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Ten-fold classification of
topological insulators and superconductors

1st lecture:
- Topological band theory
- Topological insulators in 1D (polyacetylene)
- Topological insulators in 2D (IQHE, QSHE)

2nd lecture:
- Topological insulators w/ TRS in 2D & 3D (Z2 invariant)
- BdG theory for superconductors
- Topological superconductors in 1D and 2D
- Majorana bound states

3rd lecture:
- Topological superconductors in 2D and 3D w/ TRS
- Periodic table of topological insulators and superconductors

4th lecture:
- Topological crystalline insulators
- Gapless topological materials
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1st lecture: Topological band theory

1. Introduction
- What is topology?
- Topological band theory

2. Topological insulators in 1D
- Berry phase
- Simple example: Two-level system
- Polyacetylene (Su-Schrieffer-Heeger model)
- Domain wall states

3. Topological insulators in 2D
- Integer quantum Hall effect
- Bulk boundary correspondence
- Chern insulator on square lattice



What is topology?

The study of geometric properties that are insensitive to smooth deformations

For example, consider two-dimensional surfaces in three-dimensional space

Closed surface is characterized by its genus g = # holes

g=0 g=1

» g is an integer topological invariant
topological invariant

Gauss-Bonnet Theorem

Genus can be expressed in terms of an integral / kdA = 4r(1 — g)/
of the Gauss curvature over the surface g

In condensed matter physics:

Topology of insulating materials, topology of band structures



Band theory of solids and topology

Bloch’s theorem: consider electron wavefunction in periodic crystal potential
crystal momentum

Electron wavefunction in crystal  |i,) = " |u,,(k)) ~__<— Bloch wavefunction
has periodicity of potential

Bloch Hamiltonian  H(k) = e *" He ™" H(k) luy(k)) = En(k) |u,(k))
ky
A
T/a
k < DBrillouin Zone T 717 kr =
—7/a
Band structure defines a mapping: \ /
Brilloyi , . H(k) Hamiltonians 4 I gap
riouin zone | 7 with energy gap 5 /\
()
Topological equivalence: S N
o —— |
Band structures are equivalent if they can be continuously —m/a /a

>

deformed into one another without closing the energy gap Momentum &



Band theory and topology

Berry phase: l g lu(k))
Phase ambiguity of wavefucntion |u(k)) — €' Ju(k)) .

U(1) fiber bundle: to each k attach fiber {g|u(k)) | g € U(1)} T u(k))
define Berry connection: (like EM vector potential)

A = (ug| — iV |ug)

under gauge transformation:
u(k)) — e u(k)) = A= A+ Vidk
Berry phase: (gauge invariant quantity)

change in phase on a closed loop ! C

Berry curvature tensor: (gauge independent) Fuv(k) =

For3D: F =Vgx A Frw = €ueFe Stokes: ¢ = /]—' - dk
S

Topological invariants of band structures:

Topological property of insulating material o 9 /}”d2l~c
given by Chern number (or winding number): 2T



Berry phase for two-level system

Two-level Hamiltonian: H(k) = d(k)-o = (dw +ud,  —d, >

param. by spherical coord.: d(k) = |d|(sin # cos ¢, sin # sin ¢, cos 0)

two eigenvectors with energies FE. = +|d| (north pole gauge)

)= (8 ) = (T )

@

27(] __ solid angle
Berry vector potential: (gauge dependent) swept out by d(k)
Ag =1 <u,;‘ Oy ‘u,;> =0 Ay =1i(ug|0y |ug ) = sin®(0/2)
sin 6
Berry curvature: (gauge independent)  Fpy = OgAy — 0pAp = ;
if d(k) depends on parameters k: . _ sin 0 68((8’ Cb)) < Jacobian matrix
T Bk K,y

Simple example: d(k) = k
1k
2 k2

solid angle

1
F = (monopole field) Ve = /S]:% dodg = 9 (swept out by d(k))



Polyacetylene (Su-Schrieffer-Heeger model)

[Su, Schreiffer, Heeger 79]
Su-Schrieffer-Heeger model o o H b A f
describes polyacetylene [CyH,|

ks
Hamiltonian: In
H = Z {(t +6t)cy cp, + (t — 5t)cjr4i+1cBi + h.c.} Gap
phonons lead to Peierls instability — finite 0t N /\Aﬁ
two degenerate ground states: S i >
5t>0 °xy B0 0N ' SN
e A’i\' A,i+1\' a\' e —7/a T/a
< > >
ot <0 .\.¢.\.¢.\.¢.\.¢.\. Momentum K,
in momentum space:  H(k) =d(k)-o = (hT(()k) h(ok)>
d.(k) = (t + dt) + (t — 0t) cos k d, (k) = (t — o0t)sink d.(k)=0

Sublattice symmetry: o, H(k) + H(k)o, =0 ——> d. =0 (energy spectrum is symmetric)

Energy spectrum:  Ey = £|d| = £v2+/t2 + (6t)2 + [t2 — (61)2] cos k



Polyacetylene (Su-Schrieffer-Heeger model)

Su-Schrieffer-Heeger model describes polyacetylene [CoHs]

. B| o [
>0 T, A% A,|+1%'/a§‘/ .
@ o ® L @
01<0 "N Z N, Z N, F N, ZF .,
0 h(k)
Y
dy(k) = (t + 6t) + (t — 5t) cos k Ad(k)
2(k) = (¢ +8t) + (t — 6t) cos . d;
dy(k) = (t = 8t)sink  d (k) =0 ~
. i 4 d,
Winding no: v1 = %/dk ¢ Onq] A
(k)
A x
Q(k):% JF): S S m(SH) =7 =

Provided d, = O (required by sublattice symmetry) states
with 0t > 0 and 0t < 0 are topologically distinct

—7/a T/a

Momentum K,

ot > 0:

Berry phase O
V1 — 0

0t <0 :
Berry phase 7T

V1:1



Domain Wall States in Polyacetylene

[Su, Schreiffer, Heeger 79]

Domain wall between different topological states [Jackiw, Rebbi]

has topologically protected zero-energy modes
P 9 yPp 9y zero-energy state

at domain wall
e 0>0 o 01<0 o

z \cé.\ -~ %o/ ko

o o
Effective low-energy continuum theory: (expand around kg = ) k — —i0,
H(z) = —i0,0; + m(z)o, m(z) = 20t

Dirac Hamiltonian with a mass:  E(q) = +v/q2 + m?2
Sublattice symmetry (“chiral symmetry”): {o,,H}=0 — 0, |¢Yg) = |Y_E)

Consider domain wall:
T / /
zero-energy state Ansatz for boundstate: g = ye™ Jo m(z")dz

m > 0 4; at domain wall

N

HZﬂO:OiX:((l))

m <0
v =20 v =1

Bulk-boundary correspondence: Av = |vr — vL| = # zero modes (topological invariant
characterizing domain wall)



The Integer Quantum Hall State

Integer Quantum Hall State: [von Klitzing ‘80]

First example of 2D topological material

- 2D electron gas in large magnetic field, at low T

IB
Ve 2D cyclotron motion
Landau levels

S
qh)‘ A Egap — hwc ¢
c
LL

0
v
35 ---------------

- There is an energy gap, but it is not an insulator P 30} “-° Pxy
108 hlez

<106

B Quantized Hall conductivity: ~ Jy = Oay Loy K¥sa”’]
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The Integer Quantum Hall State

What causes the precise quantization in IQHE? Ié
Explanation One: Edge state transport m
IQHE has an energy gap in the bulk:

— charge cannot flow in bulk; only along 1D channels at edges (chiral edge states)

— chiral edge state cannot be localized by disorder (no backscattering)
— edge states are perfect charge conductor!

Explanation Two: Topological band theory

Distinction between the integer quantum Hall state and a conventional insulator
IS a topological property of the band structure [Thouless et al, 84]

H(k) ; Brillouin zone | > Hamiltonians with energy gap
Classified by Chern number: = % > / Fd’k (= topological invariant) 7 € Z

states

27,
Kubo formula: 7*v — h 27 /]:d

filled
states

=== does not change under smooth deformations, as long as bulk energy gap is not closed



Bulk-boundary correspondence

?
topological invariant n = — E /]—"dzk n € 4
2T |
filled Zero-energy state at interface

states
|

Bulk-boundary correspondence: , n=0

n=1
Zero-energy states must exist at the interface
between two different topological phases y
Follows from the quantization of the topological invariant. |
X

An = |nL _ nR| = number or edge modes

IQHE: chiral Dirac Fermion

Stable gapless edge states:
A Lo

* robust to smooth deformations
(respect symmetries of the system) > ky

* insensitive to disorder, impossible to localize

e cannot exist in a purely 1D system
(Fermion doubling theorem)



Chern insulator on square lattice

[Bernevig, Hughes, Zhang]

Chern insulator = “integer quantum Hall state on a lattice”
(two orbital model: s and p.

(similar to Haldane honeycomb model [D. Haldane PRL °88] ) Inter-orbital coupling
+ intra-orbital dispersion)

Chern insulator on square lattice: Hcr = d(k) - 0 + €0(k)00 (preaks time-reversal symmetry)

dy(k) =sink, dy(k)=-sink, d.,(k)=(2+ M — cosk, — cosk,)

Ei =4|d(k)| Spectrum flattening:  d(k) = %
trivial phase non-trivial phase non-trivial phase
d d d
M > 0 and LN T ? T ?
M < —4 ( —4 < M < =2 —2< M <O
n = 0 / x / /
dy dy dy
no edge state chiral edge state chiral edge state

1 A A A _ e?
Chern number: n = —/ d’k e"d - [&%d X 8kyd} quantized Hall effect 05y, = —n
(winding no) 3T JBZ h

A

Mapping  d(k) : Brillouin zone | s> d(k) € 52 “ma(S%) = 27




Chern insulator on square lattice

Chern insulator on square lattice: Hcp = d(k) - & + €g(k)og

dy(k) =sink, dy(k)=sink, d,(k)=(2+ M — cosk, — cosk,)
Effective low-energy continuum theory for M=0: (expand around k = 0; 0 term can be neglected)

Hcr = kyop + kyoy + Mo,

two eigenfunctions with energies: Ei = )\ = +v/k2 + M?

. | k. — ik S 1 —ky + 1k,
Uy ) = ’ ) = A+ M
V2 - M)\ A-M V2AA+ M)\ AT

M

Berry curvature:  Fyy = Ok, Ak, — Ok, Ak, = +533
zero-energy state

gives nonzero Chern number n — i A%k Fp, = lsgn(M) T a1 boundary
(= Hall conductance o,,,) 27 2 A;

<P

n=>0 n=1

NB: Chern number must be integer for integrals over compact manifolds.
Proper regularization of Dirac Hamiltonian will lead to n € Z

Chiral edge state at boundary between o = L 1 otkyy =[5 M(z")dz’
two Chern insulators with different 77 0 —1

V2



