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Motivation I: Recent pump-probe experiments

observed in the pump-probe delay dependence of the trans-
mitted probe THz electric field (E field). The oscillation
frequency is in excellent agreement with the theoretical
predictions.

The output from a regenerative amplified Ti:sapphire
laser system with 800-nm center wavelength, 1-mJ pulse
energy, 90-fs pulse duration, and 1-kHz repetition rate was
divided into three beams: for the generation of the pump
and probe THz pulses and for the gate pulse for the electro-
optic (EO) sampling of the transmitted probe THz pulse.
The intense pump THz pulse was generated by the tilted-
pulse-front method with a LiNbO3 crystal [27], and the
detail of our experimental configuration was described in
Ref. [35]. The pump pulse width defined by FWHM of the
envelope curve of the E-field amplitude was !pump !
1:5 ps. The probe THz pulse was generated by the optical
rectification in a ZnTe crystal. As schematically shown in
Fig. 1(b), a wire grid polarizer (WGP) inserted in the

optical path of the pump THz pulse (Epump k x) reflects
the probe THz pulse (Eprobe k y) so that the pump and

probe THz pulses are collinearly irradiated to the sample.
Another WGP was placed after the sample to block the
pump THz pulse and to transmit the probe THz pulse only.
The waveform of the probe E field was detected by the
EO sampling in a ZnTe crystal. By scanning both the
delay time of the gate pulse to the probe THz pulse, tgate,
and the delay time of the probe to the pump THz pulse, tpp,
we recorded the probe THz E field Eprobeðtgate; tppÞ in the

two-dimensional time domains of tgate and tpp [36]. The

details in our two-dimensional THz time-domain spectros-
copy system were described in the previous paper [26].
The Nb1-xTixN films were fabricated on fused quartz

(FQ) or MgO substrates using the dc reactive sputtering
method [37]. We used three different samples: (sample A)
x ¼ 0:2 and film thickness d ¼ 12 nm on a 1 mm-thick
FQ, (sample B) x ¼ 0:2 and d ¼ 30 nm on a 0.5 mm-thick
FQ, and (sample C) x ¼ 0 and d ¼ 24 nm on a 0.5 mm-
thick MgO. Figure 1(c) shows the temperature dependence
of the real-part optical conductivity spectra "1ð!Þ of
sample C without the THz pump. The solid curves are
calculated by the Mattis-Bardeen model with arbitrary
electron mean-free path [38,39] to evaluate the gap energy
at each temperature. The temperature dependence of the
gap energy is shown in Fig. 1(d). The BCS gap energies
at 4 K are evaluated as 2!0 ¼ 0:72, 1.1, and 1.3 THz, for
samples A, B, and C, respectively, which gives the ratio
!pump=!! as 0:57ðAÞ, 0:81ðBÞ, and 0:98ðCÞ.
Figure 1(e) shows the time-domain waveform of the

probe THz pulse, EprobeðtgateÞ, transmitted after sample A

below Tc ¼ 8:5 K without the THz pump. As indicated by
the vertical line in Fig. 1(e), the probe E field at tgate ¼
2:1 psð% t0Þ sensitively indicates the growth of the super-
conducting state. In fact, as shown by Fig. 1(f), the value
Eprobe at tgate ¼ t0 shows one-to-one correspondence with

the BCS gap energy 2! obtained from Fig. 1(d). Therefore,
in order to detect the temporal evolution of the order
parameter !ðtppÞ after the pump, we monitored the probe
E field at this fixed gate delay time, Eprobeðtgate ¼ t0; tppÞ.
Note that, this correspondence between the gap energy 2!
and Eprobeðtgate ¼ t0; tppÞ in the equilibrium condition with-

out the pump does not necessarily hold in the nonequilib-
rium case. Therefore, we numerically confirmed that
Eprobeðtgate ¼ t0; tppÞ indeed reflects the transient behavior

of the order parameter changing in a time scale of !!. The
details are given in the Supplemental Material [40].
Figure 2(a) shows the temporal evolution of the change

of the probeE field, #Eprobe, at tgate ¼ t0 as a function of tpp
in sample Awith !pump=!! ¼ 0:57 for various pump inten-

sities. After a fast rise within 2 ps which we will discuss
later, an oscillatory behavior is clearly identified. As the
pump intensity increases, the oscillation amplitude
increases and the frequency decreases, and the oscillation
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FIG. 1 (color online). (a) A schematic picture of the phase and
amplitude modes represented by the arrows in azimuthal and
radial directions, respectively, on the effective potential in the
plane of complex order parameter ". (b) Schematic configura-
tion of the TPTP spectroscopy. WGP: a wire grid polarizer.
(c) Temperature dependence of the real-part optical conductivity
spectra in sample C without the pump. The solid curves are
calculated by the Mattis-Bardeen model. (d) Temperature de-
pendences of the BCS gap energies for samples A, B, and C.
(e) The waveforms of the probe THz E field Eprobe as a function

of the gate delay time tgate at various temperatures without the

pump. (f) The temperature dependence of the BCS gap 2! in
equilibrium and Eprobe at the fixed delay time of tgate¼2:1psð¼
t0Þ indicated by the vertical line in (e) for sample A.
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delay time

 THz-pump THz-probe spectroscopy:

    - THz-pump pulse: Excite with intense femto-second pulse, induce dynamics!
    - THz-probe pulse: After delay time     , measure with second, less intense pulse!�t

 Optical conductivity / transmitivity as a function of     and       gives information about:�t!

Cooper pair recombination / recovery dynamics

Dynamics of SC condensate, order parameter oscillations

Coherent phonon oscillations 

    1 terahertz 
≙ 4.1 meV 
≙ 1 ps-1!
≙ 33 cm-1!

polarizer
polarizer SC gap �:

⇠ 1� 10 meVMatsunaga, 
Shimano, et al. PRL 
111, 057002 (2013)



Motivation I: Recent pump-probe experiments

is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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 THz-pump THz-probe spectroscopy on NbN films

!
    - Measure change in transmission!
      of probe field !

 Observation: 

order parameter amplitude oscillations  

    - pump-pulse duration: 90 fs 

non-adiabatic excitation of SC:

�p ⇥ �� � h/(2|�|)

�E

    - frequency changes with laser intensity

    - algebraically damped oscillations !
       in        as a function of delay time�E �t

|2�| � 3 meV

Interpretation: 



Motivation II: How does a quantum system relax?

? How does a quantum system thermalize?

 Open questions:
-- Which type of interactions lead to thermalization?!!
-- Which observables      to consider?!!
-- How to describe thermalized sate?!
   (is there a density matrix (ensemble)      such that:                        ?) 

Ō = lim
t!1

��(t)| Ô |�(t)⇥ time independent

 True relaxation vs. decoherence:
-- Decoherence: Only averaged observables become time-independent!
!
!
-- True relaxation: Generic local (unaveraged) observables become time-independent

non-interacting systems, integrable systems only show decoherence

(i) systems coupled to bath, (ii) closed systems with certain interactions!
(infinite closed systems; otherwise recurrence)

Ô

Ō = Tr[Ô �]⇢

As t ! 1, generic observables

ˆO become time independent



Goal: simulate non-adiabatic dynamics of superconductor coupled to !
         (i) pump laser field and (ii) optical phonons

Microscopic approach 
Dirk Manske 

we consider:  (a) tetragonal lattice 
  (b) tight-binding band structure, e.g. from Kordyuk et al. (03) 
  (c) s- or d-wave order parameter 

with 

Microscopic model:

with gap equation: 

Microscopic approach 
Dirk Manske 

we consider:  (a) tetragonal lattice 
  (b) tight-binding band structure, e.g. from Kordyuk et al. (03) 
  (c) s- or d-wave order parameter 

with 

Gaussian pump and probe pulse:

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

BCS Hamiltonian

H = HBCS + Hem, (1a)

HBCS =
∑

k,σ

εkc†k,σck,σ +
∑

k

[

∆kc†k↑c
†
−k↓ + ∆∗

kc−k↓ck↑

]

, (1b)

Hem = H(1)
em + H(2)

em ,

Hem =
e

2m

∑

k,q,σ

[

!(2k + q) · Aq(t) + e
∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ,

H(2)
em =

e2

2m

∑

k,q,σ

[

∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ. (1c)

gap equation

∆k =
∑

k′

Wkk′ ⟨c−k′↓c+k′↑⟩ (2)

Vector potential

Aq(t) = A0 e−(t/τ)2
(

δq,q0
e−iω0t + δq,−q0

e+iω0t
)

, (3)

rotating wave approximation

⟨α†
kαk′⟩ → exp [i (Ek − Ek′) t/!] ⟨α†

kαk′⟩
⟨α†

kβ†
k′⟩ → exp [i (Ek + Ek′) t/!] ⟨α†

kβ†
k′⟩

(⟨α†β†⟩, ⟨αβ⟩) (4)

with

Mkq = uk+qvk − vk+quk (5)

and

Lkq = uk+quk + vk+qvk (6)

and

Γ(1)
kq = (1 + nq) uk+qukLkqδ (ωk+q − ωk + ωq) (7)

pump pulse: probe pulse:
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Current density

j(q, ω) (1)

Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (2)

Lets do it

∆t T ∗ µ∗ (3)

Theoretical prediction

|∆(t)| = ∆∞ +
a√
t
cos (2∆∞t + φ) (4)

BCS Hamiltonian

H = HBCS + Hem, (5a)

HBCS =
∑

k,σ

εkc†k,σck,σ +
∑

k

[

∆kc†k↑c
†
−k↓ + ∆∗

kc−k↓ck↑

]

, (5b)

Hem = H(1)
em + H(2)

em ,

Hem =
e

2m

∑

k,q,σ

[

!(2k + q) · Aq(t) + e
∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ,

H(2)
em =

e2

2m

∑

k,q,σ

[

∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ. (5c)

gap equation

∆k =
∑

k′

Wkk′ ⟨c−k′↓c+k′↑⟩ (6)

Vector potential

Aq(t) = A0 e−(t/τ)2
(

δq,q0
e−iω0t + δq,−q0

e+iω0t
)

, (7)

rotating wave approximation

⟨α†
kαk′⟩ → exp [i (Ek − Ek′) t/!] ⟨α†

kαk′⟩
⟨α†

kβ†
k′⟩ → exp [i (Ek + Ek′) t/!] ⟨α†

kβ†
k′⟩

(⟨α†β†⟩, ⟨αβ⟩) (8)
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time-scales

!ω0 ! 2 |∆| τ∆ ≫ τϵ τp ≫ τ∆, τph (1)

and

τϵ τ∆ ∼ h/(2 |∆|) τph = 2π/ωph τp τL = 2π/ωL τel-ph (2)

EOM

i!
d

dt

〈

α†
kβ†

k+q

〉

= − (Rk + Rk+q) ⟨a†
kβ†

k+q⟩ + C∗
k+q⟨α

†
kαk+q⟩ + C∗

k

(

⟨β†
k+qβk⟩ − δq,0

)

+
e!

2m

∑

q′=±q0

2k · Aq′(t)
{

− L+
k,q′⟨α†

k+q′β
†
k+q⟩ + L+

k+q,−q′⟨α†
kβ†

k+q−q′⟩

−M−
k+q,−q′⟨α†

kαk+q−q′⟩ + M−
k,q′

(

⟨β†
k+qβk+q′⟩ − δq,q′

)}

+ · · ·

Order parameter

∆ = W
∑

k

⟨c−k↓c+k↑⟩

∆k =
∑

k

Wk,k′

[

uk′vk′

(

1 −
〈

α†
k′αk′

〉

−
〈

β†
k′βk′

〉)

+ u2
k′ ⟨βk′αk′⟩ − v2

k′

〈

α†
k′β

†
k′

〉]

(3)

Parameter values

∆t = 1ps (4)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (5)

Current density

j(q, ω) ≃
e!

mV

∑

k

k
[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
2m (E2

k)

(〈

α†
kβ†

k+q

〉

+
〈

αk+qβk

〉) ]

. (6)

j(q, ω) (7)

Pump pulse

!ω0 " 2 |∆| !ωp ! 2 |∆| (8)

SC coupled to laser field and optical phonons



time-dependent Ginzburg Landau theory, mu*-, and T*- models:!
- quasi-equilibrium is assumed at all times!
- time evolution of a single collective order parameter!
- only valid for:                  (i.e., close to Tc, very dirty SCs)
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time-scales

τ∆ ≫ τϵ τp ≫ τ∆, τph (1)

and

τϵ τ∆ ∼ h/(2 |∆|) τph = 2π/ωph τp τL = 2π/ωL τel-ph (2)

EOM

i!
d

dt

〈

α†
kβ†

k+q

〉

= − (Rk + Rk+q) ⟨a†
kβ†

k+q⟩ + C∗
k+q⟨α

†
kαk+q⟩ + C∗

k

(

⟨β†
k+qβk⟩ − δq,0

)

+
e!

2m

∑

q′=±q0

2k · Aq′(t)
{

− L+
k,q′⟨α†

k+q′β
†
k+q⟩ + L+

k+q,−q′⟨α†
kβ†

k+q−q′⟩

−M−
k+q,−q′⟨α†

kαk+q−q′⟩ + M−
k,q′

(

⟨β†
k+qβk+q′⟩ − δq,q′

)}

+ · · ·

Order parameter

∆ = W
∑

k

⟨c−k↓c+k↑⟩

∆k =
∑

k

Wk,k′

[

uk′vk′

(

1 −
〈

α†
k′αk′

〉

−
〈

β†
k′βk′

〉)

+ u2
k′ ⟨βk′αk′⟩ − v2

k′

〈

α†
k′β

†
k′

〉]

(3)

Parameter values

∆t = 1ps (4)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (5)

Current density

j(q, ω) ≃
e!

mV

∑

k

k
[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
2m (E2

k)

(〈

α†
kβ†

k+q

〉

+
〈

αk+qβk

〉) ]

. (6)

j(q, ω) (7)

Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (8)

Boltzmann kinetic equation:!
- requires adiabaticity on all time-scales!
- does not capture coherent evolution of quasi-particle distributions!
- only valid for:
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time-scales

τ∆ ≫ τϵ τp ≫ τ∆, τph (1)

and

τϵ τ∆ ∼ h/(2 |∆|) τph = 2π/ωph τp τL = 2π/ωL τel-ph (2)

EOM

i!
d

dt

〈

α†
kβ†

k+q

〉

= − (Rk + Rk+q) ⟨a†
kβ†

k+q⟩ + C∗
k+q⟨α

†
kαk+q⟩ + C∗

k

(

⟨β†
k+qβk⟩ − δq,0

)

+
e!

2m

∑

q′=±q0

2k · Aq′(t)
{

− L+
k,q′⟨α†

k+q′β
†
k+q⟩ + L+

k+q,−q′⟨α†
kβ†

k+q−q′⟩

−M−
k+q,−q′⟨α†

kαk+q−q′⟩ + M−
k,q′

(

⟨β†
k+qβk+q′⟩ − δq,q′

)}

+ · · ·

Order parameter

∆ = W
∑

k

⟨c−k↓c+k↑⟩

∆k =
∑

k

Wk,k′

[

uk′vk′

(

1 −
〈

α†
k′αk′

〉

−
〈

β†
k′βk′

〉)

+ u2
k′ ⟨βk′αk′⟩ − v2

k′

〈

α†
k′β

†
k′

〉]

(3)

Parameter values

∆t = 1ps (4)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (5)

Current density

j(q, ω) ≃
e!

mV

∑

k

k
[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
2m (E2

k)

(〈

α†
kβ†

k+q

〉

+
〈

αk+qβk

〉) ]

. (6)

j(q, ω) (7)

Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (8)

Phenomenological Rothwarf-Taylor models: !
- rate equations for quasi-particle and phonon occupations !
- only valid for:
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time-scales

τ∆ ≫ τϵ τp ≫ τ∆, τph (1)

and

τϵ τ∆ ∼ h/(2 |∆|) τph = 2π/ωph τp τL = 2π/ωL τel-ph (2)
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kαk+q⟩ + C∗

k

(

⟨β†
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+ · · ·

Order parameter
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(3)

Parameter values
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Laser field
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n (k, k′) → (k, k′ + nq) (5)

Current density

j(q, ω) ≃
e!

mV

∑
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[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
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kβ†
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〉

+
〈

αk+qβk

〉) ]

. (6)
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Pump pulse
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We study the generation of coherent phonons in a superconductor by ultrafast optical pump pulses. The
nonequilibrium dynamics of the coupled Bogoliubov quasiparticle-phonon system after excitation with the
pump pulse is analyzed by means of the density-matrix formalism with the phonons treated at a full quantum
kinetic level. For ultrashort excitation pulses, the superconductor exhibits a nonadiabatic behavior in which the
superconducting order parameter oscillates. We find that in this nonadiabatic regime the generation of coherent
phonons is resonantly enhanced when the frequency of the order-parameter oscillation is tuned to the phonon
energy, a condition that can be achieved in experiments by varying the integrated pump pulse intensity.
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I. INTRODUCTION

The generation of coherent phonons by ultrashort optical
pulses with duration much shorter than the phonon vibrational
period has been extensively studied in various materials,
such as bulk semiconductors,1–8 semiconductor quantum
wells,9–14 and superlattices,15,16 as well as high-temperature
superconductors.17–21 For semiconducting systems, several
distinct coherent phonon generation mechanisms have been
discussed.2,4–7 For example, in the displacive mechanism, the
optical pulse creates a finite photocarrier distribution almost
instantaneously on the time scale of the phonon subsystem.2,4

This results in an abrupt change of the equilibrium positions of
the lattice ions, and hence gives rise to coherent oscillations of
the atoms around the new potential minima. In the impulsive
mechanism, an effective direct coupling of the laser field to the
lattice ions is assumed,7,22 leading to a brief and intense force
acting on the atoms. The detailed dynamics of the electronic
subsystem on time scales longer than the optical pulse is,
in general, irrelevant for the description of coherent phonon
creation in semiconductors. An exception to this rule occurs
when the electronic subsystem oscillates with a period on
the time scale of the phonon vibrations, in which case the
coherent phonon generation is resonantly enhanced. This has
been observed both in semiconductor quantum wells11–14 and
in superlattices.15,16

In this paper, we investigate the generation of coherent
phonons in a nonequilibrium superconductor. Specifically, we
study the optical excitation of Bogoliubov quasiparticle states
above the superconducting ground state on time scales shorter
than the phonon vibrational period τph. We find that, akin
to the displacive mechanism in semiconductors, a sudden
change in the Bogoliubov quasiparticle distribution functions
generates coherent phonon oscillations. This mechanism of
phonon creation is relevant to pump-probe experiments on
superconductors with a pump photon energy of the same
order but slightly larger than twice the superconducting gap
amplitude |"| and a laser pulse duration τp shorter than
both the phonon period τph and the dynamical time scale
of the superconducting order parameter τ" ∼ h/(2|"|). It
has recently been shown that, whenever the pump pulse
duration τp is much shorter than τ", oscillations are created
in the quasiparticle occupations with frequency of the order

of ∼2π/τ" ∼ 2|"|/h̄.23–31 For τ" ≪ τph, these oscillations
average out on the time scale of the phonons and are therefore
unimportant for the creation of coherent phonons. When τ"

is close to τph, on the other hand, the generation of coherent
phonons is resonantly enhanced. Remarkably, provided that
ωph ! 2|"|/h̄, the Bogoliubov quasiparticle oscillations can
be brought into exact resonance with the phonon frequency ωph
by adjusting the integrated pump pulse intensity (see Figs. 1
and 2).

In the following, we theoretically investigate this resonant
coherent phonon generation mechanism by employing a
microscopic model of an s-wave superconductor coupled to an
optical-phonon mode with frequency ωph. We study the pulse-
induced dynamics of this model system at times shorter than
the quasiparticle energy relaxation time τϵ , a regime which
can be fully described within mean-field BCS theory.26,32

Different orderings of the involved time scales are studied
with a particular emphasis on the case where both the phonon
and the quasiparticle subsystems evolve in a nonadiabatic
fashion, i.e., where τp ≪ τph,τ" ≪ τϵ . In this nonadiabatic
regime, traditional approaches for computing nonequilibrium
dynamics, such as the time-dependent Ginzburg-Landau the-
ory or the Boltzmann kinetic equation, are not applicable,
since the full dynamics of both the normal and the anomalous
quasiparticle densities, as well as that of the coherent-phonon
amplitudes needs to be accounted for. Therefore we resort
to the density-matrix formalism33,34 to numerically compute
the coherent response of the model system after excitation by
a short pump pulse. Based on this approach, we analyze in
detail the generation of coherent phonons and calculate lattice
displacements both for resonant and off-resonant conditions.
The analysis presented in this paper is complementary to
the one of Ref. 35, which employs Boltzmann-type kinetic
equations to study the adiabatic dynamics of Bogoliubov
quasiparticles coupled to incoherent phonons.

II. MICROSCOPIC MODEL

The microscopic model we consider is a single-band
BCS s-wave superconductor coupled to an external electro-
magnetic field and to a single branch of optical phonons
H = Hsc + Hem + Hph + He−ph. Within mean-field theory,

214513-11098-0121/2011/84(21)/214513(8) ©2011 American Physical Society
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Current density

j(q, ω) ≃
e!

mV
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k
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+
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. (1)

j(q, ω) (2)

Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (3)

Lets do it

∆t T ∗ µ∗ (4)

Theoretical prediction

|∆(t)| = ∆∞ +
a√
t
cos (2∆∞t + φ) (5)

BCS Hamiltonian

H = HBCS + Hem, (6a)

HBCS =
∑

k,σ

εkc†k,σck,σ +
∑

k

[

∆kc†k↑c
†
−k↓ + ∆∗

kc−k↓ck↑

]

, (6b)

Hem = H(1)
em + H(2)

em ,

Hem =
e

2m

∑

k,q,σ

[

!(2k + q) · Aq(t) + e
∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ,

H(2)
em =

e2

2m

∑

k,q,σ

[

∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ. (6c)

gap equation

∆k =
∑

k′

Wkk′ ⟨c−k′↓c+k′↑⟩ (7)

Vector potential

Aq(t) = A0 e−(t/τ)2
(

δq,q0
e−iω0t + δq,−q0

e+iω0t
)

, (8)
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Order parameter
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Parameter values

∆t = 1ps (2)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (3)

Current density
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Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (6)

Lets do it

∆t T ∗ µ∗ (7)

Theoretical prediction

|∆(t)| = ∆∞ +
a√
t
cos (2∆∞t + φ) (8)
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〈
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time-scales
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Lattice displacement:
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phonon modes is straightforward. The superconductor is
coupled to the phononic system via the interaction

He−ph = gph

∑

p,k,σ

(b†−p + bp)c†k+p,σ ck,σ , (1d)

where gph denotes the electron-phonon coupling constant. In
the following we assume that the electron-phonon coupling
strength is much smaller than the superconducting energy
scales,36 such that the influence of the phonon subsystem on
the superconductor becomes negligibly small.

III. DENSITY-MATRIX FORMALISM

Physical observables, such as the order-parameter ampli-
tude |"(t)| and the lattice displacement U (r,t), can all be
expressed in terms of the Bogoliubov quasiparticle densities
and the mean phonon amplitudes. Hence we derive equations
of motion for these quantities using the framework of the
density-matrix formalism. To this end, it is advantageous
to perform a canonical Bogoliubov transformation of the
fermionic operators, with αk = ukck↑ + vkc

†
−k↓ and β

†
k =

ukc
†
−k↓ − vkck↑, where the coefficients uk and vk are time

independent and chosen such that the BCS part of the

Hamiltonian, Hsc, in the initial state, i.e., at t = ti , takes
diagonal form (see the Appendix). Due to the interaction term
He−ph, Eq. (1d), the equations of motion for the single-particle
density matrices are not closed, but give rise to an infinite
hierarchy of equations of higher-order density matrices. For
the purpose of studying the generation of coherent phonons, it
suffices to break this hierarchy at first order, which amounts to
neglecting all correlations among quasiparticles and phonons.
Thus phonon-assisted quantities, such as ⟨α†

kαk′bp⟩, are factor-
ized according to ⟨α†

kαk′bp⟩ ≃ ⟨α†
kαk′ ⟩⟨bp⟩. A nonvanishing

⟨bp⟩ corresponds to a finite displacement of the lattice
ions. That is, the lattice displacement U (r,t) is connected
to the coherent-phonon amplitude Dp(t) = ⟨bp⟩ + ⟨b†−p⟩
via

U (r,t) =
√

h̄

2MωphV

∑

p

Dp(t)e+ip·r, (2)

where M is the reduced mass of the lattice ions and V the
system’s volume.

At first order in the correlation expansion in gph the equation
of motion for the normal quasiparticle density ⟨α†

kαk′ ⟩, as
obtained from the Heisenberg equation of motion, is given
by

ih̄
d

dt
⟨α†

kαk′ ⟩ = (Rk′ − Rk)⟨α†
kαk′ ⟩ + Ck′ ⟨α†

kβ
†
k′ ⟩ + C∗

k⟨αk′βk⟩

− eh̄

2m

∑

q=±qp

(2k + q) · Aq[L+
k,q⟨α

†
k+qαk′ ⟩ − L+

k′,−q⟨α
†
kαk′−q⟩ − M−

k,q⟨αk′βk+q⟩ − M−
k′,−q⟨α

†
kβ

†
k′−q⟩]

− e2

2m

∑

q

⎛

⎝
∑

q′=±qp

Aq−q′ · Aq′

⎞

⎠ [L−
k,q⟨α

†
k+qαk′ ⟩ − L−

k′,−q⟨α
†
kαk′−q⟩ + M+

k,q⟨αk′βk+q⟩ + M+
k′,−q⟨α

†
kβ

†
k′−q⟩]

− gph

∑

p

Dp[M+
k′,−p⟨α

†
kβ

†
k′−p⟩ + M+

k,p⟨αk′βk+p⟩ + L−
k,p⟨α

†
k+pαk′ ⟩ − L−

k′,−p⟨α
†
kαk′−p⟩], (3)

where Rk = εk(1 − 2v2
k) + 2ukvkRe", Ck = −2εkukvk +

"u2
k − "∗v2

k, L±
k,k′ = ukuk+k′ ± vkvk+k′ , and M±

k,k′ =
vkuk+k′ ± ukvk+k′ . Comparing the first and the last line of
Eq. (3), one sees that the quasiparticle-phonon interaction
at first order in the hierarchy simply leads to a nondiagonal
energy renormalization. The equations of motion for the
remaining three quasiparticle densities, ⟨β†

kβk′ ⟩, ⟨α†
kβ

†
k′ ⟩,

and ⟨αkβk′ ⟩, which have a similar structure, are given in the
Appendix.

The time dependence of the coherent-phonon amplitude
Dp(t) can be expressed in terms of a harmonic oscillator-
type second-order differential equation (for details, see the
Appendix),

[
d2

dt2
+ ω2

ph

]
Dp(t) = Fp(t), (4a)

with forcing term

Fp(t) = −
2ωph

h̄
gph

∑

k

[M+
k,p(⟨αk+pβk⟩ − ⟨α†

kβ
†
k+p⟩)

+L−
k,p(⟨α†

kαk+p⟩ + ⟨β†
k+pβk⟩)], (4b)

which is purely real. Within the framework of model (1),
the equation of motion for the coherent-phonon amplitude
Dp(t) is exact up to higher-order corrections in the correlation
expansion. It is worth noting that at the next order in the
hierarchy (i.e., at second order in gph) incoherent phonons
and quasiparticle-phonon scattering processes are generated,
which give rise to a finite lifetime of the coherent phonons
and which thereby lead to an exponential damping of the
coherent-phonon oscillations. Focusing on time scales much
shorter than the coherent phonon lifetime, we neglect in
the following any finite lifetime effects due to quasiparticle-
phonon or phonon-phonon scattering processes.
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phonon modes is straightforward. The superconductor is
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where gph denotes the electron-phonon coupling constant. In
the following we assume that the electron-phonon coupling
strength is much smaller than the superconducting energy
scales,36 such that the influence of the phonon subsystem on
the superconductor becomes negligibly small.
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expressed in terms of the Bogoliubov quasiparticle densities
and the mean phonon amplitudes. Hence we derive equations
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He−ph, Eq. (1d), the equations of motion for the single-particle
density matrices are not closed, but give rise to an infinite
hierarchy of equations of higher-order density matrices. For
the purpose of studying the generation of coherent phonons, it
suffices to break this hierarchy at first order, which amounts to
neglecting all correlations among quasiparticles and phonons.
Thus phonon-assisted quantities, such as ⟨α†

kαk′bp⟩, are factor-
ized according to ⟨α†

kαk′bp⟩ ≃ ⟨α†
kαk′ ⟩⟨bp⟩. A nonvanishing

⟨bp⟩ corresponds to a finite displacement of the lattice
ions. That is, the lattice displacement U (r,t) is connected
to the coherent-phonon amplitude Dp(t) = ⟨bp⟩ + ⟨b†−p⟩
via

U (r,t) =
√

h̄

2MωphV

∑

p

Dp(t)e+ip·r, (2)

where M is the reduced mass of the lattice ions and V the
system’s volume.

At first order in the correlation expansion in gph the equation
of motion for the normal quasiparticle density ⟨α†

kαk′ ⟩, as
obtained from the Heisenberg equation of motion, is given
by

ih̄
d

dt
⟨α†

kαk′ ⟩ = (Rk′ − Rk)⟨α†
kαk′ ⟩ + Ck′ ⟨α†

kβ
†
k′ ⟩ + C∗

k⟨αk′βk⟩

− eh̄

2m

∑

q=±qp

(2k + q) · Aq[L+
k,q⟨α

†
k+qαk′ ⟩ − L+

k′,−q⟨α
†
kαk′−q⟩ − M−

k,q⟨αk′βk+q⟩ − M−
k′,−q⟨α

†
kβ

†
k′−q⟩]

− e2

2m

∑

q

⎛

⎝
∑

q′=±qp

Aq−q′ · Aq′

⎞

⎠ [L−
k,q⟨α

†
k+qαk′ ⟩ − L−

k′,−q⟨α
†
kαk′−q⟩ + M+

k,q⟨αk′βk+q⟩ + M+
k′,−q⟨α

†
kβ

†
k′−q⟩]

− gph

∑

p

Dp[M+
k′,−p⟨α

†
kβ

†
k′−p⟩ + M+

k,p⟨αk′βk+p⟩ + L−
k,p⟨α

†
k+pαk′ ⟩ − L−

k′,−p⟨α
†
kαk′−p⟩], (3)

where Rk = εk(1 − 2v2
k) + 2ukvkRe", Ck = −2εkukvk +

"u2
k − "∗v2

k, L±
k,k′ = ukuk+k′ ± vkvk+k′ , and M±

k,k′ =
vkuk+k′ ± ukvk+k′ . Comparing the first and the last line of
Eq. (3), one sees that the quasiparticle-phonon interaction
at first order in the hierarchy simply leads to a nondiagonal
energy renormalization. The equations of motion for the
remaining three quasiparticle densities, ⟨β†

kβk′ ⟩, ⟨α†
kβ

†
k′ ⟩,

and ⟨αkβk′ ⟩, which have a similar structure, are given in the
Appendix.

The time dependence of the coherent-phonon amplitude
Dp(t) can be expressed in terms of a harmonic oscillator-
type second-order differential equation (for details, see the
Appendix),

[
d2

dt2
+ ω2

ph

]
Dp(t) = Fp(t), (4a)

with forcing term

Fp(t) = −
2ωph

h̄
gph

∑

k

[M+
k,p(⟨αk+pβk⟩ − ⟨α†

kβ
†
k+p⟩)

+L−
k,p(⟨α†

kαk+p⟩ + ⟨β†
k+pβk⟩)], (4b)

which is purely real. Within the framework of model (1),
the equation of motion for the coherent-phonon amplitude
Dp(t) is exact up to higher-order corrections in the correlation
expansion. It is worth noting that at the next order in the
hierarchy (i.e., at second order in gph) incoherent phonons
and quasiparticle-phonon scattering processes are generated,
which give rise to a finite lifetime of the coherent phonons
and which thereby lead to an exponential damping of the
coherent-phonon oscillations. Focusing on time scales much
shorter than the coherent phonon lifetime, we neglect in
the following any finite lifetime effects due to quasiparticle-
phonon or phonon-phonon scattering processes.
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d

dt
O =

i

~ [H,O]

)
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test

d

dt

(

c†k1
ck2

)

=
i

!

[

H, c†k1
ck2

]

+
∂

∂t

(

c†k1
ck2

)

(1)

this
〈

α†
kαk′

〉

(t),
〈

β†
kβk′

〉

(t),
〈

α†
kβ†

k′

〉

(t),
〈

αkβk′

〉

(t) (2)

and

α†
k = ukc†k↑ + v∗

kc−k↓ (3)

β†
k = ukc†−k↓ − v∗

kck↑ (4)

1. f-Summenregel

Hint
ωres

Tc
(x) =? = 5.4

ty > tx

qy = π

ω > ωres

ω = 40 meV

Energy [meV]
new
χ(ω, q) = χ0(ω,q)

1−Uχ0(ω,q)

Im χ0(q, ω) / Im χ(q, ω)

Im χ0 / Im χ

Im χ0 / Re χ0

qx/π qy/π ω[meV ] q∥/π
E2(q, k)

1 − URe χ0(ω∗, q∗) = 0

For example
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EOM

i!
d

dt

〈

α†
kβ†

k+q

〉

= − (Rk + Rk+q) ⟨a†
kβ†

k+q⟩ + C∗
k+q⟨α

†
kαk+q⟩ + C∗

k

(

⟨β†
k+qβk⟩ − δq,0

)

+
e!

2m

∑

q′=±q0

2k · Aq′(t)
{

− L+
k,q′⟨α†

k+q′β
†
k+q⟩ + L+

k+q,−q′⟨α†
kβ†

k+q−q′⟩

−M−
k+q,−q′⟨α†

kαk+q−q′⟩ + M−
k,q′

(

⟨β†
k+qβk+q′⟩ − δq,q′

)}

+ · · ·

Order parameter

∆ = W
∑

k

⟨c−k↓c+k↑⟩

∆k =
∑

k

Wk,k′

[

uk′vk′

(

1 −
〈

α†
k′αk′

〉

−
〈

β†
k′βk′

〉)

+ u2
k′ ⟨βk′αk′⟩ − v2

k′

〈

α†
k′β

†
k′

〉]

(1)

Parameter values

∆t = 1ps (2)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (3)

Current density

j(q, ω) ≃
e!

mV

∑

k

k
[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
2m (E2

k)

(〈

α†
kβ†

k+q

〉

+
〈

αk+qβk

〉) ]

. (4)

j(q, ω) (5)

Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (6)

Lets do it

∆t T ∗ µ∗ (7)

leads to an effectively one-dimensional system of equations
interaction with laser field can be computed essentially exactly.

Up to order             , laser field only couples              to         
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Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (1)

Current density

j(q, ω) ≃
e!

mV

∑

k

k
[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
2m (E2

k)

(〈

α†
kβ†

k+q

〉

+
〈

αk+qβk

〉) ]

. (2)

j(q, ω) (3)

Pump pulse

!ω0 ! 2 |∆| !ωp " 2 |∆| (4)

Lets do it

∆t T ∗ µ∗ (5)

Theoretical prediction

|∆(t)| = ∆∞ +
a√
t
cos (2∆∞t + φ) (6)

BCS Hamiltonian

H = HBCS + Hem, (7a)

HBCS =
∑

k,σ

εkc†k,σck,σ +
∑

k

[

∆kc†k↑c
†
−k↓ + ∆∗

kc−k↓ck↑

]

, (7b)

Hem = H(1)
em + H(2)

em ,

Hem =
e

2m

∑

k,q,σ

[

!(2k + q) · Aq(t) + e
∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ,

H(2)
em =

e2

2m

∑

k,q,σ

[

∑

q′

Aq−q′(t) · Aq′(t)

]

c†k+q,σck,σ. (7c)

gap equation

∆k =
∑

k′

Wkk′ ⟨c−k′↓c+k′↑⟩ (8)
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Laser field
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coherent phonon amplitude
〈

b
p

〉

(t),
〈

b†
p

〉

(t) (1)

time-scales

!ω0 ! 2 |∆| τ∆ ≫ τϵ τp ≫ τ∆, τph (2)

and

τϵ τ∆ ∼ h/(2 |∆|) τph = 2π/ωph τp τL = 2π/ωL τel-ph (3)

EOM

i!
d

dt

〈

α†
kβ†

k+q

〉

= − (Rk + Rk+q) ⟨a†
kβ†

k+q⟩ + C∗
k+q⟨α

†
kαk+q⟩ + C∗

k

(

⟨β†
k+qβk⟩ − δq,0

)

+
e!

2m

∑

q′=±q0

2k · Aq′(t)
{

− L+
k,q′⟨α†

k+q′β
†
k+q⟩ + L+

k+q,−q′⟨α†
kβ†

k+q−q′⟩

−M−
k+q,−q′⟨α†

kαk+q−q′⟩ + M−
k,q′

(

⟨β†
k+qβk+q′⟩ − δq,q′

)}

+ · · ·

Order parameter

∆ = W
∑

k

⟨c−k↓c+k↑⟩

∆k =
∑

k

Wk,k′

[

uk′vk′

(

1 −
〈

α†
k′αk′

〉

−
〈

β†
k′βk′

〉)

+ u2
k′ ⟨βk′αk′⟩ − v2

k′

〈

α†
k′β

†
k′

〉]

(4)

Parameter values

∆t = 1ps (5)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (6)

Current density

j(q, ω) ≃
e!

mV

∑

k

k
[〈

α†
kαk+q

〉

−
〈

β†
k+qβk

〉

+ k · q
!2 |∆1|
2m (E2

k)

(〈

α†
kβ†

k+q

〉

+
〈

αk+qβk

〉) ]

. (7)

j(q, ω) (8)

Density matrix formalism: Equations of motion

d

dt
O =

i

~ [H,O]

)

)
)

[Papenkort, Kuhn, Axt, PRB 08]



1.6

1.4

1.2

1.0

0.8|
(t
)| 

(m
eV

)

3020100-10
t (ps)

 p = 0400 fs
 p = 01500 fs
 p = 10000 fs

Order parameter oscillations Quasiparticle occupations

Dirk Manske 

Analytic solution possible 

Yuzbashyan, Tsyplyatyev, Altshuler, PRL 2006 

    Algebraically damped order parameter oscillations !
after short pump pulse (                    ):

[Volkov, Kogan, JETP 74]!
[Yuzbashyan, Altshuler PRL 06]

- Adiabatic behavior for !!
- Non-adiabatic behavior for 

[A
PS

, M
an

sk
e,

 A
ve

lla
, P

R
B

 8
4,

 2
14

51
3 

(2
01

1)
]

-40

-30

-20

-10

0

10

20

30

40

U
(0

,t
) 

(a
rb

. 
u
n
it

s)

4035302520151050
t (ps)

12

10

8

6

4

2

0
F

T
 A

m
p

li
tu

d
e

2.52.01.51.00.50.0

 (meV)

 A0
2

p = 254

 A0
2

p = 415

 A0
2

p = 561

(b)
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

 (
m

eV
)

10008006004002000

A0
2

p (arb. units)

 p = 0.05 ps

 p = 0.50 ps

 p = 1.00 ps

 p ! 1.38 ps

 p = 2.00 ps

 p = 5.00 ps

 p = 20.0 ps

(c)

 A0
2

p = 254

 A0
2

p = 415

 A0
2

p = 561

 const " #
¬
t

(a)

Abbildung 1: (Color online) Panel (a):

Festkörperphysik II, Musterlösung 11.

Prof. M. Sigrist, WS05/06 ETH Zürich

with forcing term

Fp(t) = −
2ωph

!
gph

∑

k

[

M+
k,p

(

⟨αk+pβk⟩ − ⟨α†
kβ

†
k+p⟩

)

+ L−
k,p

(

⟨α†
kαk+p⟩ + ⟨β†

k+pβk⟩
) ]

,

Heisenberg

d

dt
O =

i

!
[H,O] +

∂

∂t
O (1)

coherent phonon amplitude

〈

bp
〉

(t),
〈

b†p
〉

(t) (2)

time-scales

!ω0 ! 2 |∆| τ∆ ≫ τϵ τp ≫ τ∆, τph (3)

Response of superconductor (w/o phonons)

 Two regimes:

(“Higgs” amplitude mode)

⌧� ⌧ ⌧p
⌧p ⌧ ⌧�
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Gap oscillations: Comparison with experiment

is heavily damped in the strong excitation limit. At each
excitation level, !Eprobe asymptotically reaches to a con-
stant value accompanied by the damped oscillation.
Besides the oscillation, !Eprobe shows a slow increase at
tpp > 2 ps to the constant value, indicating the gradual
decrease of the gap energy. Such a slow decrease of the
gap energy after the pump pulse irradiation has also been
observed in the previous near-visible optical pump experi-
ments, where the excess photon energy of the pump pulse
gives rise to the generation of phonons which in turn
causes the pair breaking in a slower time scale [25,26].
Meanwhile, a recent calculation using the nonequilibrium
dynamical mean-field theory [23] has also showed that
such a slow thermalization dynamics can occur as a unique
character of a nonequilibrium state, even without taking
into account the interaction with the phonon system. In the
present experiment, whereas the central photon energy of
the pump THz pulse is resonant to the gap energy, the high-
frequency components of the pump THz pulse larger than
the gap energy bring the excess energy to the QP system.
Therefore, the slow increase in Fig. 2(a) can be attributed
to the thermalization process of the excess energy.

As shown by the solid curves in Fig. 2(a), the oscillating
part of !EprobeðtppÞ is fitted by the following equation

!EprobeðtppÞ ¼ C1 þ C2tpp þ a
cosð2"ftpp þ ’Þ

ðtpp % t0Þb ; (1)

where C1, C2, a, b, ’, f, and t0 are parameters. The first
term indicates the nonoscillating part of the gap energy.

The second term is introduced to reproduce the gradual
decrease of the gap energy, which is attributed to the
thermalization process as described above. The third term
describes the order parameter oscillation with the power-
law decay as theoretically predicted [14,16,17]. Figure 2(b)
shows the oscillation frequency f obtained from the fits at
various pump intensities. Here we also plot the values of
2! at tpp ¼ 8 ps where the oscillation is damped, which
indicates the asymptotic value 2!1 of the gap energy after
the pump. Because of the slow change of the order
parameter in this temporal region, we evaluated 2!1
from the observed !Eprobeðtpp ¼ 8 psÞ by using the corre-

spondence in Fig. 1(f). The decrease of 2!1 as a function
of the pump intensity represented in Fig. 2(b) is reasonable
because the increase of the excited QP density causes the
gap reduction. The fitted values f and their pump-intensity
dependence are in excellent agreement with 2!1, which is
a characteristic feature of the order parameter oscillation
predicted in the theoretical studies [16,17]. Therefore, this
result strongly suggests that the oscillatory signal arises
from the collective Higgs amplitude mode anticipated in
the nonadiabatic excitation condition. Note that the oscil-
latory signal is observed in the cross-linear polarization
configuration of the TPTP experiments, which also indi-
cates its origin as the Higgs mode of isotropic s-wave SCs.
It is intriguing that the polarization dependent TPTP
experiments would elucidate the nature of symmetry of
such collective modes.
Figure 2(c) shows the fitted parameter b, the power-law

index for decay of the oscillation, as a function of the
pump intensity. The theoretical studies have shown that
within the linear approximation the oscillation decays with
b ¼ 0:5 for the weak-coupling BCS case due to the mixing
of the collective mode and QP states [14–16], and with
b ¼ 1:5 for the strong-coupling case [21]. Our result shows
that b changes from about 1 to 3 depending on the pump
intensity. Such a rapid decay depending on the excitation
intensity could be considered as a signature of the over-
damped oscillation of the order parameter [16,17].
The dynamics after the THz pulse excitation was also

investigated in the frequency domain. Figure 3(a) shows
the temporal evolution of the real-part optical conductivity
spectra #1ð!Þ as a function of tpp, obtained from the

TPTP spectroscopy in the two-dimensional time domains.
The optical conductivity spectrum #1ð!; tppÞ at each delay
time tpp was calculated from the waveform of the trans-

mitted probe E field. Figure 3(b) shows the #1ð!Þ spectra
at each tpp indicated by the white dotted lines in Fig. 3(a).
For comparison, Fig. 3(b) also shows the #1ð!Þ spectra
before the pump (tpp ¼ %2 ps) as the black dotted curves.
The temporal oscillation of the conductivity spectrum is
clearly seen, suggesting the oscillation of the gap energy.
However, the oscillation of the onset of the gap is not clear,
which might be obscured by the smooth onset of the
conductivity gap as observed even without the pump in
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FIG. 2 (color online). (a) The open circles show the temporal
evolution of the change of the probe E field, !Eprobe, at tgate ¼ t0
as a function of tpp in sample A at 4 K. The solid curves show

the fitted results with Eq. (1). (b) The oscillation frequency f
obtained from the fits and the asymptotic gap energy 2!1 as a
function of the pump intensity. (c) The power-law decay index b
as a function of the pump intensity.
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Response of superconductor (w/o phonons)

 Pump-probe conductivity shows signatures of non-adiabatic dynamics

arXiv:1309.7318 (2013)

our film samples. On the other hand, the spectral weight
and thus the superfluid density clearly show the temporal
oscillation. Therefore, we consider that the results can be
interpreted as the order parameter oscillation.

We also performed the TPTP experiments in samples B
and C that exhibit larger BCS gap energies than sample A.
Figures 4(a) and 4(b) show the temporal evolution of

!Eprobe as a function of tpp in samples B and C with
"pump="! ¼ 0:81 and 0.98, respectively, for various pump
intensities. The regions surrounded by the dotted lines in
Figs. 4(a) and 4(b) are enlarged in the insets with the fitted
curves. As similar to the case in Fig. 2(a), !Eprobe sharply
increases and decays into a nearly constant value within
2 ps, on top of which the long-lived oscillation is identified
at tpp > 2 ps. Therefore, the mechanism of this initial
peaklike signal should be different from the order parame-
ter oscillation, and we excluded this temporal domain in
the analysis in Fig. 2(a). Whereas the microscopic descrip-
tion for this initial process still remains as an issue to be
resolved, the pump THz pulse is considered to result in a
direct generation of high density QPs within this time scale
without mediating the phonon excitation [26]. Then the
initial population of QPs should decrease due to the
recombination process until the QP system reaches in a
chemical equilibrium with the phonon subsystem. Aside
from the oscillation, !Eprobe becomes almost constant at
tpp > 2 ps, which suggests that the two systems are equili-
brated within 2 ps due to the high QP recombination rate.
Thus the rapid decay of !Eprobe within 2 ps may be
attributed to the equilibration process with the phonon
system. The appearance of the Higgs amplitude mode in
the temporal region where the QPs equilibrate with the
phonon subsystem suggests its nature of the collective
mode, being robust against the much faster scattering
processes of individual QPs with phonons.
The oscillation at tpp > 2 ps in Fig. 4 is hardly identified

as the pump intensity increases. Our previous experiments
in the samples whose gap energy is similar to sample C
have been performed in such a high excitation regime [26],
where the spatial inhomogeneity appears. The fitted oscil-
lation frequencies f in the weak excitation limit [insets
of Figs. 4(a) and 4(b)] are higher than that in Fig. 2(a),
corresponding to the large gap energies in samples B and
C. We also found that the gradual increase of !Eprobe at
tpp > 2 ps seen in sample A [Fig. 2(a)] was not observed in
sample C. This is ascribed to the small excess photon
energy of the pump pulse in sample C with the large
BCS gap energy. Compared with the result in sample A
[Fig. 2(a)], the oscillation becomes less prominent for
samples B and C. This result is attributed to two reasons.
First, the larger values of "pump="! indicate that the non-
adiabaticity is weak for samples B and C. In addition, the
oscillation is considered to be smeared because the oscil-
lation cycle (1=f" 0:75 ps in sample C) is comparable to
the temporal resolution in this measurement [40].
In conclusion, we investigated the ultrafast dynamics of

s-wave SCs in a nonadiabatic excitation regime by using
the monocycle THz pulse. A clear temporal oscillation was
observed in the transmission of the probe THz pulse,
whose oscillation frequency is in excellent accordance
with the value of the asymptotic gap energy in the quasi-
stable nonequilibrium state. The results are well accounted

FIG. 3 (color online). (a) The temporal evolution of the real-
part optical conductivity spectra #1ð!Þ with the peak E field of
10 kV=cm of the pump THz pulse at 4 K as functions of the
frequency and tpp. (b) #1ð!Þ spectra at each tpp indicated by the

dotted lines in (a). The dotted curves show the spectrum before
the pump (tpp ¼ %2 ps). The arrows are guides for the eyes to

the oscillation.
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FIG. 4 (color online). (a),(b) The temporal evolution of !Eprobe

at a fixed delay tgate ¼ t0 as a function of tpp in samples B and C

at 4 K, respectively, for various pump intensities. The regions
surrounded by the dotted lines are enlarged in the insets with the
fitted curves and the oscillation frequencies.
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Superconductor coupled to optical phonons

 Linear coupling to optical phonons:

Hel-ph = gph
X

p,k,�

h
(b†�p + bp)c

†
k+p,�ck,� + c.c.

i

- perform expansion in          using d

dt
O =

i

~ [H,O]

infinite hierarchy of equations of motion

forced harmonic oscillator

RESONANT GENERATION OF COHERENT PHONONS IN A . . . PHYSICAL REVIEW B 84, 214513 (2011)

phonon modes is straightforward. The superconductor is
coupled to the phononic system via the interaction

He−ph = gph

∑

p,k,σ

(b†−p + bp)c†k+p,σ ck,σ , (1d)

where gph denotes the electron-phonon coupling constant. In
the following we assume that the electron-phonon coupling
strength is much smaller than the superconducting energy
scales,36 such that the influence of the phonon subsystem on
the superconductor becomes negligibly small.

III. DENSITY-MATRIX FORMALISM

Physical observables, such as the order-parameter ampli-
tude |"(t)| and the lattice displacement U (r,t), can all be
expressed in terms of the Bogoliubov quasiparticle densities
and the mean phonon amplitudes. Hence we derive equations
of motion for these quantities using the framework of the
density-matrix formalism. To this end, it is advantageous
to perform a canonical Bogoliubov transformation of the
fermionic operators, with αk = ukck↑ + vkc

†
−k↓ and β

†
k =

ukc
†
−k↓ − vkck↑, where the coefficients uk and vk are time

independent and chosen such that the BCS part of the

Hamiltonian, Hsc, in the initial state, i.e., at t = ti , takes
diagonal form (see the Appendix). Due to the interaction term
He−ph, Eq. (1d), the equations of motion for the single-particle
density matrices are not closed, but give rise to an infinite
hierarchy of equations of higher-order density matrices. For
the purpose of studying the generation of coherent phonons, it
suffices to break this hierarchy at first order, which amounts to
neglecting all correlations among quasiparticles and phonons.
Thus phonon-assisted quantities, such as ⟨α†

kαk′bp⟩, are factor-
ized according to ⟨α†

kαk′bp⟩ ≃ ⟨α†
kαk′ ⟩⟨bp⟩. A nonvanishing

⟨bp⟩ corresponds to a finite displacement of the lattice
ions. That is, the lattice displacement U (r,t) is connected
to the coherent-phonon amplitude Dp(t) = ⟨bp⟩ + ⟨b†−p⟩
via

U (r,t) =
√

h̄

2MωphV

∑

p

Dp(t)e+ip·r, (2)

where M is the reduced mass of the lattice ions and V the
system’s volume.

At first order in the correlation expansion in gph the equation
of motion for the normal quasiparticle density ⟨α†

kαk′ ⟩, as
obtained from the Heisenberg equation of motion, is given
by

ih̄
d

dt
⟨α†

kαk′ ⟩ = (Rk′ − Rk)⟨α†
kαk′ ⟩ + Ck′ ⟨α†

kβ
†
k′ ⟩ + C∗

k⟨αk′βk⟩

− eh̄

2m

∑

q=±qp

(2k + q) · Aq[L+
k,q⟨α

†
k+qαk′ ⟩ − L+

k′,−q⟨α
†
kαk′−q⟩ − M−

k,q⟨αk′βk+q⟩ − M−
k′,−q⟨α

†
kβ

†
k′−q⟩]

− e2

2m

∑

q

⎛

⎝
∑

q′=±qp

Aq−q′ · Aq′

⎞

⎠ [L−
k,q⟨α

†
k+qαk′ ⟩ − L−

k′,−q⟨α
†
kαk′−q⟩ + M+

k,q⟨αk′βk+q⟩ + M+
k′,−q⟨α

†
kβ

†
k′−q⟩]

− gph

∑

p

Dp[M+
k′,−p⟨α

†
kβ

†
k′−p⟩ + M+

k,p⟨αk′βk+p⟩ + L−
k,p⟨α

†
k+pαk′ ⟩ − L−

k′,−p⟨α
†
kαk′−p⟩], (3)

where Rk = εk(1 − 2v2
k) + 2ukvkRe", Ck = −2εkukvk +

"u2
k − "∗v2

k, L±
k,k′ = ukuk+k′ ± vkvk+k′ , and M±

k,k′ =
vkuk+k′ ± ukvk+k′ . Comparing the first and the last line of
Eq. (3), one sees that the quasiparticle-phonon interaction
at first order in the hierarchy simply leads to a nondiagonal
energy renormalization. The equations of motion for the
remaining three quasiparticle densities, ⟨β†

kβk′ ⟩, ⟨α†
kβ

†
k′ ⟩,

and ⟨αkβk′ ⟩, which have a similar structure, are given in the
Appendix.

The time dependence of the coherent-phonon amplitude
Dp(t) can be expressed in terms of a harmonic oscillator-
type second-order differential equation (for details, see the
Appendix),

[
d2

dt2
+ ω2

ph

]
Dp(t) = Fp(t), (4a)

with forcing term

Fp(t) = −
2ωph

h̄
gph

∑

k

[M+
k,p(⟨αk+pβk⟩ − ⟨α†

kβ
†
k+p⟩)

+L−
k,p(⟨α†

kαk+p⟩ + ⟨β†
k+pβk⟩)], (4b)

which is purely real. Within the framework of model (1),
the equation of motion for the coherent-phonon amplitude
Dp(t) is exact up to higher-order corrections in the correlation
expansion. It is worth noting that at the next order in the
hierarchy (i.e., at second order in gph) incoherent phonons
and quasiparticle-phonon scattering processes are generated,
which give rise to a finite lifetime of the coherent phonons
and which thereby lead to an exponential damping of the
coherent-phonon oscillations. Focusing on time scales much
shorter than the coherent phonon lifetime, we neglect in
the following any finite lifetime effects due to quasiparticle-
phonon or phonon-phonon scattering processes.
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where M is the reduced mass of the lattice ions and V the
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At first order in the correlation expansion in gph the equation
of motion for the normal quasiparticle density ⟨α†
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Heisenberg

d

dt
O =

i

!
[H,O] +

∂

∂t
O (1)

coherent phonon amplitude
〈

bp
〉

(t),
〈

b†p
〉

(t) (2)

time-scales

!ω0 ! 2 |∆| τ∆ ≫ τϵ τp ≫ τ∆, τph (3)

and

τϵ τ∆ ∼ h/(2 |∆|) τph = 2π/ωph τp τL = 2π/ωL τel-ph (4)
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2k · Aq′(t)
{

− L+
k,q′⟨α†

k+q′β
†
k+q⟩ + L+

k+q,−q′⟨α†
kβ†

k+q−q′⟩

−M−
k+q,−q′⟨α†

kαk+q−q′⟩ + M−
k,q′

(

⟨β†
k+qβk+q′⟩ − δq,q′

)}

+ · · ·

Order parameter

∆ = W
∑

k

⟨c−k↓c+k↑⟩

∆k =
∑

k

Wk,k′

[

uk′vk′

(

1 −
〈

α†
k′αk′

〉

−
〈

β†
k′βk′

〉)

+ u2
k′ ⟨βk′αk′⟩ − v2

k′

〈

α†
k′β

†
k′

〉]

(5)

Parameter values

∆t = 1ps (6)

Laser field

(Aq)
n (k, k′) → (k, k′ + nq) (7)

 Study generation of coherent phonons: 
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phonon modes is straightforward. The superconductor is
coupled to the phononic system via the interaction

He−ph = gph

∑

p,k,σ

(b†−p + bp)c†k+p,σ ck,σ , (1d)

where gph denotes the electron-phonon coupling constant. In
the following we assume that the electron-phonon coupling
strength is much smaller than the superconducting energy
scales,36 such that the influence of the phonon subsystem on
the superconductor becomes negligibly small.

III. DENSITY-MATRIX FORMALISM

Physical observables, such as the order-parameter ampli-
tude |"(t)| and the lattice displacement U (r,t), can all be
expressed in terms of the Bogoliubov quasiparticle densities
and the mean phonon amplitudes. Hence we derive equations
of motion for these quantities using the framework of the
density-matrix formalism. To this end, it is advantageous
to perform a canonical Bogoliubov transformation of the
fermionic operators, with αk = ukck↑ + vkc

†
−k↓ and β

†
k =

ukc
†
−k↓ − vkck↑, where the coefficients uk and vk are time

independent and chosen such that the BCS part of the

Hamiltonian, Hsc, in the initial state, i.e., at t = ti , takes
diagonal form (see the Appendix). Due to the interaction term
He−ph, Eq. (1d), the equations of motion for the single-particle
density matrices are not closed, but give rise to an infinite
hierarchy of equations of higher-order density matrices. For
the purpose of studying the generation of coherent phonons, it
suffices to break this hierarchy at first order, which amounts to
neglecting all correlations among quasiparticles and phonons.
Thus phonon-assisted quantities, such as ⟨α†

kαk′bp⟩, are factor-
ized according to ⟨α†

kαk′bp⟩ ≃ ⟨α†
kαk′ ⟩⟨bp⟩. A nonvanishing

⟨bp⟩ corresponds to a finite displacement of the lattice
ions. That is, the lattice displacement U (r,t) is connected
to the coherent-phonon amplitude Dp(t) = ⟨bp⟩ + ⟨b†−p⟩
via

U (r,t) =
√

h̄

2MωphV

∑

p

Dp(t)e+ip·r, (2)

where M is the reduced mass of the lattice ions and V the
system’s volume.

At first order in the correlation expansion in gph the equation
of motion for the normal quasiparticle density ⟨α†

kαk′ ⟩, as
obtained from the Heisenberg equation of motion, is given
by

ih̄
d

dt
⟨α†

kαk′ ⟩ = (Rk′ − Rk)⟨α†
kαk′ ⟩ + Ck′ ⟨α†

kβ
†
k′ ⟩ + C∗

k⟨αk′βk⟩

− eh̄

2m

∑

q=±qp

(2k + q) · Aq[L+
k,q⟨α

†
k+qαk′ ⟩ − L+

k′,−q⟨α
†
kαk′−q⟩ − M−

k,q⟨αk′βk+q⟩ − M−
k′,−q⟨α

†
kβ

†
k′−q⟩]

− e2

2m

∑

q

⎛

⎝
∑

q′=±qp

Aq−q′ · Aq′

⎞

⎠ [L−
k,q⟨α

†
k+qαk′ ⟩ − L−

k′,−q⟨α
†
kαk′−q⟩ + M+

k,q⟨αk′βk+q⟩ + M+
k′,−q⟨α

†
kβ

†
k′−q⟩]

− gph

∑

p

Dp[M+
k′,−p⟨α

†
kβ

†
k′−p⟩ + M+

k,p⟨αk′βk+p⟩ + L−
k,p⟨α

†
k+pαk′ ⟩ − L−

k′,−p⟨α
†
kαk′−p⟩], (3)

where Rk = εk(1 − 2v2
k) + 2ukvkRe", Ck = −2εkukvk +

"u2
k − "∗v2

k, L±
k,k′ = ukuk+k′ ± vkvk+k′ , and M±

k,k′ =
vkuk+k′ ± ukvk+k′ . Comparing the first and the last line of
Eq. (3), one sees that the quasiparticle-phonon interaction
at first order in the hierarchy simply leads to a nondiagonal
energy renormalization. The equations of motion for the
remaining three quasiparticle densities, ⟨β†

kβk′ ⟩, ⟨α†
kβ

†
k′ ⟩,

and ⟨αkβk′ ⟩, which have a similar structure, are given in the
Appendix.

The time dependence of the coherent-phonon amplitude
Dp(t) can be expressed in terms of a harmonic oscillator-
type second-order differential equation (for details, see the
Appendix),

[
d2

dt2
+ ω2

ph

]
Dp(t) = Fp(t), (4a)

with forcing term

Fp(t) = −
2ωph

h̄
gph

∑

k

[M+
k,p(⟨αk+pβk⟩ − ⟨α†

kβ
†
k+p⟩)

+L−
k,p(⟨α†

kαk+p⟩ + ⟨β†
k+pβk⟩)], (4b)

which is purely real. Within the framework of model (1),
the equation of motion for the coherent-phonon amplitude
Dp(t) is exact up to higher-order corrections in the correlation
expansion. It is worth noting that at the next order in the
hierarchy (i.e., at second order in gph) incoherent phonons
and quasiparticle-phonon scattering processes are generated,
which give rise to a finite lifetime of the coherent phonons
and which thereby lead to an exponential damping of the
coherent-phonon oscillations. Focusing on time scales much
shorter than the coherent phonon lifetime, we neglect in
the following any finite lifetime effects due to quasiparticle-
phonon or phonon-phonon scattering processes.
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Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |!(t)|
and the lattice displacement U (r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dp(t) resembles the equation of a forced harmonic
oscillator with driving force Fp(t). The forcing term Fp(t) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dp(t) =
∫ t

ti

dt ′ Fp(t ′)
sin[ωph(t − t ′)]

ωph
, (5)

where we assumed the following initial conditions: Dp(ti) = 0
and d

dt
Dp(ti) = 0, for all p. Depending on the considered

ordering of time scales, the time dependence of the driving
force Fp can be approximated by different functions.

First, we focus on the regime τp ≪ τ! ∼ τph, where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period τph is of the
same order of magnitude as the dynamical time scale of the
order parameter τ!. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.23–31 Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.23–27 In particular,
it has been shown that as t → ∞, the absolute value of the
order parameter |!(t)| approaches, in an oscillatory fashion, a
constant value !∞ < |!(ti)|, i.e.,

|!(t)| = !∞ + b√
t

cos (2!∞t/h̄ + φ) , (6)

where b and φ are constants that depend on the initial state.27

The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/

√
t

decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) ≃ %(t)[Ap + Bp cos (2!∞t/h̄) /
√

t], (7)

with %(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency ωph is
close to resonance with the order parameter oscillations, i.e.,

ωd = |2!∞/h̄ − ωph| ≪ ωph, we find that, to leading order in
ωd/ωph, the coherent-phonon amplitude Dp(t) is given by

Dp(t) ≃ Bp

ωph

√
π

2ωd
[cos(tωph)S2(tωd) + sin(tωph)C2(tωd)],

(8)

for t > 0, and where S2 and C2 denote the two Fresnel
integrals.37 In other words, the time evolution of Dp(t) exhibits
a beatinglike phenomenon, i.e., Dp(t) oscillates with frequency
ωph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, h̄ωph = 2!∞, the
coherent-phonon amplitude takes the form

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)] + Bp

ωph

√
t sin(ωpht)

+ Bp

ωph

∫ t

0

dt ′

2
√

t ′
sin[ωph(t − 2t ′)], (9)

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dp(t) grows like

√
t . This is in excellent

agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime τp,τ! ≪ τph, where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that Ap is not too
small compared to Bp in Eq. (7), the forcing term Fp(t) can be
approximated by Fp(t) ≃ Ap%(t). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dp(t)

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)], for t > 0. (10)

Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
τph. The amplitude of the oscillations increases with decreasing
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FIG. 3. (Color online) Lattice displacement U (0,t) as a function
of time t for three different pump pulse lengths τp = 0.05, 2, and 10
ps and two different phonon frequencies ωph = 0.1 and 0.05 meV/h̄,
corresponding to τph = 41 and 83 ps, respectively. The integrated
pump pulse intensity for each curve is adjusted such that 2!∞ =
1.7 meV. The curves with τp = 2 and 10 ps have been multiplied by
the constant factor 50 and 400, respectively.
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Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |!(t)|
and the lattice displacement U (r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dp(t) resembles the equation of a forced harmonic
oscillator with driving force Fp(t). The forcing term Fp(t) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dp(t) =
∫ t

ti

dt ′ Fp(t ′)
sin[ωph(t − t ′)]

ωph
, (5)

where we assumed the following initial conditions: Dp(ti) = 0
and d

dt
Dp(ti) = 0, for all p. Depending on the considered

ordering of time scales, the time dependence of the driving
force Fp can be approximated by different functions.

First, we focus on the regime τp ≪ τ! ∼ τph, where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period τph is of the
same order of magnitude as the dynamical time scale of the
order parameter τ!. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.23–31 Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.23–27 In particular,
it has been shown that as t → ∞, the absolute value of the
order parameter |!(t)| approaches, in an oscillatory fashion, a
constant value !∞ < |!(ti)|, i.e.,

|!(t)| = !∞ + b√
t

cos (2!∞t/h̄ + φ) , (6)

where b and φ are constants that depend on the initial state.27

The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/

√
t

decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) ≃ %(t)[Ap + Bp cos (2!∞t/h̄) /
√

t], (7)

with %(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency ωph is
close to resonance with the order parameter oscillations, i.e.,

ωd = |2!∞/h̄ − ωph| ≪ ωph, we find that, to leading order in
ωd/ωph, the coherent-phonon amplitude Dp(t) is given by

Dp(t) ≃ Bp

ωph

√
π

2ωd
[cos(tωph)S2(tωd) + sin(tωph)C2(tωd)],

(8)

for t > 0, and where S2 and C2 denote the two Fresnel
integrals.37 In other words, the time evolution of Dp(t) exhibits
a beatinglike phenomenon, i.e., Dp(t) oscillates with frequency
ωph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, h̄ωph = 2!∞, the
coherent-phonon amplitude takes the form

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)] + Bp

ωph

√
t sin(ωpht)

+ Bp

ωph

∫ t

0

dt ′

2
√

t ′
sin[ωph(t − 2t ′)], (9)

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dp(t) grows like

√
t . This is in excellent

agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime τp,τ! ≪ τph, where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that Ap is not too
small compared to Bp in Eq. (7), the forcing term Fp(t) can be
approximated by Fp(t) ≃ Ap%(t). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dp(t)

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)], for t > 0. (10)

Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
τph. The amplitude of the oscillations increases with decreasing
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of time t for three different pump pulse lengths τp = 0.05, 2, and 10
ps and two different phonon frequencies ωph = 0.1 and 0.05 meV/h̄,
corresponding to τph = 41 and 83 ps, respectively. The integrated
pump pulse intensity for each curve is adjusted such that 2!∞ =
1.7 meV. The curves with τp = 2 and 10 ps have been multiplied by
the constant factor 50 and 400, respectively.

214513-4

Equation of motion for coherent phonon amplitude

forced harmonic oscillator

Fp(t) = �2⇤ph

~ gph
X

k

h
M+

k,p

⇣
⇥�k+p⇥k⇤ � ⇥�†

k⇥
†
k+p⇤

⌘
+ · · ·

i

!
- abrupt change in quasiparticle states leads!
    to jump in equilibrium position of lattice!!
- cosine oscillations in lattice displacement!!
- extrema at integer and half-integer values of 

 Displacive excitation of coherent phonons: !
     (similar to semiconductors)

step-function

⌧ph

)
)

Forcing term can be approximated by

⌧p ⌧ ⌧� ⌧ ⌧ph



ANDREAS P. SCHNYDER, DIRK MANSKE, AND ADOLFO AVELLA PHYSICAL REVIEW B 84, 214513 (2011)

Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |!(t)|
and the lattice displacement U (r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dp(t) resembles the equation of a forced harmonic
oscillator with driving force Fp(t). The forcing term Fp(t) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dp(t) =
∫ t

ti

dt ′ Fp(t ′)
sin[ωph(t − t ′)]

ωph
, (5)

where we assumed the following initial conditions: Dp(ti) = 0
and d

dt
Dp(ti) = 0, for all p. Depending on the considered

ordering of time scales, the time dependence of the driving
force Fp can be approximated by different functions.

First, we focus on the regime τp ≪ τ! ∼ τph, where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period τph is of the
same order of magnitude as the dynamical time scale of the
order parameter τ!. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.23–31 Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.23–27 In particular,
it has been shown that as t → ∞, the absolute value of the
order parameter |!(t)| approaches, in an oscillatory fashion, a
constant value !∞ < |!(ti)|, i.e.,

|!(t)| = !∞ + b√
t

cos (2!∞t/h̄ + φ) , (6)

where b and φ are constants that depend on the initial state.27

The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/

√
t

decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) ≃ %(t)[Ap + Bp cos (2!∞t/h̄) /
√

t], (7)

with %(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency ωph is
close to resonance with the order parameter oscillations, i.e.,

ωd = |2!∞/h̄ − ωph| ≪ ωph, we find that, to leading order in
ωd/ωph, the coherent-phonon amplitude Dp(t) is given by

Dp(t) ≃ Bp

ωph

√
π

2ωd
[cos(tωph)S2(tωd) + sin(tωph)C2(tωd)],

(8)

for t > 0, and where S2 and C2 denote the two Fresnel
integrals.37 In other words, the time evolution of Dp(t) exhibits
a beatinglike phenomenon, i.e., Dp(t) oscillates with frequency
ωph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, h̄ωph = 2!∞, the
coherent-phonon amplitude takes the form

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)] + Bp

ωph

√
t sin(ωpht)

+ Bp

ωph

∫ t

0

dt ′

2
√

t ′
sin[ωph(t − 2t ′)], (9)

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dp(t) grows like

√
t . This is in excellent

agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime τp,τ! ≪ τph, where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that Ap is not too
small compared to Bp in Eq. (7), the forcing term Fp(t) can be
approximated by Fp(t) ≃ Ap%(t). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dp(t)

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)], for t > 0. (10)

Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
τph. The amplitude of the oscillations increases with decreasing
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FIG. 3. (Color online) Lattice displacement U (0,t) as a function
of time t for three different pump pulse lengths τp = 0.05, 2, and 10
ps and two different phonon frequencies ωph = 0.1 and 0.05 meV/h̄,
corresponding to τph = 41 and 83 ps, respectively. The integrated
pump pulse intensity for each curve is adjusted such that 2!∞ =
1.7 meV. The curves with τp = 2 and 10 ps have been multiplied by
the constant factor 50 and 400, respectively.
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Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |!(t)|
and the lattice displacement U (r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dp(t) resembles the equation of a forced harmonic
oscillator with driving force Fp(t). The forcing term Fp(t) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dp(t) =
∫ t

ti

dt ′ Fp(t ′)
sin[ωph(t − t ′)]

ωph
, (5)

where we assumed the following initial conditions: Dp(ti) = 0
and d

dt
Dp(ti) = 0, for all p. Depending on the considered

ordering of time scales, the time dependence of the driving
force Fp can be approximated by different functions.

First, we focus on the regime τp ≪ τ! ∼ τph, where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period τph is of the
same order of magnitude as the dynamical time scale of the
order parameter τ!. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.23–31 Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.23–27 In particular,
it has been shown that as t → ∞, the absolute value of the
order parameter |!(t)| approaches, in an oscillatory fashion, a
constant value !∞ < |!(ti)|, i.e.,

|!(t)| = !∞ + b√
t

cos (2!∞t/h̄ + φ) , (6)

where b and φ are constants that depend on the initial state.27

The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/

√
t

decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) ≃ %(t)[Ap + Bp cos (2!∞t/h̄) /
√

t], (7)

with %(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency ωph is
close to resonance with the order parameter oscillations, i.e.,

ωd = |2!∞/h̄ − ωph| ≪ ωph, we find that, to leading order in
ωd/ωph, the coherent-phonon amplitude Dp(t) is given by

Dp(t) ≃ Bp

ωph

√
π

2ωd
[cos(tωph)S2(tωd) + sin(tωph)C2(tωd)],

(8)

for t > 0, and where S2 and C2 denote the two Fresnel
integrals.37 In other words, the time evolution of Dp(t) exhibits
a beatinglike phenomenon, i.e., Dp(t) oscillates with frequency
ωph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, h̄ωph = 2!∞, the
coherent-phonon amplitude takes the form

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)] + Bp
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t sin(ωpht)

+ Bp

ωph
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0
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2
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sin[ωph(t − 2t ′)], (9)

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dp(t) grows like

√
t . This is in excellent

agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime τp,τ! ≪ τph, where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that Ap is not too
small compared to Bp in Eq. (7), the forcing term Fp(t) can be
approximated by Fp(t) ≃ Ap%(t). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dp(t)

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)], for t > 0. (10)

Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
τph. The amplitude of the oscillations increases with decreasing
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time-scales
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Parameter values
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Generation of coherent phonons: Numerical results

 Numerical results for displacive excitation of coherent phonons: 

- cosine oscillations in lattice displacement!!
- extrema at integer and half-integer values of 

U(R0, t)

)⌧p ⌧ ⌧� ⌧ ⌧ph
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Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |!(t)|
and the lattice displacement U (r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dp(t) resembles the equation of a forced harmonic
oscillator with driving force Fp(t). The forcing term Fp(t) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dp(t) =
∫ t

ti

dt ′ Fp(t ′)
sin[ωph(t − t ′)]

ωph
, (5)

where we assumed the following initial conditions: Dp(ti) = 0
and d

dt
Dp(ti) = 0, for all p. Depending on the considered

ordering of time scales, the time dependence of the driving
force Fp can be approximated by different functions.

First, we focus on the regime τp ≪ τ! ∼ τph, where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period τph is of the
same order of magnitude as the dynamical time scale of the
order parameter τ!. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.23–31 Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.23–27 In particular,
it has been shown that as t → ∞, the absolute value of the
order parameter |!(t)| approaches, in an oscillatory fashion, a
constant value !∞ < |!(ti)|, i.e.,

|!(t)| = !∞ + b√
t

cos (2!∞t/h̄ + φ) , (6)

where b and φ are constants that depend on the initial state.27

The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/

√
t

decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) ≃ %(t)[Ap + Bp cos (2!∞t/h̄) /
√

t], (7)

with %(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency ωph is
close to resonance with the order parameter oscillations, i.e.,

ωd = |2!∞/h̄ − ωph| ≪ ωph, we find that, to leading order in
ωd/ωph, the coherent-phonon amplitude Dp(t) is given by

Dp(t) ≃ Bp

ωph

√
π

2ωd
[cos(tωph)S2(tωd) + sin(tωph)C2(tωd)],

(8)

for t > 0, and where S2 and C2 denote the two Fresnel
integrals.37 In other words, the time evolution of Dp(t) exhibits
a beatinglike phenomenon, i.e., Dp(t) oscillates with frequency
ωph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, h̄ωph = 2!∞, the
coherent-phonon amplitude takes the form

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)] + Bp

ωph

√
t sin(ωpht)

+ Bp

ωph

∫ t

0

dt ′

2
√

t ′
sin[ωph(t − 2t ′)], (9)

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dp(t) grows like

√
t . This is in excellent

agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime τp,τ! ≪ τph, where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that Ap is not too
small compared to Bp in Eq. (7), the forcing term Fp(t) can be
approximated by Fp(t) ≃ Ap%(t). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dp(t)

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)], for t > 0. (10)

Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
τph. The amplitude of the oscillations increases with decreasing
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FIG. 3. (Color online) Lattice displacement U (0,t) as a function
of time t for three different pump pulse lengths τp = 0.05, 2, and 10
ps and two different phonon frequencies ωph = 0.1 and 0.05 meV/h̄,
corresponding to τph = 41 and 83 ps, respectively. The integrated
pump pulse intensity for each curve is adjusted such that 2!∞ =
1.7 meV. The curves with τp = 2 and 10 ps have been multiplied by
the constant factor 50 and 400, respectively.
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Equation (3) and the corresponding equations for the other
three quasiparticle densities (see the Appendix) together with
Eq. (4) form a closed set of coupled differential equations. In
Sec. V we solve numerically this set of equations to determine
the temporal evolution of the order parameter amplitude |!(t)|
and the lattice displacement U (r,t). Before doing so, we
present in Sec. IV a qualitative analysis of the differential
Eq. (4) and derive approximate solutions for different time
scale regimes.

IV. COHERENT PHONON GENERATION MECHANISM

The equation of motion (4) for the coherent-phonon
amplitude Dp(t) resembles the equation of a forced harmonic
oscillator with driving force Fp(t). The forcing term Fp(t) is a
function of the quasiparticle densities and implicitly depends
on the optical excitation conditions, since both the normal
and the anomalous quasiparticle densities are driven by the
optical pump pulse. Hence a rapid increase in the Bogoliubov
quasiparticle distribution function due to optical excitation acts
as a driving force for coherent-phonon oscillations. To make
this more precise, let us express the general solution of the
second-order differential equation (4) as

Dp(t) =
∫ t

ti

dt ′ Fp(t ′)
sin[ωph(t − t ′)]

ωph
, (5)

where we assumed the following initial conditions: Dp(ti) = 0
and d

dt
Dp(ti) = 0, for all p. Depending on the considered

ordering of time scales, the time dependence of the driving
force Fp can be approximated by different functions.

First, we focus on the regime τp ≪ τ! ∼ τph, where
both the quasiparticle and phononic subsystems evolve in
a nonadiabatic manner and the phonon period τph is of the
same order of magnitude as the dynamical time scale of the
order parameter τ!. A number of recent publications have
investigated this regime, albeit in the absence of phonon
interactions.23–31 Indeed, an exact solution has been derived
for the dynamics of a BCS superconductor after an abrupt
perturbation by, e.g., an interaction quench.23–27 In particular,
it has been shown that as t → ∞, the absolute value of the
order parameter |!(t)| approaches, in an oscillatory fashion, a
constant value !∞ < |!(ti)|, i.e.,

|!(t)| = !∞ + b√
t

cos (2!∞t/h̄ + φ) , (6)

where b and φ are constants that depend on the initial state.27

The evolution of the normal and anomalous quasiparticle
densities shows a similar oscillatory behavior with a 1/

√
t

decay. As it turns out, the coupling to phonons does not
qualitatively alter this time dependence, as long as the
electron-phonon interaction strength is small compared to the
superconducting gap amplitude. Hence we approximate the
forcing term in Eq. (4) as

Fp(t) ≃ %(t)[Ap + Bp cos (2!∞t/h̄) /
√

t], (7)

with %(t) the Heaviside step function. Inserting Eq. (7) into
Eq. (5), and assuming that the phonon frequency ωph is
close to resonance with the order parameter oscillations, i.e.,

ωd = |2!∞/h̄ − ωph| ≪ ωph, we find that, to leading order in
ωd/ωph, the coherent-phonon amplitude Dp(t) is given by

Dp(t) ≃ Bp

ωph

√
π

2ωd
[cos(tωph)S2(tωd) + sin(tωph)C2(tωd)],

(8)

for t > 0, and where S2 and C2 denote the two Fresnel
integrals.37 In other words, the time evolution of Dp(t) exhibits
a beatinglike phenomenon, i.e., Dp(t) oscillates with frequency
ωph and an amplitude that is modulated by the Fresnel integrals
(cf. Figs. 1 and 2). Exactly at resonance, h̄ωph = 2!∞, the
coherent-phonon amplitude takes the form

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)] + Bp

ωph

√
t sin(ωpht)

+ Bp

ωph

∫ t

0

dt ′

2
√

t ′
sin[ωph(t − 2t ′)], (9)

for t > 0. As t increases, the second term quickly dominates
in the above expression and hence the amplitude of the
oscillations in Dp(t) grows like

√
t . This is in excellent

agreement with the numerical simulations presented in Sec. V
(cf. Fig. 2).

Second, we consider the regime τp,τ! ≪ τph, where the
Bogoliubov quasiparticle oscillations average out on the time
scale of the phonons. In this case, provided that Ap is not too
small compared to Bp in Eq. (7), the forcing term Fp(t) can be
approximated by Fp(t) ≃ Ap%(t). Inserting this into Eq. (5)
yields for the coherent-phonon amplitude Dp(t)

Dp(t) ≃ Ap

ω2
ph

[1 − cos(ωpht)], for t > 0. (10)

Thus the phonon oscillations are cosinelike, with the extrema
lying at integer and half integer multiples of the phonon period
τph. The amplitude of the oscillations increases with decreasing
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corresponding to τph = 41 and 83 ps, respectively. The integrated
pump pulse intensity for each curve is adjusted such that 2!∞ =
1.7 meV. The curves with τp = 2 and 10 ps have been multiplied by
the constant factor 50 and 400, respectively.
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Generation of coherent phonons: Quantum beats

Hierarchy of time scales:                     
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Generation of coherent phonons: Pump-probe conductivity

Hierarchy of time scales:                     ⌧p ⌧ ⌧� ⇠ ⌧ph

 Signatures of non-adiabatic dynamics in pump-probe conductivity
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Lattice displacement: Pump-probe conductivity:

resonantly enhanced oscillations in pump-probe conductivity !
as a function of delay time=) �t

⌧p ⌧ ⌧� = ⌧ph

�ph = ��1(= 2�1/~)
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(e) Non-adiabatic regime                   !!
  - order parameter oscillations!
              qualitative agreement with experiment!!
  - generation of coherent phonos!!
  - for                       :  resonant enhancement of !
    coherent phonons
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1. f-Summenregel

lattice displacement U(r, t) !ωph = 2∆∞

⟨α†
kβ

†
k′bp⟩ ≃ ⟨α†

kβ
†
k′⟩⟨bp⟩

Fp(t) = −
2ωph

!
gph

∑

k

[

M+
k,p

(

⟨αk+pβk⟩ − ⟨α†
kβ

†
k+p⟩

)

+ L−
k,p

(

⟨α†
kαk+p⟩ + ⟨β†

k+pβk⟩

time scales ∆∞

τpulse ≪ τ∆ τ∆ ≪ τpulse

τpulse ≪ τph, τ∆ ≪ τϵ (2)

Spectrum

λ1 =
√

(

ξ+
k

)2
+

(

∆+
k

)2
λ2 =

√

(

ξ−k
)2

+
(

∆−
k

)2
(3)

and

∆−
ek

∆−
k φ σ (4)

(s + p) f(k) = 1 (5)

(dx2−y2 + f) f(k) = k2
x − k2

y (6)

(dxy + p) f(k) = 2kxky (7)

Family of 1D Hamiltonians

H(111)(k∥; k⊥) H(011)(k∥; k⊥) (8)

q(k) : Sd → U(2) (9)

Spectrum flattening:

Q(k) = − 2P =

(

0 q(k)
q†(k) 0

)

π1 [U(2)] = , π2 [U(2)] = 0, π3 [U(2)] = (10)

ω/ω∆

δt [ps]

-4

-2

 0

 2

 4

 6

 8

Re(σ) [arb. units]

(a)

 0.85
 0.95

 1.05
 1.15

 5
 7

 9
 11

 13
 15

Re(σ) [arb. units]

 0.95

 1.05

 1.15

 1.25

 1.35

 0  3  6  9  12 15

|∆
| 
[m

e
V

]

t [ps]

(d)

-1

 0

 1

 0  8  16  24

U
(0

,t
) 

[a
rb

. 
u
n
its

]

t [ps]

(e)

 0

 0.25

 0.5

 0.75

 1

 1.7  2  2.3

F
T

-A
m

p
.

ω [meV]

(e)

(f)

 Pump-probe conductivity:!!
  - oscillations in                  as a function of delay time!
    with frequencies                             and !!
  - strong enhancement of oscillation amplitude!
    when frequencies are in resonance:  
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⇥(�t,⇤)
��1 = 2�1/~

!�1 = !ph

 Outlook:!
   - consider higher order in correlation expansion:!
       incoherent phonons, feedback on SC condensate

!ph

�p ⌧ ��, �ph :

)


