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An important question in the physics of superconducting nanostructures is the role of thermal fluctuations
(TFs) on superconductivity in the zero-dimensional limit. Here, we probe the evolution of superconductivity as
a function of temperature and particle size in single, isolated Pb nanoparticles. Accurate determination of the
size and shape of each nanoparticle makes our system a good model to quantitatively compare the experimental
findings with theoretical predictions. In particular we study the role of TFs on the tunneling density of states (DOS)
and the superconducting energy gap (�) in these nanoparticles. For the smallest particles h � 13 nm, we clearly
observe a finite energy gap beyond Tc giving rise to a “critical region.” We show explicitly through quantitative
theoretical calculations that these deviations from mean-field predictions are caused by TFs. Moreover, for
T � Tc, where TFs are negligible and typical sizes below 20 nm, we show that � gradually decreases with
reduction in particle size. This result is described by a theoretical model that includes finite size effects and zero
temperature leading order corrections to the mean-field formalism.
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I. INTRODUCTION

Superconductivity in quantum confined systems has been
a subject of research for the past few decades.1–3 However,
recent findings promoted by technological developments have
revived the interest in this field.4–18 These advances can shed
light on the evolution of the ground state with particle size
or the role of (thermodynamic) fluctuations on the stability
of the superconducting state. Many earlier reports19–23 have
addressed some of these questions. However, a complete
understanding of these problems is far from complete, though
some general features are broadly accepted.

The effect of thermal fluctuations (TFs) on supercon-
ductivity in small particles has been probed previously in
ensemble-averaged nanoparticle systems through studies of
specific heat and diamagnetism.24–26 It is known that as the
dimension of the system is reduced below the superconducting
coherence length (ξ ), there are deviations from mean-field
behavior due to quantum and TFs that lead to the smearing
of the superconducting transition.27 Interesting effects arise
above the transition temperature (Tc) like the appearance
of excess diamagnetism, conductivity, specific heat, and
tunneling currents. A “critical regime” can thus be defined
where superconducting fluctuations dominate. In a zero-
dimensional superconductor where all dimensions are less than
ξ , fluctuation effects lead to a large critical regime, which in
principle can be accessed experimentally. A detailed study of
this critical regime is possible only through measurements on
single, isolated superconducting nanoparticles. Moreover, a
good knowledge of the geometry of the system is required to
carry out a quantitative comparison between experiments and
theory.

In this paper we present an experimental study of the
evolution of superconductivity in single, isolated nanoparticles
as a function of size and temperature which overcomes
these challenges. Through our scanning tunneling microscopy
(STM) measurements on individual Pb nanoparticles with
sizes ranging between 3–30 nm grown in situ in ultrahigh
vacuum (UHV) conditions, we have addressed two funda-
mental questions: In the low temperature limit, how does
superconductivity evolve as the particle size is decreased? For
higher temperatures, how do TFs affect the tunneling DOS and
hence superconductivity? In order to answer quantitatively
these questions we have compared the experimental results
to the theoretical predictions of a model that includes both
TFs in the static path approximation (SPA),28,29 finite-size
corrections to mean field, and the leading corrections to the
mean-field formalism at zero temperature.

The paper is structured as follows. After this introduction, in
Sec. II sample preparation and the experimental methodology
to obtain the superconducting energy gap (�) of the Pb
nanoparticles are presented. In Sec. III A we provide a
theoretical description of the DOS and the superconducting
gap (�) based on the path integral formalism that describes the
effect of TFs at T ∼ Tc. Section III B theoretically addresses the
low temperature regime (T � Tc) including deviations from
mean-field predictions according to the Richardson formalism.
The main results are presented and discussed in Sec. IV, where
the evolution of � with the particle size in the low temperature
limit and the TFs giving rise to a finite gap for T > Tc are shown
in IV A and IV B, respectively. In Sec. V the validity of the
Dynes expressions in the nanoscale regime and the role of the
broadening parameter �(T) are investigated. Finally the main
conclusions of the present work are summarized in Sec. VI.

104525-11098-0121/2011/84(10)/104525(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.104525


IVAN BRIHUEGA et al. PHYSICAL REVIEW B 84, 104525 (2011)

≈≈≈≈

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

d
I/
d
V

 (
a
rb

. 
u
n
it
s
)

V (mV)
5 10 15 20 25 30

0.4

0.6

0.8

1.0

1.2

1.4

 Experimental gap

 Gap from theory: Fixed λ
 Gap from theory: Variable λ

Δ 
(m

e
V

)

h (nm)

T = 1.2 K

FIG. 1. (Color online) (a) The top panel shows a schematic of the isolated Pb nanoparticles on the BN/Rh(111) substrate. The lower panel
is a typical STM image (162 × 125 nm2) showing the general morphology of the isolated Pb nanoparticles of different sizes (3D plot obtained
with the WSxM40) taken at a bias voltage of 1 V and a tunneling current of 0.1 nA. (b) Conductance spectra for particles with different sizes
and T = 1.1–1.25 K. The symbols denote the experimental raw data. The solid lines are the best fitting using (1) with the DOS Ns given by the
Dynes expression (2). Open squares correspond to a reference spectra measured in a Pb single crystal at 1.5 K. (c) Experimental (blue circles)
and theoretical (solid lines) of the average superconducting energy gap for T = 1.2 K as a function of particle size (h). In the black theoretical
curve it was assumed that the electron-phonon coupling λ = 0.385 does not depend on the particle size. In the red theoretical curve a size
dependent λ(h) is taken (see Appendix (4) and Fig. 8).

II. EXPERIMENTAL METHODS

The experiments were performed in a UHV system (base
pressure <5×10−11 Torr) combined with a home-built 3He
low-temperature STM. Pb-isolated nanoparticles of 3–30-nm
height were grown in situ on top of a BN/Rh(111) surface by
means of buffer layer assisted growth (BLAG) [see Fig. 1(a)].
BN, an ultrathin insulating layer with an electronic gap of
5–6 eV and a thickness of ∼0.25 nm, electronically decouples
the particles from the metallic Rh(111) substrate30 (for details
of the preparation see Appendix (1)). Our high resolution
STM images reveal that particles are hemispherical to a good
approximation (see Appendix (1)). Differential conductance
spectra (dI/dV vsV ) were measured with a tungsten (W)
tip on each nanoparticle with different heights using the
lock-in technique (50 μV at 830 Hz voltage modulation). A
stabilization current of 0.1 nA and an initial sample voltage
of 8.0 mV was used to measure all the tunneling spectra. The
additional energy broadening (other than thermal broadening)
due to instrumental noise in our system was calibrated by
measuring the tunneling conductance of a Pb(111) single
crystal at 1.5 K [open squares in Fig. 1(b)]. An upper limit
to the contribution of the broadening of the spectra due to an
additional instrumental noise of 20 μeV at 1.5 K was obtained

(see (Appendix (2)) for details). The calibration of the sample
temperature was performed by measuring the superconducting
critical temperature for bulk Pb, and the expected Tc of 7.25 K
was obtained (see Appendix (2)).

Figure 1(b) shows unprocessed experimental dI/dV spec-
tra measured at T � Tc for different particle sizes, which gives
their DOS. We fitted the curves with the tunneling equation31

G (V ) = dI

dV

∣∣∣∣
V

= Gnn

d

dV

×
{∫ ∞

−∞
Ns (E,�,�) {f (E) − f (E − eV)} dE

}
,

(1)

where Ns(E, �, �) is the DOS of the superconductor, f(E) is
the Fermi-Dirac distribution function, Gnn is the conductance
of the tunnel junction for V � �/e, and � is an effective
broadening parameter, which in bulk superconductors is
related to the quasiparticle lifetime.32,33 As will be shown
in Sec. V, in the case of nanoparticles it can also have
contributions from TFs.

In Pb, a strong-coupled superconductor, Ns(E, �, �)
should in principle be obtained directly from the Eliashberg’s
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mean-field formalism, which accounts for recombination
processes and electron-phonon scattering. However a simpler
DOS ansatz was proposed by Dynes and coworkers:32

Ns(E,�,�) = Re

[
|E| + i�(T )√

(|E| + i�(T ))2 − �(T )2

]
. (2)

This is broadly used since the values of � and � thus
obtained are in excellent agreement with the theoretical
predictions of the Eliashberg’s formalism. We used Eqs. (1)
and (2) to fit our experimental spectra with � and � as fitting
parameters. As can be seen in Fig. 1(b), there is an excellent
agreement between the experimental data and the theoretical
fits giving unique values of �(T) and �(T), which characterizes
ideally the superconducting state of each Pb nanoparticle (see
(Appendix (2)) for the description of the fitting procedure).

Solid symbols in Fig. 1(c) show the size variation of the
experimental superconducting gap � for low temperatures
T = 1.1–1.25 K obtained from the fits using Eqs. (1) and
(2). We observe that for large particles (>20 nm), � is similar
to that of bulk Pb (∼1.36 meV) and subsequently decreases
gradually as particle size is reduced.

III. THEORETICAL ASPECTS OF SUPERCONDUCTIVITY
IN A ZERO-DIMENSIONAL SUPERCONDUCTOR

Although Dynes ansatz nicely reproduces the experimental
conductance spectra (see Figs. 1 and 2), it does not give
any information about the physical phenomena relevant at
these length scales. One of the main goals of this paper
is to overcome this limitation by providing a quantitative
theoretical description of the experimental results. For that
purpose we combine different theoretical tools from the path
integral formalism in the SPA for T ∼ Tc to Richardson’s

equations that describe deviation from mean-field results in
the low temperature limit. In the following we provide an
introduction to these techniques.

A. T ∼ Tc: Description of TFs by the path integral formalism

The path integral formalism in the so-called SPA28 is a
powerful tool to describe the interplay between superconduc-
tivity and TFs in a zero-dimensional nanoparticle. We note
that for T � Tc, corrections to mean field due to TFs are
small, and other effects not included in SPA become relevant.
Consequently other techniques, such as the Richardson formal-
ism, must be employed in order to describe superconductivity
beyond the mean-field limit in this region (see next section).

SPA assumes � to be space-time homogenous and can be
used in our case as the system size is lower than the coherence
length. Explicit analytical results are obtained for the DOS and
� using this treatment, as described subsequently.

Superconductivity in the nanoparticle is modeled by the
usual Bardeen-Cooper-Schrieffer (BCS) Hamiltonian,

H =
∑

α

εα c†α − λδ
∑

α,α′>0

c†αc
†
−αc−α′c−α,

where λ is the coupling constant that describes the effective
electron-phonon attraction, δ is the mean level spacing, εα

are the eigenvalues of the one-body problem (for a free
particle in almost hemispherical geometry). States labeled
by α and −α are related by time-reversal symmetry. By a
Hubbard-Stratonovich transformation, the partition function
of the system (Z = Tr[e−βH ]) can be expressed in terms of
a complex gap variable �(τ,r). The spatial dependence of
�(τ,r) ≈ �(τ ) is negligible since the coherence length of
metallic particles is typically larger than the particle size.
It is worth noting that the imaginary time dependence of
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FIG. 2. (Color online) Conductance spectra
vs temperature T for two particles of heights
(a) 23 nm and (c) 10.5 nm. Experimental raw
data are shown by open circles. Data in ash is
taken at a temperature where no superconducting
signal is obtained. The solid lines are the fits
using Eqs. (1) and (2). For clarity the inset in
Figs. 2(a) and 2(c) show the excellent fit to
the conductance spectra at temperatures close
to Tc where the signal changes by 2–8% from
the background. (b), (d) show the variation of
�(T) (red solid circles) with temperature (T) for
the two particles as obtained from the fits. Solid
lines correspond to the variation expected from
BCS theory.
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FIG. 3. (Color online) (a) Conductance spectra for particle with height h = 10.5 nm at different temperatures between T = 1.0–6.5 K. The
symbols denote the experimental raw data. The solid lines are the best fits using Eq. (1) with the DOS Ns given by the SPA expression Eq. (3a).
(b) The same for h = 8 nm. The insets in the two show a magnified scale where spectra close to and greater than Tc have been plotted. The
clear signal above the background at these temperatures clearly demonstrates that the energy gap does not go to zero at Tc, and we see the
effect of fluctuations on the tunneling DOS. For clarity we show the spectra only for positive voltage.

the energy gap is related to quantum fluctuations (QFs).
We show in Sec. III B that for Pb this contribution is only
relevant for particles with a typical size, h < 5 nm. Therefore
to a good approximation the complex gap variable is also
homogenous in time. This amounts to completely neglecting
QFs but keeping TFs in the partition function [Eq. (3b)].We
determine Z explicitly, which permits us to compute different
observables related to the experimental results like the DOS
and the superconducting energy gap (�).

1. DOS

The normalized DOS, Ns(ω), is related to the imag-
inary time Green’s function g(ω + i�,α) by Ns(ω) =
− lim

�→0+
1

πN

∑
α Im[g(ω + i�,α)]. In the SPA approach

Green’s function is given by

g(iωn,α) =
(

z

z0

)−1 ∫ ∞

0
d��e−βA(|�|)gD(iωn,α),

where gD(iωn,α) is the usual superconducting Green’s func-
tion. We simplify this expression to obtain the DOS given
by

Ns(ω)=
(

z

z0

)−1∫ ∞

0
d��e−βA(|�|)Im

[
ω + i�√

�2 − (ω + i�)2

]

(3a)
z

z0
=

∫ ∞

0
d��e−βA(|�|), (3b)

with A(|�|)={(λδ)−1|�|2+∑
α(|εα| − ξα) − 2

β
log( e−βξα +1

e−β|εα |+1
)};

ξα = √
ε2
α + �2; β = 1/T; δ is the mean-level spacing; and

� is a broadening parameter which accounts for scattering
or recombination processes, escape rates from nanoparticles,
instrumental broadening, etc. The sum over α previously is
restricted to energies less than the Debye energy (ED). εα

denotes the energy levels of the one-body problem, which in
our case are the eigenvalues of the Schrodinger equation in a
close to hemispherical particle.

In order to compare the experimental tunneling
conductance spectra with the theoretical formalism of
SPA (see Fig. 3), we calculate dI/dV or G(V) by substituting
Eqs. (3a) in Eq. (1).

2. Superconducting energy gap

Experimentally the superconducting energy gap is obtained
by fitting the experimental G(V) with the theoretical ex-
pression given by Eqs. (1) and (2). This experimental gap
is compared to the theoretical prediction within the SPA
approach. We note first that since our model includes TFs
the gap is described by a certain distribution function. The
moments of this distribution are related to the spectral gap
measured in the experiments. When fluctuations become
important there is a certain ambiguity in the definition of the
gap as different definitions lead to the same gap in the bulk
limit. However these differences should be small. Keeping this
in mind, we have chosen the correlation function

�2
SPA = (δλ)2

∑
α,α′>0

〈c†αc†αc−α′c−α〉 − [〈c†αcα〉〈c†−αc−α〉

− 〈c†−αcα′ 〉〈c†αc−α′ 〉].
Using the explicit expression for the SPA partition function

[Eq. (3b)], it is possible to rewrite the previous expression as

�2
SPA =

(
z

z0

)−1 ∫
d� e−βA(|�|)|�|3

×
[
λ

∑
α

tanh(βξα/2)

2ξα

]2

. (4)

Since thermal phonons are less effective to pair electrons,
the electron-phonon interaction strength (λ) decreases as
temperature increases. In order to simulate this effect the
value of λ we use for each temperature is the result of a
simple quadratic interpolation between the values of λ at low
temperature and those around the critical temperature. The
values of λ used in the interpolation were obtained by fitting
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the experimental dI/dV with the theoretical G(V) [Eqs. (1)
and (3a)] obtained by the SPA approximation.

We will use the theoretical expression 4 to obtain energy
gaps from the SPA approach, which are compared with the
experimental energy gap (see Fig. 4).

B. T � Tc: Deviations from mean-field predictions and the
Richardson formalism

At low temperatures (T � Tc), QFs of the order parameter
and other types of finite-size corrections not included in
SPA (in this limit SPA is equivalent to mean field) can
become important. Therefore, to calculate the low temperature
behavior of the superconducting nanoparticles we proceed in
the following way. We start with the BCS gap equation for a
hemispherical particle of height h which can be recovered by a
zeroth-order saddle point calculation of the partition function
[Eq. (3b)]. This leads to

∂|�|A(�) = 0 ⇒ λ−1 =
∑

α

tanh(βξα/2)

2ξα

, (5)

where the sum is again restricted to the interval [−ED , ED]
around the Fermi energy. This mean-field approach breaks
down as the energy gap becomes comparable with the mean-
level spacing. In our experiments this occurs for h < 20 nm.

In this region the Richardson formalism,34 valid at T = 0, is
a powerful tool to describe deviations from mean-field results.
For instance it was found that for δ/�0 < 1 (where �0 is the
solution of (5) in the bulk limit), deviations in the energy gap
due to QFs are very small ∼(�/ED)(δ/�) (ED is the Debye
energy).35,36 The energy gap is therefore strongly modified by
QFs only for δ/� > 1. We can safely neglect the role of QFs
on � since δ/� > 1 corresponds to heights <5 nm close to
the minimum size experimentally studied here. The second
important result from the Richardson’s formalism is that the
leading finite-size correction (δ/�0) to the mean-field limit is
a blocking effect that can be implemented by simply removing
the two levels closest to Fermi level from the usual BCS gap
equation.35 This implies that for grains with an odd number
of particles the state occupied by the unpaired one does not
participate in pairing (see Appendix (3) for details).

For nanoparticles, EF and especially ED depend on the
particle size. However in all our calculations we stick to
the values of bulk Pb since its size dependence is relatively
weak and poorly understood theoretically. Hence, a theoretical
modeling of the size dependence of these quantities would
involve the introduction of additional free parameters that
would weaken the applicability of the theory. The resulting
theoretical expression of the gap is valid up to corrections of
the order ∼(δ/�0)2, which for Pb nanoparticles implies a size
regime h > 5–6 nm. In order to mimic the effect of dynamical
phonons present in the Eliashberg formalism used to describe
a strong coupling superconductor, we employ size-dependent
electron-phonon interaction strength (λ). A simple quadratic
interpolation scheme is employed using λ obtained from fitting
of the experimental G(V) at T � Tc with the SPA G(V)
given by Eqs. (1) and (3a) (see Appendix (4) for details).
In addition according to the experimental results, in Pb grains
fluctuations of the energy gap caused by shell effects in the
spectral density as a function of the particle size are small14

in comparison with those of Sn. This is not surprising as
inelastic scattering and other quantum decoherence effects that
shorten the coherence length, and consequently suppress shell
effects,14,17 are enhanced in strongly coupled superconductors
such as Pb. As a consequence of this, in our theoretical
model we have smoothed out these fluctuations and have not
taken into account other coherence effects such as the size
dependence of the chemical potential and matrix elements.

Based on the preceding facts we calculate theoretically the
particle size variation of � at low temperatures [Fig. 1(c)] by
solving exactly the gap [Eq. (5)] for a close to hemispherical
grain (this accounts for BCS mean-field finite-size effects)
but including the previously mentioned blocking effect, which
accounts for the leading deviations from mean field.

IV. RESULTS AND DISCUSSIONS

After the theoretical introduction and the description of the
experimental methods we are now ready to compare theory and
experiment. We start with the evolution of superconductivity
with particle size in the low temperature limit.

A. Evolution of the energy gap with the particle size in the low
temperature limit

Figure 1(c) (solid symbols) shows the particle-size variation
of the superconducting energy gap (�) at low temperatures
(T � Tc) obtained from fitting the experimental tunneling
spectra with the Dynes ansatz [Eqs. (1) and (2)]. We observe
that Pb particles larger than 20 nm show a superconducting gap
similar to bulk Pb (∼1.36 meV), which gradually decreases
with reduction in particle size. As was explained in the previous
section such gradual decrease of � with particle size can be
modeled theoretically by considering finite-size corrections
within a mean-field approach and the leading corrections to
the mean field formalism itself. For this purpose we use the
theoretical treatment discussed in Sec. III B to calculate the
particle size variation of �.

The black solid line in Fig. 1(c) shows the theoretical pre-
diction for the superconducting gap obtained for the electron-
phonon interaction strength λ fixed to the Pb-bulk value (λ =
0.385). It nicely reproduces the decrease of � for diminishing
sizes, which is in qualitative agreement with the experimental
data. It is important to stress here that there are no input
parameters included apart from the experimentally measured
shape of the particles. The red line plot in Fig. 1(c) shows how
the small discrepancy between experiments and theoretical
predictions vanishes when including λ variation with particle
size (see Appendix (4)). Therefore, our results reveal that the
observed evolution of � with particle size in Pb nanoparticles
can be mostly explained just by invoking finite-size effects.

B. TFs and a finite gap for T > Tc

For higher temperatures (1.3–8 K) superconducting prop-
erties were also investigated by acquiring dI/dV for the
Pb nanoparticles of different sizes at different temperatures.
Figures 2(a) and 2(c) show the tunneling spectra for two par-
ticles 23 and 10.5 nm high. Each spectrum is first fitted using
the Dynes ansatz [Eqs. (1) and (2)] giving the experimental
�(T) and �(T) as a function of temperature for each particle
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FIG. 4. (Color online) Superconducting gap
�(T) vs temperature (T) for different nanopar-
ticles. Red circles show the experimental gap
obtained from Eq. (1) with the DOS given
by Eq. (2). Solid black lines correspond to
the variation expected from BCS theory. Solid
blue lines show the theoretical prediction, which
includes the effect of TFs within the static path
approach [see Eq. (4)]. (a) h = 23 nm, (b) h =
13 nm, (c) h = 10.5 nm, and (d) h = 8 nm.

[Figs. 2(b) and 2(d)]. From Figs. 2(b) and 2(d) we observe that
the evolution of �(T) is quite different for the two particles.
While for the large particle it follows the characteristic
BCS variation (black solid line), for the small particle clear
deviations from BCS are visible at high temperatures. We also
observe a finite energy gap beyond the mean field Tc (where
Tc is defined as the temperature where the mean-field BCS gap
goes to zero). As was already discussed in the introduction,
we expect TFs, controlled by the parameter δ/Tc, to induce
deviations from mean-field predictions. Therefore the critical
region [∝ (δ/Tc)1/2] around Tc becomes experimentally
accessible for sufficiently small (h � 13 nm) Pb nanoparticles.

We note TFs around Tc are well described within SPA where
only paths that are space and time independent are included in
the partition function. The resulting theoretical expression for
the energy gap from the SPA formalism is given by Eq. (4).
Figures 3(a) and 3(b) show the experimental tunneling spectra
for h = 10.5 nm and h = 8 nm, respectively, at different
temperatures fitted with the theoretical expression given by
SPA. SPA theory nicely reproduces the experimental data.
Since TFs are explicitly included in the SPA formalism, this
implies that we identify the evolution of the tunneling DOS in
small superconducting particles due to the influence of TFs.

We would like to point out here that for the small
Pb nanoparticles at temperatures close to and above Tc,
the conductance varies by a very small amount (1–8%).
Nevertheless, as shown in the insets of Figs. 2(a) and 2(c)
and 3(a) and 3(b) the quality of the fits close to and above
Tc is still very good, allowing us to extract unique values of
the experimental superconducting energy gaps for this crucial
temperature window.

In Figs. 4(a)–4(d) we show the temperature evolution of
the gap for four particle sizes (h = 23 nm, 13 nm, 10.5 nm,
and 8 nm). Here the symbols are obtained from the Dynes
fits to the experimental tunneling spectra. The blue solid

line is the theoretical expression using the SPA formalism
[Eq. (4)]. Again, we observe that while for the larger particles
(h � 14 nm) the energy gap follows the expected BCS
functional form (black solid line) for almost all temperatures;
for the smaller ones the �(T) has a significant tail for T
> Tc. Thus, we can conclude from our results that TFs
lead to a “fluctuation dominated regime” characterized by a
finite energy gap beyond Tc that persists up to a temperature
T∗(>Tc). Theoretically the energy gap should be finite even
for higher temperatures. However its experimental detection
is challenging as it becomes difficult to separate the signal
from the background noise.

V. RELIABILITY OF DYNES FITTING AND ANALYSIS OF
THE BROADENING PARAMETER �(T) IN THE CASE

OF NANOPARTICLES

In this last section we show the validity of the data
analysis by Dynes expression in the nanoscale regime. We
note that the agreement between theory and experiments
found in the previous section is an indication that this is
the case. This check is also important in order to support
our claim that deviations from mean-field predictions in the
superconducting energy gap [Figs. 2(b) and 2(d)] are caused
by TFs. We proceed by fitting the DOS in the SPA approach
[Eq. (3a)] (which accounts for TFs) for different particle sizes
with Dynes expression [see Fig. 5(a)]. The good agreement
between the energy gaps obtained from Dynes fits and SPA
theoretical prediction [Eq. (4)] indicates that the Dynes ansatz
[Eq. (2)] is suitable in the nanoscale region and captures the
effect of TFs. This also justifies our data analysis using the
Dynes ansatz in this region. In addition such a good agreement
also clearly confirms that the deviations from mean-field
results observed in experiments [Figs. 2(b) and 2(d) fitted
using Dynes ansatz] are caused by TFs.
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FIG. 5. (Color online) (a) Fit of the Dynes
expression (red curves) to the dI/dV SPA
prediction (open circles) for λ = 0.34, δ =
0.02 meV, and for different values of the tem-
perature, (b) �th, which quantifies TFs as a
function of temperature for different values of
δ. TFs clearly increase as δ increases (i.e., as
particle size decreases). The typical width of
the peak provides an estimation of the region
for which deviations from mean-field results are
more important. (c) The exponent ν� for small
δ describes the dependence of �th on δ through
the expression �th ∼ δν� . The change observed
around Tc indicates a qualitative enhancement of
the TFs in this region. (d) Comparison between
the SPA prediction (red curves) for the supercon-
ducting energy gap and those obtained by using
Dynes expression to fit the dI/dV obtained by
the SPA approach (open circles) for different
particle sizes (different δ).

It is worth noting that in the Dynes expression the
phenomenological parameter �(T), which is the energy scale
related to the phonon recombination and scattering and
escape rates, also has contributions from TFs that peaks at
Tc. However, in the range of sizes we are investigating, a
quantitative analysis of TFs by the experimental variation of
�(T) is much more difficult to carry out than the one presented
here for �(T).

Nevertheless, we can still show that in the case of nanoparti-
cles �(T) also contains information about the presence of TFs.
To this end, it is helpful to write �D , the value of � obtained
by Dynes fitting �(T) ≡ �D = 1/τ + �th, where τ is the
finite lifetime of the quasiparticles and �th is the energy scale
associated with TFs. We note that �th is a finite-size effect and
not related to τ . It is expected that the maximum contribution
to �th due to TFs should occur at Tc where, according to the
mean-field prediction, the energy gap vanishes.

In bulk strongly coupled superconductors such as Pb,
the mean-field Eliashberg’s formalism provides a useful tool
to compute τ due to scattering or recombination processes
(see Eqs. 11, 12, 18, and Fig. 7 of Ref. 33). For Pb, good
agreement between theory and experiment was found.32,37

The total broadening in Pb increases with T. Around Tc it
is approximately 1/τ ≈ 0.1 meV.

In nanograins the possibility of escape from the particle
provides an additional mechanism that reduces the lifetime.
In addition a small instrumental broadening also contributes
to �D . The substrate is an insulator, but electrons can escape
from the nanoparticles to the underlying metallic Rh substrate
by either quantum tunneling or thermal activation. The former
depends on the ratio of surface-to-volume and therefore will
increase as the grain size is reduced. The latter will obviously
increase with temperature. Although an accurate computation
is not possible we expect that, in the range of sizes investigated

here, the combined effect of all mechanisms contributing to
quasiparticle lifetime (and thus to �D through 1/τ ) will be
�0.2 meV for h < 20 nm. In order to make an estimation of
the contribution of TFs (�th) to the total energy broadening
�D we fit the theoretical SPA prediction of dI/dV by Dynes
expression. Figure 5(a) presents points generated by the SPA
formula with a constant density of single particle states for
fixed λ = 0.34 and τ−1 = 0.4 meV and their fits by the
Dynes expression for different values of T. The excellent
agreement obtained for all temperatures is a clear indication
that Dynes expression can still be used in the nanoscale
regime. Figure 5(b) shows the temperature dependence of
�th, extracted from the fits as �th = �D − τ−1, for different
values of δ. We observe a peak around the critical temperature,
which becomes broader as δ increases, corroborating that �th

is associated with TFs.
The scaling of �th with the mean-level spacing δ and

hence particle size [see Fig. 5(c)] strongly depends on the
temperature. �th ∝ δ for T � Tc. It is possible to show that
this behavior agrees with the analytical prediction obtained
considering higher order corrections to the mean-field solution
within the SPA approximation. As was expected, near the mean
field Tc TFs becomes more important. It is possible to identify
a region of size proportional to Tc (δ/Tc)ν� , ν� < 1, around Tc

where deviations from mean-field results are not negligible.
In Fig. 5(d) the values of the fitted Dynes energy gap (�)

are compared with the theoretical prediction for the energy
gap in the SPA approach [Eq. (4)]. The agreement is excellent.
Moreover they were found to present the same finite-size scal-
ing behavior. These results are a further confirmation that the
analysis of the experimental data by Dynes expression captures
correctly the physics of TF. The lifetime of quasiparticles due
to decoherence processes and interactions 1/τ = 0.4 meV was
taken to be constant in this simple example. For a realistic
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model it should increase with T in a monotonic way, i.e., it
should not be sensitive to the phase transition.

VI. CONCLUSIONS

To summarize we report direct evidence of TFs and the
gradual breakdown of superconductivity in Pb nanoparticles
as the size is reduced. The experimental data is well described
by a theoretical model that includes TFs, mean-field finite-size
effects, and leading corrections to the mean-field formalism.
TFs give rise to a finite-energy gap or “fluctuation dominated
regime” around Tc. Our results are a first step to understand
quantitatively the evolution of superconductivity with particle
size and the role of TFs for single small superconductors.

APPENDIX

1. Growth and shape of the nanoparticles

The main goal of the present work is to address the
superconducting properties of single isolated Pb nanoparticles.
This requires the growth of nanoparticles on a substrate with no
electronic states close to the Fermi level and to have these parti-
cles well separated from each other. Thus, the BN/Rh(111) sys-
tem presenting an ultrathin insulating BN layer with a band gap
of ∼6 eV represents an ideal surface for the growth of the parti-
cles and for carrying out STM/STS experiments. To prepare the
BN/Rh(111), we obtained a clean Rh(111) surface by repeated
annealing and argon-ion sputtering cycles. The clean surface
was then exposed to a 40 l (1 l = 10−6 Torr s) dose of Borazine
gas with the substrate temperature held at 1070 K. This proce-
dure leads to the formation of a BN-insulating layer on top of
the metallic substrate with complete monolayer coverage.30

Once the BN/Rh(111) surface was formed, nanometer-sized
Pb particles were deposited on top of it by using BLAG,
which is known to produce small particles with narrow
size distribution. We first adsorbed a Xe-buffer layer on the
BN/Rh(111) surface at 50 K, then evaporated Pb on top of
the Xe, and finally desorbed the Xe layer by warming up the
sample to room temperature. Pb nanoparticles form directly
on the Xe-buffer layer due to the reduced interaction with the
substrate and grow in size during Xe desorption due to cluster
coalescence until making contact with the surface. The final
size of the nanoparticles can be tuned by adjusting the amount
of deposited Pb and the buffer-layer thickness. In order to study
a wide range of nanoparticle sizes, we used two different sets
of preparation parameters: 0.5 ML of Pb with 3000 l Xe and
2.0 ML of Pb with 15 000 l of Xe. This produced isolated Pb
nanoparticles with heights between 3 and 30 nm.

The shape of these Pb nanoparticles has been considered
to be approximately hemispherical. In order to verify this we
developed a very simple model, shown in Fig. 6 (inset). The
model assumes a hemispherical nanoparticle of radius r and a
spherical tip apex of radius R. z and z0 represent the tip-particle
and tip-substrate tunneling distances, respectively. According
to this model, the ratio between apparent nanoparticle height
(H) and the convoluted full width (D) is

H/D = (r + z − z0)/2
√

(R + r + z)2 − (R + z 0 )2

(A1)
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FIG. 6. (Color online) Plot of the experimental STM height/STM
width as a function of the nanoparticle height h for two different tips
(red and blue). Solid circles denote the experimental data. Solid lines
are the fits obtained using Eq. (A2). The inset shows a schematic of
the model used (see text).

If we assume that the tip and particle radii are much larger
than the tunnelling distances z and z0 (∼1 nm), then H =
r + z − z0

∼= r and (A1) can be simplified to

H

D
∼= r

2

√
r (r + 2R) (A2)

This expression with only one free parameter (R) can be
used to directly compare with experiments, as the observed
STM height H is very closely related to the particle radius r.
To prove the hemispherical shape of the nanoparticles we have
fitted the ratio H/D (STM height/STM width) as a function of
the nanoparticle height H as obtained experimentally from the
STM topographic images. This comparison must be restricted
to nanoparticles of sizes similar to tip apex radii (R ∼ r),
otherwise the tip convolution would hide any real feature of
the nanoparticles. In Fig. 6 the ratio H/D is plotted for two
different sets of nanoparticles corresponding to two large-scale
STM images (blue and red) in which the tip did not change
during the scan. This ensures that all the nanoparticles in the
particular topographic image are measured with the same tip
radius R (R = 30 nm for blue and R = 15 nm for red). Both
sets of nanoparticles can be nicely fitted by means of the
previous expression (A2), confirming that the shape of the Pb
nanoparticles is close to a hemisphere.

2. Experimental resolution and fitting procedure of the
experimental conductance spectra by Dynes ansatz

The experimental output G(V), i.e., dI/dV spectrum, was
fitted by a standard algorithm that minimizes the square of
the difference between the experimental data and the G(V)
given by the Dynes ansatz [Eqs. (1) and (2)]. All points
considered in the fitting carry the same weight. We obtain the
experimental values for the energy gap � and the quasiparticle
energy broadening �D from the fitting. As can be observed in
Fig. 2, Dynes fitting provides an excellent description of the
experimental data. However an important point of the fitting
procedure is described subsequently.

The raw experimental data is rescaled so that G(V) goes
to unity for large voltage bias (V). For small particles
h < 10–14 nm and high temperature (T � Tc) we have observed
that �D , the value of � obtained by Dynes fitting, is quite
sensitive to small changes in the rescaling of G(V) and the
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fitting interval. This is not surprising as the dip in G(V) at
V ∼ 0 is quite weak with respect to the background noise.
Therefore small errors in the rescaling have a strong impact in
the value of the fitting parameters, especially �D . In order to
overcome this problem we have added a third fitting parameter
that sets the rescaling of G(V). It is also necessary to carry out
the fitting in a bias voltage interval that does not go much
beyond the value of �. We found that in most cases a 3-meV
interval (from the origin) is a sensible compromise.

Broadening � of the dI/dV spectra measured on the
Pb superconducting nanoparticles is mainly due to intrinsic
sources (scattering or recombination processes, thermal and
QFs, escape rates from nanoparticles) with minor contribu-
tions from extrinsic sources (the ac voltage modulation and
instrumental noise). In order to calibrate the contribution
to the broadening � from the extrinsic sources and thus
obtain an upper limit to the contribution to � due to our
instrumental noise, we have acquired dI/dV spectra with
exactly the same tunneling parameters as for Pb nanoparticles
on a bulk-Pb sample. Open squares in Fig. 1(b) corre-
spond to a dI/dV spectra measured on bulk Pb at 1.5 K,
which has been fitted using the same broadened BCS DOS
as the one used for the Pb nanoparticles [Dynes ansatz,
Eqs. (1) and (2)]. The best fit to the experimental data, which
includes the 50-μV ac voltage modulation and the Fermi-Dirac
broadening, gives a superconducting gap � = 1.36 meV,
matching perfectly with the expected one for bulk Pb, and
a broadening parameter � = 10–20 μV. Therefore, we can
estimate the maximum contribution due to our experimental
noise to the broadening � of our dI/dV spectra to be
20 μV. This value is one order of magnitude lower than the
smallest � that we have obtained on the Pb nanoparticles,
which ensures that � is mostly related to intrinsic sources in
these nanoparticles. Moreover, our experimental system is very
carefully shielded with respect to high-frequency (RF) voltage
noise, which makes our effective temperature coincide (within
20 mK) with the actual temperature of the STM. The measure-
ment of the superconducting critical temperature for bulk Pb
was ultimately used to verify the calibration of the sample tem-
perature. By measuring the evolution of � with temperature on
a Pb-bulk sample an expected Tc value of 7.25 K was obtained.

We would like to point out that for the small Pb nanopar-
ticles at temperatures close to and above Tc, the conductance
varies by a very small amount (1–8%). Inspite of this,
the quality of the fits to the spectra measured for the Pb
nanoparticles with the Dynes expression close to and above Tc

is very good. For each spectrum we use the least-square fitting
routine to minimize the χ2 to obtain � and � for the best fit.
We also take particular care to determine the uniqueness of the
fits. As a representative, we show below the fitting done for the
spectra measured on the 10.5-nm particle of Fig. 2(c) at T =
5.74 K. It is worth noting that in this spectrum the conductance
varies by only 2%, since it is measured well above Tc (Tc =
5.0 K for such a particle). Minimizing χ2 we obtain the best fit
for � = 0.21 meV and � = 0.38 meV. To test the uniqueness
of the fit, we change � (within a range) to compensate for the
change in �. It can be seen that the curve is reasonably fitted
only with values of � and � in a particular window of values
(see Fig. 7). This gives us the error bars in � and �, which are
shown in Figs. 2(b) and 2(d).

5.74K raw data
Δ=0.21,Γ=0.38,χ2=0.002
Δ=0.19,Γ=0.45,χ2=0.005
Δ=0.20,Γ=0.3,χ2=0.003
Δ=0.22,Γ=0.45,χ2=0.004
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FIG. 7. (Color online) Normalized dI/dV spectrum measured
on Pb nanoparticle of height 10.5 nm at 5.74 K (black open circles).
The fits to the data (solid lines) have been done using the Dynes
expression (see main text) where the different lines are obtained with
different fitting parameters. Best fit was obtained for � = 0.21 meV
and � = 0.38 mV with a χ 2 = 0.002 (green line).

3. Finite-size effects included in the theoretical
formalism (for T � Tc)

Two distinct types of finite size effects in the one particle
DOS were considered in the comparison with experimental
results.

A. Spectral fluctuations

The first type of finite-size corrections are simply mean
effects related to the fact that, in superconducting nanopar-
ticles, the spectral density of the one body problem is not
constant in the interacting region around the Fermi level.
A complete analytical treatment of these corrections, valid
for any particle shape, was recently developed.17 In practical
terms these deviations are taken into account by considering
explicitly the spectrum of the one body problem. In our case the
particle can be modeled as a spherical cap of height h and radius
R with R ∼ h. We compute the spectrum numerically for a given
ratio of h/R. In the hemispherical case h/R = 1, the eigenvalues
are simply the roots of a Bessel function. For other ratios we
use a method based on a perturbative expansion38 around the
hemispherical geometry, which is valid for 1 − h/R �1.

B. Blocking effects

As the particle size is reduced to the point that δ becomes
comparable to the bulk gap, finite-size effects induce devia-
tions from mean-field predictions. In the limit of vanishing
temperatures the solution of the Richardson’s equations34,39

provide an exact account of the ground state and low energy
excitations of the usual BCS Hamiltonian. Recently it was
shown,35 from the exact Richardson’s equations, that the lead-
ing correction (δ/�) to mean field has a simple interpretation
within the mean-field formalism: it is equivalent to removing
two levels closest to the Fermi energy in the usual BCS gap
equation (for a previous derivation of this result by using path
integral methods see Ref. 36). Physically this is expected as the
gap can be defined as the minimum energy to break a pair. In a
finite system, as a result of the pair breaking, two electrons will
occupy levels around the Fermi energy giving rise to a blocking
effect in the sense that no pairing is possible at these energies.
Using this we include the leading correction to mean field by
simply removing the two levels closest to the Fermi energy in
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the definition of the action of our system. It was also shown in
Ref. 35 that for δ/� < 1, QFs, not included in our formalism,
are at most of order ∼(�/ED)(δ/�), which extends the appli-
cability of our model until particle sizes h ∼ 6 nm very close
to the smallest particles, which can be studied experimentally.

4. Size dependence of the electron-phonon
interaction parameter (λ)

In our model λ is an effective parameter that describes the
strength of the interactions that lead to the superconducting
state. It is well documented that in strongly coupled supercon-
ductors, such as Pb, λ decreases with temperature as thermal
phonons are less effective to glue electrons together. The
dependence of λ on grain size is less clear, as in the nanoscale
region several competing effects must be considered. Coulomb
interactions and quantization effects in the phonon spectrum
increase as the grain size is reduced. As a result we expect the
effective coupling constant to decrease accordingly. On the
other hand the increasing contribution of surface phonons as
system size is reduced is expected to increase λ.

In order to make quantitative comparisons between theory
and experiment it is thus necessary to employ a size-dependent
coupling constant. It is possible to estimate this size depen-
dence by fitting the experimental differential conductance with
the theoretical prediction from SPA approach where λ is a
fitting parameter. In Fig. 1(c) we show the results of the fitting
in the low temperature limit T = 1–1.25 K. We observe that
for the largest grains the value of the coupling constant leads

5 10 15 20 25

0.32

0.34

0.36

0.38

λ

h (nm)

FIG. 8. (Color online) λ as a function of the particle size (h).
This result was obtained by fitting the experimental differential
conductance by theoretical prediction of the SPA approach where
λ is a fitting parameter. The particle is close to hemispherical
h ∼ R.

to an energy gap very close to the bulk one ∼1.35 meV. As a
general rule the coupling constant decreases with the system
size (Fig. 8). However the size dependence for h > 6–7 nm
is relatively weak, �5%. It is tempting to speculate that the
flattening observed for h ∼ 10 nm is due to the interplay
between surface-phonons effects that enhance pairing and the
rest of effects that tend to weaken it. We note [see Fig. 1(c)]
that quantitative agreement between theory and experiment is
only achieved after this small size dependence of λ is included
in the theoretical model.
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