apex of the tip. The question arises if this simple

relationship is maintained for real tips, in particular when they present irregularities in

their shape. At least for some area around the apex, the measurements do compare well

with the expected images, which points to the the validity of the idealized model.

Assuming the simple proportionality to hold, I have also described that the optimal

position for near field discrimination is not necessarily at the estimated position of the

center of the focus, which requires further work to understand but is potentially relevant

for optimizing aSNOM measurements. From a purely pragmatic point of view, and

independently of the above, a tip position must be found where the near field signature

is strong enough to be discriminated. It is useful to place each new tip close to a position

already proved convenient for a reference tip, which is helped by the information gained

from the beam scans. Such scans are thus helpful to discriminate the near fields.

After choosing the position of the tip, the interferometry between the excitation and

reference beam is characterized. Simply projecting the detected beam into a screen

is often enough for a qualitative knowledge on how the both used beams interfere. If

more quantitative information is desired, or if the experimental set-up uses a heterodyne

scheme or wavelengths not easily imaged, systematically blocking the beam except at

selected areas is useful.

A slowly varying phase difference over the area of the photodetector is desired. It

helps to obtain a strong enough signal (Sec. 5.2.3) even at the higher harmonics and low

oscillation amplitudes typically needed for good background suppression (Sec. 4.2.4).
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In my experimental set-up, the effect of remaining alignment imperfections, due to, for

example, differences on the wavefront curvature, can still be clearly seen in the spatial

distribution of the phase distribution. Notice also that, even for perfect alignment, the

phase difference is not necessarily constant over the detector, due to the spatial phase

distribution of the fields scattered by the tip-sample system(Sec. 5.2.3). For spatially

heterogenous phase difference, an area of almost constant value can still be selected

by an aperture of adequate size. The phase difference must vary slowly enough for

the corresponding aperture size not to block most of the signal scattered by the tip-

substrate. Requiring the variation to be too slow, on the other side, increases the

experimental difficulty, especially for a nonperfectly achromatic set-up and frequent

wavelength changes. An equilibrium must be found.

Once the interferometry is optimized, the knowledge of the exact experimental con-

ditions can be further increased by the proposed scheme to measure the oscillation

amplitude (Sec. 6.3). It requires to know the value of β, a parameter that depends on

the macroscopic geometry of the cantilever and illumination and is assumed to vary

little between tips of the same kind. For a good knowledge of β, the described scheme

promises a very good achievable precision. Also, it is possible to compare the oscillation

amplitude for two different tips as far as β remains approximately constant, even if its

exact value is not known.

One advantage of the chosen experimental configuration is the possibility to control

the polarization of the beams, which allows to chose between two conceptually different

schemes. The first uses vertical polarization for excitation and analysis and corresponds

to the typical aSNOM case, in which a strong interaction between tip and substrate is

desired. I have discussed in this thesis how bare silicon tips are a promising alternative

to the metal tips often considered.

The second scheme aims to improve background suppression and to reduce the in-

teraction between the tip and substrate for nonperturbation measurements. It utilizes

horizontal excitation and vertical detection, and it allows for sharp and easy to use
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commercial silicon tips, in this case covered by the native oxide layer. The clear im-

ages obtained from this and next chapter illustrate its promising capabilities for passive

measurements. For tips that scatter efficiently the near fields, an efficiency attributed

to a relatively blunt apex, it is possible to obtain a near field signature even in the first

harmonic. For the second harmonic, an useful signal stronger than the background has

been consistently obtained, as will be illustrated in the next chapter.

To verify that this method is indeed nonperturbative, the obtained images can be

compared with simulations (Ch. 7) and a good agreement is found. As a further check,

I measure the structures for bare tip using both horizontally and vertically polarized

excitation. I have already shown how, for the latter, a strong interaction between the

tip and the substrate is possible. Indeed, some of the measurements performed under

vertical excitation seem altered by the interaction, to a degree which depends on the

particular conditions. Images obtained with the cross polarization scheme are, on the

other hand, consistently similar to the expectations for a passive method. That this is

the case even for bare silicon tips, while most measurements are done for tips covered

by silicon oxide, of low dielectric constant, further strengthens the confidence on the

nonperturbative nature of the measurements.

I have regularly obtained a clear near field signal for the plasmonic structures studied

in the next chapter, where the time interval between changing to a new tip and obtaining

an adequate near field signature was typically not more than 3-4 hours. The main factor

still reducing the yield of usable tips appeared to be not optical but fast tip deformation

of the tips due to poor mechanical properties, which could be helped by a better AFM

system. The described cross-polarization scheme is thus very promising for measuring

the near field distribution from samples systems requiring good background suppression

and passive probe.



Chapter 7

Near field measurements beyond

dipolar resonances

Plasmons are the quanta of coupled collective charge density and electromagnetic field

oscillations. In particular, plasmons at small metallic structures exhibit strong coupling

to external radiation for particular resonant frequencies [159]. Such resonances are

associated with strong and localized near fields in the vicinity of the structures, but

measurements are usually performed in the far field.

Collaborators in Chalmers University fabricate a range of resonant nanostructures

that can be used to design optical metamaterials and biosensors. Metamaterials are

novel, artificial materials that, by using structures of subwavelength dimensions, can

achieve permittivity and permeability responses not found in bulk matter [160]. Label-

free optical biosensors based on plasmonic structures make use of the high sensitivity of

the resonances to the dielectric constant of the surrounding medium [161–167]. By func-

tionalizing the particle chemically, the sensors can be made sensitive to specific molecu-

lar species. The optical response of these plasmonic structures is typically characterized

experimentally in the far field. Their near field can be simulated, often assuming sig-

nificant simplifications. To complement these techniques, I measure directly their near

field distribution using aSNOM . I characterize resonant structures of different size and

shape, for different wavelengths.

97
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Figure 7.1: Side view of the plasmonic structures considered in this chapters. They are
approximately rotationally symmetric

7.1 The samples: description of previous work

A cross section of the samples studied is shown in Fig. 7.1. The samples are approx-

imately rotationally symmetric. Two kinds of samples are used, a single gold disk

and a nanosandwich structure consisting of two gold disks of different lateral diameter,

separated by a silica spacer of variable thickness dspacer. All the gold disks are approx-

imately 20nm high. Each nanosandwich structures can be seen as two dipoles coupled

by the short range near field interaction to form an hybridized system, the strength

of the hybridization depending on dspacer. Dipole-dipole interaction exists up to large

distances, but is of less interest here. Different wavelengths and different diameters of

the structures have been considered. The diameter at the base will be referred to as D.

The fabrication, far field characterization and the simulations in this chapter have

been done by our collaborators, and only a brief overview will be presented in this thesis.

For a more detailed description, [168–170] can be consulted.

The fabrication utilizes a hole-mask lithography method, where the mask is defined

by the self-organization of electrostatically charged polystyrene spheres on a substrate.

After selective etching and materials evaporation, arrays with typical nearest neighbor

distance of around twice the diameter of the nanospheres are obtained. Due to the large

inter-particle distance, the interaction between the structures is assumed to be a minor

correction. Spheres of different radius can be simultaneously used, which leads to arrays

with mixed sized and is useful for their aSNOM characterization.
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Figure 7.2: (a) Extinction spectra for single disks of D ∼ 150, 180, 200, 310nm, measured for
samples containing one size only and a mixtures of the different sizes. Larger disks correspond
to spectra shifted towards the red. (b,c) Extinction spectra for nanosandwich structures of
D ∼ 170, 190nm and dspacer ∼ 20(b), or 40nm (c); samples that contain just one diameter,
of both of them together were characterized. Some of the spectra in the images are vertically
shifted for visibility

7.1.1 Far field characterization

The resonances are characterized in the far field by measuring the extinction spec-

trum (Varian Cary 500). I show in Fig. 7.2 example of resonances for single disks and

nanosandwich structures of the different geometries considered. This resonances should

be taken as a guide, as even nominally identical samples can show some variability

in the spectra measured. I also show the resonance measured on the samples used in

Figs. 7.4,7.5(a,b),7.6, which contain structures of several diameters. The spectra have

been measured if not otherwise stated for normal incidence. I use oblique incidence in

the near field measurements, but as discussed in Sec. 7.3, the distinction is expected to

be relevant only for the results in Sec. 7.2.2.

The resonances depend strongly on the shape and on the size of the structures. Two

resonances are obtained for the nanosandwich structures, instead of one as for simple

disks. Near field measurements of the nanosandwich structures will concentrate on the

low energy resonance, i.e., corresponding to the larger wavelength.

7.1.2 Near field calculations

The simulations use the dispersive finite-differences time-domain technique, adapted to

obtain both the near and the far fields. Planar wave excitation with incidence normal

to the substrate is considered; the electric field is parallel to the substrate, as for the
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(a) (b)

(c) (d) (e)

Figure 7.3: Simulated values of the electric field component perpendicular to the substrate for
resonant (a,b) single disks of D = 192nm and (c,d,e) nanosandwich structures of D = 192nm
and (c) dspacer ∼ 20nm or (e) dspacer ∼ 40nm. The fields for the nanosandwich structures are
calculated for the low energy resonance. Both optical amplitude (a,b,c,e) and phase (d) are
considered. The phase is plotted between -180 and 180 degrees, and different amplitude scales
are used for (a,b,c,d). (b) is plotted for a plane parallel to the disk, passing through it; the
rest correspond for a cut at the center, parallel to the direction of the electric field and to
the normal of the sample. The color scale is identical for (c,e), but differs otherwise. Normal
incidence was used
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aSNOM measurements. To ease the numerical complexity, no substrate is present

and the nanosandwich structures are considered to be separated by vacuum. Although

these simplifications will affect the value of the resonance wavelength, comparing the

measured and calculated far field spectrum serves to approximately correct this effect.

The considered model is expected to adequately describe the main properties of the near

fields. Only the component of the fields perpendicular to the substrate is plotted, as

aSNOM is expected to be mostly sensitive to it.

I plot in Fig. 7.3 the expected near field amplitude distribution for the single disks

nanosandwich structures. Mirror symmetry is obtained with respect to a plane perpen-

dicular to the excitation electric fields, as is most clearly seen in Fig. 7.3(b). For the

dipolar resonance in the single disks, the near fields are clearly concentrated around the

edges [157].

For the nanosandwich structures, two regions of strong near fields can be obtained

at the top interface of the structure, one at each side of the axis of symmetry. Even

stronger near fields are found at the edges (Fig. 7.3(c-e)). Fields at the top and at the

edge present a clearly differentiated phase. The dependence of the fields at the edge

with dspacer helps to understand the hybridization between closely situated resonant

particles [168, 169].

For the two disks situated at very short distance, the interaction mediated by the

near fields is strong and it is not adequate to talk about two more or less indepen-

dent disks, but they have to be considered together as a single hybridized system with

two resonances. The thicker the spacer, the smaller the near field interaction, the

weaker the hybridization and the more appropriate to discuss the gold disks as indepen-

dent structures each of which with a different resonant wavelength (although a weaker,

dipole-dipole coupling will remain). For dspacer ∼ 20nm, the maximum of the near field

component perpendicular to the substrate is found in the area of the edges between the

disks, and it is not possible to separate the contribution from each disk. For the less

strongly hybridized nanosandwiches structures with dspacer ∼ 40nm, the corresponding
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signal at the edges present more structure, with weaker signal at the center.

7.2 Near field characterization

The capability to directly probe near fields and the high achievable lateral resolution

make aSNOM a very promising technique to study plasmonic structures. Two diffi-

culties must be, however, overcome: the tip must not perturb the fields present in the

sample, and the near field information must be correctly discriminated from the back-

ground. Hillenbrand et al. [50] used a carbon nanotube as a passive tip and were able

to measure phase and amplitude of the dipolar resonance for a particular disk structure

and wavelength. Anderson et al. [157] have also observed the amplitude signal from

nanorods and nanodisks dipolar resonances by using two photon processes.

I am interested in going beyond dipoles towards higher order resonance patterns, an

objective which is achieved by using the cross-polarization scheme described in Ch. 6.

Both phase and amplitude are considered.

7.2.1 Dipole resonances

The most elementary resonance that can be excited in a small subwavelength particle is

the dipolar. To image it in the near field, I consider singles disks of diameter between

∼ 150 and ∼ 200nm. Some examples of D ∼ 310nm are also present and will be

discussed in Sec. 7.2.2. The near field signal for a particle with diameter around 180nm

is shown in Fig. 7.4(a,b), as measured at the second harmonic for λ ∼ 800nm. The height

information in the picture corresponds to the topography simultaneously obtained with

the AFM and the optical information is encoded in the texture, for both amplitude

(a) and phase (b). As expected (Fig. 7.3(a,b)), a dipolar like pattern is observed,

with strongest signal at the edges and the two lobes clearly out of phase. Far away

from the particles, the obtained signal amplitude is much reduced, which shows the

good background suppression attainable by the combination of demodulation at higher

harmonics and the cross polarization scheme described in the previous chapter.
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Figure 7.4: (a,b) Single disks measurement for a structure with ∼ 180nm estimated diameter.
The height information corresponds to the topography and the texture to the obtained (a)
amplitude or (b) phase for λ ∼ 800nm. The area considered is 400 × 400nm in both images.
(c,d) correspond to the amplitude (c) and phase (d) for the same sample, but showing single
disks of different size (150 . D . 200nm or D ∼ 310nm) for λ ∼ 800nm. Circles are
introduced as a visual guide for the approximate position of the disk. (e) amplitude measured
for the same sample and λ ∼ 880nm. (a,b,c,d) were obtained at the second harmonic, and
(e) at the third. The phase have been plotted between -180 and 180 degrees. The indicated
~E and ~k correspond to the approximate polarization of the excitation and projection of the
propagation vector into the sample, respectively. The angle between the incident illumination
and the substrate normal is∼ 65 − 70◦.
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Figure 7.5: (a,b) Single disks measurements at the second harmonic for D ∼ 310nm and λ ∼
800nm. The height information corresponds to the topography and the texture to the obtained
amplitude (a) or phase (b). The phase is plotted between -180 and 180 degrees. The indicated
~E and ~k correspond to the approximate polarization of the excitation and projection of the
propagation vector into the sample, respectively. The angle between the incident illumination
and the substrate normal is∼ 65 − 70◦. The area considered is 500 × 500nm. (c) extinction
spectrum for perpendicular and oblique incidence, in the latter case for an angle of incidence
of 70 degrees with respect to the substrate normal. The spectrum is not exactly the same as
in Fig. 7.2(a), as the results in (c) correspond to a slightly different sample.

To illustrate the reproducibility of the results, Fig. 7.4(c,d) shows a representative

example of the resonances observed over several single disk structures, for similar condi-

tions as in Fig. 7.4(a,b). As a guide for the phase image, circles indicating the position

of several of the structures are also shown. A dipolar-like pattern is indeed observed in

most of the structures. The phase difference between two lobes depends on the particular

structure, but is comparable to the 180◦ expected for an ideal dipole.

A further example of the field amplitude distribution is shown in Fig. 7.4(e), in this

case for a different wavelength λ ∼ 880nm. The near field signature is less clear in

previous images, likely because of a significantly sharper tip, but it serves to emphasize

the high lateral resolution and the concentration of the near fields at a small volume

near the edge of the structures. Besides the general resonance pattern, some points of

particularly strong signal are observed, possibly local hot spots [72,171] due to structure

rugosity.
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7.2.2 Quadrupole resonances

Even for structures as morphologically simple and symmetrical as the single disks, reso-

nances of higher order than dipolar are possible. The extinction spectrum in Fig. 7.2(a),

however, shows a single resonance, identified as dipolar in the simulations and in

Sec. 7.2.1. At the wavelength range of my measurements, the far field response for

D ∼ 310nm is much weaker than for particles with diameter between ∼ 150 − 200nm.

The behavior of the near fields is quite interesting. First, the strength of the mea-

sured near field signal is similar for all the sizes. Further, a closer look into the near fields

of the larger disks reveal resonance patterns more complex than dipolar. Fig. 7.5(a,b),

closely resemble a quadruple resonance, with four distinct areas of phase and amplitude.

The main difference with a perfect mathematical quadruple is a significantly smaller

phase jump than 180 degrees between some of the neighboring areas. The experimen-

tal measurement conditions are very similar to those used in Fig. 7.4(a,b), facilitating

a direct comparison with the dipolar resonance observed there. The reasons for the

difference between the near and far field measurements are discussed in Sec. 7.3

7.2.3 Coupled dipoles resonances

In the case of the nanosandwich structures, formed by two closely situated gold disks, the

electromagnetic response of both disks is coupled, the strength of the coupling depending

on the thickness of the spacer, dspacer. A typical aSNOM phase and amplitude image

of such coupled structures is shown in Fig. 7.6(a,b), for spacer thickness dspacer ∼ 20nm

and D ∼ 170,∼ 190nm. The wavelength chosen (λ ∼ 915nm) is expected to excite the

low energy resonance at least for the smaller particles (Fig. (7.2(b)). The main difference

with the single disk images is the presence of four clearly differentiated areas where the

near field is strong, each characterized by distinctive phase distribution. As before, two

areas are situated at each side of the edge. The other two are situated at the top surface.

The difference of phase between adjacent areas depends on the particle being considered

but it is typically in the order of 180 degrees. The measurements closely correspond to
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Figure 7.6: (a,b) Signal obtained for the nanosandwich structures, for dspacer ∼ 20nm and
D ∼ 170,190nm, measured at the third harmonic and for λ ∼ 915nm. The height information
corresponds to the topography and the texture to the obtained amplitude (a) or phase (b).
The phase is plotted between -180 and 180 degrees. The measured area is 1400 × 1400nm.
(c),(d) Amplitude measured at the third harmonic for λ ∼ 915nm for (c) dspacer ∼ 20nm and
(d) dspacer ∼ 40nm. Structures of D ∼ 170nm and 190nm were fabricated in all samples.

The indicated ~E and ~k correspond to the approximate polarization of the excitation and
projection of the propagation vector into the sample, respectively. The angle between the
incident illumination and the substrate normal is∼ 65 − 70◦.
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Figure 7.7: (a,b) Measured signal at the third harmonic, for structures with dspacer ∼ 40nm
and D ∼ 170, 190nm, measured at λ ∼ 775 (a) and ∼ 865nm (b). The height information cor-
responds to the topography and the texture to the obtained amplitude. The same area of the
sample was measured in both images. The indicated ~E and ~k correspond to the approximate
polarization of the excitation and projection of the propagation vector into the sample, respec-
tively. The angle between the incident illumination and the substrate normal is∼ 65 − 70◦.
The plotted area is 1400 × 1400nm.(c) The relevant region of the extinction spectrum for this
sample. It differs from Fig. 7.2 because a different sample was used.

the theoretical expectation from Fig. 7.3(c,d), both for the amplitude and the phase.

Further, I find indications of the influence of the hybridization strength in the near

field distribution. Fig. 7.6(c,d) corresponds to the measured amplitude for dspacer ∼ 20

and 40nm structures, respectively, in both cases for D ∼ 170 and 190nm. Neither the

tip nor the alignment were changed between images, to facilitate comparison. I chose

again λ ∼ 915nm to excite the resonances of at least some of the particles characterized

by dspacer ∼ 20nm and by dspacer ∼ 40nm, as can be seen from Fig. 7.2(b,c)

Focusing on the near fields at the edges, only one broad area of strong near field

at each side is found for dspacer ∼ 20nm (Fig. 7.6(c)), but a double maxima pattern is

obtained for dspacer ∼ 40nm (Fig. 7.6(d). Notice that a second area of strong fields is

obtained at the top of some of the structures with dspacer ∼ 20nm, but the signal strength

in this region depends on many experimental parameters and can be challenging to

interpret (Sec. 7.3). The observed behavior at the edges closely relates to the simulation

expectations from Sec. 7.1.2, but the agreement is not always as good as in Fig. 7.6(a),

as will be discussed in Sec. 7.3.

In the near field distribution, I have also noticed that particles with D ∼ 190nm often
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result in stronger signature from the top of the structures than those with D ∼ 170nm.

Such behavior is present in measurements taken using wavelengths ranging from ∼ 775

to ∼ 915nm, without clear correlation with the measured spectra. As an example,

Fig. 7.7 shows a measurement of a fixed area at ∼ 775 and ∼ 865nm, for nanosandwich

structures with dspacer ∼ 40nm and the two discussed diameter sizes. Fig. 7.7 shows the

measured far field extinction spectrum for such a sample, in the region of interest.

7.3 Discussion and conclusions

In this chapter, I have shown experimental images of the near field distribution for

plasmonic structures excited close to resonance. Single disks are considered for studying

dipolar and higher order resonances, and nanosandwich structures for discussing strong

coupling between closely situated metallic particles. A broad agreement is often found

between simulation and experimental results.

As expected from the far field measurements, a clear dipole-like near field pattern

is typically observed for single disks with diameter between 150 − 200nm, with two

symmetric areas of distinctive amplitude and phase. Both areas present a phase shift

comparable with the ideal 180 degrees, and the stronger intensity of the near fields near

the edges also correspond with the expectations.

A more complex near field distribution is measured for the nanosandwich geometry, a

structure consisting of two closely situated gold disks. The two disks interact strongly via

the near fields, and a hybrid plasmonic system which can be described as coupled dipoles

ensues. Interaction between metallic structures have been discussed as an interesting

alternative to obtain negative permeability at optical wavelengths [172]. For dspacer ∼

20nm, four clearly differentiated areas can be distinguished, two at the edges and two

at the top of the structures. The large change of phase observed between adjacent

areas (in the order of 180 degrees) is in good correspondence with the simulations. By

comparing dspacer ∼ 20nm and dspacer ∼ 40nm, indications have also been found of the

dependence of the field distribution on the strength of the interaction between the two
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closely situated gold disks.

I have also observed near field patterns more complex than simply dipolar for the

larger single disks structures, with the phase and amplitude sometimes resembling a

quadrupole. Notice that the quadrupolar four field symmetry observed in Fig. 7.5 is for-

bidden in rotationally symmetric structures for normal illumination and also for oblique

illumination with polarization in the plane of incidence. It is possible in my experiments

only because oblique incidence and polarization parallel to the substrate are simultane-

ously used. The fourfold symmetry is defined by the electric field orientation and the

projection of the propagation direction of the beam on the substrate .

To complement this discussion, it is useful to perform new extinction measurements

for single disks with D ∼ 310nm, this time with angle of incidence similar to the used in

the aSNOM configuration. A clear second peak appears, at a wavelength close to the

range selected for the aSNOM measurements, as shown in Fig. 7.5(c). The additional

peak probably originates from the quadrupolar resonance and is thus consistent with

the observed near field distribution.

After realizing the importance of oblique incidence for the large single disks, several

new samples containing small single disks and nanosandwich structures of different sizes

were fabricated to observe the influence on these structures. In general, a small peak

and some broadening of the resonances is observed, and indications of the quadrupled

resonance are also found for some of the single disks. The changes are nonetheless

small for the measured samples and not expected to affect the obtained conclusions.

In particular, single disks of D ∼ 150, 180, 200nm, and nanosandwich structures with

D ∼ 170,∼ 190nm and dspacer ∼ 20, 40nm were characterized for oblique and normal

incidence, concentrating on the low energy resonance for the nanosandwich structures,

and a shift around 10nm was obtained.

The reproducibility of many of the observed features is good, for scans over a large

area and also after a change of tip or of other experimental conditions, but additional

work is still required in some cases. The most clear influence of the exact measuring
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Figure 7.8: Examples of the detected signal at the third harmonics for structures of D ∼
170nm and dspacer ∼ 20nm, showing how the field distribution evolves from earlier (a) to latter
(c) in the day. The height information corresponds to the topography and the texture to the
obtained amplitude. The indicated ~E and ~k correspond to the approximate polarization of the
excitation and projection of the propagation vector into the sample, respectively. The angle
between the incident illumination and the substrate normal is∼ 65 − 70◦. The wavelength
used here, λ ∼ 805nm, correspond to the spectral region between the two measured resonance
peaks for this particular sample. The measured area is 400x400nm

conditions is observed when comparing the ratio between the fields at the top and at

the edge of the nanosandwich structure. It is influenced by the size of the fabricated

particle and likely also the wavelength, but it can vary considerably even if both of them

remains unchanged. This is exemplified in Fig. 7.8 for dspacer ∼ 20nm and D ∼ 170nm,

where the images are all taken with the same tip and ordered according to experimental

time. The first image is dominated by the fields at the edge, while in the last the signal

at the top of the structure have considerably increased in importance. This progression

is not explained by which particular structure is being measured, because the last two

images correspond to the same structure and a similar evolution was found for scans of

larger areas over many particles.

I propose here a simple interpretation framework to explain the observed behavior

as a consequence of tip degradation. The tip is thought of as an sphere, small for sharp

tips and large for blunter ones. For a small enough sphere, it can be considered to

be immersed in a homogeneous field, even in the near field region, and the strength of

the scattered fields will be proportional to the strength of the local fields (the vertical

component for aSNOM), i.e., stronger around the edges according to the simulations.
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This case would correspond to Fig. 7.8(a). For a larger sphere, the spatial variation of

the fields must be considered, as the scattering signal depends on the strength of the

fields on its entire volume. Weaker near fields at the top of the structure can result

in comparable or larger signal than stronger but more confined fields at the edge, a

situation associated with Fig. 7.8(c). Experimentally, it is important to ensure that

a difference observed between two images is not due to a change in the apex. For

example, different tips should reproduce the change, or the feature under investigation

should remain approximately unchanged if the first measurement is repeated after a set

of experiments is completed.

More difficult to explain is the influence of the experimental conditions when com-

paring nanosandwich structures with dspacer ∼ 20nm and dspacer ∼ 40nm; measurements

do not always present the clear differences discussed here. Some of the difficulties can

be due to some tips being too broad to resolve the double maxima expected at the edges

for dspacer ∼ 40nm, and thus giving results similar to dspacer ∼ 20nm. Small morpholog-

ical differences between nominally identical particles can also be relevant. A systematic

variation of dspacer should help to better understand its influence.

The exact field distribution also vary between particles for the larger single disks

considered, where a quadrupole is expected to be excited. The differences may be linked

to the phase jump being significantly smaller than the ideal 180 degrees for some of the

neighboring regions, an observation still not fully understood but perhaps explained by

the quadrupole resonance not being as strongly excited as desired. In some images,

the phase jump may be so small as not to be clearly identified as such, with a gradual

variation of the phase dominating the results. Additional work has to be done to better

understand how the experimental conditions affect the measurements. Again, the shape

of the tip apex and irregularities in the structures can be important.

Last, it is interesting to study the dependence of the signal with wavelength. How-

ever, In my experiments it is not possible to directly compare the signal strength, as the

measurements are very sensitive to the exact experimental conditions1. It would require

1Thus, as in general in my thesis, the absolute signal is not compared between experimental images,
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a way to normalize the obtained values at different wavelengths, or to use a perfectly

achromatic set-up. Instead, I have compared the signal from structures of different sizes

present at the same sample. A change of wavelength was expected to influence the op-

timal size to obtain a stronger near field signature, but such dependence have not been

observed neither for the single disks (for 800nm . λ . 880nm) nor for the nanosandwich

structures (775nm . λ . 915nm). In the latter case, I do often observe stronger signal

from the top of particles with D ∼ 190nm than with D ∼ 170nm, but such behavior

is found for the complete range of wavelengths used and it is not easily related to the

measured far field spectra. To better understand the results, it is interesting to mea-

sure the resonance of each individual particle at oblique incidence, but notice that the

wavelength range used is often significantly larger than the correction on the spectra

expected from the new measurements. Considering a larger range of particles sizes and

diameters should be helpful to better understand the interplay between size, wavelength

and signal strength.

For the future, it is compelling not only to obtain more measurements under different

conditions but also to use more refined simulation models, with larger similitude between

the simulated and experimental particle morphology, and in particular to include the tip

and the used demodulation scheme. The improved calculations can help to understand,

for example, the influence of the tip apex shape, of irregularities in the particles shape

and of interactions between particles in samples of narrow or broad size distributions.

In this chapter, I have used aSNOM to study the behavior of the near fields for

several plasmonic structures that can present resonances of different nature: dipoles,

quadrupoles and coupled dipoles. It is possible to achieve clear images and a very good

lateral resolution, much below the diffraction limit. Simulated results in which only

the component of the electric field perpendicular to the substrate is considered agree

broadly with the measurements, which support both the nonperturbative nature of our

measurements and the bigger sensitivity of aSNOM to the mentioned component.

and the color scales are chosen to improve the appearance of each individual image



Chapter 8

Summary and Outlook

This thesis has discussed aSNOM simulations and experimental results. Analytical

expressions were also derived where possible and useful. The simulations performed

represent a significant step towards modeling realistic scenarios. They consider many

different geometries for the tip, illumination and substrate characteristics. The absolute

power scattered was obtained. The final model in particular (Chs. 4,5) includes long

tips, patterned substrates and imaging at higher harmonics, and also model carefully

the detector response.

The measurements have two different objectives. The first is to experimentally

demonstrate and complement the theoretical discussions to better understand aSNOM

as a technique. The second is to obtain information about plasmonic structures, making

use of a cross-polarization scheme that was studied in Ch. 6. Both sets of measurements

are assisted by an alignment procedure developed to gain information about the inter-

ference and the focal field distribution of the excitation beam.

I have shown that modeling tips significantly longer than the wavelength and the

waist radius is required to closely reproduce typical experimental conditions. As long

as no plasmon resonances are present, tips on the order of one to a few wavelengths

can be a convenient compromise between precision and numerical requirements. Much

shorter tips resulted, however, in significantly diminished strength of the near fields

near the tip apex and in scattered fields orders of magnitude weaker. Sufficiently long
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tips are thus important to reliably study one of the key objectives of this thesis, how

well the contribution from the near fields can be discriminated under different scanning

conditions. For the model in Ch. 4, short tips were also found to result in a slightly

more spatially confined near field signature.

Modeling long tips, I have obtained a very good discrimination of the near field

signal from the tip-substrate interaction for higher harmonic demodulation. Silicon tips

were used as a promising alternative for ultimate lateral resolution, and their viability

as active aSNOM probes was confirmed experimentally. The simulations allow to

discuss the influence of substrate and tip oscillation characteristics on the near field

discrimination, resolution and demodulated signal strength. Small oscillation amplitude

is convenient to improve resolution and near field discrimination, but can ensue in too

small signal to noise ratio, and values on the order of the apex radius seem a reasonable

compromise. The oscillation of the tip should be kept as sinusoidal as possible, as higher

harmonic contributions rapidly increase the level of background. Further, I have shown

that the near field signature from small subsurface structures can be discriminated for

depths smaller than the tip apex radius, but the resolution slightly worsen and the near

field signal rapidly becomes weaker with increasing depths. It illustrates the short range

of the near field interaction between tip and substrate, and exemplifies the convenience

to keep the distance between the tip and the structure of interest as small as possible,

also shown by the behavior of approach curves.

The obtained near field optical signature from the a small structure is more spatially

confined than the topography from an AFM image for similar tip apex and structure

size. Further, the behavior of the near fields near the the tip apex for isolated tips

suggests that the achievable resolution approximately scale with the inverse of the tip

apex size. Thus, sub ten-nanometer resolution seems achievable for sufficiently sharp

probes.

Interferometric measurements have been used in this thesis, as they allow to obtain

stronger signal and are sensitive to the optical phase. I describe more in detail in Ch. 5
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the consequences of this choice for the obtained signal. It is first shown that it can

be easier to discriminate the near fields for interferometric than for non-interferometric

measurements. I then discuss how the phase and amplitude of the signal read at a lock-

in are functions of both the optical phase and amplitude. In particular, measurements

and simulations serve to illustrate several instances in which the optical phase strongly

influences and even changes the nature of images that are obtained using the lock-in

amplifier amplitude. The influence of the phase should thus be considered for the correct

interpretation of aSNOM results.

I also study the influence on aSNOM imaging of the spatial inhomogeneity of the

scattered fields. The results show that each area element of a extended detector con-

tribute differently to aSNOM images, an effect which goes beyond a simple scaling

factor. Although the significance of this effect is not large for the experimental mea-

surmements and simulation examples discussed in this thesis, it can be more important

for particular tip-sample geometries and offer an additional possibility for image opti-

mization.

Last, I have measured the near fields distribution from several plasmonic structures.

A cross polarization scheme is first studied and is shown to result in clear images,

with low background, and confidence is gained on the passive nature of the AFM tip

used as probe. These characteristics can benefit not only the imaging of plasmonic

structures, but of many other samples requiring nonperturbative measurements. Single

disks and nanosandwich structures are subsequently studied and a good correspondence

is obtained between measurements and theoretical expectations. Beyond simple dipolar

resonances, images are also obtained of nanosandwich structures which can be defined

as strongly interacting dipoles. Measurements of larger disks serve to illustrate the

promising capabilities of the used measurement scheme to image high-order resonances

on structures of a very general nature.

For the future, it is interesting to extend the simulation work to full 2-dimensional

images. Considering other substrates, tips and illuminations can help to better clarify
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the ultimate possibilities of aSNOM and help in the interpretation of experimental

results. Additional work on the near field measurements of the plasmonic structures

can give new insights, for example, into the wavelength dependance of the near fields,

quadrupole resonances, or the near field interaction between resonating particles. From

a practical perspective, near field measurements on these and other plasmonic structures

can ultimately help to improve the properties of biosensors and metamaterials.



Bibliography

[1] M. G. L. Gustafsson, Proc. of the Natl. Acad. of Sciences 102, 13081 (2005).

[2] B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, Nature 366, 44 (1993).

[3] J. B. Pendry, Physical Review Letters 85, 3966 (2000).

[4] I. I. Smolyaninov et al., Phys. Rev. B 72, 085442 (2005).

[5] M. J. Rust, M. Bates, and X. Zhuang, Nature Methods 3, 793 (2006).

[6] S. W. Hell, S. Lindek, C. Cremer, and E. H. K. Stelzer, App. Phys. Lett. 11, 1335

(1994).

[7] K. I. Willig, J. Keller, M. Bossi, and S. W. Hell, New J. of Phys. 8, 106 (2006).

[8] E. H. Synge, Philos. Mag. 6, 356 (1928).

[9] E. A. Ash and G. Nicholls, Nature 237, 510 (1972).

[10] D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).

[11] A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy 13, 227

(1984).

[12] S. I. Bozhevolnyi et al., Nature 440, 508 (2006).

[13] L. Novotny and S. J. Stranick, Annu. Rev. Phys. Chem. 57, 303 (2006).

[14] A. Bouhelier, Microscopy research and technique 69, 563 (2006).

117



118 BIBLIOGRAPHY

[15] Y. Inouye and S. Kawata, Opt. Lett. 19, 159 (1994).

[16] R. Bachelot, P. Gleyzes, and A. C. Boccara, Microsc. Microanal. Microstruct. 5,

389 (1994).

[17] F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, Science 269, 1083 (1995).

[18] M. Specht, J. D. Pedarning, W. M. Heckl, and T. W. Hänsch, Phys. Rev. Lett.
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