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4th lecture

1. Beyond ten-fold classification!
!
- Topological classification of non-interacting fermionic systems!
- Weak topological insulators and superconductors!
- Classification of zero-modes at defects!

        - Topological crystalline insulators (reflection symmetries)!

2. Gapless topological materials!
      !

       - Examples of topological semi-metals and nodal SCs!
       - Classification of semi-metals and nodal superconductors !
       - Example: Nodal non-centrosymmetric SC!
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In these notes, we analyze the anisotropy in both the electronic raman response and in the

inelastic neutron scattering within a conventional fermiology picture. In particular, we investigate

the hypothesis that the observed anisotropies in the spin and charge response are caused by both a

subdominant s-wave component in the superconducting gap and an orthorhombicity in the normal

state band structure.

II. RAMAN SCATTERING

Electronic Raman scattering has proven to be a useful tool in exploring the superconducting

state of high-Tc cuprates. It measures the symmetry of the order parameter, and provides one

piece of evidence for the by now widely accepeted d-wave pairing symmetry. Conversely, insight

in the extent of subdominant admixtures of d-wave symmetry, for instance in the orthorhombic

YBa2Cu3O7, is less well established. Moreover, the effects of an orthorhombic band structure on

the electronic Raman scattering have never been studied from a theoretical point of view.

The differential cross section in a Raman scattering experiment (a two photon process) for a

momentum transfer which is small compared to the extension of the Brillouin zone is directly

proportional to the imaginary part of the Raman response function at q = 0. (Typically the light

used in a Raman experiment has a wave vector ∼ 5000A−1 which is very small compared to

the Fermi vector kF ∼ 0.5A−1 in a cuprate. Raman only probes excitations near the zone center

q = 0. The resolution of a Raman experiment is typically 0.5 meV.)

We start from the Hamiltonian for electrons in a crystal subject to an electromagnetic field

H =
∑

j

{

1

2m

(

pj −
e

c
A(rj, t)

)2

+ U(rj)

}

, (2.1)

where A(rj, t) is the vector potential of the optical fields acting on the jth electron and pj is the

electron’s momentum. In order to treat this Hamiltonian perturbatively in the vector potential A
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  0! no time reversal invariance        
+1! time reversal invariance and               
 -1! time reversal invariance and               

  0! no particle-hole symmetry        
+1! particle-hole symmetry and              
 -1! particle-hole symmetry and               

time-reversal invariance (   ):

particle-hole symmetry (   ):

In addition we can also consider the 
“sublattice symmetry” 

(originally introduced in the context of random Hamiltonians / matrices)

complex conjugation

(is antiunitary)

(“reality condition”)

(“reality condition”)

Note: SLS is often also called “chiral symmetry”

S :

� = UTK

� = UCK

� :

� :

�2 = +1

�2 = �1

�2 = +1

�2 = �1

S = �⇥

SHBdG(k) +HBdG(k)S = 0

⇥

⌅

� :

� : UTH�
BdG(k)U

†
T = +HBdG(�k)

UCH�
BdG(k)U

†
C = �HBdG(�k)
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Name d=1 d=2 d=3
A 0 0 0 0 0

AIII 0 0 1 0
AI +1 0 0 0 0 0

BDI +1 +1 1 0 0
D 0 +1 0 0

DIII -1 +1 1
AII -1 0 0 0
CII -1 -1 1 0
C 0 -1 0 0 0
CI +1 -1 1 0 0

Altland-
Zirnbauer!
Random 
Matrix 
Classes

Periodic Table of Topological Insulators and Superconductors
Anti-Unitary Symmetries :

- Time Reversal :   

- Particle - Hole  :

Unitary (chiral) symmetry :  

1( ) ( ) 12 ;    H H�� � � � � � � �k k

1( ) ( ) 12 ;   H H�� � � � � � � �k k

1( ) ( )H H�� � � � ����k k  ;   

Real
K-theory

Complex
K-theory

Bott Periodicity d����

Altland-
Zirnbauer
Random 
Matrix
Classes

Kitaev, 2008
Schnyder, Ryu, Furusaki, Ludwig 2008

8 antiunitary symmetry classes

    : integer classification!
    : binary classification!
0  : no top. insulator / SC
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We study surface bound states and tunneling conductance spectra of non-centrosymmetric superconductors
(NCS). The appearance of dispersionless bound states is related to a non-zero topological invariant. Further-
more, we discuss different types of topological phase transitions in non-centrosymmetric superconductors.

PACS numbers: 74.50.+r,74.20.Rp,74.25.F-,03.65.vf

I. INTRODUCTION

In this paper we derive the surface bound state spectrum of
a NCS using quasiclassical scattering theory and compute the
tunneling conductance between a normal metal and a NCS
both as a function of surface orientation and as a function
of the relative magnitude of spin-singlet and spin-triplet pair-
ing states. Moreover, we also study zero-temperature quan-
tum phase transitions, where the momentum space topology
of the quasi-particle spectrum changes abruptly as the singlet-
to-triplet ratio in the pairing amplitude crosses a critical value
(Fig. 5). We discuss how these topological phase transitions
can be observed in experiments.

1

2π

∫

M

κ dA = χ = 2 − 2g (1)

2 0 (2)

II. THEORETICAL BACKGROUND

A. Model definition

We consider a mean-field model Hamiltonian for a BCS su-
perconductor in a non-centrosymmetric crystal. In particular
we have in mind Li2PdxPt3−xB, CePt3Si, and Y2C3. We start
from a general non-centrosymmetric superconductor with the
mean-field HamiltonianH = 1

2

∑

k
ψ†

k
H(k)ψ

k
with

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

(3a)

and ψk = (c
k↑, ck↓, c

†
−k↑, c

†
−k↓)

T, where c†
k
(c

k
) denotes the

electron creation (annihilation) operator with momentum k
and spin σ. The normal state dispersion of the electrons is
described by the matrix

h(k) = ξkσ0 + gk · σ, (3b)

with ξk = !2k2/(2m) − µ and gk the spin-orbit coupling
(SOC) potential. The gap function∆(k) is

∆(k) = f(k) (∆s + dk · s) (isy) . (3c)

It is well-known that the highest Tc corresponds to dk ∥ gk.
Hence we write dk = ∆pgk.

B. Winding number

We can study the topological properties of nodal lines using
the winding number

WL =
1

2πi

∮

L

dl Tr
[

q−1(k)∇lq (k)
]

, (4)

where the integral is evaluated along the closed loop L in the
Brillouin zone. With this formula we can compute the topo-
logical charge associated with the nodal lines appearing in the
gapless phases of non-centrosymmetric superconductors.

III. BOUND STATE SPECTRA

IV. TUNNELING CONDUCTANCE

V. TOPOLOGICAL PHASE TRANSITIONS

In this Section we examine topological phase transi-
tions of model (2) as a function of the relative strength
of singlet and triplet contributions to the order parameter,
∆s/∆t. I.e, we investigate zero-temperature transitions be-
tween two phases which share the same symmetries, in
particular the same pairing symmetry, but differ in their
topological characteristics.33,34 This is motivated in part by
Li2PdxPt3−xB, which is a family of NCS where the SO cou-
pling strength can be tuned by substituting Pt for Pd.35 The
magnitude of the SO interaction in these compounds in turn
seems to be directly related to the singlet-to-triplet ratio in
the pairing amplitude.36 This suggest that it might be possi-
ble to observe in Li2PdxPt3−xB topological phase transitions
between a fully gapped and a gapless phase, or between two
gapless phases as a function of Pt concentration.
In Fig. 5a we present the topological phase diagram

for a NCS with cubic point group O (appropriate for
Li2PdxPt3−xB) and l-vector given by Eq. (??). For∆s > ∆t

the superconductor is fully gapped and topologically triv-
ial. At ∆s = ∆t there is a Lifshitz-type zero-temperature
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g2
sf
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∫

dx dx′si(x)Dij(x − x′)sj(x
′) (2)

1. f-Summenregel

Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump
pulse, it shows instead an upward bend because of the full effectiveness of the two-photon
processes. At higher, but still not so large, integrated intensity, the single-phonon proces-
ses dominate and the curves corresponding to pulses shorter than τl exhibit a downward
bend, while those with longer pulse widths an upward one. The curve with τp = τl lies in
between these two regimes and marks the reach of full effectiveness of the single-photon
processes. At relatively high integrated intensity, all downward bending curves (τp ≤ τl)
show a more or less sharp upward bend before reaching zero. Instead, upward bending
curves (τp > τl) tend to flatten before reaching zero and to saturate for pulse widths
larger than 4τl with increasing A2

0τp. This occurs because long pump pulses create sharp
and narrow peaks in the quasiparticle distributions, which, for sufficiently high intensi-
ties, leads to saturation due to Pauli blocking. [?, ?] The integrated intensity above which
Pauli blocking sets in decreases with increasing τp and reaches zero at 4τl.
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2D Z2 topological insulator
3D Z2 topological insulator

Integer Quantum Hall effect

Classification of fully gapped topological phases

Periodic Table of Topological Insulators and Superconductors

(Only valid for systems with a   !
   sufficient number of bands)!

Polyacetylene (assuming SLS)
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We study surface bound states and tunneling conductance spectra of non-centrosymmetric superconductors
(NCS). The appearance of dispersionless bound states is related to a non-zero topological invariant. Further-
more, we discuss different types of topological phase transitions in non-centrosymmetric superconductors.

PACS numbers: 74.50.+r,74.20.Rp,74.25.F-,03.65.vf

I. INTRODUCTION

In this paper we derive the surface bound state spectrum of
a NCS using quasiclassical scattering theory and compute the
tunneling conductance between a normal metal and a NCS
both as a function of surface orientation and as a function
of the relative magnitude of spin-singlet and spin-triplet pair-
ing states. Moreover, we also study zero-temperature quan-
tum phase transitions, where the momentum space topology
of the quasi-particle spectrum changes abruptly as the singlet-
to-triplet ratio in the pairing amplitude crosses a critical value
(Fig. 5). We discuss how these topological phase transitions
can be observed in experiments.

1

2π

∫

M

κ dA = χ = 2 − 2g (1)

2 0 (2)

II. THEORETICAL BACKGROUND

A. Model definition

We consider a mean-field model Hamiltonian for a BCS su-
perconductor in a non-centrosymmetric crystal. In particular
we have in mind Li2PdxPt3−xB, CePt3Si, and Y2C3. We start
from a general non-centrosymmetric superconductor with the
mean-field HamiltonianH = 1

2

∑

k
ψ†

k
H(k)ψ

k
with

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

(3a)

and ψk = (c
k↑, ck↓, c

†
−k↑, c

†
−k↓)

T, where c†
k
(c

k
) denotes the

electron creation (annihilation) operator with momentum k
and spin σ. The normal state dispersion of the electrons is
described by the matrix

h(k) = ξkσ0 + gk · σ, (3b)

with ξk = !2k2/(2m) − µ and gk the spin-orbit coupling
(SOC) potential. The gap function∆(k) is

∆(k) = f(k) (∆s + dk · s) (isy) . (3c)

It is well-known that the highest Tc corresponds to dk ∥ gk.
Hence we write dk = ∆pgk.

B. Winding number

We can study the topological properties of nodal lines using
the winding number

WL =
1

2πi

∮

L

dl Tr
[

q−1(k)∇lq (k)
]

, (4)

where the integral is evaluated along the closed loop L in the
Brillouin zone. With this formula we can compute the topo-
logical charge associated with the nodal lines appearing in the
gapless phases of non-centrosymmetric superconductors.

III. BOUND STATE SPECTRA

IV. TUNNELING CONDUCTANCE

V. TOPOLOGICAL PHASE TRANSITIONS

In this Section we examine topological phase transi-
tions of model (2) as a function of the relative strength
of singlet and triplet contributions to the order parameter,
∆s/∆t. I.e, we investigate zero-temperature transitions be-
tween two phases which share the same symmetries, in
particular the same pairing symmetry, but differ in their
topological characteristics.33,34 This is motivated in part by
Li2PdxPt3−xB, which is a family of NCS where the SO cou-
pling strength can be tuned by substituting Pt for Pd.35 The
magnitude of the SO interaction in these compounds in turn
seems to be directly related to the singlet-to-triplet ratio in
the pairing amplitude.36 This suggest that it might be possi-
ble to observe in Li2PdxPt3−xB topological phase transitions
between a fully gapped and a gapless phase, or between two
gapless phases as a function of Pt concentration.
In Fig. 5a we present the topological phase diagram

for a NCS with cubic point group O (appropriate for
Li2PdxPt3−xB) and l-vector given by Eq. (??). For∆s > ∆t

the superconductor is fully gapped and topologically triv-
ial. At ∆s = ∆t there is a Lifshitz-type zero-temperature
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Extension I: Weak topological insulators and supercondutors

cf. Kitaev, AIP Conf Proc. 1134, 22 (2009)

STAZ
A
AIII
AI
BDI
D
DIII
AII
CII
C
CI

Symmetry Dimension
C 1 32 4

0 0 0
0 0 1
1 0 0
1 1 1
0 1 0
-1 1 1
-1 0 0
-1 -1 1
0 -1 0
1 -1 1

Z0 0 Z
Z 0 Z 0
0 0 0 Z
Z 0 0 0
Z2 Z 0 0
Z2 Z2 Z 0
0 Z2 Z2 Z
Z 0 Z2 Z2
0 Z 0 Z2
0 0 Z 0

!!
        d-dim.weak topological insulators (SCs) 
of co-dimension k can occur whenever there 
exists a strong topological state in same 
symmetry class but in (d-k) dimensions.

strong topological insulators (superconductors): !
  not destroyed by positional disorder

weak topological insulators (superconductors): !
  only possess topological features !
  when translational symmetry is present

               weak topological insulators (superconductors) !
are topologically equivalent to parallel stacks of lower-!
dimensional strong topological insulator (SCs).!

co-dimension k=1 co-dimension k=2

I. INTRODUCTION

0 < k ≤ d and

λ0/∆te (1.1)

3

I. INTRODUCTION

0 < k ≤ d and
(

d

k

)

(1.1)

λ0/∆te (1.2)

3

top. invariants
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Extension II: Zero mode localized on topological defect

Protected zero modes can also occur 
at topological defects in D-dim systems

Ryu, et al. NJP (2010) 

Freedman, et. al., PRB (2010)
Teo & Kane, PRB (2010)

Two-dim defects (r=2): domain wall (D=3)

Point defect (r=0): Hedgehog (D=3), 
vortex (D=2), domain wall (D=1)

Line defect (r=1): 
dislocation line (D=3) !
domain wall (D=2)

Fractionalization in a square-lattice model with time-reversal symmetry

B. Seradjeh,1 C. Weeks,1 and M. Franz1,2

1Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

!Received 11 June 2007; revised manuscript received 24 August 2007; published 23 January 2008"

We propose a two-dimensional time-reversal invariant system of essentially noninteracting electrons on a
square lattice that exhibits configurations with fractional charges !e /2. These are vortexlike topological
defects in the dimerization order parameter describing spatial modulation in the electron hopping amplitudes.
Charge fractionalization is established by a simple counting argument, analytical calculation within the effec-
tive low-energy theory, and by an exact numerical diagonalization of the lattice Hamiltonian. We comment on
the exchange statistics of fractional charges and possible realizations of the system.

DOI: 10.1103/PhysRevB.77.033104 PACS number!s": 71.10.Pm, 71.10.Fd

I. INTRODUCTION

It is now well known that fractional quantum numbers can
arise as the collective excitations of a many-body system.
The canonical example of such fractionalization is a two-
dimensional electron gas placed in a transverse magnetic
field in the fractional quantum Hall regime. At odd inverse
filling factors, "−1#1, the many-body ground state is de-
scribed by a strongly correlated Laughlin wave function and
the time-reversal symmetry is broken. The excitations carry
the fractional charge "e !Ref. 1" and exhibit fractional !Abe-
lian" statistics.2 The search for other systems that exhibit
fractionalization is ongoing. An important question in this
search is whether strong correlations or a broken time-
reversal symmetry is necessary for fractionalization to hap-
pen.

Recently, the answer to the question is argued to be nega-
tive. A group including the present authors3 proposed a sys-
tem with fractionally charged, anyonic excitations that can
be described by a weakly interacting wave function found by
filling a set of single-particle states. Moreover, Hou et al.4

have argued that a vortex in the Kekulé modulations of the
hopping amplitudes on a honeycomb lattice, like that of
graphene, binds a fractional charge e /2 without breaking the
time reversal symmetry.

In this Brief Report, we propose a system on a square
lattice with time-reversal symmetry that exhibits fractional-
ization. The system consists of a square lattice threaded by
one-half of a magnetic flux quantum $0=hc /e per plaquette
on which electrons can hop to nearest-neighbor sites with no
interaction. Time-reversal symmetry is preserved in this lat-
tice model because electrons cannot detect the sign of the
flux with magnitude $0 /2. In addition, we assume a dimer-
ized modulation of hopping amplitudes, as depicted in Fig.
1!a". Such modulations can arise as a Peierls distortion of a
uniform ion lattice above a critical value of the electron-
phonon coupling or, as discussed in Ref. 4 in the context of
graphene, as an interaction-driven instability. We show that a
vortex in the complex scalar order parameter describing this
dimerization pattern generates a zero-energy bound state in
the spectrum of electrons and carries a fractional charge. In
addition to similar arguments to those of Ref. 4, we present a
simple electron counting argument5,6 as well as numerical

evidence demonstrating this effect. Importantly, we find that
the fractionalization survives essentially intact beyond the
low-energy theory of Ref. 4 in the presence of the lattice. We
also show that the same pattern of fractionalization occurs
for the Z4 and U!1" vortices and clarify the issue of their
confinement. We then give a brief discussion of the energet-
ics of the Peierls distortion and touch upon possible experi-
mental realizations of the model in artificially engineered
semiconductor heterostructures and optical lattices.

II. MODEL

We consider a square lattice with a tight-binding Hamil-
tonian,

FIG. 1. !Color online" The model: !a" square lattice with 1
2$0

magnetic flux per plaquette and dimerized hopping amplitudes. The
! on the left for each row show the choice of gauge for the Peierls
phase factors. The solid !dashed" bonds indicate an increased !de-
creased" hopping amplitude in the x̂ !blue/gray" and ŷ !green/light
gray" directions as explained in the text. The four sites of the unit
cell are marked. !b" The Z4 vortex. The dashed lines indicate the
domain walls sharing the center of the vortex. The phase of the
local dimer order parameter f i !see text" around !c" the U!1" and
!d" the Z4 vortices. The % shows the center of each vortex where
f =0.

PHYSICAL REVIEW B 77, 033104 !2008"

1098-0121/2008/77!3"/033104!4" ©2008 The American Physical Society033104-1

STAZ
A
AIII
AI
BDI
D
DIII
AII
CII
C
CI

Symmetry Dimension
C 1 32 4

0 0 0
0 0 1
1 0 0
1 1 1
0 1 0
-1 1 1
-1 0 0
-1 -1 1
0 -1 0
1 -1 1

Z0 0 Z
Z 0 Z 0
0 0 0 Z
Z 0 0 0
Z2 Z 0 0
Z2 Z2 Z 0
0 Z2 Z2 Z
Z 0 Z2 Z2
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look at column d=(r+1)

Can an r-dimensional topological defect of a 
given symmetry class bind gapless states or 
not?

line defect in class A:

(answer does not depend on D!)

I. INTRODUCTION

0 < k ≤ d and
(

d

k

)

(1.1)

λ0/∆te (1.2)

n =
1

8π2

∫

T 3×S1

Tr[F ∧ F] (1.3)

3

(second Chern no = no of zero modes)
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Topological crystalline insulators

Mirror plane

 — consider, e.g., TRS insulator with mirror symmetry

 — define mirror Chern number for each eigenspace of R:

Topological insulator protected by global symmetry & mirror symmetry

Time-reversal symmetry (class AII): 

Reflection symmetry:

[Teo, Fu, Kane, 2008]
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Topological crystalline insulators

=)    two Dirac cones on surface protected by !
mirror and time-reversal symmetries

Mirror plane
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Figure 1 |Dirac-like band dispersion in SnTe. a, The bulk Brillouin zone (red lines) and the corresponding (001) surface Brillouin zone (blue lines). The
(110) mirror plane is indicated by the green shaded area. b, ARPES intensity mapping at EF at T = 30 K for SnTe plotted as a function of the 2D wave vector
measured with the He 1 line (hv = 21.2 eV); this intensity is obtained by integrating the spectra within ±10 meV of EF. c,d, Near-EF ARPES intensity
measured at h⌫ = 21.2 eV as a function of the wave vector and EB along the cut crossing the ¯31 and ¯32 point (red arrows in b), respectively. e,f, Energy
distribution curves (e) along the ¯0¯X cut (yellow arrow in b) measured at h⌫ = 21.2 eV, and the corresponding intensity plot (f). The dashed lines in e are a
guide to the eyes to trace the band dispersion. g–j, ARPES intensity measured at T = 30 K with various photon energies across the cut crossing the ¯32

point (green arrow in b). k, The same as in g but measured at T = 130 K. The ARPES intensity is divided by the Fermi–Dirac distribution function convoluted
with the instrumental resolution. l, A slice of the bulk Brillouin zone in the (110) plane, together with the momentum points in which the ARPES data for c,d
and g–k were obtained; k

z

values were estimated by using the inner-potential value of 8.5 eV as determined by the normal-emission ARPES measurement.
m, Comparison of the band dispersion for various photon energies extracted by tracking the peak position of momentum distribution curves obtained along
the green arrow in b; error bars are shown for the data at h⌫ = 92, 83, and 21.2 eV, and they reflect the uncertainties originating from the momentum
resolution and the standard deviation in the peak positions of momentum distribution curves. The h⌫ = 83 eV data are particularly broad at high EB, which
is partly due to a mixing of the bulk band.

of the sample (chemical potential was located ⇠0.5 eV lower when
compared with our data). Furthermore, a downward band bending,
possibly due to a loss of Te atoms on cleaving, was obviously taking
place near the surface (Supplementary Information), which further
worked in our favour.

As shown in Fig. 1k, the ARPES data at T = 130K divided
by the Fermi–Dirac distribution function indicate that the left-
and right-hand side dispersion branches actually merge into a

single peak above EF. The Dirac-point energy is estimated to be
0.05 eV above EF from a linear extrapolation of the two dispersion
branches (Fig. 1m) that were determined from the peak positions in
the momentum distribution curves; furthermore, the Dirac band
velocities extracted from the dispersions are 4.5 and 3.0 eVÅ, for
the left- and right-hand side branches, respectively. One can see in
Fig. 1m that the band dispersion exhibits no discernible changewith
temperature (compare the 30K and 130Kdata for h⌫ =92 eV).

NATURE PHYSICS | VOL 8 | NOVEMBER 2012 | www.nature.com/naturephysics 801

ARPES on SnTe

Tanaka, Ando, et al., 2012, 2013

 Bulk-boundary correspondence for surfaces that are  
  perpendicular to mirror plane:

 SnTe and Pb1-xSnxTe are topological crystalline insulators: 

n± =
1

8⇡

Z

2D BZ
d2k ✏µ⌫m̂± ·

⇥
@kµm̂± ⇥ @k⌫m̂±

⇤

mirror Chern number: nM = n+ � n�

nM = # Dirac cones surface states

the other one163) reported by a group at Princeton University
was not published; the Princeton group performed new
measurements, and a paper containing new data were
submitted in August and published in November.164)

Among the first two published papers, the one by Tanaka
et al.62) reported straightforward confirmation of the predic-
tion in SnTe, and the observed surface state with the double
Dirac-cone structure (Fig. 11) was in good qualitative
agreement with the theory; they also showed that the cousin
material PbTe does not present any surface state. The other
one by Dziawa et al.162) reported the TCI phase in
Pb0:77Sn0:23Se, which shows a transition to a trivial phase
upon increasing the temperature. The work by Xu et al.
published later164) reported a TCI phase in Pb0:6Sn0:4Te and
a trivial phase in Pb0:8Sn0:2Te, together with spin-resolved
ARPES data showing helical polarization on each of the

double Dirac cones. A more recent paper by Tanaka et al.165)

nailed down that the topological phase transition in Pb1!x-
SnxTe occurs at xc ’ 0:25; furthermore, they found that the
separation between the two Dirac cones near the !X points
systematically narrows when x is reduced toward xc, but they
never merge before the transition eliminates them.

In passing, the mirror Chern number nM can also be used
for TR-invariant 3D TIs to further classify them.88) For
example, Bi1!xSbx is a TI with Z2 invariant (1;111), and it
can have nM ¼ #1. The sign of nM is called mirror
chirality, which is related to the sign of the g factor. The first
experimental work that addressed this additional topological
property in a TI was the spin-resolved ARPES done by
Nishide et al.,40) who elucidated that the mirror chirality is
!1 in Bi1!xSbx.

The discovery of TCIs significantly widened the scope of
topological materials. Already, detailed topological classifi-
cation schemes for all point-group symmetries have been
proposed,166) and also the mirror topology has been
expanded to superconductors.167–169) Experimentally, eluci-
dating the interplay between Z2 topology and mirror
topology in materials like SnTe under uniaxial strain would
be an interesting issue.

5. How to Confirm TI Materials

In this section, I briefly summarize the possible experi-
mental procedures to confirm whether a material is a TI or
not. In the case of 2D TIs, one needs to probe the existence
of helical 1D edge state, which is possible only through
quantum transport experiments using nano-fabricated device
structures. The existence of the edge state can be seen
through conductance quantization in the insulating re-
gime.31) Also, the helical spin polarization of the edge state
may be detected by transport experiments using spin Hall
effect.70)

For 3D TIs, the simplest and the most convincing is to
observe the Dirac cone by ARPES experiments. To firm up
the identification of a TI, one should employ spin-resolved
ARPES to confirm that the Dirac cone is non-degenerate and
is helically spin polarized.39,40)

Unfortunately, not all materials are suitable for ARPES,
which requires clean and flat surface that is usually obtained
by cleaving single crystals. When single crystals are not
available or the material does not cleave well, APRES
becomes difficult. In such a case, one may rely on transport
experiments. Ideally, if the bulk is sufficiently insulating and
the surface carriers have high enough mobility, one would be
able to confirm that the transport is occurring through the
surface and that the surface carriers are Dirac fermions.
The former can be done by looking at the sample-size
dependence of the conductance,108,140–142) and the latter may
be accomplished by elucidating the ! Berry phase in the
quantum oscillations from the surface state.103,104,108,170–173)

(Detailed discussions on the identification of the ! Berry
phase will be given in Sect. 8.3.) It should be emphasized
that confirming the Dirac-fermion nature of the surface
carriers is important, because trivial accumulation layer or
inversion layer that may form on the surface of an insulator
may also give rise to surface-dominated transport.144)

The Dirac-fermion nature may also be confirmed by STS
experiments in magnetic fields, because massless Dirac

(a) (b)

(c) (d)

(e)

Fig. 11. (Color online) ARPES data on cleaved (001) surface of SnTe.
(a) The bulk BZ and the corresponding (001) surface BZ of SnTe; ", L, X
are the symmetry points in the bulk 3D BZ, whereas !", !X, !M are in the
surface 2D BZ. The (110) mirror plane is indicated by the shaded area. Note
that two L points [e.g., L1 and L2 in panel (a)] are projected to the same !X
point. (b) ARPES intensity mapping in the surface BZ at EF measured with
h" ¼ 21:2 eV at 30K. (c) Near-EF ARPES intensity as a function of the
wave vector and the binding energy measured along the cut which is nearly
parallel to the !X– !M direction and is crossing the !#2 point [one of the red
arrows in panel (b)]. (d) Near-EF ARPES intensity along the !"– !X cut
[yellow arrow in panel (b)]. (e) Schematic 2D band dispersions near EF

concluded from the data in panels (c) and (d) depicting the characteristic
double Dirac-cone structure. Taken from Ref. 62.
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TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection top. insul. and top. SC d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R
+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ
2

0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0

kinetic leads to only stable Fermi points. For Z-like (Z, MZ,
and Z �MZ) system , the entire Fermi surface are robust in
the absence of an extra kinetic term.

The label “M” in table II indicates that topological invari-
ants, which protect Fermi points, are defined in a region of
reflection planes as blue points/lines illustrated in fig. 3. The
topological invariants without M are defined by the original
ten-fold classification. The regions to compute these topolog-
ical numbers are not completely in reflection planes as shown
in fig. 1.

D. Fermi surfaces within mirror planes but off high-symmetry
points

When Fermi surfaces are off the high-symmetry points in
the Brillouin zone, the energy spectrum are gapped at these
points, such as k = 0; therefore, when the system is described
by a Dirac Hamiltonian, at least one gamma matrix should not
vanish at the high-symmetry points and be controlled by an
even function of k

i

. One of the simplest Hamiltonians can be

written as in the lattice model

HR

n

=
p�1X

i=1

sin k
i

�
i

+ (1� p+
pX

i=1

cos k
i

)�̃
0

, (28)

and the Fermi surface is located at

k = (0, . . . , 0,±⇡/2, k
p+1

, . . . , k
d

) (29)

We discuss the stability of these Fermi surfaces in the reflec-
tion planes (k

1

= 0, ⇡) and off high-symmetry points to clas-
sify topological semimetals and nodal superconductors. This
Hamiltonian is similar with the Dirac Hamiltonian of TI and
SC in eq. (31) in p � 1 dimensions. The first summation of
HR

n

can be treated as kinetic terms with linear momentum
and the last term behaves like a mass term. The classifica-
tion of reflection TI and SC is based on the presence and
absence of SPEMT in the Dirac Hamiltonian in the form of
eq. (31)? ? . Thus, the classification of bulk gapless mode in
reflection planes and off high-symmetry points corresponds to
p� 1 dimensional TI and SC classification.

Stop Here. To be continued.

R� : R anti-commutes with T (C or S)
R+ : R commutes with T (C or S)
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 Problem: Global topological number ill-defined (no gap!)

Solution:
Define momentum-dependent topological number

(assume translational symmetry)

How about topology of gapless systems?

nodal lines on !
Fermi surface

Consider e.g., metallic systems with FS or nodal superconductors 

Festk
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¨
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Prof. M. Sigrist, WS05/06 ETH Zürich

this is the topological number

⇥t > ⇥s : ⇥ = +1 (1)

⇥t < ⇥s : ⇥ = 0 (2)

Z2 number 2:

NK⇥ =
Pf [i⌃2 q(K⇤,1)]

Pf [i⌃2 q(K⇤,2)]
e�

1
2

R
dk�Tr[q†(k�)⇥k�q(k�)] K⌅ (3)

Winding no 2

Wk⇥ =
1

2⌅

⇤
dk⇤ ⌥k�

�
arg(⇤�k + i⇥�

k )
⇥

(4)

WC = ±1 (5)

WC =
1

2⌅

⇤

C
dkl ⌥kl

�
arg(⇤�k + i⇥�

k )
⇥

(6)

Wk⇥ =
1

2⌅i

⇧
dk⇤Tr [⌥k� ln Dk] (7)

g(k) = kxx̂ + kyŷ + kzẑ (8)

and ⇥s > ⇥t ⇥s ⇤ ⇥t ⇥s < ⇥t

Iy =
e

2~
1

Ny

⌅

ky

Lx/2⌅

n=1

⇧ 0

�⇥
dE

⇥ {2t sin ky ⇧n(E, ky)� � cos ky ⇧x
n(E, ky)} (9)

and

⇥(k) = f(k) (⇥s⌃0 + ⇥tdk · �) i⌃y k1 k2

SHBdG(k) +HBdG(k)S = 0 (10)

⇤HBdG(k)⇤�1 = +HBdG(�k) (11)

sym

⇥C =
1

2⌅

⇤

C
F(k)dkl C (12)

and time-reversal symmetry ky

E = ± |m(k)| (13)

⌅ ⇥i (14)

k = �1 k = �2 (15)

⇤ = e+i�Sy/~K ⇤2 = �1 2e2/h ⌅i ⌅1 ⌅2 ⌅3 ⌅4 (16)
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⇥(k1) =
i

2⇤

⇤

C
F(k)dk2 C (1)

and time-reversal symmetry ky

E = ± |m(k)| (2)

⇤ ⇥i (3)

k = �1 k = �2 (4)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (5)

E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A⇤ A+⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

where     interlinks with nodal line

Example 1: nodal superconductor

Example 2: Weyl semi-metal

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

1. f-Summenregel

Now we do the following

WS3 =
1

24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(1)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (2)

Hint
ωres

Tc
(x) =? = 5.4

ty > tx

qy = π

ω > ωres

ω = 40 meV

Energy [meV]
new
χ(ω, q) = χ0(ω,q)

1−Uχ0(ω,q)

Im χ0(q, ω) / Im χ(q, ω)

Im χ0 / Im χ

Im χ0 / Re χ0

qx/π qy/π ω[meV ] q∥/π
E2(q, k)

1 − URe χ0(ω∗, q∗) = 0

q = (π, π)
q = (π, qx)
q = (q∥, q∥)

tx ̸= ty
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χ(ω, q) = χ0(ω,q)

1−Uχ0(ω,q)

Im χ0(q, ω) / Im χ(q, ω)

Im χ0 / Im χ
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where       encloses nodal pointS2

 Topological characteristics depend on the symmetries of !
  Hamiltonian restricted to contour     
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Consider              -wave superconductor 

I. INTRODUCTION

d-wave: dx2−y2

BdG Hamiltonian CHBdGC−1 = −HBdG

HBdG =

⎛

⎝

H0 ∆

∆∗ −H0

⎞

⎠ (1.1)

and

HBdG =

⎛

⎝

h0 ∆

∆† −hT
0

⎞

⎠ , (1.2)

and

H =
1

2

∑

k

(

c† c
)

HBdG

⎛

⎝

c

c†

⎞

⎠ (1.3)

chiral p-wave superconductor:

HBdG(k) = [2t(cos kx + cos ky) − µ] σz + ∆ (sin kx σx + sin ky σy) (1.4)

time-reversal acts as

UT H
∗(k)U †

T = +H(−k) (1.5)

particle hole acts as

UCH
∗(k)U †

C = −H(−k) (1.6)

sublattice symmetric

S ∝ UT UC S†
H(k) + SH = 0 (1.7)

Control q T2 = −1 w(K) = −wT (K)

∆t,k =
1

q + 1
∆ (1.8)

∆− = ∆s − ∆p

∣

∣

∣⃗
l(k)

∣

∣

∣
(1.9)

quasiclassics∆(r) over k−1
F k/k̃

3

The classic example of a topological state with topologically protected Fermi points in class CI

in two dimensions is the d-wave superconductor with BdG Hamiltonian

H(k) =

⎛

⎝

+εk ∆k

∆k −εk

⎞

⎠ , H̃(k) =

⎛

⎝

0 εk − i∆k

εk + i∆k 0

⎞

⎠ , (0.1)

and εk = t1(cos kx + cos ky) and ∆k = ∆0(cos kx − cos ky). The eigenvalues are ±λ =

±
√

ε2
k

+ ∆2
k
. This model has four nodal points at

K1 =
π

2
(+1, +1), K2 =

π

2
(+1,−1), K3 =

π

2
(−1, +1), K4 =

π

2
(−1,−1), (0.2)

The topological character of these points are given by the 1D winding number

NL =
1

2π

∮

L

dk Tr
[

q−1∇lq
]

= ±2 , (0.3)

with

q(k) = D(k)/λk =
εk + i∆k

√

ε2
k

+ ∆2
k

. (0.4)

Let us compute NL along the following loop

(0, 0) → (π, 0) → (π, π) → (0, π) (0.5)

which gives N(π/2,π/2) = +2.
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)
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c
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⎠ (1.1)
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∆† −hT
0

⎞

⎠ , (1.2)

3

Satisfies time-reversal symmetry T and particle-hole 
symmetry C

Combination of particle-hole symmetry and time-reversal 
symmetry gives

Chiral symmetry:

SH(k)S† = −H(k) S (0.1)

The classic example of a topological state with topologically protected Fermi points in class CI

in two dimensions is the d-wave superconductor with BdG Hamiltonian

H(k) =

⎛

⎝

+εk ∆k

∆k −εk

⎞

⎠ , H̃(k) =

⎛

⎝

0 εk − i∆k

εk + i∆k 0

⎞

⎠ , (0.2)

and εk = t1(cos kx + cos ky) and ∆k = ∆0(cos kx − cos ky). The eigenvalues are ±λ =

±
√

ε2
k

+ ∆2
k
. This model has four nodal points at
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π
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π
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π
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The topological character of these points are given by the 1D winding number
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1

2π

∮

L

dk Tr
[

q−1∇lq
]

= ±2 , (0.4)

with

q(k) = D(k)/λk =
εk + i∆k
√

ε2
k

+ ∆2
k

q(k) =
εk + i∆k
√

ε2
k

+ ∆2
k

(0.5)

Let us compute NL along the following loop

(0, 0) → (π, 0) → (π, π) → (0, π) (0.6)

which gives N(π/2,π/2) = +2.
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d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(1)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (2)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (3)

Particle-hole symmetry: S = TC = σ2

UCH∗(k)U †
C = −H(−k), UC = iσ2 (4)

Hint
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Tc
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qy = π

ω > ωres
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Energy [meV]
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χ(ω, q) = χ0(ω,q)

1−Uχ0(ω,q)

Im χ0(q, ω) / Im χ(q, ω)

Im χ0 / Im χ

Im χ0 / Re χ0

qx/π qy/π ω[meV ] q∥/π
E2(q, k)

In basis in which     is diagonal          takes off-diagonal form:

with

            nodal points are protected by one-dimensional winding number:
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d2k Tr [F ] F = ∇×A (2)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (3)

Particle-hole symmetry: S = TC = σ2

UCH∗(k)U †
C = −H(−k), UC = iσ2 (4)

basis in which S the H(k) Off-diagonal form

H̃(k) =

(

0 εk − i∆k

εk + i∆k 0

)

(5)

Hint
ωres

Tc
(x) =? = 5.4

ty > tx

qy = π

ω > ωres

ω = 40 meV

Energy [meV]
new
χ(ω, q) = χ0(ω,q)

1−Uχ0(ω,q)

Im χ0(q, ω) / Im χ(q, ω)
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Spectrum flattening:
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Homotopy:

π4 [U(m + n)/U(m) × U(n)] = (1.12)

Winding number

WL =
1

2πi

∮

L

dkl Tr
[

q−1∂kl
q
]

= ±1 (1.13)

Nearest neighbor bond vectors

H(k) =

⎛

⎝

0 f(k)

f ∗(k) 0

⎞

⎠ q(k) =
f(k)

|f(k)|
(1.14)

and f(k) = −t
3

∑

i=1
e+ik·si

K (s, p + 1) = K (s − 1, p) (1.15)

condition for surface bound state formation

0 = (γ+
ek
− γ−

k )(γ−
ek
− γ+

k )(|lk||lek|− lk · lek)

+(γ+
ek
− γ+

k )(γ−
ek
− γ−

k )(|lk||lek| + lk · lek). (1.16)

at zero energy this gives

0 =
[

sgn(∆+
k ) + sgn(∆−

ek
)
] [

sgn(−∆+
ek
) − sgn(∆−

k )
]

(|lk||lek|− lk · lek)

+
[

sgn(∆+
k ) + sgn(∆+

ek
)
] [

−sgn(∆−
ek
) − sgn(∆−

k )
]

(|lk||lek| + lk · lek) (1.17)

cohrence γ±
p = (∆±

p )−1[E − i sgn(p⊥)(|∆±
p |

2 − E2)1/2]

and we have

N1 =
1

2πi

∮

C

dl Tr
[

G(ω, k)∂lG
−1(ω, k)

]

(1.18)

Alternatively we can enlarge the grading, and obtain

G(ω, k) = [iω − H(k)]−1 (1.19)

and

H(k) =

⎛

⎝

+εk ∆(k)

∆†(k) −εk

⎞

⎠ (1.20)

3

x’=0

ky

xk

-1

+1

+1

-1

Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.

ω > ωres

ω = 40 meV

Energy [meV]
new
χ(ω, q) = χ0(ω,q)

1−Uχ0(ω,q)

Im χ0(q, ω) / Im χ(q, ω)

Im χ0 / Im χ

Im χ0 / Re χ0

qx/π qy/π ω[meV ] q∥/π
E2(q, k)

1 − URe χ0(ω∗, q∗) = 0

q = (π, π)
q = (π, qx)

Note:       is invariant under 
path deformation.
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Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump
pulse, it shows instead an upward bend because of the full effectiveness of the two-photon
processes. At higher, but still not so large, integrated intensity, the single-phonon proces-
ses dominate and the curves corresponding to pulses shorter than τl exhibit a downward
bend, while those with longer pulse widths an upward one. The curve with τp = τl lies in
between these two regimes and marks the reach of full effectiveness of the single-photon
processes. At relatively high integrated intensity, all downward bending curves (τp ≤ τl)
show a more or less sharp upward bend before reaching zero. Instead, upward bending
curves (τp > τl) tend to flatten before reaching zero and to saturate for pulse widths
larger than 4τl with increasing A2

0τp. This occurs because long pump pulses create sharp
and narrow peaks in the quasiparticle distributions, which, for sufficiently high intensi-
ties, leads to saturation due to Pauli blocking. [?, ?] The integrated intensity above which
Pauli blocking sets in decreases with increasing τp and reaches zero at 4τl.

9 curves
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Winding number

WCγ = (1)

WL =
1

2πi

∮

L

dkl Tr
[

q†(k)∂kl
q(k)

]

. (2)

Topologically stable point nodes in dx2-y2 -wave SCs
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Consider              -wave superconductor 

I. INTRODUCTION

d-wave: dx2−y2

BdG Hamiltonian CHBdGC−1 = −HBdG

HBdG =

⎛

⎝

H0 ∆

∆∗ −H0

⎞

⎠ (1.1)

and

HBdG =

⎛

⎝

h0 ∆

∆† −hT
0

⎞

⎠ , (1.2)

and

H =
1

2

∑

k

(

c† c
)

HBdG

⎛

⎝

c

c†

⎞

⎠ (1.3)

chiral p-wave superconductor:

HBdG(k) = [2t(cos kx + cos ky) − µ] σz + ∆ (sin kx σx + sin ky σy) (1.4)

time-reversal acts as

UT H
∗(k)U †

T = +H(−k) (1.5)

particle hole acts as

UCH
∗(k)U †

C = −H(−k) (1.6)

sublattice symmetric

S ∝ UT UC S†
H(k) + SH = 0 (1.7)

Control q T2 = −1 w(K) = −wT (K)

∆t,k =
1

q + 1
∆ (1.8)

∆− = ∆s − ∆p

∣

∣

∣⃗
l(k)

∣

∣

∣
(1.9)

quasiclassics∆(r) over k−1
F k/k̃

3

The classic example of a topological state with topologically protected Fermi points in class CI

in two dimensions is the d-wave superconductor with BdG Hamiltonian

H(k) =

⎛

⎝

+εk ∆k

∆k −εk

⎞

⎠ , H̃(k) =

⎛

⎝

0 εk − i∆k

εk + i∆k 0

⎞

⎠ , (0.1)

and εk = t1(cos kx + cos ky) and ∆k = ∆0(cos kx − cos ky). The eigenvalues are ±λ =

±
√

ε2
k

+ ∆2
k
. This model has four nodal points at

K1 =
π

2
(+1, +1), K2 =

π

2
(+1,−1), K3 =

π

2
(−1, +1), K4 =

π

2
(−1,−1), (0.2)

The topological character of these points are given by the 1D winding number

NL =
1

2π

∮

L

dk Tr
[

q−1∇lq
]

= ±2 , (0.3)

with

q(k) = D(k)/λk =
εk + i∆k

√

ε2
k

+ ∆2
k

. (0.4)

Let us compute NL along the following loop

(0, 0) → (π, 0) → (π, π) → (0, π) (0.5)

which gives N(π/2,π/2) = +2.
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Satisfies time-reversal symmetry T and particle-hole 
symmetry C

Combination of particle-hole symmetry and time-reversal 
symmetry gives

Chiral symmetry:

SH(k)S† = −H(k) S (0.1)
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G∂µG−1G∂νG−1G∂λG−1
]

(1)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (2)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (3)

Particle-hole symmetry: S = TC = σ2

UCH∗(k)U †
C = −H(−k), UC = iσ2 (4)

basis in which S the H(k) Off-diagonal form

H̃(k) =

(

0 εk − i∆k

εk + i∆k 0

)

(5)

qk is

q(k) : S1 −→ S1 π1(S
1) = (6)
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ty > tx
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Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.
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Modifications:
In passing, let us also comment on the dependence of ∆∞ on the integrated pump pulse
intensity A2

0τp, which is shown in Fig. ??(c) for nine different pulse widths τp. The asym-
ptotic gap value ∆∞ is linear for A2

0τp → 0 for τp ≤ 2τl; for larger values of the pump
pulse, it shows instead an upward bend because of the full effectiveness of the two-photon
processes. At higher, but still not so large, integrated intensity, the single-phonon proces-
ses dominate and the curves corresponding to pulses shorter than τl exhibit a downward
bend, while those with longer pulse widths an upward one. The curve with τp = τl lies in
between these two regimes and marks the reach of full effectiveness of the single-photon
processes. At relatively high integrated intensity, all downward bending curves (τp ≤ τl)
show a more or less sharp upward bend before reaching zero. Instead, upward bending
curves (τp > τl) tend to flatten before reaching zero and to saturate for pulse widths
larger than 4τl with increasing A2

0τp. This occurs because long pump pulses create sharp
and narrow peaks in the quasiparticle distributions, which, for sufficiently high intensi-
ties, leads to saturation due to Pauli blocking. [?, ?] The integrated intensity above which
Pauli blocking sets in decreases with increasing τp and reaches zero at 4τl.

9 curves
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Winding number

WCγ = (1)

WL =
1

2πi

∮

L

dkl Tr
[

q†(k)∂kl
q(k)

]

. (2)
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I. INTRODUCTION

d-wave: dx2−y2

BdG Hamiltonian CHBdGC−1 = −HBdG

HBdG =

⎛

⎝

H0 ∆

∆∗ −H0

⎞

⎠ (1.1)

and

HBdG =

⎛

⎝

h0 ∆

∆† −hT
0

⎞

⎠ , (1.2)

and

H =
1

2

∑

k

(

c† c
)

HBdG

⎛

⎝

c

c†

⎞

⎠ (1.3)

chiral p-wave superconductor:

HBdG(k) = [2t(cos kx + cos ky) − µ] σz + ∆ (sin kx σx + sin ky σy) (1.4)

time-reversal acts as

UT H
∗(k)U †

T = +H(−k) (1.5)

particle hole acts as

UCH
∗(k)U †

C = −H(−k) (1.6)

sublattice symmetric

S ∝ UT UC S†
H(k) + SH = 0 (1.7)

Control q T2 = −1 w(K) = −wT (K)

∆t,k =
1

q + 1
∆ (1.8)

∆− = ∆s − ∆p

∣

∣

∣⃗
l(k)

∣

∣

∣
(1.9)

quasiclassics∆(r) over k−1
F k/k̃
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      Bulk-boundary correspondence: zero-energy flat bands on surface of                 SC
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quasiclassics∆(r) over k−1
F k/k̃
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and the chiral p-wave SC [6–11]. For these SC, we can
define an integer called the Chern number, the nonzero
value of which implies the existence of edge states con-
necting the upper and the lower bands as known in the
QHE [5]. The present results are consistent with this dis-
cussion. For 2D systems with edges, we first Fourier trans-
form along a direction parallel to the edge to get a family of
1D Hamiltonians parametrized by the wave number along
the edge. Then, we can apply the present discussions for
each 1D Hamiltonian. Since the nonzero Chern number
implies there exists a loop which is on a plane and encloses
O [11], both the topological argument and the present
results lead to existence of zero-energy edge modes. For
fully gapped systems, edge modes are expected to be stable
even in the presence of electron-electron interaction as far
as the bulk energy gap is not collapsed.

Although the topological argument is only applicable for
fully gapped systems, our results here are not restricted to
gapped cases and can be applicable also for gapless cases
in arbitrary dimensions. Here, as an application, we con-
sider surface states for dx2!y2-wave SC. In Ref. [12], a
semiclassical approach was employed to show that the sign
change of the pair potential at a (110) surface gives rise to
existence of edge states, which can be used as a phase
sensitive probe to detect pairing symmetries. It was also
pointed out that the Andreev equation for the present
system is closely related to Witten’s supersymmetric quan-
tum mechanics [13,20]. Here, we discuss this issue with a
lattice regularization.

Consider 2D dx2!y2-wave SC H bulk "
P

PBC
r #cyr hxcr$x $ cyr hycr$y $ H:c:$ cyr h0cr%, where

hx " # t! !
!t%, hy " # t

!!
!!
!t %, and h0 " #!0 0

!!%. (We set t "
! " 1;! " 0 as an example.) We terminate this system
and consider &110' surfaces first. Fourier transforming
along the y0 direction in Fig. 2(a), we obtain a family of
1D Hamiltonians parametrized by ky0 . The cor-
responding loops are Rky0

&kx' " #2 cos&kx ! ky0'!
2 coskx; 0; 2 cos&kx ! ky0' $ 2 coskx%. For a given ky0 , &1$
cosky0'&X=2'2 $ &1! cosky0'&Z=2'2 " 2 sin2ky0 is satis-
fied, which is an ellipsis on the XZ plane enclosing O.
Thus, from the above discussion, the present system sup-
ports zero-energy surface states for all ky0 except at the
gap-closing points ky0 " ("; 0, where the loop collapses
into a line segment.

On the other hand, for (100) surfaces, we obtain
Rky&kx' " #2&coskx ! cosky'; 0; 2&coskx $ cosky'%, which
is a line segment on the XZ plane for all ky. Zero-energy
edge states are not expected to exist for this case. We have
verified numerically this prediction in Fig. 2(b).

Let us comment on an interplay between zero-energy
edge states and interactions for the present case. If we treat
the problem self-consistently, coexistence of is- or
idxy-wave order parameters with dx2!y2 waves near the
surface is possible for the &110' surface, locally breaking
the time-reversal symmetry [21]. This can be interpreted

based on the present discussions as follows. Since edge
states with different ky0 are all degenerate at E " 0, they
are expected to cause a Peierls-like instability. In the
presence of interactions, parameters in a single-particle
Hamiltonian t;!;!0 near the edges might be effectively
modified in order to lift the degeneracy and thereby lower
the ground state energy. However, since these zero-energy
edge states are stable to perturbations which respect the
chiral symmetry [statement (C)], such modifications
should be accompanied with the breaking of the chiral
symmetry near the boundaries. The emergence of is or
idxy components near the boundary indeed breaks the
chiral symmetry to lift the degeneracy of edge modes,
while a purely real order parameter cannot do it.

We turn to edge states in graphite ribbons. There are
several types of edges for a graphite ribbon, such as zigzag,
bearded, and armchair edge [14]. Defining c" " c) and
cy# " c*, where c)=* is an electron annihilation operator
on a sublattice )= * , we can apply our formalism to
graphite ribbons. Notice that we have several options for
choosing c)=* to form a spinor c, since they live on differ-
ent sites. When we truncate the system, these choices lead
to different shapes of edges (Fig. 3). Taking an appropriate
pair for each type of edge as indicated in Fig. 3, we can
discuss in parallel to the above SC example. The existence
of zero-energy edge states is predicted for the zigzag and
the bearded cases, while we do not expect zero-energy
edge states for an armchair edge, which is confirmed by
a numerical calculation (see Fig. 3). These zero-energy
edge modes are continuously connected to the gapless
bulk spectrum, forming a flat band and a sharp peak in
density of states at the Fermi energy. This might trigger an

FIG. 2. Loops in R space and the energy spectrum of
dx2!y2 -wave SC with (a) &110' and (b) &100' surfaces. Dotted
squares show a choice of unit cell in Fourier transforming along
the edges. The calculation is for Nx " 50 for &110' surfaces and
Nx " 30 for &100' surfaces.
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Spectrum in slab geometry with (11) face

[cf, Hu, PRL 94, Wakabayashi et al. ‘05]
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Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.
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at zero energy this gives
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and

H(k) =

⎛

⎝

+εk ∆(k)

∆†(k) −εk

⎞

⎠ (1.20)

3

W
=-1

ky

xk

k'y

k'x

-1

+1

+1

-1

W
=+1

W
=0

W
=0

Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.
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Abbildung 1: (Color online) Illustration of integration path deformation.

1 − URe χ0(ω∗, q∗) = 0
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q = (q∥, q∥)

tx ̸= ty
δ0

Im χ0(ω, q) ̸= 0

ω = 35 meV < ωres

δ0 = 0

a) Wir berechnen zunächst die Anzahl Übergänge pro Zeiteinheit W (q, ω), wobei wir
Emissions- und Absorbtionsprozesse der Energie !ω berücksichtigen. Die Wahr-
scheinlichkeit pro Zeiteinheit, dass ein Elektron vom Zustand |ψα⟩ unter Absorbtion
der Energie !ω in den Zustand |ψβ⟩ übergeht ist gegeben durch

2π

!

∣

∣⟨ψβ |A0e
iq·r |ψα⟩

∣

∣

2
δ(Eβ − Eα − !ω)f(Eα)(1 − f(Eβ)), (40)

  Zero-energy surface states on all edges except !
the (10) and (01) face.
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   Experimental 
observation in !
high-Tc cuprates: [Wei et al. PRL ’98]

VOLUME 81, NUMBER 12 P HY S I CA L REV I EW LE T T ER S 21 SEPTEMBER 1998

YBCO crystals used for the experiment were grown
by a crystal-pulling technique followed by a two-week
oxygen annealing [18]. The crystals showed Tc � 90 K,
with ⌥1 K transition, by both resistivity and magnetic
susceptibility measurements, and single crystallinity with
twinning was verified by x-ray diffraction. Samples with
⌅100⇧, ⌅110⇧, and ⌅001⇧ faces were cut from the crystals,
using polarized optical microscopy for alignment. The cut
crystal faces were polished to optical smoothness, then
reannealed in ultrapure O2 gas at 450 ±C for 24 hours
followed by slow cooling. The post-annealed samples
were subject to controlled chemical etching with 1% Br
in absolute ethanol for 1 minute, then ethanol rinsed and
dried in ultrapure helium gas, before being loaded for
tunneling measurement without exposure to air.
Tunneling and point-contact spectroscopy was per-

formed with a cryogenic scanning tunneling microscope
(STM) at 4.2 K in 1 mTorr ultrapure helium, using a
piezo-driven Pt-Ir tip. Details of the STM apparatus and
tunneling spectroscopy technique are described elsewhere
[19]. The point-contact spectra were taken by disabling
the STM feedback and pushing the tip into the crystal
surface. The STM tunnel junctions were ⌥10 MV, and
the point-contact junctions were ⌥100 V. The latter is
larger than the typical impedance for point-contact spec-
troscopy [20], but well in the Knudsen regime (contact
radius , mean free path of YBCO) to assure ballistic
transmission with negligible local heating [21].
The current vs voltage I-V data were numerically dif-

ferentiated into conductance dI⌃dV and normalized with
respect to the spectral background. The representative
dI⌃dV spectra are plotted as open circles in Figs. 1–3,
with the sample biased positive relative to the tip. These
spectra were reproducible over large areas ⇥⌥mm2⇤ on the

FIG. 1. Normalized conductance spectra taken on the
©
110⇧

crystal face of YBCO with a Pt-Ir tip at 4.2 K. Main panel is
for an STM tunnel junction. Left inset is for a point-contact
junction. The data are given as open circles and the d-wave
fits by the solid curves. Right inset gives the mixed symmetry
simulations for the tunnel junction.

crystals and over long periods of time (⌥hours), with mi-
nor variations in the spectral details but no change in the
generic spectral features. Figure 1 is for the ⌅110⇧ STM
junction, showing a pronounced ZBCP; the left inset is
for the ⌅110⇧ point-contact junction, showing a broader
peak structure. Figure 2 is for the ⌅100⇧ point-contact
junction, showing an inverted-gap hump structure with
an asymmetric inflection at zero bias; the left inset is
for the ⌅100⇧ STM junction, showing a partially devel-
oped U-shaped gap structure with sharp and symmetric
gap edges and a ZBCP. Figure 3 is for the ⌅001⇧ STM
junction, showing a fully developed V-shaped gap struc-
ture with pronounced gap edges which are broadened and
asymmetric; ⌅001⇧ point-contact junctions were also mea-
sured, but did not show a very different spectral behav-
ior. Similar V-shaped gap structures have previously been
seen by STM on Bi2Sr2CaCu2O81d (Bi-2212) [22] and
HgBa2Can21CunO2n121d (Hg-12⇥n 2 1⇤n) [19]. Also
noteworthy is the kink structure at about double the gap
edges in both the ⌅100⇧ and ⌅001⇧ STM data (Figs. 2 and
3), reminiscent of similar features seen by both STM and
ARPES on Bi-2212 [11,22] and by STM on Hg-1223 [19].
To explain the variety of spectral behavior observed,

we consider a generalized formulation of the BTK theory,
which in its original form [16] describes the spectral evo-
lution from quasiparticle tunneling for a dielectric normal/
insulator/superconductor N⌃I⌃S junction to Andreev
reflection for a metallic N⌃S junction, using a single pa-
rameter Z to represent the barrier strength. First, the gen-
eralized BTK approach introduced by Hu [13] and Tanaka
and Kashiwaya [14] takes explicit account of the phases
of the propagating charges, allowing for constructive in-
terference between Andreev-reflected electrons and holes
in the junction if they experience phase-reversed pair

FIG. 2. Normalized conductance spectra taken on the
©
100⇧

crystal face of YBCO with a Pt-Ir tip at 4.2 K. Main panel is
for a point-contact junction. Left inset is for an STM tunnel
junction. The data are given as open circles and the d-wave
fits by solid curves. Right inset gives the mixed symmetry
simulations for the point-contact case (see [30]).
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Topologically stable point nodes in dx2-y2 -wave SCs

      Bulk-boundary correspondence: zero-energy flat bands on surface of                 SC

I. INTRODUCTION

d-wave: dx2−y2

BdG Hamiltonian CHBdGC−1 = −HBdG

HBdG =

⎛

⎝

H0 ∆

∆∗ −H0

⎞

⎠ (1.1)

and

HBdG =

⎛

⎝

h0 ∆

∆† −hT
0

⎞

⎠ , (1.2)

and

H =
1

2

∑

k

(

c† c
)

HBdG

⎛

⎝

c

c†

⎞

⎠ (1.3)

chiral p-wave superconductor:

HBdG(k) = [2t(cos kx + cos ky) − µ] σz + ∆ (sin kx σx + sin ky σy) (1.4)

time-reversal acts as

UT H
∗(k)U †

T = +H(−k) (1.5)

particle hole acts as

UCH
∗(k)U †

C = −H(−k) (1.6)

sublattice symmetric

S ∝ UT UC S†
H(k) + SH = 0 (1.7)

Control q T2 = −1 w(K) = −wT (K)

∆t,k =
1

q + 1
∆ (1.8)

∆− = ∆s − ∆p

∣

∣

∣⃗
l(k)

∣

∣

∣
(1.9)

quasiclassics∆(r) over k−1
F k/k̃

3

vacuum

x’=0

ky

xk

k'x

-1

+1

+1

-1

k'y

Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.
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Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.
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Abbildung 1: (Color online) Illustration of integration path deformation.

1 − URe χ0(ω∗, q∗) = 0

q = (π, π)
q = (π, qx)
q = (q∥, q∥)

tx ̸= ty
δ0

Im χ0(ω, q) ̸= 0

ω = 35 meV < ωres

δ0 = 0

a) Wir berechnen zunächst die Anzahl Übergänge pro Zeiteinheit W (q, ω), wobei wir
Emissions- und Absorbtionsprozesse der Energie !ω berücksichtigen. Die Wahr-
scheinlichkeit pro Zeiteinheit, dass ein Elektron vom Zustand |ψα⟩ unter Absorbtion
der Energie !ω in den Zustand |ψβ⟩ übergeht ist gegeben durch

2π

!

∣

∣⟨ψβ |A0e
iq·r |ψα⟩

∣

∣

2
δ(Eβ − Eα − !ω)f(Eα)(1 − f(Eβ)), (40)
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Example II: 3He A phase (equivalent to Weyl semi-metal) 

d-vector points along z-axis:

Topologically stable Fermi points 
protected by two-dimensional 
Chern number:

      Bulk-boundary correspondence: !
surface Fermi arc connecting the projected nodal points

(possibly realized in pyrochlore iridates, TI-multilayer, ferromagnetic SCs)
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Abbildung 1: Panel (a): Chiral surface bound states at the (111) face of the A phase
of superfluid 3He (class A). The color scale is such that dark blue corresponds to zero
energy. There is a dispersionless zero mode in a one-dimensional submanifold of the surface
Brillouin zone. Panels (b) and (c): Band structure for the (111) face of 3He A as a function
of surface momentum qx and qy, respectively. The red (blue) bands are localized on the top
(bottom) surface. Panel (d): Fermi points in the three-dimensional Brillouin zone of 3He
A. Due to the Fermion doubling theorem the lattice Hamiltonian has two nodal points.
Note that the projection of the line connecting the two Fermi points onto the surface
corresponds to the surface flat band in (a). The parameter values are: t1 = 4.0, µ = 6.0,
and ∆0 = 2.0.

δ0

Im χ0(ω, q) ̸= 0

ω = 35 meV < ωres

δ0 = 0

a) Wir berechnen zunächst die Anzahl Übergänge pro Zeiteinheit W (q, ω), wobei wir
Emissions- und Absorbtionsprozesse der Energie !ω berücksichtigen. Die Wahr-
scheinlichkeit pro Zeiteinheit, dass ein Elektron vom Zustand |ψα⟩ unter Absorbtion
der Energie !ω in den Zustand |ψβ⟩ übergeht ist gegeben durch

2π

!

∣

∣⟨ψβ |A0e
iq·r |ψα⟩

∣

∣

2
δ(Eβ − Eα − !ω)f(Eα)(1 − f(Eβ)), (3)

mit der Fermi-Dirac Verteilungsfunktion f(E). Für die Wahrscheinlichkeit pro Zeit-

The matrix (3.15) at any given k is fully determined by a three dimensional real unit vector n,

with

n1 =
εk

√

ε2
k + |∆k|2

, n2 =
Re∆k

√

ε2
k + |∆k|2

, n3 =
Im∆k

√

ε2
k + |∆k|2

. (3.16)

Hence, the Hilbert space is S2. (There is a one-to-one correspondence between the occupied states

|u(k)⟩ and a point on S2). We now consider a map form a sphere S2 in the 3D Brillouin zone

enclosing one of the Fermi points onto the Hilbert space S2. Since π2(S2) = there is an infinite

number of homotopy classes of mappings S2 → H̃(k) which can be labeled by the topological

invariant (equivalent to first Chern number)

NS̃2 =
1

8π

∫

S̃2

d2
k εµν

n ·
[

∂kµn × ∂kνn
]

. (3.17)

Let us evaluate this topological invariant on a plane perpendicular to the z-axis, i.e. on E(k0
z) =

{k | kz = k0
z}. Numerical evaluation shows that

NE(k0
z) = 0 for − π < k0

z < − arccos[µ/t1 − 2]

NE(k0
z) = 1 for − arccos[µ/t1 − 2] < k0

z < + arccos[µ/t1 − 2]

NE(k0
z) = 0 for + arccos[µ/t1 − 2] < k0

z < +π. (3.18)

Hence, there is a line of zero modes on the (100) surface connecting the projection of the two

Fermi points. Similar reasoning holds for other surface orientations (see also Fig. 1).

B. Class AIII – Polar state

The polar state in 3He has the same form as Eq. (3.6) but now with the d-vector d(k) = ẑ∆0kz.

That is

∆(k) =

⎛

⎝

0 ∆0kz

∆0kz 0

⎞

⎠ , H(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

εk 0 0 ∆0kz

0 εk ∆0kz 0

0 ∆0kz −εk 0

∆0kz 0 0 −εk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.19)

with εk = t1 cos kx + t2 cos ky + t3 cos kz − µ. Note that the Hamiltonian commutes with

J3 = diag(σ3,−σT
3 ). Therefore the Sz component of the spin is conserved. It also satisfies TRS,
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1. f-Summenregel

Define n-vector

n =
1

√

ε2
k + |∆k|2

⎛

⎝

εk

Re∆k

Im∆k

⎞

⎠ (1)

Now we do the following

WS3 =
1

24π2

∫

S3

d2k dω εµνλTr
[

G∂µG−1G∂νG−1G∂λG−1
]

(2)

and

NS2 =
1

2π

∫

S2

d2k Tr [F ] F = ∇×A (3)

Time-reversal symmetry:

UTH∗(k)U †
T = +H(−k), UT = σ0 (4)

Particle-hole symmetry: S = TC = σ2

UCH∗(k)U †
C = −H(−k), UC = iσ2 (5)

basis in which S the H(k) Off-diagonal form

H̃(k) =

(

0 εk − i∆k

εk + i∆k 0

)

(6)

qk is

q(k) : S1 −→ S1 π1(S
1) = (7)

Hint
ωres

Tc
(x) =? = 5.4

ty > tx

qy = π

with:

Surface spectrum in slab !
geometry with (111) face

Zero energy surface modes in 3He A phase

H(k) =

✓
+"(k) �(k)
�†(k) �"(k)

◆
�(k) = (dk · ~�)(i�2)

dk = ẑ�0(sin kx + i sin k
y

)



Nodal non-centrosymmetric  
superconductors



Nodal topological superconductors

Consider nodal topological superconductor

nodal lines on negative helicity FS
20

Non-centro SC: HBdG(k) =

✓
⇤k⇥0 + �gk · ⌅⇥ [�s⇥0 +�tdk · ⌅⇥](i⇥y)

(�i⇥y)[�s⇥0 +�tdk · ⌅⇥] �⇤k⇥0 � �gk · ⌅⇥⇤

◆

Spin-split Fermi surfaces:
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homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

and

π3[U(2)] = q(k) :∈ U(2) (2)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (3)

∆(k) = (∆sσ0 + dk · σ) iσy (4)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ

Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(5)

and

jn,ky = −t sin ky

(

c†nky↑cnky↑ + c†nky↓cnky↓

)

(6)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(7)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (8)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (9)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(10)

a (11)

ξ±
k

= εk ± α |gk|(12)

⇠±k = "k ± �|gk|

Gaps on the two Fermi surfaces:
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homotopy

∆±
k

= ∆s ± ∆t |dk| (1)

∆s > ∆t ∆s ∼ ∆t ∆s < ∆t (2)

and

π3[U(2)] = q(k) :∈ U(2) (3)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (4)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (5)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(6)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(7)

+ λ cos ky

(

c†nky↓
cnky↑ + c†nky↑

cnky↓

)

(8)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,

Iy = −
e

!

1

Ny

∑

ky

Lx/2
∑

n=1

∑

l,El<0

⟨ψl,ky |jn,ky
|ψl,ky⟩ (9)

We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (10)

NQPI(ω, q) = −
1

π
Im

[

∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(11)

a (12)

ξ±
k

= εk ± α |gk|(13)

)

-negative helicity !
Fermi surface

full gap

pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by

!00
""ð!Þ / 2d

!
<
!
"2
k

jgkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!=2dþ jgkjÞð!=2d$ jgkjÞ

p
#

FS
:

Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.
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pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by
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:

Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.
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pronounced angular dependence of jgkj leads to a strong
polarization dependence. Thus we get different peak posi-
tions for the E and T2 polarizations in !00

""ð!þÞ. As a
further consequence, the Raman spectra reveals up to two
kinks on each band (þ and $) at !=2c ¼ j1& p=4j and
!=2c ¼ j1& pj [21]. Furthermore, no singularities are
present. Nevertheless, the main feature, namely, the two-
peak structure, is still present, and one can directly deduce
the value of p from the peak and kink positions. Finally, for
p ' 1, one recovers the pure triplet case (d), in which the
unscreened Raman response is given by

!00
""ð!Þ / 2d

!
<
!
"2
k

jgkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!=2dþ jgkjÞð!=2d$ jgkjÞ

p
#

FS
:

Clearly, only the area on the Fermi surface with !=2d >
jgkj contributes to the Raman intensity. Since jgkj 2 ½0; 1)
has a saddle point at jgkj ¼ 1=4, we find kinks at charac-
teristic frequencies !=2d ¼ 1=4 and !=2d ¼ 1. In con-
trast to the Rashba-type ASOC, we find a characteristic low
energy expansion / ð!=2dÞ2 for both the A1 and the E
symmetry, while / ð!=2dÞ4 for the T2 symmetry [22].
Assuming weak coupling theory, we expect the pair-
breaking peaks (as shown in Fig. 4) for Li2PdxPt3$xB
roughly in the range 4–30 cm$1.

In summary, we have calculated for the first time the
electronic (pair-breaking) Raman response in the newly
discovered NCSs such as CePt3Si (G ¼ C4v) and
Li2PdxPt3$xB [G ¼ Oð432Þ]. Taking the pronounced
ASOC into account, we provide various analytical results

for the Raman response function and cover all relevant
cases from weak to strong triplet-singlet ratio p. Our
theoretical predictions can be used to analyze the under-
lying condensate in parity-violated NCSs and allows the
determination of p.
We thank P.M.R. Brydon and M. Sigrist for helpful

discussions.
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1D Winding number:
(i) 1D contour  is not centrosymmetric: TRS   ,    PHS        TRS+PHS (chiral sym S)
AIII:

Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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We observe that the current operators presence of the superconducting gaps or the edge;
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We recognise the Dirac Cone centered around zero momentum and addition-
ally a bound state between the peaks located at kz = 1 and kz = 2. It is not
clear though, if these are di�erent states or if its the same one. That these are
di�erent states can be judged by looking at the spin resolved SDOS
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homotopy
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these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
3

∑

µ=1

Hµ
exρ

µ
1 (E, ky) ρx

1 (11)

NQPI(ω, q) = −
1

π
Im
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∑

k

G0(k, ω)T (ω)G0(k + q, ω)

]

∝
〈

S⃗f

∣

∣

∣
T (ω)

∣

∣

∣
S⃗i

〉

(12)

a (13)

ξ±
k

= εk ± α |gk|(14)

Surface DOS

The out of plain spin component is zero and therefore not shown.
We notice, that the x-component of the expectation value of the spin on

the Dirac Cone is zero and the z-component is positiv for negative kz and vice
versa. We conclude, that the spin on the Dirac Cone is in plane and points to
the center. This is excected, as the vector l is paralell to k though the spin
should be alinged along k.

We also notice, that the bound stated mentioned before has a nonzero x-
component and is pointing outward. Therefore this state has opposite helicity
compared to the Dirac Cone and is condsidered a di�erent state.

As we have observed an oszillation of the surface state in the last section,
we will analyse this as well. Therefore we plot the DOS for the first layers
beginning from the surface, the colorsceme is the same and in each DOS and
spin resolved DOS respectively. We choose a fixed energy of ⇤ = 0.5. Further
� = 0.01 and the remaining k-components varies between �⇥ and ⇥ with 160
points being calculated.
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)
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.(7)
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∣
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∣
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Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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⇥(k1) =
i

2⇤

⇤

C
F(k)dk2 C (1)

and time-reversal symmetry ky

E = ± |m(k)| (2)

⇤ ⇥i (3)

k = �1 k = �2 (4)

⇥ = e+i�Sy/~K ⇥2 = �1 2e2/h ⇤i ⇤1 ⇤2 ⇤3 ⇤4 (5)

E0 ky (6)

2�C = solid angle swept out by d̂(k) (7)

H(k) = d(k) · � d̂ (8)

n =
i

2⇤

⌅ ⇧
Fd2k (9)

|u(k)⌃ ⇤ ei⇥k |u(k)⌃ (10)

A⇤ A+⌥k⌅k (11)

F = ⌥k ⇥A (12)

�C =

⇤

C

A · dk (13)

�C =

⇧

S

Fd2k (14)

=⌅ (15)

Bloch theorem

[T (R), H] = 0 k |⇧n⌃ = eikr |un(k)⌃ (16)

(17)

H(k) = e�ikrHe+ikr (18)

(19)

H(k) |un(k)⌃ = En(k) |un(k)⌃ (20)

we have

H(k) kx ky ⇤/a � ⇤/a k ⇧ Brillouin Zone (21)

majoranas

�1 = ⇧ + ⇧† (22)

�2 = �i
�
⇧ � ⇧†⇥ (23)

 2D Z2 number:DIII:

arc surface state

dk = (sin k
y

,� sin k
x

, 0)T

�t 6= 0, �s = 0

Surface density of states
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some more

kx kz (1)

k q = 2k A(E,k) ⇥⌃00
s ⇥⌃ij

s i, j ⇥ {1, 2, 3} (2)

⇥⌃�⇥
s (E,q) = � 1

⇧
⇤

⌃
d2k⇧
(2⇧)2

Tr⇤

�
S�G(0)(E,k + q)V ⇥G0(E,k)

⇥
11

(3)

qx qy (4)

⇥⌃0⇥
s ⇥⌃i⇥

s , i ⇥ {1, 2, 3} � = 0 � ⇥ {1, 2, 3} (5)

and this is it:

⇥⌃�⇥
s (E,q) = � 1

2⇧i

⌥
⇤�⇥(E,q)�

⇤
⇤�⇥(E,�q)

⌅⇥�
, (6)

and

⇥G⇥
nn(E,k⇧,q⇧) =

⇧

n�n��

G(0)
nn�(E,k⇤⇧)V

⇥
n�n��G

(0)
n��n(E,k⇧), (7)

and

⇤�⇥(E,q) =

⌃
d2k⇧
(2⇧)2

Tr⇤

�
S�G(0)(E,k + q)V ⇥G0(E,k)

⇥
11

. (8)

More formulas I need:

q = kf � ki kf ki ⇤ = 2⇧/|q| (9)

these are the formulas I need:

⇥⌃00
s ⇥⌃ij

s |q⇧| = 2E/⇥t

1/qx qx = ±2E/⇥t (10)

this is the topological number

�†
+E = ��E (11)

⇥t > ⇥s : ⌅ = +1 (12)

⇥t < ⇥s : ⌅ = 0 (13)

Z2 number 2:

NK⇤ =
Pf [i⌥2 q(K⌅,1)]

Pf [i⌥2 q(K⌅,2)]
e�

1
2

R
dk⇥Tr[q†(k⇥)⌅k⇥q(k⇥)] K⇧ (14)

2D Z2 number

-1

+1

k
x

ky

kz

N1D
E =

4Y

a=1

Pf [�(�a)]p
det [�(�a)]

=
4Y

a=1

Pf
⇥
qT (�a)

⇤
p

det [q(�a)]
= ±1
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Topological classification of gapless materials

    : integer classification!
    : binary classification!
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We study surface bound states and tunneling conductance spectra of non-centrosymmetric superconductors
(NCS). The appearance of dispersionless bound states is related to a non-zero topological invariant. Further-
more, we discuss different types of topological phase transitions in non-centrosymmetric superconductors.

PACS numbers: 74.50.+r,74.20.Rp,74.25.F-,03.65.vf

I. INTRODUCTION

In this paper we derive the surface bound state spectrum of
a NCS using quasiclassical scattering theory and compute the
tunneling conductance between a normal metal and a NCS
both as a function of surface orientation and as a function
of the relative magnitude of spin-singlet and spin-triplet pair-
ing states. Moreover, we also study zero-temperature quan-
tum phase transitions, where the momentum space topology
of the quasi-particle spectrum changes abruptly as the singlet-
to-triplet ratio in the pairing amplitude crosses a critical value
(Fig. 5). We discuss how these topological phase transitions
can be observed in experiments.

1

2π

∫

M

κ dA = χ = 2 − 2g (1)

2 0 (2)

II. THEORETICAL BACKGROUND

A. Model definition

We consider a mean-field model Hamiltonian for a BCS su-
perconductor in a non-centrosymmetric crystal. In particular
we have in mind Li2PdxPt3−xB, CePt3Si, and Y2C3. We start
from a general non-centrosymmetric superconductor with the
mean-field HamiltonianH = 1

2

∑

k
ψ†

k
H(k)ψ

k
with

H(k) =

(

h(k) ∆(k)
∆†(k) −hT (−k)

)

(3a)

and ψk = (c
k↑, ck↓, c

†
−k↑, c

†
−k↓)

T, where c†
k
(c

k
) denotes the

electron creation (annihilation) operator with momentum k
and spin σ. The normal state dispersion of the electrons is
described by the matrix

h(k) = ξkσ0 + gk · σ, (3b)

with ξk = !2k2/(2m) − µ and gk the spin-orbit coupling
(SOC) potential. The gap function∆(k) is

∆(k) = f(k) (∆s + dk · s) (isy) . (3c)

It is well-known that the highest Tc corresponds to dk ∥ gk.
Hence we write dk = ∆pgk.

B. Winding number

We can study the topological properties of nodal lines using
the winding number

WL =
1

2πi

∮

L

dl Tr
[

q−1(k)∇lq (k)
]

, (4)

where the integral is evaluated along the closed loop L in the
Brillouin zone. With this formula we can compute the topo-
logical charge associated with the nodal lines appearing in the
gapless phases of non-centrosymmetric superconductors.

III. BOUND STATE SPECTRA

IV. TUNNELING CONDUCTANCE

V. TOPOLOGICAL PHASE TRANSITIONS

In this Section we examine topological phase transi-
tions of model (2) as a function of the relative strength
of singlet and triplet contributions to the order parameter,
∆s/∆t. I.e, we investigate zero-temperature transitions be-
tween two phases which share the same symmetries, in
particular the same pairing symmetry, but differ in their
topological characteristics.33,34 This is motivated in part by
Li2PdxPt3−xB, which is a family of NCS where the SO cou-
pling strength can be tuned by substituting Pt for Pd.35 The
magnitude of the SO interaction in these compounds in turn
seems to be directly related to the singlet-to-triplet ratio in
the pairing amplitude.36 This suggest that it might be possi-
ble to observe in Li2PdxPt3−xB topological phase transitions
between a fully gapped and a gapless phase, or between two
gapless phases as a function of Pt concentration.
In Fig. 5a we present the topological phase diagram

for a NCS with cubic point group O (appropriate for
Li2PdxPt3−xB) and l-vector given by Eq. (??). For∆s > ∆t

the superconductor is fully gapped and topologically triv-
ial. At ∆s = ∆t there is a Lifshitz-type zero-temperature
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Two-dimensional systems
Class T P S line point
A 0 0 0 Z 0
AIII 0 0 1 0 Z
AI +1 0 0 Z 0
BDI +1 +1 1 Z2 Z
D 0 +1 0 Z2 Z2

DIII -1 +1 1 0 Z2

AII -1 0 0 Z 0
CII -1 -1 1 0 Z
C 0 -1 0 0 0
CI +1 -1 1 0 0

Table 2: (Preliminary work ) Conjectured classification of Fermi points/lines/surfaces in metals
and nodal points/lines/surfaces in superconductors as a function of symmetry class in two- and
three-dimensional systems. Symmetry classes A, AI, AII, and AIII correspond in general to metallic
systems, whereas the other classes are superconductors, see also Table 1.

Two-dimensional systems
Class line point
A Z 0
AIII 0 Z
AI Z 0
BDI Z2 Z
D Z2 Z2

DIII 0 Z2

AII Z 0
CII 0 Z
C 0 0
CI 0 0

Three-dimensional systems
Class surface line point
A Z 0 Z
AIII 0 Z 0
AI Z 0 0
BDI Z2 Z 0
D Z2 Z2 Z
DIII 0 Z2 Z2

AII Z 0 Z2

CII 0 Z 0
C 0 0 Z
CI 0 0 0

Table 3: (Preliminary work ) Conjectured classification of Fermi points/lines/surfaces in metals
and nodal points/lines/surfaces in superconductors as a function of symmetry class in two- and
three-dimensional systems. Symmetry classes A, AI, AII, and AIII correspond in general to metallic
systems, whereas the other classes are superconductors, see also Table 1.

high-temperature superconductors), or at the zig-zag edge in graphene [?,?, ?]. Another
example are nodal superconductors without inversion symmetry (see Sec. 2.2.2).

From this observation, it is natural to ask whether topological properties of metallic
systems and nodal superconductors can be classified in a similar manner as the insula-
tors and superconductors with a full gap. By definition, a Fermi surface (or a nodal line
in a superconductor) is a set (i.e., a manifold) of gapless points in momentum space.
Under certain conditions, this manifold of gapless points can be “topologically stable” in
the sense that within a single-particle framework a gap cannot be opened by small “local”
perturbations. (Of course, the Fermi surface can always acquire a gap due to interactions,
or due to processes that connect Fermi surfaces with opposite “topological charge”, such
as, e.g., a charge density wave.) There are a number of previous works in the literature
that studied the topological stability of Fermi surfaces [?, ?, ?, ?], but the important role
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this is the topological number
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Z2 number 2:
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dk⇤Tr [⌥k� ln Dk] (7)

g(k) = kxx̂ + kyŷ + kzẑ (8)

and ⇥s > ⇥t ⇥s ⇤ ⇥t ⇥s < ⇥t

Iy =
e

2~
1

Ny

⌅

ky

Lx/2⌅

n=1

⇧ 0

�⇥
dE

⇥ {2t sin ky ⇧n(E, ky)� � cos ky ⇧x
n(E, ky)} (9)

and

⇥(k) = f(k) (⇥s⌃0 + ⇥tdk · �) i⌃y k1 k2

SHBdG(k) +HBdG(k)S = 0 (10)

⇤HBdG(k)⇤�1 = +HBdG(�k) (11)

sym

⇥C =
1

2⌅

⇤

C
F(k)dkl C (12)

and time-reversal symmetry ky

E = ± |m(k)| (13)

⌅ ⇥i (14)

k = �1 k = �2 (15)

⇤ = e+i�Sy/~K ⇤2 = �1 2e2/h ⌅i ⌅1 ⌅2 ⌅3 ⌅4 (16)

• Topological invariants:

• Classification depends on whether contour is!
   centro-symmetric or not (i.e. invariant under k-> -k)

3He A phase /!
Weyl semimetal!

( NB:       invariant only protects surface states, but not bulk nodes!)

Classification for Fermi surfaces off high-symmetry points

Z2



Acknowledgments

25

Theory!
  Raquel Queiroz, Johannes Hofmann, D. Lee MPI Stuttgart, Germany!
  Prof. S. Ryu, Po-Yao Chang, Univ. Illinois, USA!
  Prof. C. Timm, TU Dresden, Germany!
  Dr. P. Brydon, Univ. Maryland, USA!
  Dr. A. Yaresko, MPI Stuttgart!
  Dr. Ching-Kai Chiu, UBC, Vancouver, Canada!
  Dr. S. Matsuura, McGill University, Canada!
  Prof. J. Goryo, Hirosaki University, Japan!
  Prof. M. Sigrist, ETH Zürich, Switzerland!
  Dr. T. Neupert, Univ. Princeton, USA!
  Dr. M. Fischer, Weizmann, Israel !
  Prof. R. Thomale, Univ. Würzburg, Germany!
  Prof. A. Ludwig, UCSB, Santa Barbara, USA!
  Prof. D. Manske, Dr. P. Horsch, MPI Stuttgart!

Experiment!
 Dr. H. Luetkens, Dr. P. Biswas, Dr. A. Amato, PSI, Switzerland!
 Dr. Zhixiang Sun, Dr. Hadj Benia, Dr. C. Ast, Prof. Kern, MPI Stuttgart!
 Prof. P. Wahl, Univ. St. Andrews, UK!
 Prof. D. Peets, Seoul National University, South Korea!


