Introduction to topological aspects in condensed matter physics

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart

June 11-13, 2014 Université de Lorraine

3rd lecture

- 1. Topological superconductors w/ TRS
 - Two-dimensional helical superconductor
 - Three-dimensional TRI topological superconductor
 - Non-centrosymmetric superconductors

2. Periodic table of topological insulators and superconductors

- Ten-fold way: Symmetry classes
- Topological classification of non-interacting fermionic systems
- Bott periodicity

Two-dimensional spinless chiral p-wave SC

Lattice BdG model: [Read & Green 00]

Superconducting pairing with spin:

$$H_{\rm MF} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\sigma\sigma'} \left[\Delta_{\sigma\sigma'}(\mathbf{k}) c^{\dagger}_{\mathbf{k},\sigma} c^{\dagger}_{-\mathbf{k},\sigma'} + \Delta^{*}_{\sigma\sigma'}(\mathbf{k}) c_{-\mathbf{k},\sigma'} c_{\mathbf{k},\sigma} \right]$$

2 x 2 Gap matrix: $\Delta(\mathbf{k}) = [\Delta_s(\mathbf{k})\sigma_0 + \mathbf{d}(\mathbf{k}) \cdot \vec{\sigma}]i\sigma_y$

Time-reversal symmetry: $\sigma_y \Delta^{\dagger}(\mathbf{k}) \sigma_y = \Delta^{\mathrm{T}}(-\mathbf{k})$

Different spin-pairing symmetries: (anti-symmetry of wavefunction)

spin-singlet:
$$\Delta_s(\mathbf{k}): \frac{1}{\sqrt{2}} \underset{\Pi \neq (\mathbf{k})\Pi^{-1} = -\mathcal{H}(\mathbf{k}) ; \Pi \propto \Theta \Xi}{\overset{\Theta^2}{=} \pm 1} \xrightarrow{\mathbf{k}} \underset{\Pi \neq \mathbf{k}}{\overset{\Theta^2}{=} \pm 1} \xrightarrow{\mathbf{k}} \underset{\Pi \to \mathbf{k}}{\overset{\Theta^$$

spin-triplet:

$$\begin{aligned} d_x(\mathbf{k}) - id_y(\mathbf{k}) &: | \uparrow \uparrow \rangle \\ d_x(\mathbf{k}) + id_y(\mathbf{k}) &: | \downarrow \downarrow \rangle \quad \text{odd parity:} \quad \mathbf{d}(\mathbf{k}) = -\mathbf{d}(-\mathbf{k}) \\ d_z(\mathbf{k}) &: \frac{1}{\sqrt{2}}(| \uparrow \downarrow \rangle + | \downarrow \uparrow \rangle) \end{aligned}$$

(also known as "helical superconductor")

Square lattice BdG Hamiltonian in the presence of time-reversal symmetry:

Simplest model: (spinless chiral p-wave SC)² $\mathcal{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_0 & \Delta_t[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}](i\sigma_y) \\ \Delta_t(-i\sigma_y)[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}] & -\varepsilon(\mathbf{k})\sigma_0 \end{pmatrix}$ $\varepsilon(\mathbf{k}) = 2t(\cos k_x + \cos k_y) - \mu \quad d_x(\mathbf{k}) = \sin k_x \quad d_y(\mathbf{k}) = \sin k_y \quad d_z(\mathbf{k}) = 0$ TRS: $\Theta \mathcal{H}_{BdG}(\mathbf{k})\Theta^{-1} = +\mathcal{H}_{BdG}(-\mathbf{k}) \quad \Theta = i\sigma_y \otimes \tau_0 \mathcal{K} \quad \Theta^2 = -1$ PHS: $\Xi \mathcal{H}_{BdG}(\mathbf{k})\Xi^{-1} = -\mathcal{H}_{BdG}(-\mathbf{k}) \quad \Xi = \sigma_0 \otimes \tau_x \mathcal{K} \quad \Xi^2 = +1$

Combination of time-reversal and particle-hole symmetry:

(chiral symmetry) $U_S = (i\sigma_y \otimes \tau_0)(\sigma_0 \otimes \tau_x) \qquad U_S \mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k})U_S = 0$

 $ightarrow \mathcal{H}_{BdG}$ can be brought into block-off diagonal form: (transform to basis in which S is diagonal)

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \qquad D(\mathbf{k}) = (i\sigma_y) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$$

> TRS acts on
$$D(\mathbf{k})$$
 as follows: $D^T(-\mathbf{k}) = -D(\mathbf{k})$

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \quad \text{where:} \quad D(\mathbf{k})$$

Spectrum flattening: $Q = \mathbb{1}_{4N} - 2P$ Projector onto filled Bloch bands $Q(\mathbf{k}) = \begin{pmatrix} 0 & q(\mathbf{k}) \\ q^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$

> TRS acts on $q(\mathbf{k})$ as follows: $q(\mathbf{k}) = -q^T(-\mathbf{k})$

The eigenfunctions of $Q(\mathbf{k})$ are:

$$|u_a^{\pm}(\mathbf{k})\rangle_{\mathrm{N}} = \frac{1}{\sqrt{2}} \begin{pmatrix} n_a \\ \pm q^{\dagger}(\mathbf{k})n_a \end{pmatrix}$$
 where: $(n_a)_b = \delta_{ab}$

are globally defined.

 $(-1)^{\nu} = \prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1 \qquad \qquad \omega(\mathbf{k}) = \sqrt{u_a^-(-\mathbf{k})} |\Theta u_b^-(\mathbf{k})\rangle_{\mathrm{N}}$ **Z**₂ topological invariant: $\Rightarrow \left| (-1)^{\nu} = \prod_{a=1}^{4} \frac{\operatorname{Pf}\left[q^{T}(\Lambda_{a})\right]}{\sqrt{\det\left[q(\Lambda_{a})\right]}} = \pm 1 \right| \begin{array}{c} q(\mathbf{k}) = -q^{T}(-\mathbf{k}) \\ q^{\dagger}(\mathbf{k}) = q^{-1}(\mathbf{k}) \\ \text{(some current)} \end{array} \right|$

same symmetries as sewing matrix)

 $= (i\sigma_u) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$

Effective low-energy $\mathcal{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_0 & \Delta_t[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}](i\sigma_y) \\ \Delta_t(-i\sigma_y)[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}] & -\varepsilon(\mathbf{k})\sigma_0 \end{pmatrix}$ continuum theory: (expand around $\mathbf{k} = 0$) $\varepsilon(\mathbf{k}) = -tk^2 + 4t - \mu \qquad d_x(\mathbf{k}) = k_x \qquad d_y(\mathbf{k}) = k_y \qquad d_z(\mathbf{k}) = 0$ Energy spectrum: $E_{\pm} = \pm \lambda(\mathbf{k}) = \pm \sqrt{\varepsilon^2(\mathbf{k}) + \Delta_t (k_x^2 + k_y^2)}$ TRIM: $k = 0, \quad k = +\infty$ **Z**₂ topological invariant : $(-1)^{\nu} = -\text{sgn}(4t - \mu)\text{sgn}(t)$ TRI topological trivial super-Energy $\mu < 4t$: $\mu > 4t$: superconductor conductor **Bulk-boundary correspondence:** k_x By analogy to chiral p-wave SC: (for $|\mu| < 4t$) helical Majorana edge states: two counter-propagating Majorana edge modes

TRI topological SC

- -protected by TRS and PHS
- two-dimensional analog of B phase of ³He

 possible condensed matter realization: thin film of CePt₃Si?

Cubic lattice BdG Hamiltonian in the presence of time-reversal symmetry:

$$\mathcal{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_0 & \Delta_t[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}](i\sigma_y) \\ \Delta_t(-i\sigma_y)[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}] & -\varepsilon(\mathbf{k})\sigma_0 \end{pmatrix}$$

TRS:
$$\Theta \mathcal{H}_{BdG}(\mathbf{k})\Theta^{-1} = +\mathcal{H}_{BdG}(-\mathbf{k})$$
 $\Theta = i\sigma_y \otimes \tau_0 \mathcal{K}$ $\Theta^2 = -1$
PHS: $\Xi \mathcal{H}_{BdG}(\mathbf{k})\Xi^{-1} = -\mathcal{H}_{BdG}(-\mathbf{k})$ $\Xi = \sigma_0 \otimes \tau_x \mathcal{K}$ $\Xi^2 = +1$

Chiral symmetry (TRS x PHS): $U_S \mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k}) U_S = 0$

 $\sim H_{BdG}$ can be brought into block-off diagonal form: (transform to basis in which S is diagonal)

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \qquad D(\mathbf{k}) = (i\sigma_y) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$$

> TRS acts on
$$D(\mathbf{k})$$
 as follows: $D^T(-\mathbf{k}) = -D(\mathbf{k})$

Lattice BdG Hamiltonian:
$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$$

 \blacktriangleright Off-diagonal block: $D(\mathbf{k}) = (i\sigma_y) \{ \varepsilon_{\mathbf{k}}\sigma_0 + i\Delta_t[\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \}$
Mapping $D(\mathbf{k})$: Brillouin zone \longmapsto $D(\mathbf{k})$ TRS: $D(\mathbf{k}) = -D^T(\mathbf{k})$
 \blacktriangleright Spectrum flattening: $q(\mathbf{k}) = \sum_a \frac{1}{\lambda_a(\mathbf{k})} u_a(\mathbf{k}) u_a^{\dagger}(\mathbf{k}) D(\mathbf{k}) \quad u_a(\mathbf{k})$: eigenvectors of DD^{\dagger}
Mapping $q(\mathbf{k})$: Brillouin zone \longmapsto $q(\mathbf{k}) \in U(2) \quad \pi_2[U(2)] = 0$
TRS: $q(\mathbf{k}) = -q^T(-\mathbf{k}) \quad \pi_3[U(2)] = \mathbb{Z}$
 \Longrightarrow classified by winding number: $W = \frac{1}{24\pi^2} \int_{BZ} d^3k \, \varepsilon^{\mu\nu\rho} \operatorname{Tr} \left[(q^{-1}\partial_{\mu}q)(q^{-1}\partial_{\nu}q)(q^{-1}\partial_{\rho}q) \right]$

Bulk-boundary correspondence:

|W| = # Kramers-degenerate Majorana states

Possible condensed matter realization: CePt₃Si, Li₂Pt₃B, CeRhSi₃, CeIrSi₃, etc.

Non-centrosymmetric Superconduct (full gap)

What is a non-centrosymmetric superconductor (NCS)?

Superconductor without a center of inversion in its crystal structure.

CePt₃Si, CeRhSi₃, CeIrSi₃, Li₂Pt₃B, LaPtBi, etc. Interfaces: LaAlO₃/SrTiO₃

Pt1

a

Consider tetragonal point group C_{4v}:

through relativist effects potential gradient leads to anti-symmetric spin-orbit coupling

Pt₂

Si

Non-centrosymmetric SCs: Structure of pairing state

(i) Lack of center of inversion causes anti-symmetric SO coupling.

Normal state:
$$\mathcal{H} = \sum_{\mathbf{k}\mu\nu} c^{\dagger}_{\mathbf{k}\mu} \left(\varepsilon_{\mathbf{k}}\sigma_0 + \alpha \mathbf{g}_{\mathbf{k}} \cdot \boldsymbol{\sigma} \right)_{\mu\nu} c_{\mathbf{k}\nu} = \sum_{\mathbf{k}s} \xi_{\mathbf{k}s} b^{\dagger}_{\mathbf{k}s} b_{\mathbf{k}s}$$

Spin basis: $\mu = \uparrow, \downarrow$ Helicity basis: $s = \pm$

Spin-split energy spectrum:

$$\xi_{\boldsymbol{k}}^{\pm} = \varepsilon_{\boldsymbol{k}} \pm |\boldsymbol{g}_{\boldsymbol{k}}|$$

(ii) Lack of center of inversion allows for admixture of singlet and triplet pairing components

$$\Delta(\boldsymbol{k}) = f(\boldsymbol{k}) \left(\Delta_s \sigma_0 + \Delta_t \boldsymbol{d}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma} \right) i \sigma_y$$

 d_k is constrained by SO interaction: $g_k \parallel d_k$

Gaps on the two Fermi surfaces:

$$\Delta_{\boldsymbol{k}}^{\pm} = \Delta_s \pm \Delta_t \left| \boldsymbol{d}_{\boldsymbol{k}} \right|$$

 K_{V}

 k_{x}

Non-centrosymmetric SCs: Structure of pairing state

(i) Lack of center of inversion causes anti-symmetric SO coupling.

Normal state:
$$\mathcal{H} = \sum_{\mathbf{k}\mu\nu} c^{\dagger}_{\mathbf{k}\mu} \left(\varepsilon_{\mathbf{k}}\sigma_0 + \alpha g_{\mathbf{k}} \cdot \boldsymbol{\sigma} \right)_{\mu\nu} c_{\mathbf{k}\nu} = \sum_{\mathbf{k}s} \xi_{\mathbf{k}s} b^{\dagger}_{\mathbf{k}s} b_{\mathbf{k}s}$$

Spin basis: $\mu = \uparrow, \downarrow$ Helicity basis: $s = \pm$

Spin-split energy spectrum:

$$\xi_{\boldsymbol{k}}^{\pm} = \varepsilon_{\boldsymbol{k}} \pm |\boldsymbol{g}_{\boldsymbol{k}}|$$

(ii) Lack of center of inversion allows for admixture of singlet and triplet pairing components

$$\Delta(\boldsymbol{k}) = f(\boldsymbol{k}) \left(\Delta_s \sigma_0 + \Delta_t \boldsymbol{d}_{\boldsymbol{k}} \cdot \boldsymbol{\sigma} \right) i \sigma_y$$

 d_k is constrained by SO interaction: $g_k \parallel d_k$

Gaps on the two Fermi surfaces:

$$\Delta_{\boldsymbol{k}}^{\pm} = \Delta_s \pm \Delta_t \left| \boldsymbol{d}_{\boldsymbol{k}} \right|$$

Non-centrosymmetric SCs: Gap structure vs mixing ratio

Topologically non-trivial

Non-centrosymmetric SCs: Gap structure vs mixing ratio

Topologically non-trivial

Lattice BdG Hamiltonian:

$$\overset{\Theta H(\mathbf{k})\Theta^{-1}}{\cong \mathcal{H}(\mathbf{k})\Xi^{-1}=-\mathcal{H}(-\mathbf{k}); \quad \Theta\Xi} \overset{\Theta}{\cong} \overset{\Theta}{\cong} \overset{\Theta}{\longrightarrow} \overset{\Phi}{\longrightarrow} \overset$$

particle-hole symmetry: $\Xi \mathcal{H}_{BdG}(\boldsymbol{k}) \Xi^{-1} = -\mathcal{H}_{BdG}(-\boldsymbol{k})$ time-reversal symmetry: $\Theta \mathcal{H}_{BdG}(\boldsymbol{k}) \Theta^{-1} = +\mathcal{H}_{BdG}(-\boldsymbol{k})$ chiral symmetry (TRS+PHS): $S \mathcal{H}_{BdG}(\boldsymbol{k}) + \mathcal{H}_{BdG}(\boldsymbol{k})S = 0$

 \mathcal{H}_{BdG} can be brought into block-off diagonal form, with off-diagonal component:

$$D(\mathbf{k}) = (\varepsilon_{\mathbf{k}} + i\Delta_s)\,\sigma_0 + (\alpha + i\Delta_t)\,\mathbf{l}_{\mathbf{k}}\cdot\vec{\sigma}$$

TRS:
$$q(\mathbf{k}) = -q^T(-\mathbf{k})$$
 $\pi_2[U(2)] = 0$

Lattice BdG Hamiltonian:

$$\begin{array}{c} \overset{\Theta H(\mathbf{k})\Theta^{-1}}{=} \mathcal{H}_{\mathrm{Bd}}(\mathbf{k}) \overset{\Theta}{=} \overset{\Theta}{$$

time-reversal symmetry: $\Theta \mathcal{H}_{BdG}(\boldsymbol{k})\Theta^{-1} = +\mathcal{H}_{BdG}(-\boldsymbol{k})$ chiral symmetry (TRS+PHS): $S\mathcal{H}_{BdG}(\boldsymbol{k}) + \mathcal{H}_{BdG}(\boldsymbol{k})S = 0$

 \mathcal{H}_{BdG} can be brought into block-off diagonal form, with off-diagonal component:

$$D(\mathbf{k}) = (\varepsilon_{\mathbf{k}} + i\Delta_s)\,\sigma_0 + (\alpha + i\Delta_t)\,\mathbf{l}_{\mathbf{k}}\cdot\vec{\sigma}$$

Mapping $q(\mathbf{k})$: Brillouin zone $\longrightarrow q(\mathbf{k}) \in U(2)$ TRS: $q(\mathbf{k}) = -q^T(\mathbf{k})$ 2D: classified by \mathbb{Z}_2 number: $(-1)^{\nu} = \prod_{a=1}^4 \frac{\operatorname{Pf}\left[q^T(\Lambda_a)\right]}{\sqrt{\det\left[q(\Lambda_a)\right]}} = \pm 1$ 3D: classified by winding number: $W = \frac{1}{24\pi^2} \int_{\mathrm{BZ}} d^3k \, \varepsilon^{\mu\nu\rho} \operatorname{Tr}\left[(q^{-1}\partial_{\mu}q)(q^{-1}\partial_{\nu}q)(q^{-1}\partial_{\rho}q)\right]$

Fully gapped non-centrosymmetric SCs: Surface states

2D: \mathbb{Z}_2 number ν 3D: winding number W

trivial phase

$$\Delta_t < \Delta_s : \left\{ \begin{array}{l} \nu = 0\\ W = 0 \end{array} \right.$$

no surface state

non-trivial phase

$$\Delta_t > \Delta_s : \begin{cases} \nu = +1 \\ W = \pm 1, \pm 2, \dots \end{cases}$$

dispersing "helical" Majorana surface states

Bulk-boundary correspondence:

u, |W| = # Kramers-degenerate Majorana states

Y-component of SDOS

Symmetry classes: "Ten-fold way"

(originally introduced in the context of random Hamiltonians / matrices)

S:
$$S\mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k})S = 0$$

Note: SLS is often also called "chiral symmetry"

Classification of topological insulators and superconductors

Are there more topological insulator and superconductors? Anti-unitary symmetries: - time-reversal: $\Theta \mathcal{H}(\mathbf{k}) \Theta^{-1} = -\mathcal{H}(-\mathbf{k}); \quad \Xi^{2} = \pm 1$ - time-reversal: $\Theta \mathcal{H}(\mathbf{k}) \Theta^{-1} = +\mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$ - particle-hole: $(\mathbf{k})\Pi^{-1} = \mathcal{H}(\mathbf{k}) \oplus \Xi^{2} = \pm 1$ Chiral (unitary) symmetry: $\Pi \mathcal{H}(\mathbf{k})\Pi^{-1} = -\mathcal{H}(\mathbf{k}); \quad \Pi \propto \Theta \Xi$

Name	Θ^2	Ξ^2	Π^2
Α	0	0	0
AIII	0	0	1
AI	+1	0	0
BDI	+1	+1	1
D	0	+1	0
DIII	-1	+1	1
All	-1	0	0
CII	-1	-1	1
С	0	-1	0
CI	+1	-1	1

For which symmetry class and dimension is there a topological insulator/superconductor?

BDI

D

DIII

Ξ²

Three different approaches to answer this question:

(i) Anderson localization of boundary modes

Schnyder, Ryu, Furusaki, Ludwig, PRB 2008.

(ii) Dimensional reduction procedures **Qi, Hughes, Zhang, PRB 2008.**

Ryu, Schnyder, Furusaki, Ludwig, NJP 2010.

(iii) K-Theory

Kitaev, AIP Conf Proc. 1134, 22 (2009)

All three approaches give the same answer!

Altland-Zirnbauer Random Matrix Classes

Periodic Table of Topological Insulators and Superconductors

 \longrightarrow Classification of fully gapped topological phases $\Theta^2 = \pm 1$

Anti-unitary symmetries:

Altland-

Zirnbauer

Random

Classes

Matrix

- time-reversal:
- particle-hole:

 $\Xi \mathcal{H}(\mathbf{k})\Xi^{-1} = -\mathcal{H}(-\mathbf{k}); \quad \Xi^{2} = \pm 1$ $\Theta \mathcal{H}(\mathbf{k})\Theta^{-1} = +\mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$ $\Xi \mathcal{H}(\mathbf{k})\Xi^{-1} = \mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$ $\Xi \mathcal{H}(\mathbf{k})\Xi^{-1} = \mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$

Chiral (unitary) symmetry: $\Pi \mathcal{H}(\mathbf{k})\Pi^{-1} = -\mathcal{H}(\mathbf{k}); \qquad \Pi \propto \Theta \Xi$

	Name	Θ^2	Ξ^2	Π^2	d=1	d=2	d=3	
(Α	0	0	0	0	\mathbb{Z}	Þ	Integer Quantum Hall effect
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	
	AI	+1	0	0	0	0	0	
	BDI	+1	+1	1	\mathbb{Z}	4	0	 Polyacetylene (assuming SLS)
	D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}	0	
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	2D Z ₂ topological insulator
	All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	3D Z ₂ topological insulator
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	
	С	0	-1	0	0	\mathbb{Z}	0	(Only valid for overeme with a
	CI	+1	-1	1	0	0	\mathbb{Z}	sufficient number of bands)

Periodic Table of Topological Insulators and Superconductors

 \longrightarrow Classification of fully gapped topological phases $\Theta^2 = \pm 1$

Anti-unitary symmetries:

- time-reversal:
- particle-hole:

Altland-

Zirnbauer

Random

Classes

Matrix

 $\Xi \mathcal{H}(\mathbf{k})\Xi^{-1} = -\mathcal{H}(-\mathbf{k}); \quad \Xi^{2} = \pm 1$ $\Theta \mathcal{H}(\mathbf{k})\Theta^{-1} = +\mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$ $\Xi \mathcal{H}(\mathbf{k})\Theta^{-1} = \mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$ $\Xi \mathcal{H}(\mathbf{k})\Theta^{-1} = \mathcal{H}(-\mathbf{k}); \quad \Theta^{2} = \pm 1$

Chiral (unitary) symmetry: $\Pi \mathcal{H}(\mathbf{k})\Pi^{-1} = -\mathcal{H}(\mathbf{k}); \quad \Pi \propto \Theta \Xi$

	Name	Θ^2	[I]	Π^2	d=1	d=2	d=3	
(А	0	0	0	0	\mathbb{Z}	0	
	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	Kitaev Majorana chain
	AI	+1	0	0	0	0	0	chiral p-wave superconductor
	BDI	+1	+1	1	\mathbb{Z}	B	ð	2D helical superconductor
	D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}^{*}	0	
Ì	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
	All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	
	CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	chiral d-wave superconductor
	С	0	-1	0	0	\mathbb{Z}^{\checkmark}	P	
	CI	+1	-1	1	0	0	\mathbb{Z}	I RI topological singlet SC

Periodic Table of Topological Insulators and Superconductors

Classification of *fully gapped* topological phases

		Name	Θ^2	[1]	Π^2	d=1	d=2	d=3	d=4	d=5	d=6	d=7	d=8	
	(Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	(complex
		AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	∫ K-theory
		AI	+1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
Altland-		BDI	+1	+1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	
Zirnbauer Random Matrix Classes		D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	
	\int	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	"real"
		All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	K-theory
		CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
		С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
		CI	+1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	

• Topological invariants: Chern numbers and winding numbers

$$Ch_{n+1}[\mathcal{F}] = \frac{1}{(n+1)!} \int_{\mathrm{BZ}^{d=2n+2}} \operatorname{tr}\left(\frac{i\mathcal{F}}{2\pi}\right)^{n+1}$$
$$\nu_{2n+1}[q] = \frac{(-1)^n n!}{(2n+1)!} \left(\frac{i}{2\pi}\right)^{n+1} \int_{\mathrm{BZ}} \epsilon^{\alpha_1 \alpha_2 \cdots} \operatorname{tr}\left[q^{-1} \partial_{\alpha_1} q \cdot q^{-1} \partial_{\alpha_2} q \cdots\right] d^{2n+1}k$$