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Abstract

In this thesis we study the properties of optical wire antennas. As experimen-

tal method for our investigations we use apertureless near-field optical microscopy.

This technique achieves high spatial resolution well beyond the diffraction limit by

utilizing the field enhancement at the apex of sharp tips. An interferometric mea-

surement scheme allows us to detect both near-field intensity and optical phase. By

using s-polarized light for illumination and detecting the p-polarized component of

the backscattered light we are able to map the z-component of the electrical near-

field. Optimizing polarizer and analyzer angles of our cross-polarization scheme

ensures a background free plasmonic eigenmode mapping. By comparison with sim-

ulation data not including the tip we show that the measurement has little to no

influence on the eigenmode.

The samples investigated in this thesis are arrays of gold nano-wires prepared by

electron beam lithography. We observe plasmon resonances in our near-field images

as patterns of lobes and explain them by regarding the wires as one dimensional

Fabry-Pérot resonators. The number of nodes in between the lobes is the resonance

order. From eigenmodes well beyond quadrupolar order we extract both, propa-

gation constant and reflection phase of the guided surface plasmon polariton with

superb accuracy. The combined symmetry breaking effects of oblique illumination

and retardation allow the excitation of dipole forbidden even-order resonances. By

systematically varying the azimuthal illumination angle we are able to map the

directional receiving and emission patterns of the wire antennas.

In order to understand these patterns we develop an analytical model. In contrast

to radio frequency (RF) antenna theories we not only assume surface currents but

also take volume currents into account. The model also allows us to spotlight the

differences between plasmonic and RF antennas. The equations we derive describe

both, the property of the wires as resonators as well as the antenna emission /

reception patterns. With just four — physically motivated — parameters we are

able to fit measured as well as simulated data astonishingly well. With this model



predicting the relative intensity and phase of the light absorbed and scattered by

nano-wire antennas it has great potential for future research.

Keywords apertureless scanning near-field microscopy; optical antennas; near-field

optics; plasmonics; scanning probe microscopy; radiation patterns; Fabry-

Pérot resonators; interferometric detection; theoretical model;
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Zusammenfassung

Diese Arbeit beschäftigt sich mit den Eigenschaften linearer optischer Anten-

nen. Wir untersuchen sie dazu mit aperturloser, nahfeldoptischer Mikroskopie, einer

Technik, die durch Ausnutzung des Feldverstärkungseffekts am Apex einer scharfen

Spitze eine sehr hohe laterale Auflösung weit jenseits des optischen Beugungslimits

erreicht. Ein interferometrisches Messverfahren ermöglicht sowohl die Nahfeldinten-

sität als auch die optische Phase zu messen. Durch Beleuchtung mit s-polarisiertem

Licht und Detektion der p-polarisierten Komponente des zurückgestreuten Lich-

tes können wir die senkrechte Feldkomponente des elektrischen Nahfeldes abbilden.

Durch Optimierung der Polarisator und Analysator Stellung in unserer Kreuzpola-

risationstechnik eliminieren wir störende Hintergrundsignale aus unseren Eigenmo-

denabbildungen. Durch Vergleiche mit Simulationen, die die Messspitze außer Acht

lassen, zeigen wir, dass unsere Messmethode kaum Einfluss auf die Eigenmoden hat.

Bei den untersuchten Proben handelt es sich um Goldnanodraht-Arrays die durch

Elektronenstrahllithographie hergestellt wurden. In unseren Nahfeldbildern können

wir die Schwingungsbäuche der Plasmonresonanzen direkt beobachten. Die Reso-

nanzen lassen sich verstehen indem man die Drähte als eindimensionale Fabry-Pérot

Resonatoren beschreibt. Die Resonanzordnung ist gegeben durch die Anzahl der

Knoten zwischen den Bäuchen. Aus Resonanzen weit jenseits der Quadrupol-Mode

bestimmen wir sowohl die Propagationskonstante als auch die Reflektionsphase des

geleiteten Oberflächenplasmons. Die Brechung der Beleuchtungssymmetrie durch

einen streifenden Einfall des Lichtes und durch Retardationseffekte ermöglicht es

auch Resonanzmoden anzuregen die eigentlich Dipol-verboten sind. Durch systema-

tisches variieren des Beleuchtungswinkels gelingt es uns die Empfangs- und Sende-

charakteristik der Drahtantennen zu bestimmen.

Um diese Charakteristiken besser zu verstehen entwickeln wir ein analytisches Mo-

dell. Während Radiofrequenz-Antennentheorien nur Oberflächenströme berücksich-

tigen, geht unsere Theorie von Volumenströmen aus. Die Gleichungen beschreiben

sowohl die Resonatoreigenschaften als auch die Antenneneigenschaften der Drähte

korrekt. Mit nur vier, physikalisch motivierten, Parametern gelingt es uns sowohl

gemessene als auch simulierte Daten zu fitten. Das Modell erlaubt uns auch die



Unterschiede zwischen Radiofrequenzantennen und plasmonischen Antennen klar

abzugrenzen. Da die Theorie sowohl die relative Intensität als auch die Phase von

an Nano-Drähten gestreutem Licht vorhersagen kann, hat sie viel Potential für die

zukünftige Forschung.

Schlagwörter aperturlose, nahfeldoptische Mikroskopie; optische Antennen; Nah-

feldoptik; Plasmonik; Rastersondenmikroskopie; Richtcharakteristik; Fabry-

Pérot Resonatoren; interferometrische Detektion; theoretisches Modell;
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Chapter 1.

Introduction

1.1. Development of Antennas

At the end of the 19th century scientists started conducting first experiments with

antennas [1]. It took several years until they learned how the design of an antenna

influences characteristics such as the directivity of the antenna’s emittance and re-

ception. In the 1920s, by combining simple dipole antennas [2], with their relatively

broad directivity and small bandwidth, Yagi and Uda developed the classic TV an-

tenna with its narrow directivity [3]. For other purposes other antenna designs are

advantageous, e. g. a bowtie antenna [4, 5] with a large emission angle and a large

frequency bandwidth.

The detailed knowledge about antenna design and how it influences the band-

width and emission pattern lead to tremendous technological advances. The wide

distribution of radio transmitters and receivers in the 1930s and the success of tele-

vision would not have been possible without antennas. Nowadays, antenna design is

a standard discipline in electrical engineering and is indispensable in our lives. They

1



Chapter 1. Introduction

continue to be optimized for mobile phones or wireless computer networks and have

become cornerstones of our modern information society.

The principle design parameter of an antenna is its size. To be in resonance with

the electromagnetic waves it is supposed to receive or transmit it should be approx-

imately of the size of the wavelength. The fact that the antenna in a mobile phone

is much smaller than a rooftop television antenna stems from the usage of shorter

wavelengths. The advantage of shorter wavelengths and corresponding higher carrier

frequencies is the possibility to transmit more information per time.

The technical advancement of the last decades made it possible to manufacture

smaller and smaller structures. With the development of nanotechnology various

methods (i. e. the chemical growth [6,7], the focussed ion beam milling (FIB) [8,9] or

the electron beam (e-beam) lithography [10]) made it possible to fabricate antennas

small enough to shift their resonance wavelength into the part of the electromagnetic

spectrum we usually refer to as light [11, 12]. Today, theses new antennas are often

called “optical antennas” [13,14].

1.2. Potential of Optical Antennas

Although these nanoscopic antennas have been under research for less than a decade

and some of their properties are not yet fully understood, these nanoscopic antennas

have the same potential to open the door to a complete new technology as their

macroscopic counterparts 100 years ago. The capability of optical antennas to collect

light and to concentrate it to certain regions [15, 16] has fired the imagination of

scientists.

The combination of antennas with atoms or molecules [17] might give rise to com-

pletely new (quantum-) sensing applications [18–22]. The proposed cheap, reusable,

2



1.2. Potential of Optical Antennas

molecule specific recognition schemes which are supposed to be able to detect even a

few molecules would give rise to new technologies. For these applications the anten-

nas need to be designed to have a low loss and their resonance tuned to the atoms

/ molecules of interest.

Already in clinical trials are nano-antennas as heat concentrating agents in cancer

treatment [23]. Here, gold nano-shells are used as antennas and are brought into

cancer cells. The absorption of near-infrared light by the shells leads to heating and

finally to photothermally induced necrosis of the cancerous cell. The beauty of this

technique is that the selective accumulation of nano shells in the cancer cell [24,25] in

combination with focussed illumination leads to a very high specificity. The reason

the nano shells have been chosen as antennas is their tunable, high absorption for

an efficient heating.

The building blocks of meta-materials can also be regarded as nano-antennas.

These two or three dimensional assemblies of metal nano structures can lead to

new kinds of materials. While the electromagnetic properties of normal matter are

dictated by the properties of the atoms and molecules they are made of, meta-

materials allow an engineering of their building blocks. It has already been shown

that it is possible to achieve negative refraction [26] and bending of light rays around

obstacles [27]. Especially the last experiment got huge public attention and is often

compared with Harry Potter’s invisibility cloak [28, 29]. For meta-materials the

design of the individual antenna is very important. It is dictated by the effective

refractive index of the final meta-material.

3



Chapter 1. Introduction

1.3. Design of Optical Antennas

But what methods are there to design optical antennas? Can we apply the old

antenna design rules from the radio frequency (RF) regime to the new, the optical

regime? It turns out that it is actually not that simple. While RF antennas have

their fundamental resonance when the antenna length is equal to half the wavelength,

we will show in the following chapters that optical antennas are much shorter. This

means that for optical antennas standard RF antenna theories can not be applied

anymore. We need an improved model to describe them.

Why does the simple scaling down of antennas lead to new physics when the

resonances lie in the optical regime? In the RF regime, metals can be regarded as

perfect conductors with an infinitely large negative permittivity ε. In the optical

regime ε is far from being infinite, instead it is a finite, complex valued number

depending strongly on the exciting wavelength [30, 31]. This has a severe effect on

the surface waves at the boundaries of the metal—dielectric interface. The dispersion

relation of plasmons [32–34] tells us that the wavelengths of the excitation modes

on the surfaces will be smaller than the free space wavelength. This has to be taken

into account when we develop a new analytical description for optical antennas.

Today, the influence of the design of nano antennas on their optical properties is

mainly studied by simulations. It has been very helpful that Maxwells equations are

still valid at this length scale. Standard simulation methods, which have originally

been designed for macroscopic antennas, can still be used in this new regime. For

example, the finite-difference time-domain (FDTD) [35] method, invented in the

1970s, is still very helpful in understanding the properties of optical antennas [20,

36,37].

Nevertheless, simulations are no substitute for an analytical model. Each simula-

4



1.4. Microscopy Methods

tion can predict the behavior of a single sample. A systematic covering of large areas

of the parameter space leads easily to very time consuming calculations and only

gives the possibility to interpolate to the parameters in between the simulations.

For a full physical understanding of optical antennas we desire simple formulas that

can describe the excitability, the near-field patterns and the emission of radiation

of optical antennas. On the one hand these equations can speed up the calculations

on the other hand they allow extrapolation to new parameter sets [38]. In the end

they will then help us to find the best optical antenna for each application. For the

basic linear antenna we will do that in this thesis.

1.4. Microscopy Methods

While simulations are extremely helpful during the design process of an antenna,

their prediction can only be as good as the experimentally determined parameters

they rely on. The optical constants are usually obtained from experiments on bulk,

crystalline metals. In contrast, the gold nano structures that are produced today

are often polycrystalline or contaminated by other materials. Also, the small size

of the particles results in a different proportion between volume and surface. It

has, for example, been observed that the surface damping in small particles is much

stronger and has to be accounted for in simulations [39–42]. This makes it necessary

to validate the theoretical findings experimentally.

A common method to investigate the optical properties of small metal structures

is to do spectroscopy on ensembles [43–45]. In these experiments the results are

an average over a large amount of similar but not identical particles. Microscopy

investigations of single particles have the advantage that spectroscopic features are

not smeared out by small shape variations in the ensemble [7, 46].

5



Chapter 1. Introduction

By using nonlinear optical effects it is even possible to obtain some information

about the strong near-fields around the antennas with conventional microscopes [12,

47]. The limitation of these confocal microscopy techniques is the Abbe diffraction

limit on spatial resolution [48]. In order to distinguish two neighboring points in

an optical far-field microscope, their distance has to be at least approximately half

a wavelength. With the length of the first resonance of an optical dipole antenna

being smaller than λvac/2, these techniques only allow an averaging over a single

antenna.

To obtain higher resolution information on the optical properties of metal struc-

tures other methods are necessary. One possibility is to use electrons for detection.

In electron energy loss spectroscopy (EELS) electrons passing the metal structures

are loosing some of their energy to surface plasmons [49, 50]. In imaging mode it is

possible to map the plasmon excitability with the resolution of an electron micro-

scope. It is not yet fully understood, though, what optical property the measured

signal resembles. In some publications EELS is found to directly render the photonic

local density of states (optical LDOS) [51,52], while others do not find a direct link

between EELS and LDOS maps [53].

Photoemission electron microscopy (PEEM) is an easier to understand technique.

The local field enhancement of antenna structures leads to a higher photoelectron

emission [54–56]. The local number of emitted electrons is depending on to the

interference between the plasmon and the illumination field. The detection with

electron optics allows a high resolution mapping of the near-field pattern around the

antenna. The interpretation of the signal depends whether a single or two-photon

process is used to overcome the work function of the metal [57].

All optical investigations have the advantage of being less stringent on the sample’s

6



1.4. Microscopy Methods

ambient conditions. No vacuum is necessary and most of the optics can be bought

off-the-shelf. To achieve a high resolution, the illumination or the detection have to

happen in the near-field region of the antennas. The origin of near-field microscopy

goes back to an idea of Synge in the 1930s [58], but only in the 1980s it became

possible to build such a scanning near-field optical microscopes (SNOM). A small

aperture in an otherwise opaque metal film is used to confine the transmitted light

[59–61].

The aperture SNOM was not Synge’s initial idea for a near-field microscope. At

first, he wanted to use a small metal particle as local scatter to enhance the resolution

[62, 63]. This idea is similar to what became the apertureless SNOM (aSNOM)

[64–66]. Both methods, SNOM and apertureless SNOM, break the diffraction limit

and can be used to map localized surface plasmons [67–73]. Both methods, though,

suffer from the problem that the probing tip will influence the measurement process.

The proximity of the tip to the investigated antenna will always modify the mapped

eigenmode. For reliable experimental information it is necessary to minimize the

influence of the probe.

In this thesis we will show how to use an aSNOM to map the local fields of opti-

cal antenna eigenmodes with minimal disturbance. In addition to the usual signal

discrimination methods of tip–sample distance modulation and higher harmonic de-

tection we use a cross-polarization scheme which allows us to obtain background

free images of one of the E-field components. The comparison with simulation data

(not including the tip) will show little to no deviation from our aSNOM experiment.

This makes the cross-polarized aSNOM to a valuable tool for future research on

plasmonics and near-field optics.

We investigate the basic structure of a wire antenna in great detail. Our investi-

7



Chapter 1. Introduction

gation of the length dependence of the resonance confirms theoretical models where

the optical wire antenna is described by two parameters, a propagation constant

and a reflection phase at the wire end. With these conclusions in mind, we continue

to study the emission patterns of the wire antennas. In order to understand our

findings we come up with a new theoretical model describing the resonances and

the emission of plasmonic antennas. Compared to simulations and experimental

data obtained until today, our analytical model gives us a broad understanding of

linear antennas. The differences we find compared to normal antennas can now be

explained by the material properties of metals in the optical regime.

8



Chapter 2.

Cross-Polarized apertureless

Scanning Near-Field Optical

Microscopy

We start this chapter with a review of the working principle of aSNOM. After this

short review we concentrate on an improvement extending this well established tech-

nique to surface plasmon eigenmodes.

2.1. Working Principle of apertureless SNOM

In order to achieve a resolution better than the diffraction limit, near-field techniques

rely on a local field confinement. While SNOM uses apertures with diameters on

the order of a tenth of the wavelength to block all light except for a small region,

apertureless SNOM uses sharp tips as antennas to confine light to possibly even

smaller volumes. This light confinement can be observed in simulations of elongated

9



Chapter 2. Cross-Polarized apertureless Scanning Near-Field Optical Microscopy

tips illuminated with light [74,75]. Experimentally, the field enhancement has been

verified with the help of photosensitive polymer films [76,77]. The lateral dimension

of the field enhancement region at the tip apex is on the order of magnitude of

the radius of curvature of the tip apex [78]. Typical tips used in experiments have

apex radii of 5-10 nm and can thus be seen as nanoscopic light sources [64, 79, 80].

When the tip is raster scanned over a sample a change of index of refraction at

the surface leads to a change in the scattering efficiency of the near-field light [81].

In conventional aSNOM this is used as contrast mechanism. Collecting the light

backscattered from a light source focussed onto the sharp tip allows conclusions

about the permittivity in the local region below the tip.

2.1.1. Higher Harmonic Detection

The challenge of aSNOM lies in the fact that the light scattered from the small

near-field region is overlaid by an often much larger portion of light scattered by

the tip or by sample volumes in the farther neighborhood of the tip apex. The

low intensity near-field component has to be filtered out. This is usually done by a

modulation—demodulation scheme. The modulation is achieved by using an atomic

force microscope (AFM) in non-contact mode and the demodulation can be done by a

lock-in amplifier. The intensity of the near-field part of the scattered light has a non-

linear, nearly exponential, tip-sample-distance dependence. A sinusoidal modulation

of the vertical tip position will give rise to components at higher harmonics of the

mechanical modulation frequency ω [82–84].

For the light scattered solely at the tip, the situation is different. When the mod-

ulation is kept small compared to the focus size, the tip is moving in a field with

a low gradient. The scattering intensity is nearly constant with a small harmonic

10



2.1. Working Principle of apertureless SNOM

component and hardly any signal at higher harmonic frequencies. With our tip

modulation amplitudes of ≈ 20 nm, filtering with a lock-in amplifier (Stanford Re-

search, SR844) at the second or third harmonic is sufficient to filter out the far-field

component and only detect a near-field signal.

2.1.2. Interferometric Amplification

Another difficulty is the low intensity of the near-field light. The intensity of the illu-

mination beam is limited in intensity by the damage threshold of the tip to roughly

0.5 MW/cm2. This limits the intensity of the light backscattered from the near-

field region to intensities in the order of the noise-equivalent-power (NEP) of typical

detectors. A standard way to overcome this fundamental problem is an optical am-

plification scheme [85]. The weak signal carrying beam I(sig) is interferometrically

mixed in a beamsplitter (Thorlabs, BSW11) with a stronger reference beam I(ref).

The detected light has the intensity:

I = |E|2 = E(sig)E(sig) + E(ref)E(ref) + 2Re(E(sig)E(ref)) (2.1)

= I(sig) + I(ref) + 2
√
I(sig)
√
I(ref) cos ∆ϕ (2.2)

where ∆ϕ is the phase difference between the two beams. The first term, I(sig),

in this sum is much weaker than the others and can be neglected. I(ref) does not

contain any modulation and will be discarded by the lock-in at the latest. The

remaining cross term shows how the reference beam interferometrically amplifies

the weak signal.

While equation 2.2 illustrates the effect very nicely, it ignores the effect of noise

brought into the system by I(ref). The region where this process can lead to a

11



Chapter 2. Cross-Polarized apertureless Scanning Near-Field Optical Microscopy

significant improvement of the signal-to-noise ratio (SNR) is determined by the shot

noise caused by the intensity of the reference beam. The SNR is given by the ratio

between the average number of photons 〈n〉 divided by the standard deviation σ [86].

For coherent light σ is given by [87]:

σ =
√
〈n〉 ∝

√
I (2.3)

In the case of interferometric amplification, the complete light falling into the de-

tector gives rise to the noise while only the interferometric part is responsible for

the signal. Therefore, for an ideal detector the maximal reachable SNR would be

independent of I(ref):

SNR ∝ 2
√
I(sig)
√
I(ref)

√
I

I(sig)�I(ref)
≈ 2

√
I(sig)
√
I(ref)

√
I(ref)

= 2
√
I(sig) (2.4)

This leads to the conclusion that once the signal is amplified well above the NEP of

the detector, no further improvement of the SNR is possible.

Both calculations assume a linear response of the detector to intensity. But once

the reference beam is driving the detector into its non-linear regime, the SNR will

decrease again. I(ref) should be chosen to amplify the signal above the NEP of the

detector but to keep the detector in the linear regime.

2.1.3. Homodyne Amplification

Equation 2.2 shows that the intensity measured by the lock-in amplifier depends on

∆ϕ. The phase difference between signal and reference determines whether the two

beams interfere constructive or destructively. This can be used to measure both, the

amplitude and the relative phase of the signal beam. Over the years several schemes
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2.1. Working Principle of apertureless SNOM

have been employed in aSNOM:

homodyne reference and signal have the same wavelength and amplitude and phase

are obtained by measuring twice with two different phase differences ∆ϕ = ψ

and ∆ϕ = ψ + 90◦ [82]

phase-shifting similar to the homodyne scheme but uses more than two steps for

the phase difference ∆ϕ [88]

heterodyne one of the beams is frequency shifted with respect to the other and

thus ∆ϕ is constantly swept through [81]

pseudo-heterodyne a sinusoidal modulation of the optical path length of the ref-

erence generates sidebands that can be analyzed [89]

In our measurements we use a homodyne scheme. The phase difference ∆ϕ is con-

trolled by a self-built piezo (PI Ceramic, P-887.50) driven mirror assembly. From

the two lock-in measurements S1 and S2, the total amplitude S and the optical phase

ψ can now be calculated by:

S =
√
S2

1 + S2
2 (2.5)

tanψ =
S2

S1

(2.6)

The full determination of ψ from equation 2.6 is only possible by looking at the signs

of S1 and S2.

At this point, the reader is reminded that the cross term in equation 2.2 does have

a sign and can become negative. Depending on the sign of cos ∆ϕ, 2
√
I(sig)I(ref) is

added or subtracted from the offset produced mainly by I(ref). Figure 2.1 shows the

time evolution of the modulated signal. For a positive cos ∆ϕ the measured intensity

13



Chapter 2. Cross-Polarized apertureless Scanning Near-Field Optical Microscopy

Figure 2.1.: Time-evolution of the modulated interferometric signal. For cos ∆ϕ = 0
the measured intensity consists mainly of the constant reference beam
I(ref). Otherwise, depending on the sign of the cosine term, the signal is
modulated in phase or 180◦ out of phase with the vertical tip position.

is 180◦ out of phase compared to the vertical tip position, for a negative cos ∆ϕ it is

in phase. While the output of a single phase lock-in amplifier is signed, we use the

phase display of our dual phase lock-in to determine a sign of the voltage. With the

signed measurement values S1 and S2 we obtain access to the full 360◦ range of the

optical phase.

2.1.4. Confocal Microscope

In order to reduce the non-near-field light in our setup we use a spatial filtering

technique. Figure 2.2 shows how a small aperture can be used to filter out light

scattered by only the tip or only the sample. Together with the single mode fiber

(Thorlabs 780HP) we use to deliver the light to our setup we turn the optical part

of the setup into a confocal microscope.

In our case, as shown in figure 2.2, the light backscattered from the tip is first

collimated into a 6 mm wide beam before it is focussed by an aspheric lens (Thorlabs,
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2.2. Cross-Polarization aSNOM

Figure 2.2.: Using a spatial filter in the detection path reduces the light scattered
by the tip and the sample.

C280TME-B) on a fiber launch system (Thorlabs MBT613/M) into a single mode

fiber. The reference beam is aligned mainly by minimizing its power loss through

the fiber. The spatial filtering of the fiber ensures a very good phase front matching

of the two beams and maximizes the interferometric amplification efficiency. This

has been recognized as being advantageous for polarization sensitive measurements

[90–92]. The reference and the signal beam are then delivered together to a avalanche

photo (Hamamatsu, C5331-02) or a PIN diode (FEMTO, HCA-S).

2.2. Cross-Polarization aSNOM

Since a few years, aSNOM is not only used for index-of-refraction mapping but

also for the mapping of plasmons. In an early paper, the resonances of gold discs

have been imaged using an oblique illumination with p-polarized light. The dipole

character of the resonance is observed as one bright and one dark lobe [70]. Only

recently it has been shown that the pattern observed in this image is a result of a

strong coupling between the tip and the sample [93]. This makes it complicated to

interpret the obtained measurement data. Therefore we will explain here in detail

a new method that allows the direct imaging of plasmonic eigenmodes by aSNOM.
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Figure 2.3.: Scheme of the setup. Weakly focused s-polarized radiation excites nano-
wires largely unperturbed by the probing tip. A typical response field is
indicated by the electric field strength distribution on the wire surface
and a snapshot of selected field lines. Backscattered light is modulated
by the tip vibration (frequency ω) and polarization-analyzed along the
tip-axis.

16



2.2. Cross-Polarization aSNOM

Figure 2.4.: Comparison between (a) Michelson and (b) Mach-Zehnder type inter-
ferometer in cross-polarized aSNOMs.

2.2.1. Principle

To suppress perturbation of the near-field at the nano-structures by the tip to the

largest possible extent, we rely on a cross-polarization scheme (Fig. 2.3) where the

illuminating and the scattered field components are orthogonally polarized [71, 94,

95]. For the excitation of the sample we use s-polarized light. This polarization

hardly excites the tip at all [74]. In contrast, the structures on the sample may

respond with strong plasmonic resonances. The tip efficiently picks up the vertical

field components of these resonances and scatters them back into the far-field as

mainly p-polarized light.

2.2.2. Michelson vs. Mach-Zehnder Interferometer

The method of controlling the two polarizations depends on the type of interfer-

ometer used for optical amplification. Many aSNOMs use a Michelson type of in-

terferometer and the light is polarized to ensure s-polarization in the illumination

path (figure 2.4(a)). By including a λ/4-plate into the reference beam the polariza-

tion is turned by 90◦ and only the p-polarized component of the scattered light is
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Chapter 2. Cross-Polarized apertureless Scanning Near-Field Optical Microscopy

amplified [96].

We use a different approach and gain much more control over the two polarizations.

A Mach-Zehnder type of interferometer allows us to control the polarization of both

paths independently (figure 2.4(b)). This would not be necessary if the tip would

be a perfect round cone aligned perpendicular to the illumination polarization. All

asymmetries of the tip break the perfect cross polarization and make a readjustment

of both, the polarizer and the analyzer, necessary.

The light delivered to the aSNOM is neither polarized in the pure s- nor in the

p-state. After splitting off the reference path, a Glan-Taylor prism polarizes the

illumination to the s-state. After the scattered light is mixed with the reference

beam in a second beam splitter, a second polarizer selects the p-component of both

beams. By motorizing the rotation stages of the two Glan-Taylor prisms with step-

per motors (Controller: Physik Instrumente, PI 511) we can scan the polarizations

systematically to find an optimal configuration.

2.2.3. Weak Tips

It is well known that the close proximity of two or more plasmon resonators leads

to strong coupling between them [97]. The coupling has a strong influence on the

eigenresonances and can drive them in and out of resonance. A metallic tip is such

a resonator. With our cross-polarization approach we are weakening this effect by

driving only one resonator and exciting the tip only indirectly. Nevertheless, also

this indirect excitation can couple back to the investigated structure and can even

suppress its excitation [21,98]. This effect is currently used to produce metamaterial

analogues of electromagnetically induced transparency [99,100].

To achieve true eigenmode imaging of plasmonic resonances we have to avoid using
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2.3. Implementation

a second resonator as probe. It is thus preferable not to use metallic or metallized

tips. We use non-contact AFM tips (Nanosensors, AdvancedTEC NC) made from

silicon instead [101]. Another variant of tips used in the context of surface plasmon

imaging are carbon nano-tube AFM tips [70].

When imaging dipole resonant objects with this cross-polarization technique it is

possible to directly record the dipolar character exhibiting two lobes with a phase

difference of 180◦ between them. By comparing the near-field images with simulation

data we have also found that the recorded images represent maps of the normal

component of the undisturbed eigenmode near-fields [71]. In the next chapter we

will discuss measurements on nano-wires. The excellent resemblance between our

measured signal and simulations conducted without including a tip will support this

view.

2.3. Implementation

Our aSNOM implementation has been described in detail earlier [80, 102] and we

constrain ourselves here to a brief description of the main components. We use a

commercial AFM (Park Scientific, M5) for the non-contact mode distance control of

the tip. The vibration amplitude of the cantilever kept at about 20 nm. Underneath

the AFM head we mounted a low coefficient of thermal expansion INVAR-plate

(material-number 1.3912) to mount the optical components on. The layout of the

optical setup is shown in figure 2.5.

From a tunable continuous wave light source (Ti:Sa, Coherent 899) we deliver the

light by a single mode fiber to our setup. The laser beam is kept on a height of

5 cm and is directed by protected silver mirrors (Thorlabs, PF05-03-P01 and PF10-

03-P01) to ensure a large operation wavelength range. In front of the AFM head we
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Figure 2.5.: Top view of the experimental setup. The light delivered by a single mode
fiber is split into an illumination and a reference beam. A Glan-Taylor
prism polarizes the illumination beam horizontally. An aspheric lens
focusses the light onto the tip of an commercial AFM. The backscattered
signal beam is mixed with the reference beam in a second beamsplitter.
An analyzer selects the vertical polarizer component. Coupling back
into a single mode fiber before detection ensures a confocal imaging of
the tip apex.
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mounted a periscope to direct the beam first upward and then onto the sample under

an angle of about 71◦ relative to the surface normal. To focus the light onto the tip

we use an aspheric lens (Geltech, NA 0.25) mounted on the periscope. It produces

a focus size of about 2 µm in the red to near-infrared wavelength range. Once we

aligned the tip to be in the focus we use a 3-axis piezo stage (Physik Instrumente

P-517.3CD scanner, E-710.3CD controller) to raster scan the sample underneath

the tip. The components not discussed in this section are mentioned in the previous

sections.

2.4. Alignment

In the last sections we described the principle idea behind the cross-polarization

scheme and the components needed for the setup. Now we will describe in detail how

to align the components and how to ensure a good configuration of the polarizers.

2.4.1. Finding the Focus

We start our alignment procedure by setting the output polarization at the fiber

output coupler to roughly 45◦ with respect to the surface normal of the optical

table. The polarizer is then polarizing the illumination beam horizontally (90◦ with

respect to the normal). In this first step we do not set the analyzer to be cross-

polarized with the polarizer. It is set to an angle of about 20◦ and makes sure that

both polarizations can pass through. We block the reference beam and make sure

that the sample underneath the AFM head is still far away from the tip.

To find the center of the illumination focus we use the piezo of the AFM head

to scan the tip through the illumination focus. The image we obtain is shown in
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Chapter 2. Cross-Polarized apertureless Scanning Near-Field Optical Microscopy

figure 2.6(a). It can be easily understood by seeing the optical setup as a confocal

microscope in which the sample is scanned instead of the focus. Here, the AFM tip

is the sample and its sharp tip apex can be regarded as a perfect point scatterer.

With the scattering region of the tip being much smaller than the lateral dimension

of the focus, we image the focus shape instead of a sample [75]. From this image we

conclude that our focus has a lateral dimension of about 2.5 µm. We attribute the

small modulation in the intensity to interference with light reflected in the setup.

For the next step we position the tip in the focus slightly in front of the position of

maximal backscattering intensity (blue cross).

2.4.2. Polarization Scan

To gain phase sensitivity we now mix in the reference beam. We now systematically

search for a good cross-polarization by raster-scanning the two polarizers. A typical

data set we obtain for the two dimensional polarization plane in second harmonic

mode is shown in figure 2.7. The position 0◦ / 90◦ (analyzer / polarizer) marks the

position of nominal cross polarization (marked by a cross). The minimum we find

in the amplitude scan 2.7(a) is at the position 3.5◦ / 93◦ though. The optical phase

2.7(b) we record simultaneously shows a phase singularity at this position. This

minimum is our preferred polarization state because it ensures that the obtained

signal in aSNOM imaging comes mainly from polarization rotating features of the

sample.

2.4.3. Cross Polarized Focus Scan

After finding the ideal polarization we double check by scanning the focus again.

This time we image the focus with interferometric amplification. Fig. 2.6(b) shows a
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2.4. Alignment

Figure 2.6.: Imaging the focus with the tip: (a) in the parallel-polarization mode a
strong backscattering indicates the center of the focus. The blue cross
marks the spot where we position the tip for imaging. (b) in cross-
polarization mode the black line indicates that the backscattered signal
is blocked by the analyzer.

Figure 2.7.: Systematic search for the ideal polarizer angles. (a) shows the optical
amplitude measured in 2nd harmonic mode. (b) shows the optical phase.
The crossed mark the position of nominal cross polarization.
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typical image we obtain. The decomposition of the focus signal in many horizontal

lines comes from the interference between signal and reference beam. Moving the

tip forward and backward changes the optical path length of the signal beam and

accordance with equation 2.2 we see constructive and destructive interference.

We also see a characteristic dark line running from top to bottom through the

center of the focus. To our interpretation these positions have a very symmetric

configuration:

� The illumination polarization is perpendicular to the tip shaft and does not

excite any modes along the tip.

� The analyzer polarization is parallel to the tip shaft and blocks all light being

reflected by transversal excitations of the tip.

� The tip shaft is in the center of the focus where the gaussian beam has only

horizontal components.

Away from the center, a gaussian focus does not only have E-field components of the

main-polarization but also components of the other polarizations [103]. Presumably

these small E-field components polarized along the tip shaft are the reason for the

signal we observe left and right from the dark line.

The optimal cross polarization configuration depends on the tip. For some tips

the optimization procedure needs several iterations to find the correct polarization

angles. Some tips are discarded by us because it seems to be impossible to find the

right polarization angles for them. We ascribe this to an asymmetric shape of the

tips.
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2.5. Eliminating the Residual Background Artefact in Cross-Polarized aSNOM

(a) topography (b) amplitude (c) phase

(d) amplitude corrected by com-
plex baseline subtraction

(e) phase corrected by complex
baseline subtraction

Figure 2.8.: Near-field image of Au discs on SiO2. The optical images show the effect
the background signal artefact.

2.5. Eliminating the Residual Background Artefact in

Cross-Polarized aSNOM

After describing in detail how we align our aSNOM, we now discuss an artefact we

observed, which is specific to the cross-polarized configuration.

2.5.1. Description of the Artefact

Figure 2.8 shows an image taken with an imperfect cross-polarization alignment.

The topography image 2.8(a) shows gold discs on a SiO2 substrate. A detailed
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study of these structures has been published earlier [71, 75]. The discs are excited

by in-plane polarized illuminating light. In the optical image 2.8(b) the dipolar

character is visible as one bright and one dark lobe. The dark lobes show regions

with reduced optical amplitude, while the bright ones indicate added signal, relative

to the regions in between the discs, showing a medium intensity. At the same time

the phase image 2.8(c) shows contrast only in a few regions. The areas where the

phase deviates from the otherwise uniform rest corresponds to the dark areas of the

amplitude image.

2.5.2. Explanation of the Artefact

We can explain these observations by assuming an additional background signal

E(back) overlaying our optical near-field signal E(sig). This can only happen under

imperfect cross-polarization conditions where some of the light being backscattered

by solely the tip or solely the sample is not filtered out and leads to a nonzero E(back).

Figure 2.9 illustrates the measurement process on the bright and on the dark lobe

seen on each disc in figure 2.8(b). The arrows illustrate the complex valued E-

fields resulting in our interferometric measurement signal E(meas) = E(sig) + E(back).

With the two measurements of the homodyne interferometric scheme we are able to

determine both, the real and the imaginary part of E(meas).

Figure 2.9(a) shows the measurement process on the bright lobe. E(back) and E(sig)

point in nearly the same direction and result in an E(meas) with a large amplitude

and an optical phase close to the one of E(sig). On the dark lobe E(sig) is flipped by

180◦ while the background stays constant. As depicted in figure 2.9(b), this results

in a measured amplitude much smaller than the one of E(sig) and the measured

phase deviates strongly from the one of E(sig).

26
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(a) measurement on the bright lobe

(b) measurement on the dark lobe

(c) comparison between background and no-background mea-
surement

Figure 2.9.: Explanation of the effect of a background signal.
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(a) topography (b) amplitude (c) phase

Figure 2.10.: Near-field image of Au discs on SiO2 without background. The optical
images show the raw data without any correction.

Figure 2.9(c) summarizes these observations. While the optical signals E(sig) we

are interested in are equally strong and pointing into opposite directions in the

complex plane, the measured signals E(meas) are unequally strong and show a phase

difference much smaller than 180◦. Aside of the discs, instead of zero amplitude, we

directly measure the background signal. In summary, all measurements of signals

with the same amplitude should lie on a circle around the origin of the complex plane.

Under imperfect cross-polarization conditions this circle is shifted by a background

signal and leads to the disturbed images in figures 2.8(b) and (c).

2.5.3. Correction of the Artefact

On the substrate we are measuring only the background signal we depicted as red

arrow. On top of the discs we measure the two lobes of the dipole resonance as one

amplified, bright lobe and one reduced, dark lobe. This analysis also tells us how to

reduce this artefact and to retrieve the original signal. The background signal can

be found everywhere in the optical image while the real signal occupies only small

areas. Also, for each lobe in the dipolar pattern we can find the counter lobe with
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an opposite phase but about the same amplitude. The complex sum of two pixels

from opposite lobes gives zero. Calculating the complex valued average of the whole

image or one line will retrieve approximately the background signal. Subtracted it

recovers the original optical signal. Figures 2.8(d) and (e) show the previous data

set corrected by a complex baseline subtraction.

Better than reverting to a correction algorithm is to eliminate the background sig-

nal by a good cross-polarization. Figure 2.10 shows the raw data obtained from the

same sample as before but with a better alignment. Here, the dipole resonance shows

up as two bright lobes with a phase difference of 180◦. Comparing figures 2.8(d)

and 2.10(b) and 2.8(e) and 2.10(c) shows clearly that the method of ensuring a good

cross-polarization leads to less background and should be preferred.

In the following chapters we are always optimizing the positions of both polarizers

according the described scheme. The complex valued baseline correction we will be

referring to is always just an additional procedure to improve our aSNOM images.
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Chapter 3.

Plasmonic Resonances of Gold

Nano-Wires

In this chapter we use our apertureless SNOM technique to measure the wavelength

and reflection phase of plasmons in thin metal wires of finite length with sufficient ac-

curacy to compare against theoretical models [104–107]. Such quasi-one-dimensional

metallic structures are frequently also referred to as optical antennas in the liter-

ature [104–106]. In the following, to prevent confusion, we adopt the term “metal

nano-wire” or short “wire”. This prototypical system can be described as Fabry-

Pérot resonators for guided quasi one-dimensional plasmons. With our improved

cross-polarization variant of aSNOM we obtain images of amplitude and phase of

local electric field components.

The experimental situation has been described in detail in the last chapter. A

short description can also be found in figure 3.1(a). For the experiments in this

chapter we tuned our continuous wave laser source to a wavelength of 942 nm.

Compared to spectroscopy on particle arrays [43,44,108], our approach has the ad-
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vantage that we can easily investigate individual wires. As in combinatorial material

science [109], a limited number of images allow us to study a large number of isolated

structures under virtually identical conditions, facilitating direct and quantitative

analysis of the full system. From the lowest order resonances we obtain experimental

values for the propagation as well as the reflection [104–107] of plasmons. We nicely

confirm that the symmetry-forbidden even-order modes are accessible with off-axis

excitation. Quantitatively, our results are in good agreement with simulations. How-

ever, we find small, systematic deviations attributed to device imperfections and/or

overly idealized modeling, specifically concerning the intriguing behavior of the wire

terminations.

3.1. Wire Array Sample

The gold nano-structures are prepared on heavily doped silicon wafers coated with

a 100 nm silicon-oxide layer. Smooth, 25 nm high Au structures are prepared by

standard electron beam lithography, thermal metal deposition and lift-off using a

0.3− 0.5 nm Ti adhesive layer, whose influence on optical properties can be ne-

glected. We investigate 40 nm wide wires with a length distribution from 40 nm to

1630 nm in steps of 10 nm. In one part of the study, wires are arranged in several

interlaced columns as shown in Figure 3.1(c) with a surface-to-surface spacing of

260 nm. Scanning electron microscopic (SEM) analysis confirms that actual sample

parameters agree with the nominal values to within the SEM resolution. To study

excitation conditions for the lowest even order eigenmode in detail, we use an array

of 40 nm wide wires that has been randomized both in length (280 nm, 300 nm, . . . ,

360 nm) and azimuthal angle (−90◦, −75◦, . . . , 90◦) [see Figure 3.5(a)].
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3.1. Wire Array Sample

Figure 3.1.: (a) Scheme of the setup. Weakly focused s-polarized radiation excites
nano-wires largely unperturbed by the probing tip. A typical response
field is indicated by the electric field strength distribution on the wire
surface and a snapshot of selected field lines. Backscattered light is
modulated by the tip vibration (frequency ω) and polarization-analyzed
along the tip-axis. (b) Simulated magnitude of the z-component of the
electric field 24 nm above the structure shown in (c). (c) Topography
of the metallic nano-wires. The wires of different length are arranged in
a compact manner, though sufficiently separated to reasonably assume
they are noninteracting. (d) Simultaneously obtained, baseline corrected
near-field optical amplitude image for an excitation wavelength of λ =
942 nm.
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Figure 3.2.: (a)–(d) Compound images of simulated magnitude (top), measured
magnitude (middle) and phase (bottom) for the 140 nm, 520 nm,
890 nm, and the 1270 nm long wires, respectively, which represent the
odd order resonances. White rectangles indicate the contours of the
wires as taken from the nominal and measured geometry.
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3.2. Simulations

To compare with theoretical predictions, we perform extensive FDTD simulations

[110]. The spatial domain is discretized with a resolution of 8 nm. For the refractive

index we use values reported in literature [30]: nAu = 0.198 + 6.046i, nSiO2 = 1.536

and nSi = 3.638 at λ = 942 nm. The semi-infinite half space above the substrate

is assumed to be air. The sample shown in Figure 3.1(c) is entirely discretized as

one supercell and arranged periodically in lateral directions to make use of periodic

boundary conditions with periods of 9.696 µm and 6.896 µm – large enough to ex-

clude interactions with neighboring supercells. The wires shown in Figure 3.5(a) are

simulated individually with a square periodicity of 1 µm. In the normal direction

we assume perfectly matched layers. The structures are illuminated with s-polarized

plane waves at an incidence angle of 71◦ with respect to the surface normal, repro-

ducing exactly the experimental conditions.

The simulations do not include any probing tip. The measured signal is taken

to be the normal component of the local electromagnetic field in a plane 24 nm

above the structure. Based on our cross polarization scheme [71], this assumption is

justified a posteriori by the excellent agreement between experimental and numerical

data.

3.3. Odd Order Resonances

3.3.1. Near-Field Images

Figure 3.1(d) displays the near-field image of the sample shown in Figure 3.1(c)

recorded with excitation polarization parallel to the wire axis. For presentation,
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the image has been corrected with a line-by-line removal of a small complex-valued

offset, attributed to remnants of parasitic background scattering. This does not

affect the following analysis. Evidently, the signal strength varies strongly from wire

to wire.

The shortest, 40 nm long wire exhibits a very weak signal while the 140 nm long

wire gives the strongest signal. Its modal field distribution [see Figure 3.2(a)] is

characterized by two amplitude lobes and a single nodal line in-between. This clear

indication of a dipolar mode is also confirmed by the optical phase image which

shows a difference in phase between the two lobes of about 180◦. Longer wires show

higher order resonances, enumerated by the number of node-lines crossed along the

length of the wire. Thus, the third order resonance is observed for a wire length of

≈ 520 nm [Figure 3.2(b)] and the fifth for ≈ 890 nm [Figure 3.2(c)]. In Figure 3.1(b)

we show the z-component of the E-field 24 nm above the structure, as extracted from

an FDTD simulation of the full structure. Comparing experiment and simulation

shows a good agreement in the distribution of (near-) resonant wires as well as the

modal structure of the individual wires.

The general interpretation of these observations are plasmonic standing waves pat-

terns [111]. That is, inside the metal volume the charge density exhibits localized

lobes of alternating sign along the wire length which oscillate in time. Associated

electromagnetic fields are both effect and driving force of these fluctuations. As

depicted in Figure 3.1(a) for the first order mode, outside the metal-dielectric in-

terface the cross-polarized aSNOM probes the electric field component along the

tip shaft. Only odd order modes are observed to show strong local fields in Fig-

ure 3.1(d). The even order modes, which are mirror symmetric about the y-z-plane,

are fundamentally mismatched to the anti-symmetric excitation.
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Figure 3.3.: (a) Resonance curves obtained by plotting the maximum signal per wire
versus the wire length. The experimental and simulation data has been
extracted from figure 3.1. The solid lines show Lorentzians fitted to the
data. (b) Plot of the Lorentzians’ peak positions versus the resonance
order. The lines are a least square fit to the data. The inset is a zoom
where the fitted straight lines cross the y-axis. (c) Resonance curves
when the sample is rotated by ≈ 20◦. (d) Resonance length versus
resonance plot of the rotated sample.

For the symmetry-allowed odd modes, a more detailed comparison of the measured

versus simulated signal reveals small differences for individual wires, particularly for

higher order resonances [Figure 3.2(a)–(d)]. Generally, the measured local field

strength at the ends is found to be considerably lower than at the central lobes

and the inner lobes exhibit a tendency to pair up. At present, simulation does not

lend a simple explanation, showing hardly any accents on different lobes of a given

resonance.
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3.3.2. Resonance-Length Dependence

Examining the system of wires as a whole, we identify the resonance lengths by

extracting the maximum amplitude per wire. Figure 3.3(a) shows a plot of these

maxima against wire length. Geometric resonances up to seventh order are clearly

observed as peaks. With increasing resonance order, the peak amplitude drops

and the width broadens. By fitting these peaks with Lorentzians, we obtain the

resonant lengths for the different orders. The first order resonance can be observed

at a wire length of 143 nm. From the simulation shown in Figure 3.1(b) we obtain an

equivalent curve. As a first finding, the resonances appear slightly shifted towards

smaller wire lengths compared to experiment. Figure 3.3(b) shows the resonance

wire length as a function of resonance order, which is nicely approximated by a

linear fit for both experimental and simulated data:

Lexp(n) = −(43.7± 1.4) nm + n · (186.4± 0.9) nm, (3.1)

Lsim(n) = −(47.7± 0.8) nm + n · (180.7± 0.6) nm, (3.2)

where n is the resonance order. In an intuitive and clear interpretation of these

observations the nano-wires may be regarded as one-dimensional Fabry-Pérot res-

onators. Guided SPPs travel along the wire length L with a propagation constant γ

and suffer a phase jump δφ upon reflection at each end. For the n-th order resonant

wire length the total round trip phase accumulation equals n times 2π,

2γ L(n) + 2δφ = 2π ·n. (3.3)

Our measured spacing between subsequent resonant, odd-order wire lengths thus

provides an unambiguous unit of one plasmon wavelength, λp = 2π/γ = 372.8 nm.

38



3.3. Odd Order Resonances

It compares very well to a finite element method mode solver-derived value of 371 nm

for the wavelength of an infinite plasmonic waveguide of identical cross section.

3.3.3. Reflection Phase

The phase change δφ = 42.2◦ at the wire ends, though, is somewhat ambiguous.

Viewing the nano-wires as optical nano-antennas [104] suggests an alternative way

to interpret this quantity as an apparent length increase δL = δφ/γ. Either descrip-

tion is independent of resonance order n and represents a reactance-related property

specific to the wire terminating structure. However, differing conventions are pos-

sible of what constitutes “the” nano-wire length for rounded or tapered ends, etc.,

depending on whether the cap is counted as part of the wire or not. As we regard

our cross-sectional end facets as nearly flat, we have a unique length definition for

wire antennas. In this light, we judiciously note that the 40 nm width and 25 nm

height of our rectangular, substrate-supported, flat-end wires compares well with the

43.7 nm diameter that would be derived following Ref. [104] from equation (3.1) for

circular, in vacuo, hemispherically capped wires. The small systematic deviations of

the simulated values (equation (3.2)) from our experimental data (equation (3.1))

may have several reasons, such as the imprecise knowledge of nAu of thermally de-

posited gold or the idealized simulated wire geometry including abruptly sharp edges

and corners.

The fact that the termination of nano wires have a strong influence on the plasmon

resonances is also known from the literature [39]. Changing from a wire with a flat

ending to one with rounded ends while keeping the total length constant makes

the resonances shift to shorter wavelength in spectroscopy studies [112], they blue

shift [45]. Being resonant at shorter wavelength means that the rounded wires have
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to be longer to be resonant at the same wavelength as the wires with a flat ending.

This is exactly the tendency we observe in figures 3.3(a) and 3.3(c).

The phase pickup at the wire end has recently been explained theoretically. By

looking at a mode propagation along on a cylindrical nano wire together with its

reflected counterpart and matching them at the boundary with a propagation free

space mode it is possible to calculate an analytical expression for the reflection

phase [112]. For a 40 nm diameter radius wire and an illumination wavelength

λ = 633 nm, this model predicts a reflection phase of about 70◦.

3.4. Even Order Resonances

3.4.1. Breaking the Symmetry of the Illumination

Beyond characterizing plasmonic wires using the symmetry allowed odd order res-

onances our aSNOM approach also allows us to study the resonances with an even

number of nodes. In our experiment, this symmetry constraint is easily lifted by

changing the azimuthal angle of the sample relative to the excitation. Thanks to

retardation, for skew incidence, the E-field varies over the length of the wire and its

projection onto the wire axis contains a mirror symmetric part, which thus enables

the excitation of even modes. By analyzing an image recorded with the sample

rotated by 20◦ (Figure 3.4), we obtain the resonance curve shown in Figure 3.3(c).

Most prominently, besides the peaks previously observed (red lines), additional res-

onance peaks (blue lines) appear at the even order resonance lengths all with nearly

the same amplitude. Apparently, the dipole coupling strength of odd order modes to

the excitation rapidly diminishes for longer wires, whereas the retardation-enabled

coupling of even modes remains equally strong.
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3.4. Even Order Resonances

Figure 3.4.: Near-field investigation of the wire-antennas when the illumination is
rotated by ≈ 20◦: (a) AFM topography image of the rotated sample.
(b) Optical amplitude recorded with a cross-polarized aSNOM at an
illumination wavelength of λ = 942 nm. (c) Optical phase retrieved by
an interferometric detection scheme. (d) Simulated magnitude of the
z-component of the electric field.

41



Chapter 3. Plasmonic Resonances of Gold Nano-Wires

Fitting the peaks in the same manner as before leads to:

Lexp(n) = −(31.7± 0.9) nm + n · (180.9± 0.6) nm, (3.4)

Lsim(n) = −(47.6± 0.8) nm + n · (180.2± 0.6) nm. (3.5)

The fitting parameters derived from simulation hardly vary between equation (3.2)

and (3.5), the corresponding experimental values change significantly from equa-

tion (3.1) to (3.4). We attribute the significant difference in the offset value between

equations (4) and (5) to imperfect knowledge of the precise geometrical features of

the fabricated wire ends, which are simulated as perfectly flat. While these findings

will be subject of further, more detailed studies, in the next two paragraphs we

concentrate on the angle and length dependence of the lowest even order resonance,

which has received only little attention in the literature [55,107].

3.4.2. The Second Order Mode

We analyze an array of wires with lengths distributed around the second order res-

onance and arranged with varying azimuthal orientations. Figure 3.5(b) shows this

mode with three lobes and two nodes. We note that the “front” lobe (as seen from

the incident radiation’s point of view) appears characteristically weaker than the

middle and back lobe. Analyzing all wires in the same manner as before results

in the 2-dimensional contour plot shown in Figure 3.5(c). From a set of individ-

ual simulations of each wire we extract the corresponding contour plot shown in

Figure 3.5(d).

On the whole, both contour plots agree. The resonance wire lengths appear

at ≈ 330 nm in experiment and ≈ 310 nm in simulation, consistent with equa-

42



3.4. Even Order Resonances

Figure 3.5.: (a) Design of the sample to study the second order resonance. The
length and the rotation angle of the wires is varied from 280 to 360 nm
and from −90 to 90◦. (b) Baseline corrected optical near-field amplitude
of the respective sample at an illumination wavelength of λ = 942 nm.
(c) Detailed analysis of the second order resonance: The maximum sig-
nal obtained from each wire is plotted in a 2D angle – wire length –
contour plot. The minimum between the two peaks shows that the sec-
ond order resonance is symmetry forbidden at an angle of 0◦. (d) Similar
plot obtained from FDTD simulations. The wires of the sample have
been simulated individually.
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tions (3.1), (3.2), respectively. At the resonance wire length, both plots show maxima

at about ±45◦ as clear indication of an excitation of the even order plasmonic mode.

Symmetry suppression explains the minima at 0◦ and at ±90◦.

The directional dependence of excitation – as studied here for the second order

mode – could be of use in future applications, for example to tune the response of

individual structures by the directionality of the external source or to allow efficient

multi-wavelength optical excitation of nano-wires by multi-directional illumination.

A complete understanding of the contour plots is not straight forward. A full

description of the wires has to explain two results simultaneously: its property

as plasmon resonator with Fabry-Pérot modes and its directionality as receiving

antenna. In the next chapter we will continue the discussion of the excitability of

gold nano-wires and we will finally come up with an analytical model explaining our

observations.
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Chapter 4.

Emission Patterns of Linear

Plasmonic Antennas

In the previous chapter we showed how near-field imaging with a cross-polarization

aSNOM can be used to map the excitation of single plasmonic antennas. The am-

plitude of the near-field was a clear indication for how resonant the individual wires

were. By rotating the sample slightly we already learned that the excitation of the

modes depended on the illumination direction. For the second order mode, which

was not excitable under perpendicular illumination, we even investigated the angle

dependence in more detail. In the interpretation we restricted ourselves to quali-

tative arguments until now. We explained the features of the angle dependence by

symmetry arguments. This can answer the fundamental question of how to access

the even order modes but does not give any information about the strength of the

individual modes. For example, a question that was unanswered until now was why

the 7th order peak disappeared at the illumination angle of 20◦? This question can

not be answered by symmetry arguments any more. It will need much more insight
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to understand the complete physics behind the geometric resonance curves of the

last chapter.

In this chapter we will present more data sets from measurements and simula-

tions so that we are covering all angles. To understand the data we derive a new

few-parameter model from physical arguments and compare them with each other.

The excellent agreement of the model with simulations and experiments gives us

confidence to draw far-reaching conclusion from this model at the end of this chap-

ter. With the receiving properties of an antenna being the reciprocal phenomenon

of an antennas emission pattern we can contrast the patterns we obtain to emission

patterns of normal, radio-frequency (RF) antennas. The enormous qualitative dif-

ferences we observe justifies the usage of the term“plasmonic antenna”to distinguish

them from other antennas.

4.1. Angle Dependent Measurements

To investigate the complete angle dependence of the excitability of the antennas we

rotated our sample from an illumination direction perpendicular to the wire axis

illumination (φ = 0◦) to an illumination direction parallel to the wire (φ = 90◦)

in 15◦ steps. Due to symmetry this segment is enough to conclude for the full

circle. In addition to the experiments we look at data from FDTD simulations with

illumination from φ = 0◦ to 90◦ in 5◦ steps. As in chapter 3 the simulations take the

experimental situation into account by including all wires and the substrate. Also

the illumination is comparable in both cases. Both times the sample is illuminated

under grazing incidence with the only difference that the simulation uses a plane

wave while in the experiment the beam is focussed with a numerical aperture of

0.25 [102].
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4.1. Angle Dependent Measurements

(a) 0◦ Topography (b) 0◦ Signal

(c) 30◦ Topography (d) 30◦ Signal

(e) 90◦ Topography (f) 90◦ Signal

Figure 4.1.: AFM topography and measured aSNOM near-field signal: the topog-
raphy images of the gold wires on the SiO2 surface are recorded si-
multaneously with the near-field images. The direction of the 911 nm
wavelength illumination laser beam is indicated by an arrow.
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(a) 0◦ (b) 30◦

(c) 60◦ (d) 90◦

Figure 4.2.: FDTD simulations: magnitude of the radial component of the E-field
24 nm above the wires for different illumination angles. The parallel
component of the oblique illumination’s wavevector is indicated by an
arrow. The wavelength of the plane wave is λ = 911 nm.
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The near-field images (figure 4.1) are similar to the ones in the previous chapter

with the difference that we used 911 nm as illumination wavelength. They also show

a good agreement with the radial-component of the E-field taken from the simula-

tions (figure 4.2). In both cases we see nodes and lobes along the wires with different

intensity depending on the length of the wire. A special case is the illumination at

90◦ angle (figures 4.1(f) and4.2(d)) where the two images differ slightly. While the

simulation shows exclusively a higher order transversal mode, the experiment also

shows some intensity variation in the direction along the wire. This small difference

might be an effect of the numerical aperture used in the experiment.

For a further, more detailed study we use the analysis procedure of extracting the

maximum signal per wire described in the previous chapter. Some of the length-

amplitude plots obtained from this method are shown in figures 4.9 and 4.12. These

plots show the geometric resonances of the wires. By analyzing the peak heights in

these plots we can draw conclusions about the dependence of the excitability of the

wires on the illumination angle.

4.2. Analytical Model to Describe the Wire

Excitation

To understand the angle dependence of the excitation better and to get an insight

into the underlying physics we now derive a new model that will describe our obser-

vations. This theory will describe the longitudinal resonances of wire antennas. The

contributions from transversal modes are not included into the equations itself but

observed as a small signal offset when fitting our data. In deriving the model we let

us guide by RF antenna theory as found in standard text books [113, 114]. In con-
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(a) RF antenna (b) plasmonic antenna

Figure 4.3.: Difference between RF antenna theory and the plasmonic antenna the-
ory: (a) RF antenna with only a surface current; (b) plasmonic antenna
with a volume current and a much shorter (plasmon) wavelength;
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4.2. Analytical Model to Describe the Wire Excitation

trast to standard antenna theory, we do not assume a perfect conductor as antenna

material. In the optical regime the skin depth (the depth by what the amplitude of

an electromagnetic wave has declined to 1/e when penetrating into a metal) of real

metals is in the same order of magnitude as the diameter of our wire [115]. Thus,

unlike standard antenna theory, we will not restrict ourselves to surface currents but

consider the possibility of volume currents (fig. 4.3).

In order to be able to obtain an analytical expression for our model we have to

simplify the problem. Instead of wires with a rectangular cross-section, our model

considerers cylindrical wires with the same plasmon wavelength. The diameter of

the wires is supposed to be much smaller than the wavelength. The exact diameter

of the wires is not important, it enters the equations only through the plasmon

wavelength.

In the experiment as well as in the simulations the wires are substrate supported.

It is well known that a substrate, even when it is attached to the particle on only one

side, shifts the resonance and can lead to additional damping [116]. In our theory, we

include these effects into the complex valued plasmon wavelength. More precisely,

we use the plasmon wavelength as a fitting parameter in our model. Concerning the

far-field emission and reception properties of the antenna that we observe on the

air-side of the wire, the substrate is hardly involved. Here, we treat the medium to

be vacuum.

4.2.1. Illuminating Field

Figure 4.4(a) shows the geometric considerations on our illumination geometry. The

cylindrical wire with permittivity εm and length l is aligned parallel to the z-axis. As

it is typical in antenna theory, the antenna is placed in the center of the coordinate
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Figure 4.4.: (a) Geometry of the illuminating field: the component parallel to the

wire of the incidence E-field E
(inc)
z is responsible for exciting the lon-

gitudinal resonances in the wire. (b) Currents inside of the wire: in
the RF regime the incident electromagnetic field induces only a surface
current; in the visible wavelength range the optical antenna radiuses
become smaller than the skin depth and the incidence field induces a
volume current.
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system and extending from −h = −l/2 to +h = +l/2 where l is the length of the

wire. It is illuminated by a plane wave with a field strength E(inc) and a wave vector

k. The angle of incidence relative to the wire’s long axis is θ. The polarization of the

electromagnetic field is parallel to the plane spun by the wire and the wave vector.

For the longitudinal plasmon mode only the E-field component parallel to the wire

E
(inc)
z is important:

E(inc)
z (z) = E

(inc)
0,z eik‖z = E

(inc)
0 sin θ eik cos θ z (4.1)

The model assumes a wire much thinner than the illumination wavelength. On

the length scale of the wire diameter the E-field can be assumed as being constant

and we can use the above expression for the incident field for the whole cylindrical

surface. Thus E
(inc)
z (z) has only a z-coordinate dependence. Also, the E-fields at the

wire caps will be small compared to those at the cylindrical surface and we neglect

them here. We anticipate end effects that will not be explained by the model.

4.2.2. Field Generated by the Induced Current

The incident field E(inc) will induce a current in the metal wire. For our thin wire

we regard the current as longitudinal [117]. This approximation ignores any cross-

sectional currents which are a part of transversal, higher order modes. When we see

these modes in our near-field images (fig. 4.1(f) and 4.2(d)) we always see them with

a much lower amplitude than the longitudinal modes. Later, when we explain our

experimental findings with this theory, we will treat them as a small signal offset.

Because the wires are smaller than the skin depth of the metal, the current in the

wire can be approximated as homogeneous in the plane perpendicular to the wire:
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I(z, r) = Iz(z)ez.

Next, we can calculate the vector potential A(x) of the induced current. For a

current flow in the z-direction it has only a z-component ( [114, eq. 14.4.3] and [113,

eq. 9.3]). Together with harmonic time dependence e−iωt (where ω is the frequency),

in cylindrical coordinates and in the Lorenz gauge, Az(z, r, φ) is:

Az(z, r, φ) =
µ0

4π

∫
V ′
I(z′)

e−ikR

R
d3x (4.2)

where R =
√

(z − z′)2 + r2 − 2rr′ cos(φ− φ′) + r′2 is the distance of the current to

the observer and V ′ is the wire volume. Because the current has only a z-dependence,

the integration over the r and φ component can be performed:

Az(z, r, φ) =
µ

4π

∫ h

−h
I(z′)

∫ a

0

∫ 2π

0

e−ikR

R
r′ dr′ dφ′ dz′ (4.3)

=
µ

4π

∫ h

−h
I(z′)G(z − z′, r) dz′ (4.4)

In the last step we introduced the thin wire kernel G(z − z′, r) [114].

From this equation for the vector potential outside of the wire, we can calculate

the outside E-field. As usual in electrodynamics [118], we want to match this outside

field with an inside field that will be derived in the next section in order to fulfill the

boundary conditions. For this we need the vector potential at r = a . Evaluating

equation 4.4 at the wire surface has the inconvenience of a singularity at z = z′.

Fortunately, the singularity exhibits logarithmic behavior and is thus integrative.

Instead of integrating the integral numerically (see discussion in [113, chapter 9.4])

we follow the approach of [114, chapter 21.4] to find an approximate solution. Be-

cause of the 1/R dependence, G(z − z′, a) gives the strongest contribution to the

integral when R ≈ 0, i. e. z′ ≈ z, ρ′ ≈ ρ and φ′ ≈ φ. This approximation is also
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known as ‘Pocklington’s Theory ’ [119, p. 180]. This indicates that we can approxi-

mate G(z− z′, a) with a delta-distribution: G(z− z′, a) ≈ Z̃δ(z− z′). As we will see

later, despite this crude approximation our model represents all of our observations

very well while it permits us to obtain fully analytical expressions. Exact solutions

of the integral (i. e. Hallén’s method of iteration [120]) are always numerical.

With the approximation we obtain the following expression for the vector potential

on the surface:

Az(z, a) =
µ

4π
Z̃I(z) (4.5)

The scattered E-field outside of the wire is given by ( [113, eq. 9.58]):

E(sca)
z (x) = E(outside)

z − E(inc)
z =

ic2

ω

(
∂2

∂z2
+ k2

)
Az(x) (4.6)

Which leads to the following expression for the field at the surface:

E(outside)
z (z, a) = E(inc)

z (z) +
i

4πωε0

(
∂2

∂z2
+ k2

)
Z̃I(z) (4.7)

4.2.3. Fields Inside of the Wire

Now we calculate the field and the current inside of the wire antenna. This is where

our theory deviates from the standard RF antenna theory. Engineering textbooks

usually assume the antenna to be made of a perfect conductor (εm =∞) and demand

the fields inside of the metal to vanish. For an non-perfect conductor the inside field

will not vanish and we will now derive an expression connecting the current I with

the field E(inside).
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Figure 4.5.: Calculation of the radial component.

Gauss’ law in its differential form gives us the divergence of the E-field:

εm∇ ·E = εm

(
∂zEz +

1

r
∂r (rEr)

)
= εm

(
∂zEz +

1

r
Er + ∂rEr

)
= ρ (4.8)

Due to symmetry, there is no Eφ component in this equation. For small radiuses a,

the summand 1
r
Er will become large compared to ∂rEr which is small because Er

varies on the length scale of the plasmon wavelength.

Figure 4.5 shows how we calculate the radial component of the E-field at the

surface, inside of the wire. We first use the boundary condition to express the inside

field with the outside field:

Er
(inside)(a) =

ε0
εm
Er

(outside)(a) (4.9)
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Next we use Coulomb’s law and the small wire approximation for the outside field:

∇ ·E(outside)(a) = 0 ≈ ∂zEz
(outside)(a)+

1

r
Er

(outside)(a) = ∂zEz
(inside)(a)+

1

r
Er

(outside)(a)

(4.10)

In the last step we used the boundary condition for the tangential component of the

E-field.

Together we obtain the following approximation for the divergence of the inner

field at the wire surface:

εm∇ ·E


r=a

≈ εm∂zE
(inside)
z (a)+ εm

1

a
E(inside)
r (a) ≈ εm∂zE

(inside)
z (a)− ε0∂zEz(inside)(a)

(4.11)

We can also obtain an expression for the current from the equation of continuity

( [113, eq. 6.3]):

∇ · I = −∂ρ
∂t

= iωρ (4.12)

In the last step we used time harmonicity of the charge distribution: ρ(x, t) =

ρ(x)e−iωt.

Together with equation 4.8 we obtain:

∇ · I = iωεm∇ ·E (4.13)

∂zIz = iω (εm − ε0) ∂zE
(inside)
z (4.14)

We integrate this expression and obtain:

Iz(z) = iωεm

(
1− ε0

εm

)
E(inside)
z (z) + Iconst (4.15)

where Iconst is an integration constant.
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4.2.4. Solving the Equations

We now have two equations relating the z-component of the E-field to the wire

current, one for the inside (eq. 4.15) and one for the outside (eq. 4.7). Together

with the boundary condition for the tangential component of the field, E
(outside)
z =

E
(inside)
z , we have a differential equation for I. To solve this equation we make the

following ansatz:

I(z) = I‖e
ik‖z + I±e

±ikz + I±pe
±ikpz (4.16)

This ansatz for the current comes from assuming five different current waves

traveling along the wire:

I‖e
ik‖z a current induced by the illuminating field and having the same wave vector

as the z-component of the incidence field (k‖ = k cos θ);

I+e
+ikz and I−e

−ikz two currents traveling in both directions along the wire with

the wave vector of free space; these terms are commonly used in antenna theory

(i. g. [114,121]);

I+pe
+ikpz and I−pe

−ikpz two counter-propagating plasmonic currents; these cur-

rents are not included in RF antenna theory; we assume them to appear in

the optical regime where we know that plasmons with a wavelength different

from the vacuum wavelength appear on cylindrical wires [34,122];

Inserting this ansatz into equations 4.7 and 4.15 and comparing the pre-factors
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leads to the following results:

I+ = I− = 0 (4.17)

Z̃ =
4πε0

(εm − ε0)(k2
p − k2)

(4.18)

I‖ =
iεmωE

(inc)
0 sin θ

1− εm−ε0
4πε0

Z̃(k2
‖ − k2)

= iω(εm − ε0)E0
(inc)(k2

p − k2)
sin θ

k2
p − k2 cos2 θ

(4.19)

In contrast to RF antenna theory, where the E-field at the wire surface, given by

E
(outside)
z (z, a), is set equal to zero, for our theory the vacuum wavelength current is

zero. It is also surprising that we obtain an expression for Z̃. In antenna theory this

value is associated with the impedance and has to be calculated separately. The two

factors I±p can not be determined directly from this ansatz. By imposing that the

current has to disappear at both wire ends (I(±h) = 0) we obtain the two necessary

conditions. We obtain:

I+p = −I‖
sin((kp + k‖)h)

sin(2kph)
= −I‖

sin((kp + k cos θ)h)

sin(2kph)
(4.20)

I−p = −I‖
sin((kp − k‖)h)

sin(2kph)
= −I‖

sin((kp − k cos θ)h)

sin(2kph)
(4.21)

Equations 4.19, 4.20 and 4.21 together with the ansatz 4.16 give us the possibility

to calculate the current along the wire depending on four parameters: the illumina-

tion field strength E
(inc)
0 , the illumination wavelength (ω or k = ω/c), the plasmon

k-vector (kp) and the incidence angle (θ). Generally kp will be complex valued, i.e.,

it includes the damping constant of the plasmon.
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4.2.5. Perpendicular Component of the E-Field

With today’s technology it is impossible to directly measure the current in an optical

antenna. But there are a few techniques to probe other measures of the excitation

of an optical antenna, i. e. microbolometers [11] or two-photon-luminescence [12,

47]. As in the previous chapter, we use the method of near-field imaging with a

cross-polarized apertureless SNOM to determine the excitation of the individual

antennas. Compared to other techniques it has the advantage of imposing very

little perturbation on plasmonic eigenmodes and providing direct intuition of the

measured signal resembles. We showed already in the previous chapter that the

amplitude resembles the radial component Er of the near-field around the structures

[71, 95]. This E-field component can be extracted from our model by using the

vanishing divergence of the E-field outside of the wire:

∇ ·E =
1

r
∂r(rEr) + ∂zEz = 0 (4.22)

We can use the small wire approximation ∇ ·E ≈ 1
r
Er + ∂zEz again and obtain:

Er(a) = −a∂zEz = −a 1

iω(εm − ε0)
∂zIz(z) = −a 1

iω(εm − ε0)
ρ(z) (4.23)

as expression for the radial component. This quantity will now be the one we

compare to our measured and simulated data.

4.3. Applying the Model to Experimental Results

With the complete model at hand we can start explaining the different aspects of our

measurements and simulations with the model. Before we come to the geometric
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resonances we observed in the last chapter, we show how the Ez-component we

calculated in the last section resembles the lobes we see in our near-field images.

4.3.1. Near-Field Images

In the previous chapter we showed that our near-field images are very well repre-

sented by the z-component of the E-field above the wires. If the model is adequate,

equation 4.23 should explain the sequence of lobes and nodes we see along the wire.

In figures 4.6(e) and 4.7(e) we show one-dimensional plots of the radial E-field com-

ponent that we obtain from our model. As wire length we chose λp/2 (first order

resonance) and 3λp/2 (third order resonance) respectively. The first resonance shows

two lobes while the third resonance shows four lobes. For both wires the field has a

minimum at the center of the plot and the plots end abruptly in a maximum when

the wire length has been reached.

This is the same behavior we saw in sections 3.3 and 4.1 in the near-field images

and the FDTD-simulations. For comparison, figures 4.6(a) and 4.7(a) show a zoom

into the first and the third order resonance of figure 4.2(a). A line cut through the

center of the wire is shown in figures 4.6(c) and 4.7(c). The two black vertical lines

mark the wire ends as obtained from the topography image. In the range directly

above the wire the amplitude line cuts follow the prediction astonishingly well. This

can be considered as a first success for our model.

Nevertheless, the simulation shows an Ez-field that extends over the physical ends

of the wires. There are two reasons why the model is not capable of describing this

phenomenon. On the one hand the model does not include a description of the

wire’s end caps which play an important role in this region. On the other hand we

evaluate the radial electric field 24 nm above the simulated wire while the model
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Figure 4.6.: Comparisons between the first order resonance in the simulation and the
model: (a) and (b) show the amplitude and phase of the z-component of
the E-field 24 nm above the sample; The blue lines indicate the position
where the line cuts (c) and (d) through the fields of the first order
resonance have been taken; (e) and (f) show the amplitude and phase
of the radial component calculated by our model with equation 4.23.
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Figure 4.7.: Comparisons between the third order resonance in the simulation and
the model: (a) and (b) show a zoom into the simulation of figure 4.2(a);
The blue lines indicate the line cuts of (c) and (d); (e) and (f) show
the amplitude and phase of the radial component calculated by equa-
tion 4.23.

describes the field directly at the surface. This difference gives the field some space

to widen in the horizontal direction.

The right sides of figures 4.6 and 4.7 show the same comparison for the phase

images. In the simulation as well as in the model two neighboring lobes show a

phase difference of 180◦. We conclude that the model can explain very accurately

the radial, complex valued E-field around the metal nano-wires.
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4.3.2. Geometric Resonances

The next challenge for the model is to explain the Fabry-Pérot resonances of the

nano-wires. The length-amplitude plots we extract from the near-field images and

the simulations contain only the maximum signal per wire. For the model we can do

the same by numerically calculating the current I or the Ez-field-component for the

complete wire and afterwards extracting the maximal signal. This is impractical for

fitting the model to our data and thus we replace the proper signal function with a

suitable proxy.

The current is an interferometric sum of three phasors (e±ikpz, eik‖z) multiplied

by respective amplitudes I‖, I+p and I−p. If on the scale of a wire length spatial

oscillation is large (Re(kpl) ≥ 1) but damping effects are small (Im(kpl)� 1), some-

where on the wire a maximum of the interferometric current sum will be attained

which is well approximated by the sum of the absolute amplitudes: if the inverse

of the imaginary part of kp is large compared to the wire length,
∣∣e±ikpz∣∣ will be

approximately 1. Thus we try to approximate the maximum current by the sum of

the absolute valued of the three factors:

Imax =
∣∣I‖∣∣+ |I+p|+ |I−p| (4.24)

A similar approximation can be argued for the maximum of the field:

|Er(a)|max ∝
∣∣k‖I‖∣∣+ |kpI+p|+ |kpI−p| (4.25)

Figure 4.8 shows a comparison between the maximal Er-field extracted from the

model and the analytical approximation of equation 4.25. Real and imaginary part

of the k-vectors used for plotting are comparable to the values we observed in ex-
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Figure 4.8.: Comparison between the complete model and the approximation from
equation 4.25. The parameters used for producing these graphs are
approximately the same we obtain from experiments and simulations:
kp = 2π

343
nm−1 + i0.50 µm−1 and k = 2π

911
nm−1.
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periments. The plots are typical examples for two illumination angles and show the

good match between the approximate model and the full model. Only the region

where the wires are shorter than the first resonance length (e. g. < 120 nm) shows

strong deviations, because on such short wires spatial oscillations are not fast enough

to bring all partial currents “in-phase”.

When trying to fit the model to measured or simulated data another difficulty

arises. The model proposed in this chapter does explicitly not include any effects

of the wire ends. As we have seen in the last chapter, a phase pickup due to the

end-caps’ reactance is not negligible. To include it into the model we follow ref. [104]

and describe it as an apparent length increase: Lmodel = Lexperiment +Lreactance. This

introduces a necessary additional fitting parameter Lreactance.

One more fitting parameter turned out to be helpful to improve the fitting, an

amplitude offset: Ez,offset. We first regard this parameter as purely empiric, later we

will discuss the physical meaning of this parameter.

The simulations take the actual experimental illumination direction into account.

The detailed description of the difference between the model and the experimental

coordinate system is discussed in appendix A. In short, the substrate the wires are

fabricated on forbids an illumination at exactly grazing incidence. We thus use an

incidence illumination with a tilt angle of α = 17◦ off the substrate tangent. For an

illumination direction perpendicular to the wire axis (rotation angle of the sample

ψ = 0◦) this is consistent with the geometry of the model at θ = 90◦. But when

rotating the sample the rotation angle of the sample ψ deviates slightly from θ. The

largest deviation occurs at a rotation angle of ψ = 90◦ which matches with an angle

θ = α of the model. To compensate for these coordinate system differences we use

equations A.7 and A.10.
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4.3.3. Simulation Data

The curves in figure 4.8 already look similar to the geometric resonance curves from

chapter 3. Does the level of agreement allow to actually fit the model to the entire

data set from all near-field images at once?

Some of these “length vs. maximum field” plots are shown in figure 4.9. The red

curves show the fit of the simplified model to the data. The quality of the fits is

remarkable. Only at lengths shorter than the dipole resonance the model deviates

appreciably from the simulation data. As outlined in section 4.3.2, the failure in this

regime is to be expected for the simplified model. The data for the rotation angle

of ψ = 90◦ show no significant peaks, the data points deviate little from the offset

of about 80. This is consistent with the model which predicts no excitation of the

longitudinal modes at this illumination direction.

To study the consistency of the model we first fitted the model to the resonance

curves of each illumination angle individually. The five fitting parameters used in

the model are all physically motivated and most of them can be obtained from or

compared to other considerations:

� the real and imaginary part of plasmon k-vector: kp = 2π
λp

+ iIm(kp), where λp

is the plasmon wavelength and Im(kp) is the damping constant;

� amplitude A for the incident E-field;

� the apparent length increase Lreactance;

� by adding a signal offset Ioffset we improved the fitting; it will be connected to

the excitation of higher order, transversal plasmonic modes;

� rotation angle ψ, which is a known parameter and only used as a consistency
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Figure 4.9.: The maximum of the z-component of the E-field 24 nm above the wire
taken from FDTD simulations for different angles: (a) ψ = 0◦, (b)
ψ = 15◦, (c) ψ = 30◦, (d) ψ = 45◦, (e) ψ = 60◦, (f) ψ = 75◦, (g)
ψ = 85◦, (h) ψ = 90◦. The simplified model from equation 4.24 has
been used to fit the data.
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check;

For a systematic analysis, the angle dependence of the fitting parameters is plotted

in figure 4.10. The plasmon wavelength 4.10(a) and apparent length increase 4.10(e)

show no angle dependence. All measured values are distributed around 345 nm and

47 nm within their margin of error. The fitted amplitude 4.10(c) is also independent

on illumination angle. This is very encouraging because it shows that all effects of the

illumination angle on the amplitude are covered by the model. The rotation angle of

the sample 4.10(d), which was included as a consistency check, is also retrieved by the

fit algorithm within the fitting error. The damping constant 4.10(b)has a systematic

dependence on the illumination angle. The fact that the damping constant Im(kp)

is decreasing with increasing rotation angle is astonishing and not yet understood.

The behavior of the signal offset 4.10(f) also leaves some open questions. Never-

theless, we can explain some trends we observe. At a rotation angle of 90◦ all wires

give a similar strong signal. The fitting will assign most of the signal to the parame-

ter offset. In the near-field images in figure 4.2(d) and 4.1(f) we can identify most of

the signal as coming from the first transversal mode and not from any longitudinal

mode. Going from higher illumination angles towards 0◦ the signal offset is decreas-

ing. This makes sense in that the dipole moment of the first transversal mode is

perpendicular to the excitation E-field. The fact that this mode is still excitable at

a sample rotation angle of 0◦ may be surprising, but due to the symmetry breaking

effect of the retarded grazing incidence illumination not impossible. In conclusion,

we ascribe the signal offset parameter to the excitation of higher order transversal

modes.

This shows that the model not only fits each data-set very well but also gives

similar parameters for each illumination angle. This motivates us to attempt a
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Figure 4.10.: Dependence of the fitting parameters on the illumination angles: (a)
plasmon wavelength λp, (b) imaginary part of the plasmon wavevector
Im(kp), (c) fitted amplitude, (d) fitted angle, (e) apparent length in-
crease due to the reactance of the wire ends and (f) signal offset due
to the excitation of the first transverse mode.
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Figure 4.11.: Complete Data Set as 3D-Plot

global fit to the complete data set. This set is shown in figure 4.11 and comprises

a total of 160 wires illuminated at 19 different angles. For the fit we use Ioffset as

a local parameter that will be fitted independently for each angle, use the nominal

angle as illumination angle and use the other three parameters as global parameters.

After the fit we can describe the whole data set of 3040 measurements by a global

amplitude A and the following three parameters: λp = (342.86± 0.18) nm, Im(kp) =

(0.4980± 0.0066) µm−1 and Lreactance = (47.12± 0.11) nm.

4.3.4. Experimental Data

After the simulations we here apply the model to our near-field experiments. Fig-

ure 4.12 shows the geometric resonance curves extracted from the near-field images.

Compared to the numerically produced data, theses curves contain somewhat more

noise. Nevertheless, the resonances of the wires are clearly visible and our model
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Figure 4.12.: The maximum of the measured near-field signal for different angles:
(a) ψ = 0◦, (b) ψ = 15◦, (c) ψ = 30◦, (d) ψ = 45◦, (e) ψ = 60◦, (f)
ψ = 75◦, (g) ψ = 90◦. The simplified model from equation 4.24 has
been used to fit the data.
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can easily fit the data very well.

As a first step we fit the individual measurements individually. The angle depen-

dence of the five fitting parameters is shown in figure 4.13. The plasmon wavelength

in 4.13(a) shows a much larger variation than the one we extracted from the simula-

tion. The average values of λp of 338.6 nm matches the one in the simulations and

differs only by 1.3%. The imaginary part of the plasmon’s wavenumber in 4.13(b)

shows the same strong variation as we observed in the simulation. Also the average

value of Im(kp) is comparable. Whereas before we saw a systematic dependence on

the rotation angle, we can describe it here as noise.

The amplitude obtained from the fits cannot be interpreted physically. Each near-

field image we obtain has to be regarded as separate experiment. In between two

experiments usually the laser power varies and the tip has to be repositioned in the

focus. Thus the illumination intensity and / or the backscattering efficiency changes

from image to image. These effects result in a different amplitude for each near-

field image and are observed in 4.13(c) as different fitted amplitude for each angle.

Nevertheless, we can use the amplitude to normalize other fitted parameters, e. g.

the signal offset.

While fitting the simulation data, the rotation angle was left as fitting parame-

ter that showed the consistency of our model. Here the situation is more compli-

cated. Figure 4.13(d) shows that the fitted angle deviates strongly from the condition

Illumination Angle = Fitted Angle, indicated in blue. In the measurements at 45◦,

60◦ and 75◦ the rotation angle obtained from the fitting algorithm is much smaller

than the actual rotation angle. These systematic differences can be explained by

the focussed rather than plane wave illumination that was used in our experimental

setup.
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Figure 4.13.: Dependence of the fitting parameters on the illumination angles: (a)
plasmon wavelength λp, (b) imaginary part of the plasmon wavevector
Im(kp), (c) fitted amplitude, (d) fitted angle, (e) apparent length in-
crease due to the reactance of the wire ends and (f) signal offset due
to the excitation of the first transverse mode.
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A Gaussian focus (E(x, y, 0) = E0e
−(x2+y2)/w2

0) can be presented in angular spec-

trum representation [103, eq. 3.9] as:

Ê(kx, ky; 0) =
1

4π2

∫∫ ∞
−∞

E0e
−x

2+y2

w2
0 e−i(kxx+kyy) dx dy = (4.26)

= E0
w2

0

4π
e−(k2x+k2y)

w2
0
4 (4.27)

By introducing an angle ∆α being the deviation from the main illumination di-

rection and using the far-field equation k =
√
k2
x + k2

y + k2
z we obtain:

Ê(∆α; 0) = E0
w2

0

4π
e−k

2 sin2(∆α)
w2
0
4 (4.28)

Taking the inverse fourier transform brings us back to real space. Evaluating this

expression at the center of the beam gives:

E(x, y, 0) =

∫∫ ∞
−∞

Ê(∆α; 0)ei(kxx+kyy) dkx dky
x=y=0

=

∫ π
2

0

Ê(∆α; 0) 2πk cos ∆α d∆α

(4.29)

This shows that illumination with a gaussian beam can be expressed as illumi-

nation by a sum of plane waves from multiple directions which are weighted by a

(nearly) gaussian distribution around the main illumination direction θ.

To study the different effects of this focussed illumination we numerically solved

our model for a multidirectional illumination. We then used again our approximate

model for the plane wave illumination to fit this artificial data. Depending on the

direction from where the laser beam is focused onto the wires the rotation angle

retrieved by fitting differs more or less from the main illumination direction. At

perpendicular illumination, θ = 90◦, the two angles are the same. Towards a rotation

angle of θ = 0◦ the difference between the fitted and the real illumination direction
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becomes larger. By those calculations we convinced ourselves that equation 4.28

explains the direction and the magnitude of the systematic deviations shown in

figure 4.13(d).

The apparent length increase in 4.13(e) shows the same level of noise as the

plasmon wavelength did. Otherwise we found no further systematic dependence

on the rotation angle. The average value is lower than the one obtained in the

simulations. This is not very surprising because in contrast to the simulations,

where we modeled rectangular wires with flat end caps, in the experiment we have

wires with end caps which are rounded by the production process. The signal offset

in 4.13(f) has been normalized by the fitted amplitude.

As in the simulation, we can fit the complete data set globally. Due to the reasons

mentioned earlier, however, we will not use the amplitude A as a global parameter.

Because of the focussed illumination it is also not possible to set the rotation angle

equal to the nominal angle. Instead we leave the rotation angle as a local fitting pa-

rameter. The values we obtain from the experiments are: λp = (337.52± 0.51) nm,

Im(kp) = (0.387± 0.020) µm−1 and Lreactance = (22.20± 0.34) nm. The fact that

the apparent length increase in the experiment is smaller than in the simulation

has been discussed earlier. The difference in the damping constant Im(kp) however

is surprising. The damping constant in the experiment is smaller than in the sim-

ulations. This means that in spite of the thermally evaporated gold used in the

experiment the plasmon’s propagation length is larger than the simulated one based

on the permittivity of single crystalline gold [30]. Reasons for this unexpected de-

viation from the theory could lie in the fabrication process. For example, a slightly

thicker wire in the experiment could lead to a higher quality factor of the resonator.

One could also speculate that the shape of the wire termination could modify the
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strength of the losses. This will be subject to further investigations.

4.4. Difference Between Normal and Plasmonic

Antennas

In the last section we convinced ourselves that the model from section 4.2 describes

our measurement results very well. In this section we now want to use the model

and see what we can learn about the basic properties of nano-antennas from it.

The model addressed the question of the angle dependence of the excitability of

a nano-antenna. According to the Rayleigh-Carson reciprocity theorem [123] the

absorption spectrum of an antenna is equal to its emission pattern. This means, the

absorption patterns obtained from our model are at the same time the emission pat-

terns. This opens up a much larger scope than just interpreting our measurements.

It can for example be used to calculate the emission pattern of a quantum dot [124]

or a molecule coupled to nano-rod [17]. Especially when it comes to the directional-

ity of the antennas, the model can help replace time consuming simulations through

analytical expressions.

In figure 4.14 we use our model to plot the absorption / emission patterns of

resonant plasmonic antennas. The antennas are oriented vertically in these plots.

Unlike many antenna theory books we do plot the field strength E and not the

intensity. The intensity can be obtained by simply squaring the plotted values. The

plots show a somewhat idealized plasmonic antenna. In order to get a clearer image

of the features we use a lower damping constant (Im(kp) = 0.05 µm−1) than we

obtained from our measurements. Nevertheless, the discussion of the main features

holds true also for realistic antennas.
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(a) 1st order (b) 2nd order (c) 3rd order

(d) 4th order (e) 5th order (f) 6th order

(g) 7th order (h) 8th order (i) 9th order

Figure 4.14.: Emission patterns of different order plasmonic antennas. The antennas
are oriented vertically in these plots.
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(a) 1st order (b) 2nd order (c) 3rd order

(d) 4th order (e) 5th order (f) 6th order

(g) 7th order (h) 8th order (i) 9th order

Figure 4.15.: Emission patterns of different order ordinary antennas. The antennas
are oriented vertically in these plots.
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The emission patterns of the first resonances look familiar. The first order mode

shows the well known dipole pattern. The emission of the second order mode is

a quadrupole. The third order mode has six lobes with four very weak lobes so

that is does look more like a dipole. Interestingly, the next mode, the 4th order

mode, resembles the second order mode. The 5th order mode differs from the 3rd

order mode by stronger side lobes. Although some emission patterns of different

resonance orders differ only slightly from each other, the trend to more lobes with

higher order resonances is clearly visible. Nevertheless, the odd order modes always

have their strongest emission into the direction perpendicular to the wire antenna.

The even order modes in contrast have here always a minimum. This can of course be

explained with the already familiar symmetry argument. The two lobes neighboring

this minimum are always the strongest ones in the whole pattern.

By itself, these emission patterns look quite reasonable. But how do they differ

from the ones of ordinary RF antennas? If our model is correct, it should be able

to handle the limiting case of the plasmon approaching the vacuum wavelength. We

try that by simply setting the parameter “plasmon wavelength” equal to the vacuum

wavelength. Figure 4.15 shows the results of these plots. The mode pattern of

the first order and the second order resonance are well known and shown in most

textbooks. The hexapole and octapole patterns that we obtain for the third and

fourth resonance can also be seen in some textbooks (i. e. [121, Fig. 1-12], [119, Fig.

3.8] and [125]). Up to here it seams that our model also gives the correct emission

patterns for RF antennas. But the higher orders are shown only very rarely in books

and we have no figures to compare. The only possibility to ensure the correctness of

our higher order emission patterns is to compare them to a well established theory

[114]. The perfect agreement between the two theories (not shown) lets us conclude
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the plots presented in figure 4.15 are correct and our model is able to handle even

the limiting case of the parameter λp approaching the vacuum wavelength.

The different order emission patterns of RF wire-antennas follow two basic rules.

On the one hand the number of lobes increases by two from one resonance to the

next, so that the nth order resonance has 2n lobes. On the other hand, the lobes

forming the smallest angle with the wire axis have the strongest emission. These two

rules do not hold true for plasmonic antennas anymore. The plasmonic antennas

we investigated, characterized by a plasmon wavenumber 2.65 times the vacuum

wavenumber, follow the lobe number rule up to the 3rd order. The 4th, 5th and

6th order resonances have only 2n − 4 lobes, the 7th, 8th and 9th order resonance

only 2n − 8 lobes. Finding a rule for the number of lobes of plasmonic antennas is

difficult because the number of lobes for higher order resonances depends strongly

on the ratio between the vacuum wavelength and the plasmon wavelength. But a

trend that has been observed is that the deviation from the 2n-lobes rule is stronger

the larger the ratio λ/λp.

The plots show also that plasmonic antennas do not necessarily have their strongest

emission into the lobes closest to the wire axis. In fact, for our antennas we observe

the opposite. All the emission patterns of our wire antennas show the strongest

emission into the lobes pointing closest to the direction perpendicular to the wire

axis.

With the help of the model we can even investigate where these differences come

from. Instead of just comparing the two we can also study how the transition from

plasmonic to an RF antenna happens. The parameter determining how plasmonic

an antenna is the proportion kp/k. As an example, in figure 4.16 we look at the 7th

order mode. From the original proportion kp/k of 2.66 that characterized our wires
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(a) kp/k = 2.66 (b) kp/k = 1.8 (c) kp/k = 1.3

(d) kp/k = 1.15 (e) kp/k = 1.05 (f) kp/k = 1

Figure 4.16.: Transition of a plasmonic into a RF antenna
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(a) ordinary antenna (b) plasmonic antenna

Figure 4.17.: The emission pattern of an antenna can explained by interference of
the different currents on the wire in the far field.

in the experiment and the simulation, we gradually change λp to λ while keeping the

antenna length on resonance at 3.5λp. From 4.16(a) to (b) the four side lobes crowd

towards the center lobe and make space for four additional lobes. Figure 4.16(c)

shows how these four new lobes grow stronger and also move towards the center.

They make space for the last four lobes that are needed to fulfill the 2n-lobes rule

of RF antennas. In the figures 4.16(d) to (f) the outermost side lobes grow stronger

and become the strongest lobes of the RF-antenna.

How can this dramatic effect on the emission patterns be understood, what is the

physics behind it? Figure 4.17 shows the scheme of a third order resonance. We

can think of the emission as a vector potential produced by currents on the linear

antenna. In case of an ordinary, RF antenna (4.17(a)) two current lobes with the

same directionality have a center-to-center distance of λ. The total E-field produced

by these currents in the far-field will depend on the observation direction θ. If we
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forget for a moment that we have a continuous current distribution along the wire

and think of three individual short currents it becomes clear that the resulting E-

field is a result of the interference between these currents. It is obvious that the path

length difference ∆ = λ cos θ is the parameter determining constructive or destruc-

tive interference. When we do the transition to plasmonic antennas while keeping

the resonance order, we change the distance between two neighboring currents from

λ/2 to λp/2 and thus ∆ becomes smaller. This is comparable to the behavior of the

maxima in a multiple-slit pattern (see [126, ch. 10.2]). In the pattern of a N slit

grating with a center-to-center slit separation a the angular position θm of the mth

principle maximum is given by:

sin θm =
mλ

a
(4.30)

With the slit-to-slit distance becoming smaller the maxima move further apart from

each other. The same happens to the lobes of our antennas, the lobes spread out

further from each other and one lobe after another disappears.

While this analogy is very helpful to understand why plasmonic wire antennas

have fewer lobes than their RF counterparts, in many other respects this analogy

does not hold true. In contrast to the slits in Fraunhofer diffraction do our antenna

pieces (indicated by arrows in figure 4.17) have an alternating direction. Thus, the

antenna does not have principle maximum at θ = 90◦, it has a subsidiary maximum

or a minimum. In fact, the maxima observed as lobes of a linear wire antenna are

always subsidiary maxima and never principal ones. Only RF antennas have the

chance of fulfilling the interference condition for a principle maximum of ∆ = λ.

Unfortunately this condition is only fulfilled for the angles θ = 0◦ and 180◦ and

equation 4.1 tells us that there will no transversal E-field component for these two
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angles. Thus there is no emission into these directions and what we see as the

emission maxima of an RF antenna are only the next subsidiary maxima.
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Chapter 5.

Summary and Outlook

5.1. Summary

This thesis discussed the properties of optical wire antennas. We use an apertureless

SNOM to investigate such wires experimentally in the near-field regime. The cross-

polarization configuration explained in chapter 2 turns out to be well suited for

field mapping around the structures with only little disturbance of the eigenmodes.

When the microscope is well aligned it is possible to obtain background free images

in which the measured signal resembles the E-field component parallel to the probing

tip. The good agreement between simulations of the structures without including

the tip and our measurements lets us conclude that the influence of the tip on the

antenna resonances we observe is small.

Although we are able to investigate a large range of different structures [101,127],

we concentrate here on metal nano-wires. The plasmon excitation of the wire is

essentially 1-dimensional and the resonances can be described in a Fabry-Pérot pic-

ture. We extract resonances by analyzing the near-field strength above the wires.
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By varying the illumination direction we realized how non-symmetric illumination

allows the excitation of otherwise symmetry forbidden modes. We took this discus-

sion even further by measuring the angle dependent excitability of the 9 lowest order

modes. The near-field imaging technique allows a simple interpretation of the data

because the near-field amplitude is a direct measure of excitation strength. This is

a big advantage over scattering experiments where excitation and emittance have

both a directionality that has to be taken into account.

The results we obtained from simulation and experiment motivated us to search

for an analytical description for the directionality of the excitability of plasmonic

wire antennas. Inspired by RF antenna theory, we describe the excitation of the

wires as a current distribution. While RF theories assume a perfect conductor and

thus only expect surface currents, we include the possibility of volume currents.

Our model uses four physically reasoned parameters to describe a wire antenna:

the plasmon wavelength, the plasmon damping, the phase the plasmon suffers upon

reflection and the length of the wire. With two more parameters (an amplitude

offset due to the excitation of higher order modes and an overall amplitude) we are

able to fit our complete data sets.

5.2. Outlook

While our formulas allow only to calculate the current distribution on the wire upon

illumination, the relevance is much larger. Due to reciprocity, the obtained direction-

ality maps describe both, the excitation and the emission process. A combination

of the two equations 4.16 and B.4 describes the complete scattering process and will

advance the understanding of optical antennas significantly.

It allows to interpret scattering experiments on single wire antennas. As Mie
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theory for metal spheres, this theory can predict the transmission, the extinction

and the absorption of light by small wire antennas. This fact is already interesting

for current state of the art research [128]. With scattering experiments often being

much easier to carry out than near-field investigations, the well understood scattering

properties can speed up research.

5.2.1. Antenna Arrays

A field of research where calculations of scattering by metal nano-wires can have

an immediate effect is the investigation of antenna arrays. In designs where the

antennas are far enough apart so that the coupling can be neglected the emission

pattern of an array can be calculated by the interference of the individual antennas

[114,121,129]. For an array of wires, the design parameter length can already have

an interesting effect. For example, wires shorter than the dipole resonance are

resonators in phase with the excitation field while a little longer wires are out of

phase [130, 131]. With our method, which included the emission pattern of wire

antennas as well as the resonator properties of the wire, analytical calculations can

be used for optimizing these structures.

Flat antenna arrays can be produced very easily by standard lithography methods.

They could, e. g., be useful for the enhancement of the (directed) outcoupling of

radiation from light emitting diodes (LEDs) [132]. In a similar fashion, plasmonic

structures are already used to enhance the efficiency of thin-film solar cells. Metal

wire structures on the backside of the solar cell direct light into waveguide modes

and increase the probability of photon absorption [133]. But also three dimensional

structures are possible to fabricate today [26, 134]. This combination of antennas

already lead to the development of metamaterials with extraordinary properties.
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Especially in these structures it turns out that coupling between individual antennas

cannot be ignored anymore [135] and has to be included into the theory.

5.2.2. Nonlinear Plasmonics

In the regime of nonlinear optical effects [136], there is still a lack of experimental

data. Although models have been already proposed [137] only a few experiments on

the single particle level have been carried out so far [138–140]. The enhancement of

nonlinear effects is expected to scale with the enhancement factor of the structure

for the involved wavelengths [141]. This would of course mean that the frequency

conversion would be strongest if the resonator is resonant to all involved wavelengths

[142]. This has not yet been observed in experiments. On the contrary, some

experiments can not yet be fully explained by analytical models [143].

The easiest way to answer these question would be by far-field scattering ex-

periments. Illuminating individual nano wires with a pulsed, focused laser beam

and determining the higher harmonic scattering intensities and directional patterns

would be one possibility. Illumination by two beams and detection of the sum- or

difference-frequency signal in dependence of the illumination intensities would give

an even better insight [144].

With the introduced model the linear parts, namely the excitation, absorbtion

and emission, of the experiments on wire antennas can be explained for all wave-

lengths. This leaves only the nonlinear parameters as unknowns. For more compli-

cated structures than wires, there are even predictions of enhancement effects due

to magnetism [145].
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5.2.3. Coupling Between Antennas

First investigations on more complex optical antennas have already been carried out

by simulations [146]. Here, the difficulty arises that there is not yet a model fully

describing the properties of the coupled antennas. But especially the interaction

between several antennas gives rise to some interesting new effects. The coupling

makes it necessary to find a concept similar to the impedance matching in the RF-

regime [147].

The coupling is not only a challenge for theoretical predictions, it has a great

potential for new applications. By controlling the coupling strength between res-

onators, it is possible to create peaks and dips in the resonance curve of the combined

system which are much sharper than the original resonances [100]. With the plas-

monic analogue to electromagnetic induced transparency (EIT) is possible to build

ultra-sensitive bio detectors [99, 148] with a very small detection volume. Another

way to achieve high quality factor structures is to utilize the magnetic field to store

energy, e. g. in split ring resonators [149,150]. Including this effect into the theoret-

ical model could also be tried.

The theory we derived in this thesis is a first step towards a better understanding

of plasmonic antennas. Including coupling effects as they are described today by

simple hybridization models [97] will be a next step. With a full model at hand,

the optimization of such sensor structures will change the empirical approach used

today to systematic research.
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Appendix A.

Consideration of the Experimental

Situation

In section 4.2 we described a model that explains the absorption patterns of wire

antennas, no matter whether they are plasmonic or RF antennas. For the mathe-

matical description we used, as common in antenna theory, a spherical coordinate

system with the wire centered in the symmetry axis (see figure A.1(a)). This is a

different coordinate system than the one we used in the experiment (figure A.1(b)).

Although not obvious at first sight, this change of coordinate system will have an

effect on the coupling efficiency of the light to the wire. In this chapter we will

derive the necessary coordinate transformation to correct for the errors that would

otherwise appear for illumination angles θ close to 0◦ or to 180◦.

In contrast to the model, in the experiment the wire is placed on a substrate.

In figure A.1(b) the substrate is filling out the Volume left of the x′-y′-plane. The

substrate forces us to illuminate at a grazing incidence angle α. Rotating the sample

can be described as changing the rotation angle ψ. As indicated, the illumination
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vector moves along a small circle of the sphere. In contrast to this, the illumination

vector in the model moves along a great circle of the sphere when varying illumina-

tion angle θ. For small angles α the difference between two coordinate systems will

become small and the experimental illumination angel ψ will nearly resemble the

illumination angle of the model θ.

There is a second, more severe effect that we have to consider. In the model

we always presume illumination with an E-field amplitude E
(inc)
0 and a polarization

parallel to the tangential vector eθ. In the experiment the polarization will stay

always parallel to the tangential vector eψ. Again, for α = 0◦ model and experiment

are equivalent from a physics point of view. The two angles do only have different

names: the illumination angle θ in the model and the rotation angle ψ = 90◦ − θ in

the experiment. For α 6= 0, i. g. α = 17◦ in our experiment, the two angles θ and

ψ differ when approaching θ ≈ 0◦ or ψ ≈ 90◦. The two polarization vectors, eθ and

eψ, will even become perpendicular to each other when ψ = 90◦.

A.1. Coordinate Transformation

To compare the model with the experiment, we transform the experimental co-

ordinates into the model coordinate system. A vector r can be described in the

experiment’s coordinate system as:

x′ = r sin(90◦ − α) cosψ (A.1)

y′ = r sin(90◦ − α) sinψ (A.2)

z′ = r cos(90◦ − α) (A.3)

In the model coordinate system we can describe the same vector by the following
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(a) (b)

Figure A.1.: (a) the coordinate system used in the model; (b) the coordinate system
used in the experiment; the angle used in the experimental and sim-
ulated data is ϕ while α ≈ 17◦ is given by the periscope used in the
experiment;

coordinates:

x = r sin θ cosϕ =̂ x′ (A.4)

y = r sin θ sinϕ =̂ z′ (A.5)

z = r cos θ =̂ −y′ (A.6)

In these equations we also indicated how to connect these two coordinate systems.

From these relations it follows that:

θ = arccos(sin(90◦ − α) sinψ) = arccos(cosα sinψ) (A.7)

This equation allows us to calculate the illumination angle θ for a given grazing

incidence angle α and a rotation angle ψ. It also shows that for the experimental
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head-on-illumination, ψ = 90◦, the minimally reached θ is equal to α. This makes

sense since in the real experiment, there will never be an illumination direction

parallel to the wire axis.

A.2. Projection of the Polarization Vector

The model supposes a polarization vector that is parallel to the plane spun by the

angle axis and the illumination direction. As you can see in figure A.1(b), this does

not hold true for the configuration of the experiment. In order to compensate this

difference we will now calculate the projection of the experiments E-field vector,

which is parallel to eψ, onto the E-field vector of the model, which is parallel to eθ.

We start by describing the two unit vectors in their own coordinate systems x′, y′,

z′ and x, y, z respectively:

eψ =

∂r
∂ψ∣∣∣ ∂r∂ψ ∣∣∣ =


− sinψ

cosψ

0

 (A.8)

eθ =
∂r
∂θ∣∣∂r
∂θ

∣∣ =


cos θ cosϕ

cos θ sinϕ

− sin θ

 (A.9)

The projection of the experimental E-field vector onto the one of the model can

be described by the scalar product of the two unit vectors. Calculating the product
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in the the coordinate system of the model leads to a factor:

f = eψ · eθ =


− sinψ

0

− cosψ

 ·


cos θ cosϕ

cos θ sinϕ

− sin θ

 =
cosψ√

1− cos2 α sin2 ψ
(A.10)

By multiplying this factor f to the incident field, we can account for the different

polarizations used in the experiment and in the model:

E
(inc)
0,exp(α, ψ) = f E

(inc)
0 (A.11)

When we now take everything together we can calculate the z-component of the

illumination E-field:

E(inc)
z,exp(z, α, ψ) = f E

(inc)
0 sin θ eik cos θ = (A.12)

=
cosψ√

1 + cosα sinψ
E

(inc)
0 eik cosα sinψ (A.13)

This is the expression we are using instead of equation 4.1 for the incident field

when fitting the experimental or simulated data.
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Appendix B.

Emission Pattern of an Infinite Thin

Wire

In chapter 4 we derived the equations to describe the absorption of a linear plasmonic

antenna. As we saw later, the model does not only describe the wires correctly on

the resonance but was also able to describe the regions between the resonances.

This property makes it quite complex and we had to obtain the maximum current

on the wire numerically in order to obtain the absorption / emission patterns. If you

are interested only in the emission pattern of resonant wires, you can use a simpler

equation that we will derive in this appendix.

The derivation is inspired by chapter 9 of the book of J. D. Jackson [113]. It is

much shorter and quite straight forward. Nevertheless, the equation we are about

to derive still can explain all the observations about plasmonic emission patterns

described in section 4.4. These two properties make it a good and rewarding exercise

for students.

In section 4.2 we saw that the current on a wire antenna can be described by
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Figure B.1.: Scheme of the emission model

three components: a current induced by an excitation and two counter propagating

plasmonic currents. At the nth order resonance, when the wire has a length d =

nλp
2

= nπ
kp

, the induced current wave I‖e
ik‖z will be negligibly small compared too

the two counter propagting plasmonic currents. Together with the condition of a

vanishing current at the wire ends we obtain a nearly sinusoidal current distribution

J(x) (compare [113, eq. 9.53]):

J(x) = I0 sin(
kpd

2
− kpz)δ(x)δ(y)ez (B.1)

= I0 sin(
nπ

2
− kpz)δ(x)δ(y)ez (B.2)

where kp is the plasmon wavelength. In this equation we also approximated our thin

wires with an infinitely thin wire.

Now we can calculate the effect of this current distribution as a vector potential
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A(x, t) in Lorenz gauge and with sinusoidal time dependence [113, eq. 9.3]:

A(x) =
µ0

4π

∫
J(x′)

eik|x−x
′|

|x− x′|
d3x′ (B.3)

where k is the vacuum wavelength and the integral runs over the volume of the wire.

Since we are only interested in the far-field emission patterns (|x| � |x′|) we can

approximate |x− x′| ≈ r − n ·x′, with r = |x| and n is the unit vector in the

direction x. Equation B.3 now simplifies to:

lim
kr→∞

A(x) =
µ0

4π

eikr

r

∫
J(x′)e−ikn ·x′

d3x′ (B.4)

Inserting J(x) from equation B.2 leads to:

lim
kr→∞

A(x) = I0ez
µ0

4π

eikr

r

∫ nπ
2kP

− nπ
2kP

sin(
nπ

2
− kP z′) e−ikz

′ cos θ dz′ (B.5)

The trigonometric equality sin(α ± β) = sinα cos β ± cosα sin β lets us separate

the sum inside of the sine:

= I0ez
µ0

4π

eikr

r

∫ nπ
2kP

− nπ
2kP

(
sin(

nπ

2
) cos(kP z

′)− cos(
nπ

2
) sin(kP z

′)
)
e−ikz

′ cos θ dz′ =

(B.6)

= I0ez
µ0

4π

eikr

r


(−1)

n−1
2

∫ nπ
2kP

− nπ
2kP

cos(kP z
′) e−ikz

′ cos θ dz′ if n odd

(−1)
n
2

+1

∫ nπ
2kP

− nπ
2kP

sin(kP z
′) e−ikz

′ cos θ dz′ if n even

(B.7)

In the second line we used our knowledge that n is an integer value and separated

the equation in one for even and one for odd n.

Now we can carry out the integration. The antiderivative can be found in the
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standard literature (i. e. [151, p. 1082]):

lim
kr→∞

A(x) = I0ez
µ0

4π

eikr

r


2kP cos( k

kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

if n odd

−
2ikP sin( k

kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

if n even

(B.8)

The obtained vector potential is always parallel to the z-axis: A(x) = A(x)ez.

The directionality of the far-field emission can be expressed easiest in spherical

coordinates. We thus transfer ez from cartesian to spherical coordinates: ez =

cos θer + sin θeθ.

Knowing the vector potential, it is easy to calculate the electrical and magnetic

fields [113, eq. 9.4]:

H(x) =
1

µ0

∇×A(x) = (B.9)

=
eφ
µ0

1

r

[
∂

∂r
(A(x)r sin θ)− ∂

∂θ
(A(x) cos θ)

]
(B.10)

The second summand, 1
r
∂
∂θ

(A(x) cos θ), is of the order r−2 and can neglected for

r →∞. Carrying out the partial differentiation leads to:

H(x) ≈ eφ
4π
I0k

eikr

r
sin θ


2ikP cos( k

kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

if n odd

2kP sin( k
kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

if n even

(B.11)

The calculation of the electrical field is analogous [113, eq. 9.5]:

E(x) =
i

k

√
µ0

ε0
∇×H(x) (B.12)

=
i

k

√
µ0

ε0

[
er

1

r sin θ

∂

∂θ
(H(x) sin θ)− eθ

1

r

∂

∂r
(H(x)r)

]
(B.13)

102



As in the equation for the magnetic field, the first summand is of the order r−2

and can be neglected:

E(x) ≈
√
µ0

ε0

eθ
4π
I0k

eikr

r
sin θ


2ikP cos( k

kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

if n odd

2kP sin( k
kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

if n even

(B.14)

In antenna theory the emission patterns are often plotted as intensity plots. There-

fore it is useful to calculate the time-averaged power radiated per unit solid an-

gle [113, eq. 9.21]:

dP

dΩ
=

1

2
Re
[
r2n ·E ×H?

]
= (B.15)

=
I2

0

8π2

√
µ0

ε0
k2 sin2 θ



(
kP cos( k

kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

)2

if n odd(
kP sin( k

kP

nπ
2

cos θ)

k2
P − k2 cos2 θ

)2

if n even

(B.16)

For the special case of a ordinary antenna (kp = k) the equation simplifies signif-

icantly and we obtain the formula of classical antenna theory [119, p. 160]:

dP

dΩ
=

I2
0

8π2

√
µ0

ε0


(

cos(nπ
2

cos θ)

sin θ

)2

if n odd(
sin(nπ

2
cos θ)

sin θ

)2

if n even

(B.17)

Plotting the absolute value of the E-field (eq. B.14) to obtain the emission patterns

is left to the interested reader. By changing the parameters it is possible to observed

all the features described in section 4.4. As nice as this simplified model is, it is

not able to explain is the off-resonance behavior of the wire antennas. For this, the

effect of the wire as a Fabry-Pérot resonator is needed. This effect would have to be

103



Appendix B. Emission Pattern of an Infinite Thin Wire

artifically included into equation B.2 describing the current distribution. The model

in chapter 4 does this automatically.
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localized surface plasmon resonances in a metallic nanorod.’ Opt. Express
17 (26), pp. 23655–23663, 2009. doi:10.1364/OE.17.023655

[39] S. W. Prescott, P. Mulvaney: ‘Gold nanorod extinction spectra.’ J.
Appl. Phys. 99 (12), p. 123504, 2006. doi:10.1063/1.2203212
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[42] F. J. Garćıa de Abajo: ‘Nonlocal Effects in the Plasmons of Strongly Inter-
acting Nanoparticles, Dimers, and Waveguides.’ J. Phys. Chem. C 112 (46),
pp. 17983–17987, 2008. doi:10.1021/jp807345h

[43] J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leit-
ner, F. R. Aussenegg, J.-C. Weeber: ‘Design of multipolar plasmon
excitations in silver nanoparticles.’ Appl. Phys. Lett. 77 (21), pp. 3379–3381,
2000. doi:10.1063/1.1327615

[44] L. Zhao, K. Kelly, G. C. Schatz: ‘The extinction spectra of sil-
ver nanoparticle arrays: Influence of array structure on plasmon resonance
wavelength and width.’ J. Phys. Chem. B 107 (30), pp. 7343–7350, 2003.
doi:10.1021/jp034235j

108

http://dx.doi.org/10.1103/PhysRev.182.539
http://dx.doi.org/10.1016/0039-6028(74)90080-6
http://dx.doi.org/10.1016/0039-6028(74)90080-6
http://dx.doi.org/10.1109/TAP.1966.1138693
http://dx.doi.org/10.1038/nphoton.2008.32
http://dx.doi.org/10.1103/PhysRevB.80.153409
http://dx.doi.org/10.1364/OE.17.023655
http://dx.doi.org/10.1063/1.2203212
http://dx.doi.org/10.1063/1.479305
http://dx.doi.org/10.1364/JOSA.55.000305
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1063/1.1327615
http://dx.doi.org/10.1021/jp034235j


Bibliography

[45] C. Ungureanu, R. G. Rayavarapu, S. Manohar, T. G. van Leeuwen:
‘Discrete dipole approximation simulations of gold nanorod optical properties:
Choice of input parameters and comparison with experiment.’ J. Appl. Phys.
105 (10), p. 102032, 2009. doi:10.1063/1.3116139

[46] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers,
F. Hofer, F. R. Aussenegg, J. R. Krenn: ‘Silver nanowires as
surface plasmon resonators.’ Phys. Rev. Lett. 95 (25), p. 257403, 2005.
doi:10.1103/PhysRevLett.95.257403

[47] P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F.
van Hulst, R. Quidant: ‘Spectroscopic mode mapping of resonant
plasmon nanoantennas.’ Phys. Rev. Lett. 101 (11), p. 116805, 2008.
doi:10.1103/PhysRevLett.101.116805
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Professional Experience

2005-2006 Diploma Thesis in the Group of Prof. Kern at the Max Planck
Institute for Solid State Research, Stuttgart, Germany
Title: “Implementation of an Apertureless Scanning Near-Field
Optical Microscope for the Infrared Spectrum”

2006-2010 PhD Student in the Group of Prof. Kern at the Max Planck
Institute for Solid State Research, Stuttgart, Germany
Topic: “Microscopy and spectroscopy of nm sized resonant struc-
tures at visible to mid-infrared wavelengths”

119



Curriculum Vitae

120



Publications

[1] E. J. H. Lee, K. Balasubramanian, J. Dorfmüller, R. Vogelgesang,
N. Fu, A. Mews, M. Burghard, K. Kern: ‘Electronic-band-structure map-
ping of nanotube transistors by scanning photocurrent microscopy.’ Small 3 (12),
pp. 2038–2042, 2007. doi:10.1002/smll.200700418

[2] R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rock-
stuhl, C. Etrich, K. Kern: ‘Direct Near-Field Optical Imaging of Higher
Order Plasmonic Resonances.’ Nano Lett. 8 (10), pp. 3155–3159, 2008.
doi:10.1021/nl801396r

[3] T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelge-
sang, K. Kern, T. Pertsch, F. Lederer, H. Giessen: ‘Amplitude-and
phase-resolved optical near fields of split-ring-resonatur-based metamaterials.’
Opt. Lett. 33 (8), pp. 848–850, 2008. doi:10.1364/OL.33.000848

[4] R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz,
A. Dmitriev, K. Kern: ‘Plasmonic nanostructures in aperture-less scanning
near-field optical microscopy (aSNOM).’ Phys. Status Solidi B 245 (10), pp.
2255–2260, 2008. doi:10.1002/pssb.200879617

[5] J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Et-
rich, T. Pertsch, F. Lederer, K. Kern: ‘Fabry-Pérot Resonances in One-
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Assig, Sören Neubeck, Mike Tannert, Alex Krake, Elisabeth Ohnesorge, Daniela
Schimanski, Brigitte Schultz, Martin Göbel, Tobias Weißbach, Alexander Weber.
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