
G42+ manual
J.C. Schön

Max-Plank-Institute for Solid State Research,
Heisenbergstr. 1, D-70569 Stuttgart, Germany.

9. September 2014

Zusammenfassung

Version: 9. September 2014

1 Introduction

G42+ is a computer program consisting of a number of modules that can be
used to explore the energy landscape of a chemical system (rigid or flexible
molecule / cluster, surface, periodic compound, or combinations thereof such
as molecules on a surface or inside a periodic crystal). Three basic explora-
tion methods are used: stochastic walkers, gradient descent, and the option
of following a prescribed path. The dominant one is the use of stochastic
walkers, which perform a Metropolis random walk.

For our explorations, we can use single walkers or many walkers in paral-
lel at the same time. There are two reasons for introducing multiple walkers:
A technical aspect is that on many modern computers it is possible to per-
form runs in parallel, and the most efficient parallelization consists usually
in performing the same type of run for a single walker on each processor
but with different random numbers in order to gain a sufficient statistics
about the outcomes of the stochastic explorations. An algorithmic aspect is
the fact that there exist a number of efficient schemes to explore the energy
landscape that rely on the presence of many walkers and a permanent ex-
change of information among them, such as genetic algorithms, multi-walker
repelling runs or multi-walker annealing schedules.

The landscape of the system that is explored is defined via three features:
the state space, i.e. the individual atom configurations including the cell
parameters of the periodically repeated simulation cell, the moveclass, i.e.
the neighborhood of states that can be reached from a given state, and
the energy function, i.e. the potential energy plus the pV-term for non-zero
pressure and plus possible penalty terms forbidding the walker to enter some
region of state space.

The elementary steps of the algorithm consist in generating or loading
a configuration, followed by running a module. In fact, the program allows
the generation of a meta-script, which contains thousands of commands that
are used to perform many possibly complicated combinations of sub-runs
using several different modules. In particular, one can use this metascript
to repeat the same sequence of modules many times for different random
numbers, which is important since the runs involve stochastic walks.

1



Parameters for atoms such as ionic radii as function of oxidation state
are stored in a database. A second database lists all the so-called building
groups, which are the central quantities that are used to describe an atom
configuration during the exploration (the simplest building group is an indi-
vidual atom, of course, while the more complex ones would be whole flexible
molecules or pieces of surfaces). Finally, there exists a third database con-
taining parameters of the so-called Gupta-potential.

The parameters for the individual runs are set in the file input.f, which
is subsequently compiled together with the rest of the G42+-program. Ar-
ray sizes are set within the file ’varcom.inc’, which contains all the global
variables. Note that all variables used within the program are either glo-
bally or purely locally defined. Exception are only the POWELL- and the
simplex routine, which were taken from a book on algorithms. (CRYSTAL-
variables??) The construction of the metascript is also done within input.f.

All the variables listed in input.f are subsequently saved in the protocol
file of the current run. G42+ begins a new protocol file whenever a new
configuration is generated or loaded.

There exist several files describing the atom configurations. In the ba-
sic type of a representation, various parameters such as the total number
of atoms and building units are listed, followed by the three vectors descri-
bing the periodically repeated simulation cell. Next, the coordinates and the
orientation of the various building groups are listed together with the coor-
dinates of the atoms belonging to the building group relative to the center
of the building group. Furthermore, the charges, magnetizations and radii of
the atoms are given. Finally, the energy of the configuration plus the current
values of the pressure and temperature are listed. Alternatively, the building
units are not given and instead only the positions of the atoms inside the
unit cell (fractional coordinates with respect to the three cell vectors) are li-
sted. Similarly, we can list just the coordinates of the centers of the building
units and drop the positions of the individual atoms. As a special case, if
the study is only referring to atom configurations with a fixed symmetry, we
can describe the configuration with the minimal number of (atom and cell)
parameters needed. In this case, the basic type of representation is expanded
and these free parameters are added.

Furthermore, we can define a background structure consisting of many
(usually) fixed atoms in addition to the building units that are allowed to
vary their positions and shapes. This structure is loaded in separately, and
can be written out as part of the output files if desired, especially if the
positions of the atoms in the background structure can change.

The type of atom configuration description is indicated by the prefix used
in the filename. Furthermore, many prefixes and suffixes are employed to
indicate, which module is currently active, which step of a more complicated
run has been reached currently, and which random number seed is employed
at the moment. Besides those prefixes and suffixes specific for a particular

2



module, we can have

1. ’start’: indicates that we have generated or loaded in a new configu-
ration to start a sequence of sub-runs with, and this configuration is
saved as the ’start’ configuration.

2. ’end’: indicates that we have finished a sequence of sub-runs and are
getting ready to load in or generate a new starting configuration. In
that case, either the final configuration or the official output configu-
ration of the last sub-run is saved as the ’end’ configuration

3. ’inp’: indicates the configuration that is used at the start of a module

4. ’outp’: indicates the configuration that is the official output of the
module

5. ’last’: indicates the last configuration used or created by a module.
This can be different from the official output of the module.

6. ’temp’: indicates the configuration that is passed between two modules

7. ’im’: indicates an intermediary configuration during a run. Usually it
is used as starting point of some local exploration, and is subsequently
used for the continuation of the actual exploration run

8. ’curr’: indicates the current configuration of the system. This is used to
check what is happening right now. One problem is that some machines
keep this file in the buffer and the overwrite it all the time, such that
we actually never get to see it!

9. ’traj’: indicates a configuration along a trajectory on the landscape
(saved because we want to follow the walker during the landscape
exploration)

10. ’att’: indicates a configuration that was attempted (and not necessarily
accepted) during a threshold run

11. ’thdos’: indicates the file containing density of states data from a thres-
hold run

12. ’thatt’: indicates the file containing energies of attempted moves from
a threshold run

13. ’mcq’: indicates local quench during Monte Carlo run

14. ’ptq’: indicates local quench during parallel tempering run

15. ’loc’: indicates the best configuration during a local run

16. ’imlr’: indicates intermediary configuration during a salocrun

3



17. ’impabe’: indicates the intermediary best configuration (in energy)
along a prescribed path after local minimization from an intermediary
point

18. ’impawo’: indicates the intermediary worst configuration (in energy)
along a prescribed path after local minimization from an intermediary
point

19. ’sha’: indicates a shadow configuration (created by minimization from
a reference configuration (= a point along the exploration path, during
e.g. a sa-local-run or a prescribed path)

20. ’ref’: indicates the reference configuration from which a local minimi-
zation is started in e.g. a sa-local-run or a prescribed path.

21. ’beoutp’: indicates the configuration with the best energy after finis-
hing the path

22. ’wooutp’: indicates the configuration with the worst energy after finis-
hing the path

23. ’rw’: indicates the configuration after a short local run with a free
random walker

24. ’mc’: indicates the configuration after a short local run with a constant
temperature Monte Carlo

25. ’q’: indicates the configuration after a short local run with a quench
minimization

26. ’init5’: indicates an intermediary configuration being saved while a
init5-sub-routine is performed

27. ’mcbest’: indicates locally best configuration during a Monte Carlo run

28. ’ptbest’: indicates locally best configuration during a parallel tempe-
ring run

29. ’pressbest’: indicates locally best configuration during a parallel tem-
pering run for a given pressure

30. ’lbpre1’: indicates locally best configuration found during a Monte Car-
lo run when local equilibrium has newly been reached

31. ’lbpre0’: indicates locally best configuration found during a Monte Car-
lo run when local equilibrium has newly been lost

32. ’lbpre3’: indicates a locally best configuration found during a Monte
Carlo run when local equilibrium has newly been reached, that has
been subsequently locally optimized

4



33. ’lbpre2’: indicates a locally best configuration found during a Monte
Carlo run when local equilibrium has newly been lost, that has been
subsequently locally optimized

34. ’lbcur1’: indicates current configuration during a Monte Carlo run whi-
le in equilibrium

35. ’lbcur0’: indicates current configuration during a Monte Carlo run whi-
le out of equilibrium

36. ’lbcur3’: indicates current configuration during a Monte Carlo run whi-
le in equilibrium which has been locally minimized

37. ’lbcur2’: indicates current configuration during a Monte Carlo run whi-
le out of equilibrium which has been locally minimized

38. ’lbcur’: indicates current configuration (during a parallel tempering
run)

39. ’ptq’: indicates a locally minimized current configuration during a par-
allel tempering run

Quite generally, we usually have the number of the walker as a four-digit-
character string at the end of the file name. Similarly, after the five-character
that indicates the currently active module, we find a three-digit-character
string indicating the number of the current module since a new set of sub-
runs had been started (with its own ’confname’). For other naming conven-
tions, see the section ... and the individual modules. (put all file naming
conventions into one section???)

Each of these configuration files exist for every individual walker on the
energy landscape, but the actual positions of the atoms and building units
will be different for the various walkers, of course.

The basic modules that can be called are single energy calculation, simu-
lated annealing, stochastic quench, threshold, shadow (or local)-run, ther-
mal cycling (or multiquench), prescribed path, gradient descent, line search,
POWELL, simplex, and findcell. Along the run, we can control the output,
i.e., how many details are to be written into the protocol, and how many
intermediary configurations are to be written.

Most of these modules exist in three different variations: single wal-
ker (prefix ’one ’), multiple but separate non-interacting walkers (prefix
’mws ’), and multiple interacting walkers (prefix ’mwi ’). The multi-walker-
separate modules are essentially the running in parallel or in sequence of
many individual exploration runs, while the multi-walker interacting modu-
les either contain moves that exchange configuration information between
the walkers (e.g. cross-over moves like in a genetic algorithm), evaluate the
acceptance of a stochastic move made by one walker based on the current

5



locations of the other walkers, or adapt the acceptance criterion (i.e. usually
the temperature) based on the current progress of all walkers.

Before calling a module, we can change the pressure, set a new (master)
seed for the random number generator, change the current moveclass(es)
(unless a particular value is required by the module), select a subset of
walkers to be active, etc.

This program is both highly complex and very much alive: Many parts
of it are under construction, revisions are being made continuously, and old
(temporarily abandoned) parts still float around. Thus, not every option
is active in every module, and warnings are given if one enters uncharted
territories. Furthermore, while an attempt has been made to catch as many
errors as possible which might be committed by the user in preparing the
input.f file, the ’varcom.inc’ file and the two required databases (atomdata-
base and bgdatabase), and to generate appropriate error messages, it seems
that every new user finds another way to confuse the code.

Thus, it is recommended to have some knowledge of Fortran program-
ming, in order to be able to catch formatting errors, errors in picking the
right array sizes, etc., or to be able to introduce write statements inside
the code at appropriate places that would allow catching the non-obvious
errors. In particular, when editing a file, make sure that all statements are
within the columns 7 to 72. If you continue a line beyond column 72, then
place a ’f’ or ’&’ in column 6 of the next line. Else, only special line numbers
(e.g. as targets for ’goto’ commands) and the number of a format statement
are allowed to be placed in columns 1 to 6 (if you do so, then begin this
number in column 1). Note that throughout most of the G42+ code, I have
started each command statement line at column 9 (or even further to the
right), and whenever the content of a do-loop or of an if-then branching is
entered, I move another two columns to the right, both for easier readability
of the algorithmic structure. Of course, any information about bugs, errors
and other problems encountered are greatly appreciated, and such problems
(hopefully) will be eliminated in the next version of the code or will be
flagged as official error messages to future users.

If you are going to add variables or other features to the code, please
make sure that all variables shared by several subroutines are defined glo-
bally in the file ’varcom.inc’, which contains both all global variables and
the array sizes as global parameters. Except for counters in do-loops, use a
prefix ’hv...’ in all local variables you define. This way, you can more easily
keep track of which variables in a subroutine are global and which are local.
While it may not happen frequently, keep in mind that external codes are
often making changes from one major release to another, and thus the input
(and output !) files required (produced) might change from the ones assu-
med to exist at the time of the writing of the G42+ code! In particular, the
sequence of entries in the files and/or the format of the input/output files
can be different and would require changes both in the writeinput... files and

6



the files where output from external codes is received and analyzed, in par-
ticular energy.f (for energy calculations), gd.f and localgraddesc.f (for local
minimizations). In such a case, please contact me at some point to let me
know what you are doing / have done, so I can update the ’official’ version
of the G42+ code, too.

2 Configuration files

The configuration files are formatted as given below. They include all in-
formation about the spatial arrangement of the atoms in the configuration.
Within G42+, the basic unit is the so-called building unit, which can consist
of one or more atoms or pseudo-atoms (large voids, vacancies, two-electron
bonds, electron-filled spheres etc.). Thus, the file which serves as input and
output for communication within or with the G42+-program must be the
basic type. The other two types contain only the atom or building unit po-
sitions but not both. They are just part of the general output of G42+ in a
format useful for future analysis. If we want to performs runs for fixed sym-
metry, we will use the so-called free-parameter representation, which descri-
bes a configuration by only those parameters (cell lengths, angles, fractional
coordinates) that are allowed to be varied according to the symmetry of the
configuration. These free parameters, together with the matrices needed to
generate the complete structure from them, are added to the data in the
basic type configuration file. The name of the basic type file is either given
by the user (only for loading purposes, and needs to agree with the na-
me in the general input, under which G42+ will load the file) or generated
automatically by the program denoting the current state of the run. The
atom-only and building-unit-only file generated by G42+ has the same na-
me as the basic-type file, with the characters at- and bg- added as prefixes,
respectively.

Before giving the detailed description of the configuration files employed
by G42+, we note that in contrast to earlier versions of G42 the new G42+
employs flexible building units, i.e. the positions of the atoms in a building
unit with respect to its center can now change. But since this might not
be desirable (or only desirable in certain limited ways, e.g. for rotations
about some specific angles), the database contains, in addition to the usual
pieces of information that are also included in the configuration file, infor-
mation about which constraints in the molecule’s configuration are to be
enforced and which are free to change. These constraints are based on the
bonding graph of the molecule, i.e. for each molecule we have information
which atoms are nearest neighbors. Thus, the possible constraints are: fixed
bond distances between neighbor atoms, fixed angles for triplets of neighbor
atoms, and fixed dihedral angles for quartets of neighbor atoms. If we want
to keep a larger subset of atoms rigid, e.g. a benzene-type ring, then we need

7



to enforce the constraints on all the atom pairs, triplets and quartets that
are involved in the formation of the ring. More details about this is given in
the database section of the manual.

2.1 Basic type

2.1.1 List of ’read’ commands in loading subroutine

In the following, we give a list of all the entries in the basic type configuration
file, in form of ’read’-commands in a load subroutine, together with the
required formats. Note that we do not read in information regarding the
energy (and cost) of the configuration, or the pressure and temperature
when it was generated.

• read (10,90000=’(a)’) dumname
’dumname’ is the root-name of the configurations during a given sub-
run (the run between two commands that load a new (external) con-
figuration or generate a new configuration). When preparing an input
configuration, one can either pick the official name which is being de-
fined as part of the general input, or give it another name (which will
be overwritten by the program and replaced by the official name).

• read (10,90005=’(2i2,i6)’) dimens,crystflag,spgroup
’dimens’ equals the dimension of the system; ’crystflag’ equals one if
we are dealing with a periodically repeated unit cell, and equals zero
if the cell is not repeated (cluster!); ’spgroup’ is the space group of
the system (usually 1, unless we perform a run in the free-parameter
representation)

• read (10,90006=’(i5,i3)’) nbgcur, numbgtypes
’nbgcur’ is the (current) number of building units in the system; ’numbgty-
pes’ is the number of different building unit types used to describe the
configuration. Note that one can employ the same building unit type
several times, e.g. if one wants to keep one oxygen atom fixed while
the others are allowed to move.

• read (10,90010=’(i5,i2,2i3)’) natomcur, numtypes, chrgmin,
chrgmax
’natomcur’ is the (current) number of atoms in the system; ’numty-
pes’ is the current number of atom types in the system. Again, each
type can appear several times in principle, e.g. with different charges;
’chrgmin’ and ’chrgmax’ are the lowest and highest charge allowed for
the atoms in the system, respectively.

• read (10,90015=’(f7.1)’) unitnum(i1)
This line is repeated i1 = 1,’numbgtypes’ times. ’unitnum(i1)’ is the
number of the i’th type of building unit in the system.

8



• read (10,90015=’(f7.1)’) elnum(i1)
This line is repeated i1 = 1,’numtypes’ times. ’elnum(i1)’ is the element
number of the i’th type of atom in the system.

• read (10,90025=’(3f15.10)’) ag(i1,1), ag(i1,2), ag(i1,3)
This line is repeated i1 = 1,3 times. ’ag(i1,i2)’ is the component i2 of
cell vector i1.

The next lines are repeated i1 = 1,’nbgcur’ times.

• read (10,90035=’(3f15.10,2i3)’) x(i1,1), x(i1,2), x(i1,3),
bgtype(i1), bsize(i1)
’x(i1,i2)’ is the coordinate of the center (of mass) of the building unit
i1 with respect to cell vector i2; ’bgtype(i1)’ is the type of building
unit i1, ’bsize(i1)’ is the number of (pseudo)-atoms in building unit i1.

• read (10,90036=’(3f10.5)’) euler1(i1), euler2(i1), euler3(i1)
’euler1(i1)’, ’euler2(i1)’, ’euler3(i1)’ are the three Euler angles of the
building unit with respect to the underlying Cartesian coordinate sy-
stem. The next three lines are repeated i2 = 1,’bsize(i1)’ times.

1. read (10,90029=’(3f15.10)’) uref(i1,i2,1), uref(i1,i2,2),
uref(i1,i2,3)
uref(i1,i2,i3) are the reference Cartesian coordinates i3 of atom i2
in building unit i1 with respect to the center of the building unit
before we have applied the Euler angle rotation. It is necessary to
keep track of uref during the calculation since for flexible building
units (especially flexible molecules) the shape of the molecule can
change in addition to its orientation and location as a whole.

2. read (10,90040=’(3f15.10,i3,f10.5,i3)’) u(i1,i2,1),
u(i1,i2,2), u(i1,i2,3), atype(bgal(i1,i2)),
charge(bgal(i1,i2)), ch(bgal(i1,i2))
’u(i1,i2,1)’, ’u(i1,i2,2)’, ’u(i1,i2,3)’ are the three components of the
Cartesian-coordinate vectors from the center of building unit i1 to
the atom i2 in the building unit after rotation by the Euler angles;
’atype(bgal(i1,i2))’ is the type of atom i2 in building unit i1;
’charge(bgal(i1,i2)),ch(bgal(i1,i2))’ are the charge (real number)
and valence (integer) of atom i2 in unit i1, respectively.

3. read (10,90041=’(3f10.5)’) rion(bgal(i1,i2,iload),iload),
meff(bgal(i1,i2,iload),iload),
magnetization(bgal(i1,i2,iload),iload)
’rion(bgal(i1,i2))’ is the radius of atom i2 in building unit i1 (in-
cluding already multiplication by the radius scale factor belonging

9



to the atom - for ways to drop this multiplication when loading in
and using the rsfactor instead, see ’rsfactorflag’); ’meff(bgal(i1,i2))’
is the effective mass of the atom i2 in unit i1 (including multiplica-
tion by the scale factor - this factor should be always one unless we
are dealing with e.g. band electrons). ’magnetization(bgal(i1,i2))’
is the magnetization of atom i2 in building unit i1.

Note that nearly all the variables have an additional index ’iload’ (here
only shown in the last line that is to be read in), which indicates that the
configuration currently being loaded in will be assigned to the walker iload
(typically, iload = 1,nwalk).

The next lines are added to the preceding ones in the basic-type con-
figuration file when we vary only the free parameters (according to sym-
metry) instead of all atom and cell parameters. Note that this only works
as long as the building units are only of size 1 (only one atom or vacan-
cy etc.). First, we read in the atom parameters. The three components
i3=1,3 of the position vector ’x(i1,i3)’ for atom (=building unit) i1 are
computed from the free parameters according to the formula: x(i1, i3) =∑

i2=1,nfapmfap(i1, i3, i2) ∗ fap(i2) + bfap(i1, i3), where nfap is the total
number of free atom parameters fap(i2) describing the configuration.

• read (10,90050 = ’(i7,i7)’) natomcur,nfap
’natomcur’ = number of atoms in configuration; ’nfap’ = number of
free atom parameters needed.

The next lines are repeated i1 = 1,’natomcur’ times.

• read (10,90052 = ’(3f10.5)’) mfap(i1,1,i2), mfap(i1,2,i2),
mfap(i1,3,i2)
This line is repeated i2 = 1,’nfap’ times. ’mfap(...,...,...)’ is the matrix
mapping the free parameters to the real atom coordinates.

• read (10,90052 = ’(3f10.5)’) bfap(i1,1), bfap(i1,2),
bfap(i1,3)
’bfap(...,...)’ is the constant vector that is added after the multiplica-
tion by ’mfap(...,...,...)’.

• read (10,90051=’(f10.5)’) fap(i1)
This line is repeated i1 = 1,’nfap’ times. ’fap(...)’ are the nfap free
atom parameters of the configuration due to symmetry.

Next, we add the free cell parameters. The six cell parameters are computed
according to the formula a/b/c =

∑
i1=1,nLfap TLfap(i2, i1) ∗ Lfap(i1) and

α/β/γ =
∑

i1=1,nWfap TWfap(i2, i1) ∗Wfap(i1) +BWfap(i2). From these
the three cell vectors are constructed as follows: a along vector ~a1, vector ~a2

in (a,b)-plane, and vector ~a3 the rest (see moveclass for explicit formula).

10



• read (10,90050=’(i7,i7)’) nLfap,nWfap
’nLfap’ and ’nWfap’ are the number of free cell lengths and angles,
respectively.

• read (10,90052=’(3f10.5)’) (Lparam(i1),i1 = 1,3)
’Lparam(...)’ are the three resulting cell lengths

• read (10,90052=’(3f10.5)’) (Wparam(i1),i1 = 1,3)
’Wparam(...)’ are the three resulting cell angles.

• read (10,90051=’(f10.5)’) Lfap(i1)
This line is repeated i1 = 1,’nLfap’ times. ’Lfap(...)’ are the free cell
lengths.

• read (10,90051=’(f10.5)’) Wfap(i1)
This line is repeated i1 = 1,’nWfap’ times. ’Wfap(...)’ are the free cell
angles.

• read (10,90052=’(3f10.5)’) (TLfap(i2,i1),i2 = 1,3)
This line is repeated i1 = 1,’nLfap’ times. ’TLfap(...,...)’ is the matrix
for mapping free cell lengths to actual lengths.

• read (10,90051=’(f10.5)’) TWfap(i1)
This line is repeated i1 = 1,’nWfap’ times. ’TWfap(...,...)’ is the matrix
for mapping free cell angles to actual angles.

• read (10,90052=’(3f10.5)’) (BWfap(i2),i2 = 1,3)
’BWfap(...)’ are the constant angles that need to be added in the above
matrix product.

The next three lines are not loaded in when G42+ reads the file, but should
be entered for completeness (they appear as part of the output of G42+):

• write (10,90090=’(a4,e18.12)’) ’E = ’,E

• write (10,90090=’(a4,e18.12)’) ’p = ’,press

• write (10,90090=’(a4,e18.12)’) ’T = ’,T

2.1.2 List of formats

Below is the list of formats for the ’read’ commands:

• 90001 format (2A)

• 90000 format (A)

• 90005 format (2I2,I6)

• 90006 format (I5,I3)

11



• 90010 format (I5,I2,2I3)

• 90015 format(F7.1)

• 200 format (A)

• 90020 format (2F15.10)

• 90025 format (3F15.10)

• 90030 format (2F15.10,2I3)

• 90031 format (F10.5)

• 90032 format (2F15.10,I3,F10.5,I3,2F10.5)

• 210 format(A,I5,A,I3,A,I3,A,I3)

• 90035 format (3F15.10,2I3)

• 90036 format (3F10.5)

• 90040 format (3F15.10,I3,F10.5,I3,2F10.5)

• 201 format (A,I7)

• 90050 format (I7,I7)

• 90052 format (3(F10.5))

• 90051 format (F10.5)

• 90090 format (A4,E18.12)

2.2 Atoms only

2.2.1 List of ’write’ commands in save subroutine

In the following, we give a list of all the entries in the atoms-only type con-
figuration file, in form of ’write’-commands in a ouput (savecfg) subroutine,
together with the required formats.

Note that nearly all the variables are the same as in the basic type file.
Furthermore, essentially all variables that define a configuration will depend
on the specific walker, of course.

• write (10,90000) currfilename
’currfilename’ is the current file-name G42+ assigns according to the
command script.

• write (10,90005) dimens,crystflag,spgroup

12



• write (10,90010) natomcur,numtypes,chargemin,chargemax
’natomcur’ = current number of atoms; ’numtypes’ = number of diffe-
rent atom types; ’chargemin’ and ’chargemax’ = minimal and maximal
allowed charge in the configuration, respectively.

• write (10,90015) elnum(i1)
This line is repeated i1 = 1,’numtypes’ times. ’elnum’(i1) is the number
of the atom type given in input.f.

• write (10,90025) ag(i1,1),ag(i1,2),ag(i1,3)
This line is repeated i1 = 1,3 times.COMMENT ON HOW THE VEC-
TORS ARE LISTED

• write (10,90035) zrel(i1,1),zrel(i1,2),zrel(i1,3),atype(i1),ch(i1),rion(i1),magnetization(i1)
This line is repeated i1 = 1,’natomcur’ times. ’zrel(i1,1)’, ’zrel(i1,2)’,
’zrel(i1,3)’ are the fractional coordinates of atom i1 with respect to
the three cell vectors. ’atype(i1)’, ’ch(i1)’, ’rion(i1)’ are the atom type,
charge (as integer, i.e. = valence) and radius of atom i1, respectively.

• write (10,90040) ’E = ’,E
’E’ is the energy of the configuration

• write (10,90040) ’p = ’,press
’press’ is the current pressure. Note that at the end of a sequence of
sub-run G42+ often ends up writing the new pressure instead of the
old one, if one has already updated the temperature and/or pressure
before generating the new configuration.

• write (10,90040) ’T = ’,T
’T’ is the current temperature. Note that at the end of a sequence of
sub-run G42+ often ends up writing the new pressure instead of the
old one, if one has already updated the temperature and/or pressure
before generating the new configuration.

• If we use penalty terms during the calculations (’penaltyflag’ = 1),
then we also might want to register the cost (= energy + penalty). To
to so, we set ’writecostflag’ = 1 in input.f, and thus activate the write
command
write (10,90040) ’C = ’,cost

• If we employ a mirror charge calculation for a surface, which is indi-
cated by ’slabmirrorflag’ = 0, then we have the write command
write (10,90040) ’Em= ’,emirror

• If we employ an idealized surface slab with an averaged van der Waals
interactions, which is indicated by ’slabvdWflag’ = 0, then we have
the write command
write (10,90040) ’Ev= ’,evdW

13



• If ’plotflag6’ = 1, then we register the value of the Ewald parameter
for the configuration, and the ’best’ value of this parameter for the
run. This is usually not activated.
write(10,100) ’alpha = ’,bta, ’ alphabest = ’,btabest

2.2.2 List of formats

Below is the list of formats for the ’write’ commands:

• 90000 format (A)

• 90005 format (2I2,I6)

• 90010 format (I5,I2,2I3)

• 90015 format(F7.1)

• 90025 format (3F15.10)

• 90035 format (3F15.10,2I3,F10.5)

• 90040 format (A4,E18.12)

2.3 Building units-only type

2.3.1 List of ’write’ commands in save subroutine

In the following, we give a list of all the entries in the building units-only
type configuration file, in form of ’write’-commands in a output (savecfg)
subroutine, together with the required formats.

Note that nearly all the variables are the same as in the basic type file.

• write (10,90000) currfilename

• write (10,90005) dimens,crystflag,spgroup

• write (10,90010) nbgcur,numbgtypes,chargemin,chargemax
’nbgcur’ = number of building units; ’numbgtypes’ = number of diffe-
rent building unit types; ’chargemin’ and ’chargemax’ = minimal and
maximal allowed charge in the configuration, respectively.

• write (10,90015) unitnum(i1)
This line is repeated i1 = 1,’numbgtypes’ times. ’unitnum’(i1) is the
number of the building unit type given in input.f

• write (10,90025) ag(i1,1),ag(i1,2),ag(i1,3)
This line is repeated i1 = 1,3 times.

For the next line, ’hvch’ and ’hvrad’ are set equal to dummy values 0 and
1.0

14



• write (10,90035) x(i1,1),x(i1,2),x(i1,3),bgtype(i1),hvch,hvrad
This line is repeated i1 = 1,’nbgcur’ times. ’x(i1,1)’, ’x(i1,2)’, ’x(i1,3)’
are the fractional coordinates of the reference point (usually center of
mass or an atom close to it) of the building unit i1; ’bgtype(i1)’ is the
type of building unit i1, ’hvch’ and ’hvrad’ are dummy values for the
’charge’ and the ’radius’ of the building unit i1. If necessary, these can
be replaced by hand (or script) by physically appropriate values.

• write (10,90045) ’E = ’,E

• write (10,90045) ’p = ’,press

• write (10,90045) ’T = ’,T

• If we use penalty terms during the calculations (’penaltyflag’ = 1),
then we also might want to register the cost (= energy + penalty). To
to so, we set ’writecostflag’ = 1 in input.f, and thus activate the write
command
write (10,90040) ’C = ’,cost

• If we employ a mirror charge calculation for a surface, which is indi-
cated by ’slabmirrorflag’ = 0, then we have the write command
write (10,90040) ’Em= ’,emirror

• If we employ an idealized surface slab with an averaged van der Waals
interactions, which is indicated by ’slabvdWflag’ = 0, then we have
the write command
write (10,90040) ’Ev= ’,evdW

• If ’plotflag6’ = 1, then we register the value of the Ewald parameter
for the configuration, and the ’best’ value of this parameter for the
run. This is usually not activated.
write(10,100) ’alpha = ’,bta, ’ alphabest = ’,btabest

2.3.2 List of formats

Below is the list of formats for the ’write’ commands:

• 90000 format (A)

• 90005 format (2I2,I6)

• 90010 format (I5,I2,2I3)

• 90015 format (F7.1)

• 90025 format (3F15.10)

• 90035 format (3F15.10,2I3,F10.5)

• 90045 format (A4,E18.12)

15



3 Energy calculation

Quite generally, the energy of a configuration can be computed in many
different ways on many different levels of accuracy: via built-in empirical
potentials, via (empirical) external potentials, via ab initio external poten-
tials, or via penalty/constraint terms. Which level of accuracy and type of
energy function we want to use will depend on the kind of questions we ask
at certain times of the exploration. Thus, we might want to perform some
global exploration using a simple less accurate but fast-to-calculate ener-
gy function, and subsequently do some refinement employing very accurate
but more time-consuming energy functions. Furthermore, we might want
to create effective energy functions by combining several different energy
functions such as penalty terms, empirical potential and ab initio energy
contributions. In particular, we might want to compute the energy inter-
actions between some of the atoms using an empirical potential, while the
interactions between others should be highly accurate.

In order to be able to do this, we have introduced for each atom-type in-
volved a flag, which tells us, whether for a given moveclass this atom can par-
ticipate in a specific energy calculation. These are the following: abinitatom-
type(i,j,k), guptaatomtype(i,j,k), gulpatomtype(i,j,k), GROatomtype(i,j,k),
AMBatomtype(i,j,k), FPatomtype(i,j,k), potatomtype(i,j,k). Setting this va-
lue equal to one indicates that atoms of type i may for moveclass j participate
in the specific energy calculations for walker k.

Here, ’abinit’ indicates ab initio calculations in general and needs to be
specified in addition to specific ab initio energy types such as Quantum
Espresso (’QE’). ’gupta’ is the interaction using a gupta potential, which
is an approximation to embedded atom potentials for metals. To use this,
one needs to provide specific interaction parameters, either via an external
database or directly inside input.f. ’gulp’ refers to calculations using the
GULP-program, where one needs to add an additional external library-file
that contains the information about the parameters and potential type (the
GULP code allows for many different types of interaction potentials bet-
ween atoms). ’GRO’ and ’AMB’ indicate that the atom can participate in
calculations using the GROMACS or the AMBER code, respectively. ’FP’
refers to the ab initio program FPLO, and ’pot’ allows the use of one of the
in-built potential types.

For the built-in potential types, the energy is usually calculated as the
sum of four terms: a) a two-body potential term dealing with the pairwise
interactions among the atoms (see below), b) a one-body term incorporating
the ionization energy or the electron affinity associated with the formation of
a cation or anion, c) a chemical potential term measuring the energy needed
to add a neutral atom of a given type, and d) a pressure term p*(volume
per unit cell), or an appropriate adaptation for clusters.

Currently, we are not activating the chemical potential term, since it has

16



proven to be more efficient to keep the number and type of atoms constant
for a given (sub)-run. There is the general problem that if one uses the
experimental chemical potential of e.g. an atom in a metal, this will end
up favoring the atom to leave the simulation cell unless we are close to the
actual formation of the thermodynamically stable compound during e.g. a
simulated annealing run.

In the case of the Gupta-potential (for intermetallic compounds), the
terms a) - c) are replaced by the multi-body Gupta-potential.

Similarly, in the case of the various types of external (ab initio or empiri-
cal) energy calculations, terms a) - c) are replaced by the energy computed
by the external code. If necessary (perhaps due to low levels of accuracy
as trade-off against speed), one may want to add a hard/soft sphere or
Lennard-Jones term to keep atoms at an appropriate distance. This is one
of the examples where it can be profitable, at least during the global explo-
ration stage of a calculation, to employ both an ab initio method (or other
external energy computation) and a built-in potential that either serves as
a constraint / penalty type term or adds an empirical interaction that is not
taken into account in the external energy function.

There are two special types of energy terms that have been added spe-
cifically in G42+: the interaction with idealized slabs, and the use of simple
molecular modeling type constraint potentials for the description of the in-
teractions inside a building unit.

The idealized slab represents an averaged out interaction of an atom /
molecule / cluster with a perfect rigid infinite surface located at z = 1/2
in the periodically repeated simulation cell. In reality, a surface consists of
many atoms arranged in a specific fashion (depending on what kind of sur-
face we are dealing with). With the number of these atoms ranging into the
thousands, computing the interaction with all atoms separately can be quite
time-consuming. However, in many situations, the dominant contributions
to the energy of the atom-surface interaction can be summarized under a)
an average van-der-Waals type interaction represented by a Lennard-Jones
potential term integrated over the whole surface, and b) an image charge in-
teraction between the atoms and the dielectric (metallic) surface, according
to their charges. In case a), each atom experiences an attractive interaction
towards the slab that only depends on the distance to the slab and corre-
sponds to a force acting orthogonal to the surface. In case b), we need to
compute the interaction of all atoms with non-zero-charge with all image
charges generated by these atoms. In both cases, we can scale the strength
of these interactions by setting the interaction parameters explicitly.

For the case of the simple model interactions between the atoms inside
a given flexible building unit, they essentially correspond to penalty terms
where we can explicitly set the amount by which a parameter such as a bond-
distance or am angle can vary from the idealized value it has according to
the database. Furthermore, we can chose whether the penalty is a pure step

17



function when trying to cross the limiting values or whether we have an
increase in energy according to a parabolic-type potential until we reach the
limiting values where the penalty function jumps to infinity.

In addition to energy terms and constraint/penalty terms that refer to a
given configuration, there are penalty terms that are supposed to exclude a
walker from a region of the energy landscape that has been explored before
already. As will be discussed below, these can be static (based on earlier in-
formation about the landscape from previous runs) or dynamic. In the latter
case, we are dealing with several walkers which create their own repelling
field about them that keeps other walkers from getting close to them and
thus keeps up the diversity of a many walker exploration instead of letting
the walkers cluster in one or few basins.

There are some general flags that are set with regard to energy calcula-
tions ******REORGANIZE******:

• ’numbofcells’ (must be odd integer) gives the number of basic cells in
a row that are taken into account when computing the energy with a
built-in potential: ’numbofcells’ = 1: no periodic boundary conditions,
i.e. we model a cluster; ’numbofcells’ = 3: simulation cell is repeated
once in all directions, i.e. we compute the energy of a 3×3×3 block of
the repeated simulation cell, etc. Note that the information regarding
’cluster’ or ’crystal’ is carried over to calculations of the energy with
external codes, at least if these codes can make a distinction between
periodic or cluster calculations.
numbofcells = 3

• If we are dealing with a cluster, we usually need to employ ’numbof-
cells’ = 1. We can for local optimizations that are performed by exter-
nal programs also require that the cluster is centralized afterwards, sin-
ce these codes (especially GULP), sometimes place the atoms around
the origin of the coordinate system instead of around the center of the
simulation cell. We can take care of that by moving the cluster into
the center of the simulation cell. For this we need to set ’centralizeflag’
= 1. Note that if we deal with a background structure, we might not
want to perform such a centralization.
Also, QE and FPLO (and other external codes) offer to perform only
local optimzations of atom positions. But for these, one usually does
not move the atoms to the origin, and thus, we should not centralize
the outcome of the minimization. Also, such atom position minimiza-
tion might occur for periodic system with fixed unit cells!
centralizeflag = 0

• ’cpflag’ tells us, whether the chemical potential is always equal to 0.0
(’cpflag’ = 0), equal to the full chemical potential (’cpflag’ = 1), or
equal to a linear interpolation formula with respect to the melting

18



point (’cpflag’ = 2) or the boiling point (’cpflag’ = 3). Usually, we
employ no chemical potential as mentioned earlier.
cpflag = 0

• ’prevflag’ activates the check of the reasonableness of the energy with
respect to the number of repeated cells in the energy calculations: The
calculation is repeated with a larger number of repeated cells and the
energies are compared (when ’prevflag’ = 1). Only makes sense for
periodic systems and when using only internal potentials and very few
repeated simulation cells such that cut-offs can play a role and favor
non-sensical structures. Currently rarely used.
prevflag = 0
’tol7’ is the value by which the energy is allowed to rise upon calcula-
tion with a bigger unit cell.
tol7 = 0.0d0

• ’pottype’ is a flag that tells us, which built-in potential is supposed to
be used. For more details on the available potentials see below.
pottype = 2

• ’potflag’ tells us, whether any built-in potential is supposed to be used,
either alone or in conjunction with an external code calculation: No
potential: ’potflag’ = 0; with potential: ’potflag’ = 1.
potflag = 1

• ’abinitflag’ indicates, whether an ab initio calculation of the energy is
supposed to be performed: ’abinitflag’ = 0: no ab initio calculation;
’abinitflag’ = 1: CRYSTAL calculation; ’abinitflag’ = 2: VASP calcula-
tion; ’abinitflag’ 3: Quantum Expresso (QE) calculation; ’abinitflag’ =
4: FPLO calculation. When using CRYSTAL, one also need to edit the
file ’inputcrystal’, while for a VASP calculation, one needs to provide
external files with information about the pseudo-potentials (pot.car
etc.). The reason for this is that it is rather difficult to create the ap-
propriate files inside G42+ just based on the input.f file. For QE and
FPLO, this is possible, and one needs to fill the appropriate entries for
the various parameters for the calculations in the QE and FPLO sec-
tion (according to the help-pages of QE and FPLO). Quite generally,
one should be familiar with the external code one is going to call from
G42+, in order to be able to select the best choices of the parameters
and/or (pseudo)potentials.
abinitflag = 0

• ’mullflag’ indicates, whether the charges should be updated according
to the Mullikan analysis in CRYSTAL or a Bader-type analysis in
VASP and QE: ’mullflag’ = 1: yes; ’mullflag’ = 0: no. Note that in the
latter case, the Mullikan charges are automatically set equal to 0. This

19



charge is needed, in order to estimate the proper ion-ion-distance when
using hard/soft spheres as repulsive potentials to keep the atoms apart
from each other. Also, this ’charge’ can be used as input for an image
charge computation when one performs an idealized slab interaction
in addition to the energy calculation of the molecule alone.
mullflag = 0

• ’abinitinputflag’ indicates, which of several possible ab initio inputs
are chosen for calculations. The default is abinitinputflag = 1. This
value can by changed explicitly be the command ’setabinitinputflag’.
Currently, this option is not active.
abinitinputflag = 1

3.1 Simple built-in potentials

The type of the built-in potential is given by the value of ’pottype’. The
simple potentials are mostly combinations of Lennard-Jones, and Coulomb
(shielded or with Ewald summation according to DeLeeuw) terms, and
soft/hard sphere terms:

• pottype = 0: No information specific to potentials is read in; only
general atom information. Use this for gupta calculations that affect
only part of the atoms present and where we have defined the gupta-
parameters by hand, and where no other calculations with one of the
built-in potentials take place.

• pottype = 1: Lennard-Jones

• pottype = 2: Coulomb plus Lennard-Jones (extended to include elec-
trons, vacancies etc.)

• pottype = 3: Born-Mayer

• pottype = 4: Coulomb plus Lennard-Jones (eps depends on type of
atoms and on charge state)

• pottype = 5: Coulomb + Lennard-Jones (Coulomb with DeLeeuw-
method)

• pottype = 6: Coulomb + r(−8)-repulsion

• pottype = 7: Coulomb + Hardsphere

• pottype = 8: Gupta-potential (no longer active: gupta caldulations
are only controlled by guptaflag = 1)

• pottype = 9: only Hardsphere, with distances compared to sum of
ionic radii (to be used together with ab initio calculations)

20



• pottype = 10: repulsive softsphere, with distances compared to sum
of ionic radii (to be used together e.g. with ab initio calculations)

• pottype = 11: Specifically developed potential for the Si-B-N-system.

• pottype = 12: only hardsphere, with distances compared to pre-defined
distances of atom-types i1 and i2 (in Angstrom), given in the array
mindist(i1,i2).

• pottype = 13: Born-Mayer + short-range Lennard-Jones, and all wi-
thin an overall distance cut-off with different parameters for each atom
pair. Furthermore, the mindist-array is activated, i.e. atoms are not
allowed closer than mindist(atype(n),atype(m)). For this, one needs
to introduce the parameters of the various atom-pairings explicitly in
input.f

Note that pottype can be different for different moveclasses i1. For example,
we might want to perform a simulated annealing with only an empirical
energy function (e.g. pottype(1) = 2), and then a quench with ab initio
combined with a distance criterion (e.g. pottype(2) = 12).

Certain parameters are used in several potentials: ’damp’ for the long-
range cut-off of the Coulomb potential as an alternative to the deLeeuw-
Ewald summation. Furthermore, there are fixed values of very-short distance
cut-offs in the various potentials, besides the usual tolerances defined in
input.f. For details see the implementation of the actual potentials below.

*********CHECK WHETHER THE IMPLEMENTATIONS ARE UP-
DATED****************

3.1.1 Lennard-Jones

Potential type 1 is pure Lenard-Jones. By itself, this potential is only used for
neutral atoms. The entries for the arrays ’sig(...,...,...,...)’ and ’eps(...,...,...,...)’
contain the parameters of the Lennard-Jones potential, as function of atom
type and atom charge, and are filled with information provided via ’atomda-
tabase’. Note that in this simple Lennard-Jones potential, ’eps(...,...,...,...)’
does not depend on charge (assumed to be equal to zero). The implementa-
tion is:
if (R.gt.(0.18d0)) then
sgm = sig(atype(n),atype(m),ch(n),ch(m))/R
potential = (sgm**12 - sgm**6)*eps(atype(n),atype(m),0,0)
else
potential = 1.0d+13
nochange = 17
endif
R is the distance between atoms n and m.

21



3.1.2 Coulomb + Lennard Jones, with eps independent of atom
types

Potential type 2 consists of a damped Coulomb potential plus a Lennard-
Jones term, where we are using an atom-type independent value for epsilon,
’eps1’. Besides the charges of the atoms, the parameters needed for descri-
bing the potential are:

• The damping factor ’damp’ gives the long-distance cutoff for the Coulomb-
potential.
damp = 0.10d0

• ’eps1’ is the (atom type and charge independent) epsilon value in the
Lennard-Jones potential.
eps1 = 0.3d0

• Finally, ’radiusscale’ gives sigma = (rad1 + rad2)*’radiusscale’, where
’rad1’ and ’rad2’ are radii of the two ions involved. Currently, this
is not in use: we use ’rstype(...)’ instead, which can be varied atom-
specifically. Note that by varying the rstype-factor, we can essentially
perform a computational alchemy that transforms one type of atoms
into another as long as we only worry about the size of the atoms in the
energy term (of course, the ionization energies etc. are different, but
if the charges are kept constant, they do not influence the landscape
exploration since they only shift the zero of the energy.
radiusscale = 1.0d0

• ’tol1a’ is the minimum distance allowed in the potential 2 (must be
greater than ’tol2’ below).
tol1a = 0.1d0

• ’rsmin’ and ’rsmax’ are the extreme radiusfactors for the ions. If this is
used, one more or less can ignore ’radiusscale’. Good for environment-
dependent radii. These values are needed for calculations on landscapes
where the ionic radius is part of the optimization, and can be adjusted
within limits. Usually, this makes only sense if we are dealing with
pseudoatoms such as electron clouds that can vary in size in response
to Coulombic and Pauli-forces.
rsmin = 0.1d0
rsmax = 10.0d0

• ’potneutral’ is the fraction of ’eps1’, which is used to control the
energy-repulsion of the neutral pseudoatoms. ’potneutral’ only deals
with the repulsive term: the ’in potentio’ electron is trying to come
into being far away from the other atoms.
potneutral = 0.1d0

22



• ’chargepseudo’ gives the maximum negative charge the pseudoatom is
allowed to have.
chargepseudo = -10

• ’potvacancy’ is the potential associated with the vacancy-atom inter-
action (type Lennard-Jones). This does not have the restriction that
the distance between atom and vacancy must be larger than 0.001.
potvacancy = 0.0d0

• ’distebond’, ’potebond’, ’angleebond’, ’potangleebond’ are variables
that are used, if we introduce ’electrons available for bonding’ (atom-
number 950.0). The two body-term between bonding electrons is gi-
ven by: potebond ∗ (−1 + 1/(distebond)2). The three-body-term de-
scribing approximately the angle at the electron between the two
atoms connected by the bond, is given by: potangleebond ∗ ((cos(θ)−
angleebond)2/(cos(θ)−1.0d0)2−1.0d0). The three-body term is activa-
ted, if ’ebondangleflag’ is set equal to 1. Watch out, if the angle is smal-
ler than 120 degree (three-center bond), since e.g. for 90 degree funny
things might happen.The interaction between a bond-electron and a
foreign atom goes via Lennard-Jones term with strength ’eps1ebond’.
potebond = 0.2d0
distebond = 0.1d0
angleebond = -1.0d0
potangleebond = 2.0d0
ebondangleflag = 1
eps1ebond = 0.0d0

Implementation of potential 2:
if ((numelem(n).eq.150.0).or.(numelem(m).eq.150.0)) then
sumrad = radn + radm
sgm = sumrad/R
hv1 = sgm*sgm
hv2 = hv1*hv1*hv1
hv3 = hv2*hv2
potential = potvacancy*(hv3-hv2)*eps1
else
if (R.gt.(0.001d0)) then
sumrad = radn + radm
sgm = sumrad/R
hv1 = sgm*sgm
hv2 = hv1*hv1*hv1
hv3 = hv2*hv2
if (((numelem(n).gt.999.0d0).and.(chn.eq.0)).or.
((numelem(m).gt.999.0d0).and.(chm.eq.0))) then
potential = potneutral*hv3*eps1

23



else
potential = (hv3-hv2)*eps1 + 14.39d0*chargen*chargem*dexp(-damp*R)/R
endif
else
potential = 1.0d+13
nochange = 17
endif
endif
Note that ’nochange’ = ... indicates in the output, why a particular move
was rejected. (see below)

3.1.3 Born-Mayer

Potential type 3 is of Born-Mayer type. The entries in the parameter arrays
’sig(...,...,...,...)’ and ’eps2(...,...,...,...)’ must be provided via ’atomdatabase’.

• ’rp’ is the strength factor of the repulsive term
rp = 9.0d0

The implementation is:
if (R.gt.(0.1d0)) then
sgm = sig(atype(n),atype(m),ch(n),ch(m))/R
potential = 14.39d0*ch(n)*ch(m)*dexp(-damp*R)/R + eps2(atype(n),atype(m),ch(n),ch(m))*dexp(-rp/sgm)
else
potential = 1.0d+13
nochange = 17
endif

3.1.4 Coulomb+Lennard Jones with eps atom-dependent

Potential type 4 is a shielded Coulomb plus Lennard-Jones potential, with
eps being atom-type dependent. The entries in the parameter arrays ’sig(...,...,...,...)’
and ’eps(...,...,...,...)’ must be provided via ’atomdatabase’. ’damp’ has the
same meaning as in potential type 2.
The implementation is:
if (R.gt.(0.1d0)) then
sgm = sig(atype(n),atype(m),ch(n),ch(m))/R
potential = (sgm**12 - sgm**6)*eps(atype(n),atype(m),ch(n),ch(m))
+ 14.39d0*ch(n)*ch(m)*dexp(-damp*R)/R else
potential = 1.0d+13
nochange = 17
endif

24



3.1.5 Coulomb with deLeeuw-method + Lennard Jones

Potential type 5 consists of a Coulomb term + a Lennard-Jones term, where
the Coulomb potential is calculated by de Leeuw’s method:

• The dipolterm that appears in the Ewald-summation for the built-in
Coulomb-potential is added if ’dipolflag’ = 1.
dipolflag = 0

• The results of the Ewald summation are printed into the protocol-file
if ’outpflag’ = 1. Currently this option is not active.
outpflag = 0

• The parameter ’jlimit’ determines the number of cells that are taken
into account in the calculation of the coulomb energy using an Ewald
summation to be (2*’jlimit’ + 1)**3.
jlimit = 1

• The alpha-factor ’bta’ in the exponentials of the Ewald-summation
is found in an optimal way according the prescribed values of ’jli-
mit’ and ’grenze0’, and to activate the optimization of ’bta’, we set
alphaoptflag = 1.

• ’grenze’ gives the accuracy for the minimizing routine alphamin.mw.f,
which computes the optimal value of the factor alpha in the exponent
of the Ewald-summation. The value of the accuracy ’grenze’ is 10**’-
grenze0’. A value of ’grenze0’ = 4.0d0 is recommeded.
grenze0 = 4.0d0

Regarding the implementation, only the Lennard-Jones term is listed, with
epsilon, ’eps1’, independent of atom type; the De-Leeuw term is in its own
set of subroutines. ’sig(...,...,...,...)’ is again provided via ’atomdatabase’.
The implementation is:
if (R.gt.(0.1d0)) then
sgm = sig(atype(n),atype(m),ch(n),ch(m))/R
potential = (sgm**12 - sgm**6)*eps1
else
potential = 1.0d+13
nochange = 17
endif

3.1.6 Coulomb+ r**(-8)-repulsion

Potential type 6 is a shielded Coulomb potential + a r**(-8)-repulsion term.
The implementation is:
if (R.gt.0.1d0) then
sgm = sig(atype(n),atype(m),ch(n),ch(m))/R

25



potential = 14.39d0*ch(n)*ch(m)*exp(-damp*R)/R + sgm**8
else
potential = 1.0d+13
nochange = 17
endif

3.1.7 Coulomb+ hard sphere repulsion

Potential type 7 corresponds to a Hardsphere- plus Coulomb-Potential using
the deLeeuw-method for the Coulomb part. The following parameters must
be set when generating a new configuration:
’initflag3’ = 1; fact1 ≥ 1.0d0
This way an overlap of the atoms during initialisation is avoided.
Further parameters:

• ’tolhs’ (%) is the tolerance for the ionic radii (radsum * ’tolhs’)
’tolhs’ < 100 % –¿ ion is smaller; ’tolhs’ > 100 % –¿ ion is bigger.
tolhs = 1.0d0

• ’rad(...,...)’ must be provided via ’atomdatabase’.

The implementation is:
sumrad = rad(atype(n),ch(n)) + rad(atype(m),ch(m))
if (R.gt.(sumrad*tolhs)) then
potential = 14.39d0*ch(n)*ch(m)*dexp(-damp*R)/R
else
potential = 1.0d+13
nochange = 17
endif

3.1.8 Gupta-potential

For the Gupta-potential, we used to set ’pottype’ = 8, but now this is
employed as an independent energy calculation controlled by ’guptaflag’;
see subsection on Gupta potential.

3.1.9 Hardsphere repulsion

Potentials type 9 and type 10 are pure hardsphere and softsphere (repulsi-
ve) potentials, respectively. These potentials are supposed to be employed
together with external code (especially ab initio) calculations, since they
have only repulsive (R < (sum of ionic radii) * ’tolhs’) values or are equal to
zero (R > (sum of ionic radii)*tolhs). Hard sphere (’pottype’ = 9) has a step
function, Softsphere (’pottype’ = 10) has a ’eps1’ * r**(-12) potential, which

26



equals zero for atom-atom distance ≥ (sum of ionic radii) * ’tolhs’. Remem-
ber to set ’initflag3’ = 1 and ’fact1’ ≥ 1.0d0, and choose an appropriate
value for ’tolhs’ for ’pottype’ = 9, and to choose ’eps1’ > 0 for ’pottype’ =
10.

Specifically, although potential type 9 is only Hardsphere, in principle,
one could also use it for Monte Carlo within a fixed cell to study amorphous
systems. ’rion(...)’ needs to be provided in ’atomdatabase’.
Implementation:
sumrad = rion(n) + rion(m)
if (R.gt.(sumrad*tolhs)) then
potential = 0.0d0
else
potential = 1.0d+13
nochange = 17
endif

3.1.10 soft sphere repulsion

Potential type 10 is repulsive softsphere (c.f. hardsphere repulsion). ’rion(...)’
needs to be provided in ’atomdatabase’.
Implementation:
sumrad = rion(n) + rion(m)
hv4 = sumrad*tolhs
if (R.gt.hv4) then
potential = 0.0d0
else
sgm = hv4/R
hv1 = sgm*sgm*sgm
hv2 = hv1*hv1
hv3 = hv2*hv2
potential = eps1*(hv3-1.0d0)
endif

3.1.11 Si-B-N potential

Potential type 11 is a potential specifically developed for the Si-B-N system
where Si and B are cations and N are anions. For more details, see the
SiBN.inc file.

3.1.12 Hardsphere (pre-defined distances

Potential type 12 is again a hard sphere potential, but with fixed atom-
atom distances given by the array ’mindist(i1,i2)’ for atom of types i1 and
i2. This kind of potential is meant to be a supplementary potential for energy

27



calculations with external codes where we want to avoid having to call the
external code if two atoms are too close to each other.

3.1.13 Born-Mayer with specific parameters

Potential type 13 is a specific internal potential that includes more parame-
ters plus a cut-off function for the Born-Mayer type potential analogous to
the form commonly employed in many empirical potential simulations for
ionic systems. The parameters are not loaded in but included in input.f. For
details on the parameters, see the input.f file.

3.1.14 Calculations with free electrons

Next, we have the variables associated with calculations of free electrons.
Usually, they are used together with potential type 2 or 5. Free electron
calculations are not active at the moment, but kept in the code for future
reference. Remember to set ’electronflag’ = 1, to indicate that electrons are
present.

• ’lambda1’ gives the fraction of Pauli-energy associated with the indi-
vidual electrons, (1 - ’lambda1’) the fraction associated with the whole
electron gas outside of the ion cores (0 ≤ ’lambda1’ ≤ 1)
lambda1 = 0.0d0

• ’lambda0’ gives the fraction of Coulomb-energy associated with the
individual electrons, (1 - ’lambda0’) the fraction associated with the
whole electron gas outside of the ion cores (0 ≤ ’lambda0’ ≤ 1)
lambda0 = 0.0d0

• ’volfreeflag’ (=1) indicates that the free volume is calculated and should
be taken into account as a criterion. ’volfreeflag’ = 1 is necessary, if
one wants to use ’lambda0’ or ’lambda1’ less than 1.
volfreeflag = 0

• ’coulomb0factor’ multiplies the coulomb-self-energy of the electrons
coulomb0factor = 0.30d0

• ’coulomb1factor’ multiplies the coulomb-self-energy of all the electrons
in the system assuming that they occupy a volume ’volfree’ Usually,
one sets ’coulomb1factor’ = ’coulomb0factor’.
coulomb1factor = 0.3d0

3.2 Gupta-potential (originally potential type 8 in old G42-
code)

The general form of the Gupta-potential can be found in the literature (the
implementation used in G42+ is given below). The potential parameters

28



(Agup(i1,i2), Pgup(i1,i2), Rgup(i1,i2), Zgup(i1,i2), Qgup(i1,i2) for atoms of
type i1 and i2) can be read-in from an external database, but it is probably
better to include them directly in input.f (see section on ’guptadatabase’ for
information about the parameters).

Note that the Gupta-potential contains a term where the individual con-
tributions are added and then the square root is taken (for details and mo-
tivation, see literature). Thus, certain conditions need to be fulfilled in the
energy calculation: Only single atoms are allowed as building units, and only
neutral atoms are allowed. The last condition is not critical, but it is hel-
pful in order to make sure that the atomic radii make sense. However, if we
introduce Rgup (the official distance-parameters of the atoms that are used
in the gupta potential) explicitly inside input.f (to be recommended if one
wants to use additional potentials to interact with the atoms), then we can
use ionic radii for the other energy calculations without getting interference.

Within G42+, this is not a call to an external program; a Gupta potential
exists within G42+. The parameters are either given here in input.f or in the
read-in file in ’guptadatabase’. But in order to be able to combine the Gupta-
calculations with other potentials, one should include the Gupta interactions
as part of input.f.

Note that the Gupta-potential contains a term where the individual con-
tributions are added and then the square root is taken. Thus, certain things
need to be changed in the energy calculation: Only single (neutral) atoms
are allowed as building units if they are involved in Gupta-calculations. Fur-
thermore, for all atom types that have Gupta-interactions, we need to set
’guptaatomtype’ = 1.

• ’guptaflag’ = 1 activates the calculation of the Gupta-energy.
guptaflag = 0

• The Gupta-parameters are read in from the ’guptadatabase’ if ’read-
guptaflag’ = 1. readguptaflag = 0

• If we want to read in the data from the ’guptadatabase’, then we
need to provide the number of how many atomtypes are involved in
Gupta calculations, ’numguptatypes’. Furthermore, we need the ele-
ment numbers ’elnumgupta’(1,...,’numguptatypes’) of these atom ty-
pes, and which atomtype they belong to in the main list of atomtypes,
’atomtypegupta’(1,...,’numguptatypes’) = e.g. (3,4,6).
numguptatypes = 1
elnumgupta(1) = 13.0d0
atomtypegupta(1) = 3
As an alternative, we include for those atoms that experience Gupta-
type interactions the Gupta parameters directly in input.f.

• If ’guptasplineflag’ = 1, we use the spline-cutoff version of the Gupta-
potential. In that case, we need to add values for the two cutoff-points

29



(i.e. end of standard Gupta-potential, and the end of spline-part at
VGupta = 0) for each pair of atomtypes (make sure that rc(i,j) =
rc(j,i))
guptasplineflag = 0
rc1(1,1) = 4.0d0
rc1(1,2) = 4.0d0
rc1(2,1) = 4.0d0
rc1(2,2) = 4.0d0
rc2(1,1) = 5.0d0
rc2(1,2) = 5.0d0
rc2(2,1) = 5.0d0
rc2(2,2) = 5.0d0

If we want to have only part of the atoms (e.g. the background struc-
ture or a cluster within/on top of a variable structure experience Gupta-
interactions, and the other atoms use a different potential, then set ’gupt-
aflag’ = 1, and ’pottype’ to the other type of potential. If atoms of the
background should be included in the (Gupta)-calculations, set ’guptaback-
groundflag’ = 1.

Note that due to the complicated structure of the Gupta-potential (many-
body-terms), we cannot separate mobile-mobile, mobile-background and
background-background calculations; we have either only the mobile, only
the background, or all atoms participating in the Gupta energy calculations,
but nothing in-between. Of course, only types of atoms with ’guptaatomty-
pe’ = 1 will participate, so there is some freedom to play with if desired.

Note that if we want to have background atoms that can relax their
atom positions, then we need to have ’fixflag’ = 2 or 3. In that case, we
must have ’guptabackgroundflag’ = 1 or 2 if these atoms participate in
Gupta-potential calculations. The case ’guptabackgroundflag’ = 2 is most
useful for the occasion when we are dealing with a metallic surface that is
supposed to relax, but no metallic atoms are on top of it.

1. ’guptabackgroundflag’ = 0: No background atoms involved;

2. ’guptabackgroundflag’ = 1: Backgroundatoms+mobile atoms involved;

3. ’guptabackgroundflag’ = 2: Only background atoms involved.

guptabackgroundflag = 0
The implementation of the Gupta potential is rather involved and in-

volves summation over all (1+2c1max)(1+2c2max)(1+2c3max) neighboring
cells:
eterm1 = 0.0d0
do n1 = 1,nbgcur(icalc)
hvgup1 = 0.0d0

30



hvgup2 = 0.0d0
do c1 = -c1max,c1max
c(1) = c1
do c2 = -c2max,c2max
c(2) = c2
do c3 = -c3max,c3max
c(3) = c3
do m1 = 1,nbgcur(icalc)
if ((n1.eq.m1).and.(c1.eq.0).and.(c2.eq.0).and.(c3.eq.0)) then
V2 = 0.0d0
eterm1 = eterm1 + 0.5d0*V2
else
do i2 = 1,dimens
hr(i2) = x(n1,i2,icalc) - (x(m1,i2,icalc)+c(i2))
c x refers now to BG, and not to individual atoms.
enddo
nmax = bsize(n1,icalc)
mmax = bsize(m1,icalc)
do n2 = 1,nmax
n = atype(bgal(n1,n2,icalc),icalc)
if (guptaatomtype(n,mclflag,icalc).eq.1) then
do m2 = 1,mmax
m = atype(bgal(m1,m2,icalc),icalc)
if (guptaatomtype(m,mclflag,icalc).eq.1) then
R = 0.0d0
do i3 = 1,dimens
h = 0.0d0
do i4 = 1,dimens
h = h + a(i3,i4,icalc)*hr(i4)
enddo
h = h+(u(n1,n2,i3,icalc)-u(m1,m2,i3,icalc))
R = R + h**2
enddo
R = dsqrt(R)
if (R.gt.tol2) then
hvA = Agup(n,m)
hvP = Pgup(n,m)
hvR = Rgup(n,m)
hvZ = Zgup(n,m)
hvQ = Qgup(n,m)
hvrc1 = rc1(n,m)
hvrc2 = rc2(n,m)
if (R.lt.hvrc1) then
hvgup3 = R/hvR - 1.0d0

31



hvgup4 = hvA*dexp(-hvP*hvgup3)
hvgup5 = hvZ*hvZ*dexp(-2.0d0*hvQ*hvgup3)
elseif ((R.ge.hvrc1).and.(R.lt.hvrc2)) then
hvpc1 = pc(n,m,1)
hvpc2 = pc(n,m,2)
hvpc3 = pc(n,m,3)
hvpc4 = pc(n,m,4)
hvpc5 = pc(n,m,5)
hvpc6 = pc(n,m,6)
hvgup3 = R - hvrc2
hvgup6 = hvgup3*hvgup3
hvgup7 = hvgup6*hvgup3
hvgup4 = (hvpc1 + hvpc2*hvgup3 + hvpc3*hvgup6)*hvgup7
hvgup5 = (hvpc4 + hvpc5*hvgup3 + hvpc6*hvgup6)*hvgup7
hvgup5 = hvgup5*hvgup5
else
hvgup4 = 0.0d0
hvgup5 = 0.0d0
endif
hvgup1 = hvgup1 + hvgup4
hvgup2 = hvgup2 + hvgup5
else
nochange(icalc) = 10
Ediff(icalc) = 2.0d1*Tinf
E(icalc) = Ecurrent(icalc) + Ediff(icalc)
goto 100
endif
endif
enddo
endif
enddo
endif
enddo
enddo
enddo
enddo
engup1(icalc,n1) = hvgup1
engup2(icalc,n1) = hvgup2
eterm1 = eterm1 + engup1(icalc,n1) - dsqrt(engup2(icalc,n1))

32



3.3 CRYSTAL

For calculations with the CRYSTAL code, we need to provide a sub-directory
to the one where we perform our calculations, called ’Energycrystal’. G42+
will write the input-file for crystal into that directory, the script ’crystal-
callkdl’ will start the CRYSTAL run there, and we extract the energy com-
puted from the CRYSTAL-outputfile generated in this directory.

Since it is not easy for the code to automatically generate some of files
necessary for a crystal calculations, one needs to put the CRYSTAL in-
put data that do not vary during the search into the file inputcrystal.f, in
the form of an array of character strings, ’inpcrystal(1:linescrystmax)’ (the
maximum length of the array, ’linescrystmax’, is set in ’varcom.inc’). You
also have to set the value for ’numbofentries’ in inputcrystal.f, which is the
number of the last non-empty entry you are using in the array ’inpcrystal’.

For the meaning of the entries in the CRYSTAL-input, please refer to
the CRYSTAL manual directly. Each entry is consist of a character string,
which is written into the ’inpcrystal’ array. Of course, those entries which
change from step to step (atom positions, cell parameters, etc.) are not listed
here. They are generated in the subroutine writeinputkdl.

Note that the first five entries in ’inpcrystal’ refer to the overall type of
calculation that needs to be done:

• inpcrystal(1) = ’TEST’//confname

• inpcrystal(2) = ’MOLECULE’

• inpcrystal(3) = ’’

• inpcrystal(4) = ’1’

• inpcrystal(5) = ’END’

The first entry is the name of the run where the calculation is done, while the
second one (’MOLECULE’ or ’CRYSTAL’) tells us whether we are dealing
with an energy calculation for a molecule or a crystal; the values for the
third and fourth entry depend on whether we are dealing with molecules
or crystals. At the beginning of the complete input-file that is read by the
CRYSTAL code and generated in the subroutine writeconfkld, we write the
entries one to four of ’inpcryst’. Next, G42+ writes cell parameters and atom
positions, depending on whether we are going to do a molecule or a crystal
type calculations. The fifth entry should always be the information ’END’,
and will be written after the configuration information has been written.

The next entries in ’inpcryst’ will be written in the order in which they
are to appear in the CRYSTAL input file. They refer to basis sets, pseudo-
potentials, tolerances during calculations, type of calculation to be done,
etc. For more details, see the CRYSTAL manual.

33



You also need to set up a script file before using CRYSTAL in G42 (cry-
stalcallkdl) that calls CRYSTAL (wherever it is stored) and redirects the
output appropriately, analogously to VASP and Quantum Espresso. A pos-
sible version of this script is:
#!/bin/csh -f
set INPUTFILE = $$
cp -f Energycrystal/INPUT Energycrystal/$INPUTFILE
./crystal < Energycrystal/$INPUTFILE > Energycrystal/$INPUTFILE.out
# for the energy we can easily grep
grep ENDED Energycrystal/$INPUTFILE.out > crystalenergykdl
if (-z crystalenergykdl) then
echo ’ == no energy found E(AU) 1.0000000000000E+13 ’ > crystalenergykdl
endif
#
grep ENDED Energycrystal/$INPUTFILE.out >> allenergies
grep ’T END ’ Energycrystal/$INPUTFILE.out >> allenergies
#
rm -f Energycrystal/$INPUTFILE
rm -f Energycrystal/$INPUTFILE.out

For this, we provide the option **PROVIDE!!!**** to either generate
the script inside input.f or have it pre-prepared outside of G42+.

Note that we have not incorporated local minimizations using the CRY-
STAL code.

3.4 VASP

For VASP, we need to provide an external folder called ’vasp’, into which we
place the files INCAR, KPOINTS and POTCAR. Furthermore, we need the
program ’bader’ that analyses the charge distribution file CHGCAR produ-
ced by VASP. You also need to set up a script file before using VASP in G42
(called: crystalcalvasp), such as:
#!/bin/csh -f
#set INPUTFILE = $$
set MPIDIR=/usr/local/server/intel/impi 3.2.2/bin64
cp -f INCAR Energyvasp/INCAR
cp -f KPOINTS Energyvasp/KPOINTS
cp -f POTCAR Energyvasp/POTCAR
#cp -f vasp Energyvasp/vasp
cp -f vasp528 MPI Energyvasp/vasp528 MPI
cp -f bader Energyvasp/bader
set num tasks = ‘cat machine list.* | wc -l‘
cd Energyvasp
rm -rf vaspenergyaniket
rm -rf vaspoutput

34



rm -rf get scf number
#/raid/programme/theorie/VASP/vasp.5.2/vasp > stdout
#/opt/mpich/ch-p4/bin/mpirun -np $num tasks -machinefile ./hostlist
vasp528 MPI > STDOUT
echo $num tasks
$MPIDIR/mpirun -f ../mpd.hosts -r ssh -machinefile ../hostlist -np
$num tasks ./vasp528 MPI > stdout
# bader charge analysis
#/home/kulkarni/bader/bader CHGCAR > outbca
bader CHGCAR > outbca
# for the energy we can easily grep
grep NELM OUTCAR >> get scf number
tail -2 OSZICAR >> vaspoutput
tail -1 OSZICAR >> vaspenergyaniket
tail -1 OSZICAR >> allenergies vasp
cd ..
rm -f Energyvasp/POSCAR
rm -f Energyvasp/stdout

or
#!/bin/csh -f

# call with
# rung42 outputfilename
set TMPDIR = /scratch/kulkarni/$$
set CRYSDIR = /raid/programme/theorie/CRYSTAL/V2006 1.0.1/bin/Linux-pgf-opteron P/v1 0 1/
set MPIDIR=/usr/local/server/intel/impi 3.2.2/bin64
set VASPDIR=/home/c3theorie/VASP/bin
#set VASPDIR = /raid/programme/theorie/VASP/vasp.5.2/
set BADERDIR = /home/kulkarni/bader/
set here = ‘pwd‘
set Aout = ’/home/kulkarni/G42 GUCRYSVA RS20april11 VASP’
set G42DIR = $here
set G42OUTPUT = $here/output
if (-e $G42OUTPUT) then
echo ’erase the old output directory first’
exit
endif
mkdir $G42OUTPUT
echo ’using CRYSTAL06, Linux version 1.0.2’
echo ’using VASP, Linux version 1.0.2’
echo ’using G42, directory’ $here
echo cleaning, creating $TMPDIR
rm -rf $TMPDIR
mkdir -p $TMPDIR
if (-e restartinit) then

35



cp restartinit $TMPDIR
endif
#else if(abinitflag.eq.1)then
cp $Aout/a.out $TMPDIR
cp $CRYSDIR/Pcrystal $TMPDIR
cp $Aout/crystalcallkdl $TMPDIR
cp $Aout/crystalcalvasp $TMPDIR
cp externaldata $TMPDIR
cp $Aout/atomdatabase $TMPDIR
cp $Aout/bgdatabase $TMPDIR
#else if(abinitflag.eq.2) then
cp $Aout/a.out $TMPDIR
cp $VASPDIR/vasp528 MPI $TMPDIR
#cp $VASPDIR/vasp $TMPDIR
cp $Aout/vasp/INCAR $TMPDIR
cp $Aout/vasp/POTCAR $TMPDIR
cp $Aout/vasp/KPOINTS $TMPDIR
cp $BADERDIR/bader $TMPDIR
#else
#continue
#end
if (-e ../Limetal ran 01/guptadatabase) then
cp $Aout/guptadatabase $TMPDIR
endif
# Achtung, naechster Befehl ist fuer etwaigen Restart
# Filename sollte auf .dat enden
echo ’hello 1’
cp $here/*.dat $TMPDIR
echo ’hello 2’
mkdir $TMPDIR/Energycrystal
mkdir $TMPDIR/Energyvasp
cd $TMPDIR
#cp INCAR $TMPDIR/Energyvasp/
#cp POTCAR $TMPDIR/Energyvasp/
#cp KPOINTS $TMPDIR/Energyvasp/
#
# create hostfile
#
/usr/local/fkf/bin/ll get machine list intelblade > machine list.$$
set num tasks = ‘cat machine list.$$ | wc -l‘
/usr/local/fkf/bin/strip hosts < machine list.$$ > hostlist
#if [[ $num tasks -le 0 ]]
#then
# echo ’$0: ll get machine list is unable to create a machinefile.’

36



# echo ’$0: Make sure that the binary ll get machine list is accessible
to all
#machines in the cluster.’
# exit 1
#fi
#
echo ’ ==> Total number of tasks: ’$num tasks
echo ’ on nodes’
cat hostlist
echo ‘hostname‘ > mpd.hosts
setenv num tasks
echo $HOST > $G42OUTPUT/dalaeuftes
echo $TMPDIR >> $G42OUTPUT/dalaeuftes
echo $1 >> $G42OUTPUT/dalaeuftes
date > $1.out
echo $HOST >> $1.out
nice a.out >>& $1.out
echo $HOST >> $1.out
date >> $1.out
echo ’hello 3’
rm -f $TMPDIR/a.out
rm -f $TMPDIR/Pcrystal
rm -f $TMPDIR/vasp
rm -f $TMPDIR/crystalcallkdl
rm -f $TMPDIR/crystalcalvasp
rm -f $TMPDIR/atomdatabase
rm -f $TMPDIR/bgdatabase
rm -f $TMPDIR/guptadatabase
rm -f $TMPDIR/fort.*
rm -f $TMPDIR/INCAR
rm -f $TMPDIR/POTCAR
rm -f $TMPDIR/KPOINTS
cd $here
echo ’hello 4’
#mv $TMPDIR/allenergies $G42OUTPUT/$1.allenergies
mv $TMPDIR/allenergies vasp $G42OUTPUT/$1.allenergies vasp
mv $TMPDIR/* $G42OUTPUT/
echo ’hello 5’
rm -rf $TMPDIR

for multi-processor runs of VASP (or CRYSTAL). Note that with appro-
priate modifications, the same script can be used for the script to perform
runs with the CRYSTAL code for energy calculations. Nevertheless, you still
need to separately provide the script crystalcallkdl for CRYSTAL calculati-
ons.

37



*****AS AN OPTION, THIS SCRIPT IS CONSTRUCTED IN IN-
PUT.F!!!!*** For details of what needs to be included in the files INCAR,
KPOINTS and POTCAR, please see the VASP manual. The information
about the current configuration is written in the subroutine writeinputvasp
as the file POSCAR.

Note that in VASP the calculations of the energy of molecules and clu-
sters also proceed as if they were periodic since the VASP code is based on
plane wave basis sets. Furthermore, we have not incorporated local minimi-
zations using the VASP code.

If we want to use the ’mullflag = 1’ option to assign ionic radii to the
atoms according to their net charge, one needs to enter the actual valence
charges for ionic radius calculation. This is useful only for VASP code. As-
sign a value to ’vaspcharge’ for different types of atoms; note that these
VASP-charges are identical for all walkers (for example, for Ca with twen-
ty electrons, we put vaspcharge = 2 since all inner eighteen electrons are
subsumed in the pseudo-potential.)

• vaspcharge(1)=1.0

3.5 Quantum Espresso (QE)

In contrast to the VASP and CRYSTAL modules, all information that is
needed for QE-calculations is contained in the QE-section of input.f. This
includes the script crystalcalQE which is used to call the QE-code. Note
that both energy calculations and minimizations (including cell parameters)
can be called from G42+. But one needs to warn: such minimizations can
often stop before the minimum has been reached, and it is advised that
whatever structures are found after local minimizations using the QE code,
we repeat the minimization after a small perturbation to make sure that we
have stopped at a real minimum.

Basically, go through the input.f section and carefully fill in the parame-
ters that are needed. Since this is quite extensive, we do not give it here in
detail (**perhaps include later??******). Most variable names are the same
as in the QE-manual, just with a prefix ’QE ’.

Quite generally, do check the help-manual of QE for further information.
For extensions beyond what is provided in input.f in the current version
of G42+, one will need to add variables (preferably called ’QE .....’) and
appropriately extend the writeinputQE subroutine (and possibly the energy
and gradient routines where the output of QE is analyzed). If one does this,
one should keep in mind that the new (global) variables should be globally
defined in ’varcom.inc’; remember: each global variable needs to appear twice
in ’varcom.inc’: once in the variable definition, and once in a common block!

38



3.6 FPLO

Similar to the case of Quantum Espresso, all parameters needed for FPLO
calculations plus the script crystalcalFP that calls the FPLO code are set
directly in input.f. Note that both energy calculations and local minimizati-
ons are possible, but the local minimization only includes changes in atom
positions, not in cell parameters. Both molecules and crystals can be treated
with FPLO.

Again, go carefully through the input.f section for FPLO and select the
appropriate values in the input (*****perhaps include later??******). As
much as possible, all input variables have a prefix ’FP ’ but otherwise agree
more-or-less with their names in FPLO. Please check with the FPLO manual
regarding the meaning of these variables. The input file for the pipe-mode of
FPLO is generated in the subroutine writeinputFP. If you need to add fur-
ther features / variables, please proceed analogously to the case of Quantum
Espresso.

3.7 GULP

For the subroutine GULP, we need to prepare one external file, the pot lib
file, which contains the information about the potential being used: type of
potential and parameters that belong to this potential. Such parameters can
sometimes be found in the literature for well-known systems and potentials,
but sometimes one needs to spend time to find ’good’ parameters that work
well for the system.

As is the case for the other external codes, we use various flags to tell
G42+ what kind of operations GULP is supposed to perform. In addition to
the flags, we prepare the unchanging parts of the GULP input file explicitly
in input.f, and then piece them together with the changing parts (generated
in libGULP.f) to the complete GULP input file. We do not use scripts as we
do for most of the other external codes to call the GULP code, but do the
call to GULP as a system call inside G42+.

• GULPflag = 1 indicates that the GULP-program is to be used at so-
me time during the calculations. Note that we need to provide a file
containing potential parameters for GULP, called pot GULP.lib.

• GULPenergyflag = 1 indicates that the energy is to be calculated
using GULP

• GULPgradientflag = 1 indicates that the gradient is to be evaluated
using GULP (note that this is not yet fully implemented and should
not be used)

• ’GULPoptimizationflag’ > 0 indicates that a local optimization is
being performed using GULP. Note: For clusters, use only ’GULPop-

39



timizationflag’ = 1. Note that for the case of periodic boundary con-
ditions, we have two options: optimize both atom coordinates and cell
parameters (’GULPoptimizationflag’ = 1) or only the atom coordi-
nates (’GULPoptimizationflag’ = 2). The latter case is of interest, if
one knows somehow already the cell parameters e.g. from experiment.
Currently, the program assumes that GULP does not change the cell
(and thus the reference of the fractional coordinates) for case 2. If
we want to perform local optimizations with symmetries being fixed,
one should probably change localgraddesc etc.; thus this option is not
possible - all optimizations take place in space group P1.

Note that if you include the background structure in the energy cal-
culations, it is usually problematic, to change the cell during the op-
timization, even if ’fixflag’ > 1. If ’fixflag’ = 1, the code will crash
if you try to change the cell parameters, since the background struc-
ture is not allowed to be changed, which includes the cell parameters.
****MAKE SURE THAT CLUSTER OPTIMIZATIONS ARE STILL
POSSIBLE??****

Note that at the outset, enerGULPflag and optimGULPflag must be set to
the default values zero and are changed later during the run.

Note that one can also run an energy calculation using a potential im-
plemented in G42 before the GULP energy calculation. This can be useful if
one wants to make a pre-check, whether e.g. two atoms are too close (some
of the typical potentials used in the literature are singular for atom-atom
distances near zero). The same type of pre-check is often used for ab initio
calculations to avoid regions with bad convergence.

Furthermore, for speeding up calculations, it is sometimes better to pro-
gram the GULP potential directly into the pot.f subroutine (for simple non-
periodic GULP calculations), and use GULP only for the local minimization
routine, i.e. ’GULPenergyflag’ = 0 and ’GULPoptimizationflag’ = 1. To use
a built-in potential instead of / in addition to the GULP calculations, set
’potflag’ ¿ 0. Remember that ’potflag’ depends on the moveclass - thus for
energy calculations during a stochastic walk with one moveclass (usually
number one) we can use the built-in potential, and for the local minimiza-
tion with a different moveclass (usually number two) we employ the GULP
minimizer. Another case where ’potflag’ ¿ 0 is useful, is if one wants to
compute an interaction with a (fixed) background structure using the built
in potentials besides the interactions among the mobile atoms and building
units.

If we want to include the interaction with the background structure into
the GULP calculation, we need to set ’GULPbackgroundflag’ appropriately.

• ’GULPbackgroundflag’ = 0: background not included in GULP (but
in G42-potential calculation)

40



• ’GULPbackgroundflag’ = 1: included only in GULP

• ’GULPbackgroundflag’ = 2: included both in GULP and G42-potential
calculation.

Note that G42-potential calculation only takes place, if ’fixflag’ > 0! Similar-
ly, the GULP calculation of the background structure can only take place, if
’fixflag’ > 0; else the background structure is ’invisible’. If we want to com-
pute the interaction between / among background atoms with GULP, make
sure that pot lib includes the potentials for the atoms of the background
structure.

Concerning the GULP minimization, keep in mind that we only are
allowed to move the atoms of the background structure, if fixflag = 2.

Also note that if you are using (perfect) slabs, there will be a problem
with the GULP-minimization, since GULP does not take mirror charges or
fixed surfaces into account******check whether there are options in GULP
in this respect*******. Also, remember that you need to be consistent re-
garding gradient calculations - don’t mix GULP-energies with G42-gradients
(which might not exist!).

The generation of the file pieces for the GULP PARAM file proceeds by
appropriately editing the following piece in input.f:
if (GULPflag.eq.1) then
open (12,file=’GULP PARAM’)
write (12,1001) ’lib pot GULP.lib’
c write (12,1001) ’output drv GULP’
1001 format(A)
if (GULPenergyflag.eq.1) then
write (12,1001) ’accu 8’
write (12,1001) ’rspeed 1.0’
endif
if(GULPgradientflag.eq.1) then
continue
endif
if ((GULPoptimizationflag.eq.1).or.(GULPoptimizationflag.eq.2))
then
write(12,1001) ’xtol opt 5.0’
write(12,1001) ’gtol opt 5.0’
write(12,1001) ’ftol opt 5.0’
write(12,1001) ’switch rfo 0.01’
write (12,1001) ’maxcyc 10000’

c write (12,1001) ’update 10’
c write (12,1001) ’ftol 5’
c write (12,1001) ’gtol 5’
c write (12,1001) ’xtol 5’

41



c write (12,1001) ’stepmx 1.0’
endif
close (12)
endif

If you want to keep track of all the GULP-outputs, set GULPprotflag =
1. The name of the file is prot GULP. If you want to write the most import-
ant files in one of the other formats that GULP offers, set ’GULPformatflag’
= 1, and define the keyword ’GULPformat’ (exactly five characters, include
empty spaces if necessary), e.g. GULPformat = ’xyz ’

Finally, ’shellflag’ = 1 indicates that a potential with electronshells is
being used (at the moment only applicable in GULP, thus one usually just
uses shellflag = 0.

3.8 Molecular modeling codes

Typically, the molecular modeling codes employ different type names for
atoms depending on their environment inside a molecule, in order to pick
the right kind of interaction term / parameters for their description. To be
able to deal with this multiplicity of interaction-atom-types, we provide a
list of atominttypes available for these atoms and indicate in the bgdatabase,
which type a given atom is supposed to belong to. The file ’atominttype.inc’
contains a list of all atoms that need special names for purposes of ’inter-
actions’ defined in special force fields (GRO..., CHARMM..., etc.). This file
associates with the interaction number of each atom in the bgdatabase a
specific 5-character (at least for GROMACS calculations) letter+number
sequence. This file needs to be included in input.f, via the line include
’atominttype.inc’.

If we now want to associate atoms with certain interaction types as nee-
ded for the GROMACS and AMBER codes, and perhaps others, then we
need to set ’atomintflag’ = 1. If so, then make sure that for all the atoms
in bgdatabase we have an entry (an integer number with one decimal, i.e.
1.0 or 10.0, etc.) at the key word ’<atominttype>’ ! Furthermore, make sure
that the ’atominttypename’, which is needed in the external program is as-
signed in ’atominttype.inc’ to the number in the bgdatabase. Until that has
happened, set ’atomintflag’ always equal to 0. The default is atomintflag
= 1. One general problem one encounters is that various external databa-
ses use different naming conventions for the atoms in the molecules, and it
is not always clear, which is supposed to be the atominteractiontype. Al-
so, for large molecules like proteins, the potentials employ various kinds
of coarse-grained descriptions which are not directly reflected in the way
such molecules are encoded in the current code. To deal with such systems,
it is usually necessary to edit the bgdatabase file by hand and assign the
appropriate fixed/not-fixed flags for the various bonds and angles involved.

42



3.8.1 GROMACS

The implementation of calls to GROMACS is a mixture of the way we call
GULP and the external ab initio codes.

• ’GROflag’ = 1 means we are going to call GROMACS

• ’GROenergyflag’ = 1 means we perform single point energy calculati-
ons (should always be set to 1)

• ’GROoptimizationflag’ = 1 means we are also going to call GROMACS
for local minimizations (but it looks as if one can only optimize atom
positions and not cell parameters?).

• If we want to optimize just atom positions, then we set ’GROvcre-
laxflag’ = 0, and if we also want to relax the cell, then we set ’GROv-
crelaxflag’ = 1.

• If we want to include background atoms into the GROMACS calculati-
on, we need to set ’GRObackgroundflag’ = 1 (only GROMACS is used
for the energy calculation) or ’GRObackgroundflag’ = 2 (in addition
to GROMACS the built-in energy functions are used).

’optimGROflag’ and ’optimGROvcflag’ are internal flags, which must be set
initially to zero.

For GROMACS, one should prepare beforehand a ’molecule.itp’ file for
each of the molecules to be used. Since it makes sense to re-use such a file,
one should add this name (GRO...itp) to the building unit name in input.f.
Each molecule / piece of a molecule is always associated with a building
unit in bgdatabasemaster. We do need the information in bgdatabase be-
cause this information is important for additional interactions defined via
the potentials directly inside G42 and because the database information
about the connectivity of the molecule is used in the moveclass. The path
to the directory where the .itp files are stored is given by ’GRO molpfad’,
and the name ’GROitpname’ of the .itp file is given in the definition of the
building units: GRO molpfad = ’./Molecule itp files/’.

When constructing the .itp file and the corresponding entry in bgdata-
basemaster, make sure that they are consistent, i.e., the order of the atoms
should be the same, and the right pairs, triplets and quartets are put to-
gether. Furthermore, do check (by inspection) whether a given distance /
angle / dihedral is allowed to vary or not (i.e. value of ’freepairflag’, ’freetri-
pletflag’, ’freequartetflag’ = 1 or 0, appropriately). G42+ does check whether
there are contradictions in the choice of these values, but a pre-check is to
be advised.

Next, we need to worry about the interaction potential. ’GRO potpfad’
gives the path to the desired potential, and ’GRO potential’ is the name

43



of the actual potential file. Make sure that the molecules / building units
that are part of the simulation have the correct atominttyp-numbers. Also,
make sure that there is an .itp at the end of the potential file. For example,
GRO potpfad = ’./Gromos53a6/’ and GRO potential = ’forcefield.itp’.

Once the .itp files for the molecules and the force fields are ready, we can
construct the .top file describing the topology plus the interactions among
the atoms in the molecule. Note that we do not include yet the information,
how many molecules are going to be used - this might change during the run
(e.g. we might include / exclude the background structure), and we therefore
need to generate the full .top file just before calling grompp in energy.f and
gradient.f (localgraddesc.f).

For the remainder of the many variables that are being pieced together
into the various input-files needed for GROMACS and the script used to
call GROMACS, please go carefully through the section in the input.f file. If
you want to add more features, you would have to add more variables (use
prefix ’GRO for the variables in front of the variable name found in the
GROMACS manual), and also edit the libGRO.f file, where the GROMACS
input files are generated. Having the GROMACS manual at hand should be
helpful, as for all the other external codes.

3.8.2 AMBER

******ADD AFTER GETTING LATEST UPDATE FROM SRIDHAR*********

3.9 Magnetization

In order to be able to generate magnetic structures on the energy landscape,
we introduce the magnetization of each atom i, ’magnetization(i,iwalk)’. This
can vary between -1 and +1 (normalized!), while the total magnetization of
the cell is the sum over all magnetizations in units of Bohr magnetons.

At the moment, we are using QE as the code to evaluate spin-polarized
electron configurations. This means that for a given magnetic distribution in
G42+, the QE code tries to optimize the spin density during the SCF-cycles.
We can either read in the outcome by analyzing the projected spin-dos, or
just use the average (from the final total magnetization). Probably it makes
more sense to go with the spin projections.

In the ’atomdatabase’, we register the maximal value (’magnetmax’ =
number of up-spins - down-spins) which can exist at a given atom. Note
that we will allow the system to violate Hund’s Rules, i.e., we take as the
maximum the number of valence electrons that might participate, in order
to be able to deal with magnetic fields?

So far, we have not implemented this kind of magnetic information about
the atoms in the ’atomdatabasemaster’ ! But we do have information about

44



the magnetization in the ’bgdatabasemaster’. We use the magnetization by
setting ’magnetflag’ > 0.

• For magnetflag = 1, we give each atom a normalized magnetization
of +0.1.

• For magnetflag = 2, we use a random starting value of ±0.1 to allow
the system to do its own adjusting, without including the spin polari-
zation explicitly into the moveclass, or keeping track of the projected
spin density. In that case, we can also prescribe a total constrained
magnetization for the system, which it is supposed to achieve. (see
QE-section for these variables.)

• magnetflag = 3: the system assigns each atom i to its own QE type
(but still with the right pseuodpotential, according to ’atype(i)’ ), and
the initial magnetization is taken from the value of ’magnetatom(i)’.

magnetflag = 0

3.10 Penalty terms

In addition to the energy/enthalpy, we also compute a cost function, which
includes explicit penalty terms that forbid the walker to enter certain regi-
ons of the energy landscape (cost = energy + penalty). In contrast to the
’penalty’ introduced by e.g. forbidding two atoms to come too close to each
other (like an exaggerated repulsive potential), these terms refer to whole
regions of configuration space, independent of the physical reasonableness
of the configurations - these regions are just taboo (usually because they
contain structures that have been observed in an earlier run already).

• The penalty function penalizes a walker, if he gets too close to a forbid-
den structure (Taboo-search). Several types of ’order parameters’ and
penalty functions are used. If a penalty function is to be added to the
energy, set ’penaltyflag’ = 1, else = 0. (Other values for ’penaltyflag’
can lead to problems.) Furthermore, note that we can either restrict
the search to the neighborhood within the taboo-zone, or exclude the
taboo-zone (see penaltyfunctionflag’, below).

Do not use the ’gradient’ or ’linesearch’ modules with a penalty func-
tion, since no gradient of penalty functions has been implemented.

Do not use penalties with the ’prescribed path’ option - this is nonsen-
se. Use only pen = (0,infinity)-function with ’Monte Carlo’ or ’Thres-
hold’ runs - else the energy average or the energy limit become point-
less, respectively.
penaltyflag = 0

45



• The number of forbidden structures is ’Npenstruct’ (≤ ’Npenstruct-
max’ in ’varcom.inc’)
Npenstruct = 0

• ’writedbstructflag’ equals 1: write up the ’dbstruct’-entries for the for-
bidden structures. The ’dbstruct’-entries describe the location in pen-
alty space of configurations, and allows us to compare them. E.g. when
we compare their pair correlation functions bin-wise, the correspon-
ding array is defined as ’dbstruct(1:’Npenstructmax’, 1:’Npairtype-
max’, 1:’Ndistbinmax’)’ in ’varcom.inc’. For a comparison based on cell
parameters alone, we use the seven arrays ’cellastruct(1:’Npenstructmax’)’,
’cellbstruct(1:’Npenstructmax’)’, ’cellcstruct(1:’Npenstructmax’)’, dia-
gabstruct(1:’Npenstructmax’)’, diagacstruct(1:’Npenstructmax’)’, diagb-
cstruct(1:’Npenstructmax’)’, ’volstruct(1:’Npenstructmax’)’.
writedbstructflag = 1

• The names of the files containing the forbidden structures, in standard
building-unit format, are in the list ’penstructlist(...)’. Note that the
order of atom-types must be the same as in the sub-run being un-
dertaken, else the wrong pairs will be listed and compared. In order
to ensure compatibility with the penalties chosen for the current run,
the structures are read in and the comparison-arrays created at the
beginning.
penstructlist(1) = ’endcfgt09999-55.0.8.0-01-00001’

• ’penaltyaddflag’ = 1: We add the last endconfiguration to the forbidden
structures. Make sure that the total number of forbidden structures
cannot exceed ’Npenstructmax’ (in ’varcom.inc’). ’penaltyaddflag’ =
0: No adding.
penaltyaddflag = 1

• ’penaltytypeflag’ = 1 : cell lengths and diagonal lengths are used as
order parameter; ’penaltytypeflag’ = 2 : binned atom-atom distances
(listed by atom-pair-type) are order parameter; ’penaltytypeflag’ = 3
: cell lengths and diagonal lengths are used as order parameter, but
normalized with volume.
penaltytypeflag = 1

• If we want to use absolute values for differences in ’dbstruct’ when
calculating penalties instead of square differences, set ’penaltyabsflag’
= 1.
penaltyabsflag = 0

• ’Npairtype’ is the number of atompairtypes (= ’numtypes’ * (’numty-
pes’ + 1)/2 ≤ ’Npairtypemax’ (in ’varcom.inc’)) used for the binning.
Npairtype = 3

46



• The width of a bin is ’distbinsize’, the maximal distance in the pair
correlation function is ’Distbinmax’, the number of bins is ’Ndistbin’
. This should be at least ’Distbinmax’ / ’distbinsize’ + 2 (because of
leakage into neighboring bins, see below), and should be ≤ ’Ndistbin-
max’, (in ’varcom.inc’); distances are in Angstrom.
distbinsize = 0.2d0
Distbinmax = 8.0d0
Ndistbin = 42

• Filling of the bins can be done with leakage into neighboring bins. The
central bin where the distance lies receives ’sharp1’, the bin to the
left ’sharp0’ and the one to the right ’sharp2’ units (in integers). All
dbstruct-values are finally divided by sharptotal = ’sharp1’ + ’sharp0’
+ ’sharp2’, in order to normalize.
sharp1 = 10
sharp0 = 0
sharp2 = 0

• The filling of the bins can occur with various types of normalization,
given by ’normdbflag’: ’normdbflag’ = 0: No normalization (’factor’ =
1); ’normdbflag’ = 1: ’factor’ = 4 * pi * r**2; ’normdbflag’ = 2: ’factor’
= 4 * pi * r**2 * ’distbinsize’; ’normdbflag’ = 3: ’factor’ = 4 * pi *
r**2 * ’distbinsize’ * (’natomcur’ / ’vol’).
normdbflag = 0

• ’penaltyfunctionflag’ = 1: Gaussian with temperature-dependence, ’Apen’
* exp(-pen / (’alphapen’ * T)); ’penaltyfunctionflag’ = 2: Gaussian
without temperature-dependence ’Apen’ * exp(-pen / (’alphapen’));
’penaltyfunctionflag’ = 3: Infinite-step potential, i.e. forbidden within
radius penaltydist (standard taboo-search); penaltyfunctionflag = 4:
Infinite-step potential, but this time forbidden outside of radius pen-
altydist’ (inverse taboo-search). Remember to start from inside the
taboo-zone for that kind of search! (else all moves are rejected!).
The original value of penaltydist is ’penaltydistorig’ penaltyfunctionflag
= 3
Apen = 1.0d0
alphapen = 1.0d0
penaltydistorig = 3.0d2

• We write rejected moves due to penalty, if ’penaltychangeflag’ = 1.
penaltychangeflag = 0

• We can automatically adjust the value of ’penaltydist’ by calculating
the average distance ’hv1av’ between the structures, and assign a frac-
tion ’penaltyfract’ to be the penalty distance: ’penaltydist’ = ’hv1av’ *
’penaltyfract’ (Note that ’penaltyfract’ ≥ 1 will lead to ever increasing

47



forbidden zones.)
’autopenaltyflag’ = 0: no adjustment; = 1: with adjustment; the case
’autopenaltyflag’ = 2 means that the fraction is taken with respect to
the minimum distance among the forbidden structures, ’penaltydist’
= ’hv1min’ * ’penaltyfract’. In order to avoid a clumping of structu-
res with ’penaltydist’ going to zero, there is ’penaltydistmin’, which
constitutes a lower bound on ’penaltydist’. Similarly, ’penaltydistmax’
gives a maximum value for ’penaltydist’.
autopenaltyflag = 0
penaltydistmin = 3.0d2
penaltydistmax = 1.0d6
penaltyfract = 0.2d0

• We automatically measure the distance to the last configuration that
was present at penaltyupdate by setting ’distlastflag’ = 1. ’distlastflag’
= 2 means that up to ’Nstructmax’ (in ’varcom.inc’) last configurations
can be included.
distlastflag = 1

• The number of last configurations is usually equal to zero at the be-
ginning (’Nlaststruct’ = 0).
Nlaststruct = 0

• However, one can, in principle, already provide entries to the arrays
’cellalaststruct(...)’ etc.
cellalaststruct(1) = ...
cellblaststruct(1) = ...
cellclaststruct(1) = ...
diagablaststruct(1) = ...
diagaclaststruct(1) = ...
diagbclaststruct(1) = ...
vollaststruct(1) = ...
etc., for ’penaltytypeflag’ = 1, and analogously (rather large) arrays
’dblaststruct’ for ’penaltytypeflag’ = 2.

• ’numattempts’ gives the number of attempts for generating an initial
configuration that is not within the penalty zone of forbidden structu-
res.
numattempts = 10000

• We can allow the starting configuration (randomly generated or loaded
from a file) to be within a penalty zone by setting ’penaltypermitflag’
= 1. This automatically sets ’penaltypermit’ = 1, if the configurations
is generated within a forbidden zone. Once the forbidden zone has
been left successfully, ’penaltypermit’ is set to 0, and the zones remain

48



forbidden.
penaltypermitflag = 1

4 System/configuration definition

An important part of the input is the definition of the chemical system that
is being explored. This includes all the information needed to construct an
input configuration file: the number of atoms and building units and their
types and charges etc. Next, there is the rule according to which the starting
configuration is generated if the configuration is not externally prepared and
loaded in (see section ... for this part). Furthermore, we need to set the global
restrictions on allowed moves of the atoms and the allowed changes in the
cell during the global exploration, and various tolerances need to be defined.

Quantities such as the dimensionality of the system (currently only three-
dimensional calculations are activated) and the space group have been defi-
ned earlier (see section ...). Note that in the input.f file, there are a number of
initializations of arrays (mostly to zero) - do not change these initializations!

Note that, in principle, the number of atoms and building units can
vary during a run between a minimum and maximum value, although these
moves are not active at the moment. Thus, we usually set the maximum and
minimum number equal to the initial number.

Furthermore, there are flags and entries that refer to the calculation of
the energy using free electrons and free electron pairs; again, these types of
calculations are not activated at the moment; do not change these values.

Note that you can give each walker its own composition, charges etc.!
Only the types of atoms and building units must be the same, but nor their
number (as long as it stays within the limits ’nbgmax’ and ’nbgmin’ etc.).
Just replace the do-loops by individual definitions. In principle, this applies
to all definitions in input.f, where a do-loop over the walkers is employed.
But one should carefully think about this before planning the exploration /
optimization with such different configurations!

4.1 Number of participating atoms and building units

• ’numbgmax’ is the maximal number of building groups (bg) to be
present during a run (must be smaller than ’nbgmax’ in ’varcom.inc’)
numbgmax = 6

• ’numbgmin’ is the minimal number of building units allowed in the
system
numbgmin = 6

• ’numatommax’ is the maximal number of atoms (including pseudo-
atoms of all kinds) to be present during the run (must be smaller than

49



’natommax’ in ’varcom.inc’)
numatommax = 6

• ’natommin’ is the minimal number of atoms (including pseudo-atom
of all kinds) allowed in the system
natommin = 6

• ’nbginit(...)’ is the initial number of building units in the system (must
be between ’numbgmin’ and ’numbgmax’). This variable is set equal
at the beginning to the current number of building units present, ’nbg-
cur(...)’. It can be different for different walkers.
’natominit(...)’ is the initial number of atoms (including pseudo-atoms)
present (must be between ’natommin’ and ’numatommax’). This va-
riable is set at the beginning equal to the current number of atoms
present, ’natomcur(...)’. It can be different for different walkers.
’nbgreal(...)’ is the total number of real building units present. Current-
ly, make sure that for calculations with external codes only building
units are used that consist either of only real atoms or only vacan-
cies, electrons or holes (forbidden zones)! Furthermore, note that in
the background structure, only real atoms are allowed.
’natomreal(...)’ is the total number of real atoms present, in contrast
to the number of electrons + atoms + vacancies, ’natomcur’.
Note that any activation of the moves that change the number of atoms
/ building units will require a redefinition of ’natomreal’ to ’natom-
realcur’ etc.
do i1 = 0,nwalkmax
nbginit(i1) = 6
natominit(i1) = 6
nbgreal(i1) = 6
natomreal(i1) = 6
enddo

• ’electronflag’ = 1 indicates that electrons are present. These can be
either free electrons or electron (pairs) inside a bigger building unit.
electronflag = 0

• If vacancies are to be present in the calculations, set ’vacancyflag’ =
1.
vacancyflag = 0

• Similarly, if forbidden zones are to be present in the system, then set
’holeflag’ = 1.
holeflag = 0

Note that when listing below the various ’bgtypes’ and ’atomtypes’ that
are part of the configuration, make sure that vacancies, forbidden zones,

50



and electrons/electron pairs always follow after (!) all the real atoms and
building units. The same holds true for pre-prepared structures one loads in
from the outside: List all the vacancies, holes and electrons/pairs after all
the real building groups have been listed.

Furthermore, one should not use building groups that contain both (!)
real atoms and electrons/pairs when one employs external codes to compute
the energies, and never if one performs structure minimizations with the
external code. The problem lies in assigning proper new positions to the
electrons/pairs after the minimization. Also, do not use vacancies, holes or
electrons/pairs in the pre-prepared background structures.

4.2 Atoms and building units

Next we come to the definition which types of atoms and building units are
used, and how many of them and with which charges, masses, etc.

• ’numbgtpes’ is the total number of bg-types (must be smaller than
’bgtypemax’ in ’varcom.inc’). In addition, we need the total number
of bg-types that consist of only real atoms, ’numbgtypesreal’. The
number of building groups of a particular type is given in the array
’initnbgtype(...,...). Each walker can have a different distribution of
atoms, in principle. Note that we list both the atom types and the
building unit types by number, and not by name.
numbgtypes = 2
numbgtypesreal = 2
do i1 = 0,nwlakmax
initnbgtype(i1,1) = 2
initnbgtype(i1,2) = 4
enddo

• Building-unit names: The crucial entry which is correlated with the
entries in the ’bgdatabase’ is the ’unitnum(...)’. ’unit(...)’ only provi-
des a descriptive name.
Note that we can associate the same atom type or building unit type
with several positions on the list, e.g. building-unit type 1 and 3 can
both refer to oxygen atoms. Usually, one does this, in order to have
more freedom what the properties of these atoms have - we might want
to fix their charges at different values or fix the position of one group
of oxygen atoms, etc. In some instances, we need to introduce different
version of the atom also in the ’atomdatabase’ to match the different
atom definitions in the ’bgdatabase’.
’bgname’ is the ’unitnum’ without the decimal point but given as cha-
racter entry with 5 characters (needed for e.g. use in GROMACS).
Finally, ’GROitpname’ gives the name of the .itp file (needed for GRO-
MACS calculations; make sure that the name ends with .itp). At the

51



moment we use ’GROitpname’ = ’bgname’.itp, but we are free in the
choice of name - just be consistent, and remember that ’unitnum’ must
be a floating point number with one decimal. (As long as we do not
use more than 9999.9 different types of building units, we are okay.).
The ’analogue’ to ’GROitpname’ for AMBER calculations is ’AMBto-
pname’: currently we just set it equal to ’coords.prmtop’ (name of a
crucial file in AMBER calculations).
unit(1) = ’Ti-atom’
unitnum(1) = 22.0d0
bgname(1) = ’00220’
GROitpname(1) = ’00570.itp’
AMBtopname(1) = ’coords.prmtop’
unit(2) = ’O-atom’
unitnum(2) = 8.0d0
bgname(2) = ’00080’
GROitpname(2) = ’00080.itp’
AMBtopname(2) = ’coords.prmtop’
Remember to set ’electronflag’, ’vacancyflag’ and ’holeflag’ to one, if
you use free electrons, electron pairs, vacancies and forbidden zones!
Also, building units/atoms containing these pseudo-atoms need to be
listed at the end of the lists of bgtypes and atomtypes.

Note that the decision which building units can be moved and/or
change their shape is made in the energy parameter section.

• ’numtypes’ is the total number of atom types (must be smaller than
’typemax’ in ’varcom.inc’)
numtypes = 2

• ’initntype(...,i)’ gives the number of atoms of type i for a given walker
(including those that belong to building units).
do i1 = 0,nwalkmax
initntype(i1,1) = 2
initntype(i1,2) = 4

• ’element(...)’ just gives the element names: Length of element name
should be 2 characters (leave blanks if needed). ’elnum(...)’ is the actual
reference to the information in ’atomdatabase’. Again, recall that the
same atom type can be defined several times. ’atomtypename’ must
be five characters long (leave blanks if needed); this is needed e.g.
for GROMACS and AMBER calculations, because for the molecules
computed with these codes, atoms need different names depending on
their location within the molecule.
element(1) = ’Ti’
elnum(1) = 22.0d0
atomtypename(1) = ’ Ti’

52



element(2) = ’ O’
elnum(2) = 8.0d0
atomtypename(2) = ’ O’

Next we indicate, whether a particular type of atom is allowed to participa-
te in a certain type of energy calculation for a given walker and a specific
moveclass. For this we have ’abinitiatomtype’, ’guptaatomtype’, ’gulpatom-
type’, GROatomtype’, ’AMBatomtype’, ’FPatomtype’, and ’potatomtype’.
Note that this only gives permission for the atoms to participate, but this
does not activate the external energy calculation itself; for that we need to
set ’abinitflag’, ’GULPflag’, etc.

Note that currently, it is assumed that all ’natomcur’ and all ’natom-
curfix’ atoms of a given type, if applicable according to the flags and move-
class currently active, are participating in the external potential calculations
(GULP, QE, CRYSTAL, etc.)! Having only a subset of e.g. the background
atoms be involved in external potential calculations is not implemented. Of
course, this can be achieved by defining several appropriate atom types for
the same kind of atom, one of which allows calculations with an external
code and/or the internal energy computer while the other does not.

• ’abinitatomtype(i,j,k)’ = 1 indicates that atoms of type i may for mo-
veclass j participate in ab initio energy calculations for walker k.
do i1 = 0,nwalkmax
abinitatomtype(1,1,i1) = 1
abinitatomtype(1,2,i1) = 1
abinitatomtype(2,1,i1) = 1
abinitatomtype(2,2,i1) = 1
enddo

• ’guptaatomtype(i,j,k)’ = 1 indicates that atoms of type i may for mo-
veclass j participate in gupta energy calculations for walker k.
do i1 = 0,nwalkmax
guptaatomtype(1,1,i1) = 1
guptaatomtype(1,2,i1) = 1
guptaatomtype(2,1,i1) = 1
guptaatomtype(2,2,i1) = 1
enddo

• ’gulpatomtype(i,j,k)’ = 1 indicates that atoms of type i may for mo-
veclass j participate in gulp energy calculations for walker k.
do i1 = 0,nwalkmax
gulpatomtype(1,1,i1) = 1
gulpatomtype(1,2,i1) = 1
gulpatomtype(2,1,i1) = 1
gulpatomtype(2,2,i1) = 1
enddo

53



• ’GROatomtype(i,j,k)’ = 1 indicates that atoms of type i may for mo-
veclass j participate in GROMACS energy calculations for walker k.
do i1 = 0,nwalkmax
GROatomtype(1,1,i1) = 1
GROatomtype(1,2,i1) = 1
GROatomtype(2,1,i1) = 1
GROatomtype(2,2,i1) = 1
enddo

• ’AMBatomtype(i,j,k)’ = 1 indicates that atoms of type i may for mo-
veclass j participate in AMBER energy calculations for walker k.
do i1 = 0,nwalkmax
AMBatomtype(1,1,i1) = 1
AMBatomtype(1,2,i1) = 1
AMBatomtype(2,1,i1) = 1
AMBatomtype(2,2,i1) = 1
enddo

• ’FPatomtype(i,j,k)’ = 1 indicates that atoms of type i may for move-
class j participate in FPLO energy calculations for walker k.
do i1 = 0,nwalkmax
FPatomtype(1,1,i1) = 1
FPatomtype(1,2,i1) = 1
FPatomtype(2,1,i1) = 1
FPatomtype(2,2,i1) = 1
enddo

• ’potatomtype(i,j,k)’ = 1 indicates that atoms of type i may for move-
class j participate in regular potential energy calculations for walker
k.
do i1 = 0,nwalkmax
potatomtype(1,1,i1) = 1
potatomtype(1,2,i1) = 1
potatomtype(2,1,i1) = 1
potatomtype(2,2,i1) = 1
enddo

We now continue with indicating the charges, masses, etc. associated
with the atoms initially. Some of these entries such as the mass will never
change, while, in principle, the radius-factor or the charges can be changed in
the moveclass. Such changes in charges and radii are only allowed for building
units that correspond to single atoms - for building units with more than one
(pseudo-)atom we cannot change the radii and charges set in the bgdatabase.
Note that charges can only be changed in integer steps (one needs to pay
’ionization energy’ or ’electron affinity’ when adding/removing an electron),

54



thus we sometimes speak of valence instead of charge. This valence will often
be different from the precise charge defined for the building unit, especially,
if the same atom appears with different charges in one or several building
units. Thus, for this situation, one usually sets the valence of these atoms to
zero. For consistency reasons, one might want to define several atom types
for the same kind of atom, if it appears with different charges in different
building unit.

• ’initnctype(iwalk,i,j)’ gives the initial number of atoms of type i that
have a valence (charge) j for walker ’iwalk’. This number must be an
integer, corresponding in some respect more to a valence than to a
charge. Note that charges are not checked explicitly in ’inpclcwrite’
for consistency! All atoms, also the ones with valence zero, need to
have their valence defined here and in ’chtype’ below. Since ’chtype’
overrides ’initnctype’, we no longer have the option to define different
initial charges for the same atom type. If that is desired, then one
should define for the same kind of atom several different atom types.
do i1 = 0,nwalkmax
initnctype(i1,1,4) = 2
initnctype(i1,2,-2) = 4
enddo

• ’chtype(iwalk,i)’ gives the (initial) valences of atoms of a given type i
for walker ’iwalk’.
do i1 = 0,nwalkmax
chtype(i1,1) = 4
chtype(i1,2) = -2
enddo

• ’chargetype(iwalk,i)’ gives the (initial) charges of atoms of a given type
i for walker ’iwalk’ as a real number. Avoid fractional charges, if one
wants to change the charge of atoms as part of the optimization.Note
that in moveclass the charges are automatically set equal to the va-
lences if a move is attempted where charges are changed. Furthermore
the charge changing option is only possible for single atoms, i.e., buil-
ding units of size one. Thus, one should set valences equal to charges
in the input, if one wishes to vary the charges later.
do i1 = 0,nwalkmax
chargetype(i1,1) = 4.0d0
chargetype(i1,2) = -2.0d0
enddo

• ’magnettype(i,iwalk)’ give the initial values of the magnetization of
atoms of type i for walker ’iwalk’ (always normalized to lie between
±1).

55



do i1 = 1,nwalkmax
magnettype(1,i1) = 0.0d0
magnettype(2,i1) = 0.0d0
enddo

• ’rstype(i,iwalk) gives the current scalefactor of the radius of an ion
or an electron pseudo-atom of type i for walker ’iwalk’. This variable
takes the fact into account that the ionic radius changes with environ-
ment. Thus, exploration-runs should be repeated for different values
of ’rstype’, in order to check whether one has explored the ’right’ kind
of landscape for the system (very often one finds good structures for
slightly different values of the ionic radius). Should only be allowed
to vary as part of the optimization if free electron calculations are
performed (else, there is no Fermi-pressure keeping the system from
collapsing!).
do i1 = 0,nwalkmax
rstype(1,i1) = 1.1d0
rstype(2,i1) = 1.2d0
enddo

• Note that when loading in a new configuration with ’loadnewcfg’, we
usually adjust the radius scale ’rstype’ to agree with the radius indi-
cated in the configuration file. If you want to insist that irrespective
of the radius given in the configuration file, the scale factor should
correspond to ’rstype’, then set ’rsfactorflag’ = 1. Note that this only
applies for the ’loadnewcfg’ command, not for every time you load a
configuration with loadbg.f for other reasons!

However, we set ’rsfactorflag’ implicitly always to one (effectively in
loadbg.f), if we are performing an ab initio calculation, since there the
radius of the atoms is continually adjusted automatically due to the
current charge distributions of the structure (if the option ’mullflag’ =
1 is selected and we compute effective ionic radii for the atoms based
on the ab initio calculation. As a consequence, when loading in a saved
structure, we are encountering an ionic radius that may not have any-
thing to do with the ’standard’ radius rad(...,...) assigned during the
loading according to the nominal charges listed in the atomdatabase.
As a result the scale factor can become unreasonably large, and the
walker will be stuck because of seemingly gigantic overlapping radii of
the atoms in an actually otherwise good configuration.
rsfactorflag = 0

• ’mscale(i,iwalk)’ gives the normalization factor of the mass of atoms
of type i for walker ’iwalk’, mainly introduced for free electrons. Note
that in the calculations, the mass of electrons is always given in units of

56



the electron mass, i.e., meff(electron) = mscale(electron). For ions, we
use the value given in the atomdatabase, and thus we would not pick
a value different from one. In practice, ’mscale’ should only differ from
1 if we model systems containing free electrons. However, in future
applications, one can imagine molecular dynamics simulations where
one would introduce an effective mass of the atoms that differs from
the true atomic mass due to taking into account the average interaction
with the environment such as a solvent.
do i1 = 0,nwalkmax
mscale(1,i1) = 1.0d0
mscale(2,i1) = 1.0d0
enddo

• Shells are needed for some potentials to express the polarizability of
an atom (e.g. some of those implemented in GULP) for atoms of type
i. If a shell is needed, then ’shelltype’ is set to one. ’shelltype(i)’ are
identical for all walkers.
shelltype(1) = 0
shelltype(2) = 0

5 Slabs, surfaces, and background structures

One of the major changes in G42+ compared to the older G42-versions
is the ability to introduce (idealized) slabs, surfaces and other background
structures, and also allow restrictions in the movements of the atoms and
building units such that we can study e.g. quasi-two-dimensional systems
such as surface layers.

5.1 Slabs

There are two meanings to the term ’slab’: We either speak of idealized or
perfect slabs that only exhibit an (averaged) interaction with the mobile
atoms and molecules above them. There are two types of such slabs that
can exist at the same time, of course: Idealized ’vdW-slabs’ which interact
via an averaged Lennard-Jones-type interaction with the atoms above them,
and so-called mirror-slabs, which represent the metallic property( of metal)
surfaces due to the rearrangement of charges inside the metal to neutralize
the effect of the external charge (distribtuion) in the ions and molecules of
the mobile building units. Since such a rearrangement can be represented
effectively by a superposition of image charges with respect to the exter-
nal charge (distribution), we speak of a ’mirror slab’ when generating such
image charges. Note that these idealized or perfect slabs do not exhibit and
granularity on the atomic scale - they are perfectly smooth planes in space.

57



The second meaning of ’slab’ refers to the construction of the slab that
is supposed to mimic the surface of a solid, by cutting out one or several
layers of atoms of a periodic crystal along certain directions, and using this
set of several hundred or thousand atoms as a (fixed) background structure.
Note that only for certain highly periodic 3d-crystal structures and low-
integer choices of surface directions (e.g. 100- or 111-planes) is it possible to
generate a slab that is periodic in two dimensions with a reasonably small
number of atoms that yield a ’smooth’ surface.

When dealing with slabs, the first thing to note is that they only show
periodicity in two directions, usually chosen as the x-y-plane. Furthermore,
we do not want the mobile atoms and building units (molecules) to cross to
the other side of the slab by moving via the periodic boundary conditions
from the top to the bottom of the periodically repeated slab. Similarly, the
energy calculations should only take the periodicity in two dimensions into
account. Usually one chooses a very large distance in the directions ortho-
gonal to the slab (typically the z-direction), such that atoms do not interact
in this direction with their periodic images, for all practical purposes. In
particular for certain external codes, especially plane-wave based ab initio
codes, it is necessary to choose a large simulation cell in the z-direction.

• The variable that controls the periodicity is ’slabflag’. slabflag = 1
indicates that periodicity only exists along the first two cell vector di-
rections. The(idealized or perfect) slab extends in the x-y-plane, i.e.
it is coplanar with the first two cell vectors. Similarly, if we define the
slab as a background structure of (fixed) atoms, we have to make sure
that it is parallel to the x-y-plane. slabflag = 2 indicates that peri-
odicity only exists along the first cell vector direction, corresponding
to an infinite string.

In both cases, this refers to the energy calculations. Atoms can still
move in a periodic fashion, i.e., when they assume values of e.g. z >
1, then they reappear in the cell close to z = 0.

slabflag = 0 is the usual choice for systems with periodicity in three
dimensions.

Regarding the energy calculations, one needs to keep in mind that the
perfect slabs (mirror and vdW) do not consist of individual atoms, and
thus their energy interactions with the rest of the system is always only via
the built-in slab-mirror and slab-vdW potentials. In particular, this kind
of interaction is not included in energy calculations with an external code,
but appears as an additional term in the energy. In principle, the mirror
charge effect should be included in ab initio calculations, but the vdW-type
interactions are often not included in ab initio calculations and need to be
added as an additional empirical term.

58



Concerning the choice of cell, if one deals with slabs, the third cell vector
is usually orthogonal to the first two cell vectors. Similarly, for a string, the
2nd and 3rd cell vectors are orthogonal to the first one. But this is not
enforced automatically.

Furthermore, the system as a whole is still three-dimensional - only e.g.
movement and interactions in the z-direction are restricted. Usually, the
slab/string, or part of it, is supposed to be rigid; thus one would not use
moves that change the cell parameters during the explorations. If for some
reason one wants to vary the cell parameter (e.g. when trying to optimize a
slab of atoms in the x-y-plane), make sure that only cell moves are employed
that do only change the cell parameters without (!) also changing the values
of the fractional coordinates of the atoms, i.e. do not use move options 6 or
12 where atom positions are unchanged when changing the cell parameters
(and thus can end up in the next cell after the move). Similarly, be careful
in the choice of jump moves or multi-walker moves.

For practical purposes, one might want to prevent the periodic move-
ment of the atoms in the non-repeated directions. To achieve this, we have
’reflectflag’:

• reflectflag = 1: moves into the z > 1 and z < 0 range are automa-
tically rejected

• reflectflag = 2: moves into both the y > 1 and y < 0 range and
the z > 1 and z < 0 range are automatically rejected

• reflectflag = 3: All moves into the outside of the simulation cell
are rejected.

• If we are dealing with slabs, we usually want to keep the atoms/building
units above the surface of the slab. reflectflag = 4: moves into the
z > 1 and z < 0.5 range are automatically rejected

• reflectflag = 5: moves into both the y > 1 and y < 0 range and
the z > 1 and z < 0.5 range are automatically rejected

• reflectflag = 6: All moves into the outside of the simulation cell
and below z = 0.5 are rejected.

The standard setting for movement in all directions is reflectflag = 0.
These flags plus ’numbofcells’ can be combined in all kind of ways. Thus,

if slabflag = 1, reflectflag = 1 and numbofcells = 3, then the energy interac-
tions are restricted to the simulation cell along the z-direction, but extend
in the x-y directions into the first set of neighbor cells, and atoms are not
allowed to move periodically in the z-direction (but atoms can still move in
a periodicfashion in the x-y-direction). Or combining ’numbofcells’ = 1 with
’reflectflag’ = 3 corresponds to a cluster inside a reflecting simulation cell.

59



Using ’slabmirrorflag’ and ’slabvdWflag’, we can introduce a perfect sur-
face that only interacts with the atoms in the upper half (z > 0.5) of the
simulation cell via mirrorcharges for metal surfaces (slabmirrorflag = 1)
and/or via a perfect vdW-polarization of the surface (slabvdWflag = 1).
As an alternative to a vdW-surface, one can define a purely repulsive slab
using (slabvdWflag = 2).

Note that this requires that the surface is perfectly aligned along the z
= 1/2 level of the (at least) monoclinic simulation cell (a(2,3) = a(1,3) =
a(3,1) = a(3,2) = 0). Furthermore, one should use a big enough value for
the height of the unit cell c = ’a(3,3)’. This also implies that one should
use a reasonably large value for ’volmaxfact’. If one generates the starting
configuration of the atoms at random, they will all be in the upper half of
the cell (z > 0.6, in order to leave enough room between the atoms and the
slab).

As an additional option, we can define two mirror- and/or vdW-slabs,
one at z = 1/2, and one at z = 1, by setting ’slabmirrorflag’ = 3 and/or
’slabvdWflag’ = 3 or 4 (for two vdW and purely repulsive slabs, respective-
ly). Then the starting atoms are restricted between z = 0.6 and z < 0.9. In
this case, the system will move between two parallel layers, which might of
interest for determining the arrangement of large molecules inside a nano-
channel. Note that now the distance between the two slabs is determined by
the choice of the cell-height in z-direction ’a(3,3)’/2. Also note that there is
in principle an infinite number of image charges that are generated by the
two mirrors, so the current implementation with just two images (one for
top and one for bottom slab) is just an approximation.

If no perfect slab of any kind is present we set slabmirrorflag = 0 and
slabvdWflag = 0.

When using perfect slabs, we add additional interaction terms of the
atoms with the surface without having to provide separate atoms for the
surface. If one wants to introduce the atoms that provide the vdW-forces
separately, then one needs to make sure that they are rigidly placed at z =
1/2 (and z = 1); else the mirror calculation will produce nonsense, of course.

For the vdW-interaction, we need as additional information the density
of atoms in the surface layer, ’sigmasurf’ (in atoms / Ang2), the epsilon-
value ’epsvdW’ (in eV) (representing the strength) of the interaction, and
the radiusöf the surface ’layer atoms’, ’RvdWslab’ (in Angstrom). Usually,
one would use a similar value for ’epsvdW’ as for ’eps1’. (In the future one
could extend this to include different interactions at the top and bottom
slab for the case of two slabs.) For example, we might take sigmasurf =
0.2d0, epsvdW = 0.5d0 and RvdWslab = 2.0d0.

Similarly, if we calculate the mirrorenergy for a metal surface, we can
modify its strength by providing a relative ’dielectric constant’, ’epsrel’.
For atoms above an ideal metal in a vacuum, it should equal 1, but this
might be changeable depending on the actual type of surface and the medi-

60



um in which the mobile atoms moves above the surface, potslabmirror +
14.39d0*chmirrorn*chmirrorm/(epsrel*R2).

Note that we use at the moment the values in the charge-array as mir-
rorcharges ’chmirrorn’ = -charge(n). If we perform ab initio calculations, we
can, in principle, use the computed charges (’chmull(n)’ which are computed
for ’mullflag’ = 1) as mirrorcharges by setting abinitmirrorflag = 1. Ho-
wever, as mentioned above, if we include the metal surface via background
atoms in the ab initio calculations, then the image charges should have been
taken into account already, and only, possibly, a vdW-type term is missing.
The standard values would be epsrel = 1.0d0 and abinitmirrorflag =
0

Finally, we can also introduce a quasi-pressure towards the slab (analo-
gous to the pressure on an isolated cluster that aims towards the center of
the simulation cell) by setting ’slabpress’ (in eV/Ang3, i.e. ’slabpress’ = 1.0
corresponds to ca. 160 GPa!). To activate this option, we set slabpressflag
= 1. This will move the atoms out of the gas phase towards the surface whe-
re the vdW- and the image charge-forces become dominant as far as the
atom-slab interaction is concerned. This quasi-pressure term becomes ze-
ro for building units within a distance ’dslbpress’ (in Angstrom) from the
slab (at z = 1/2). Be careful to choose a large enough value of ’dslabpress’
such that the atoms in the surface slab are not under actual pressure. No-
te that if we have two slabs, we still feel the ’pressure’ only towards the
slab in the middle. Furthermore, if one uses GULP to compute a pressu-
re contribution, then the slabpress-contribution is ignored for consistency
reason. Some values might be slabpressflag = 0, slabpress = 1.0d3 (a
very high quasi-pressure!) and dslbpress = 5.0d0 (only one, or at most
two layers of atoms on the surface).

On a final note: if we employ a background structure (regardless whether
as slab or as some other kind of external environment), then the atoms of
the background structure do not interact with the perfect slabs.

5.2 Single molecule

In many applications, we are going to deal with a (large) single molecule
as the only unit that will change its shape and position with respect to a
background structure and/or perfect slab. In that case, we can determine
directly, where the molecule is to be placed inside the simulation cell (usually
in the center) and which Euler angles it is to have (usually zero). To do so,
we set singlemoleculeflag = 1, and prescribe the position ’xsm’ and the
Euler angles ’euler1sm’, ’euler2sm’ and ’euler3sm’. Note that if we do not
know which Euler angles are compatible with e.g. a background structure,
we set rotateinitflag = 1, and a random orientiation of the molecule is
selected. If we want to enforce the Euler angles ’euler1sm’ etc., then we must
set rotateinitflag = 0.

61



The reason for allowing this kind of placement is that we want to avoid
having the single molecule extend over more than one simulation cell (as
can happen for a randomly placed / oriented molecule), which can lead to
problems if the potential only sees atoms within the simulation cell but
not in its periodically repeated copies (e.g. when setting ’numbofcells’ =
1)! Furthermore, we might want to place the molecule at a specific distance
from a background structure or mirror/vdW slab.

In this context: make sure that the simulation cell is large enough so
that the whole molecule fits in, by prescribing the initial cell in the ’ainit’-
array! For example for a molecule that is to be placed in the center of the
simulation cell without any rotation (for all walkers), we would have:

singlemoleculeflag = 0
do i1 = 0,nwalk
xsm(1,1,i1) = 0.5d0
xsm(1,2,i1) = 0.5d0
xsm(1,3,i1) = 0.5d0
euler1sm(1,i1) = 0.0d0
euler2sm(1,i1) = 0.0d0
euler3sm(1,i1) = 0.0d0
enddo

5.3 Background structure

Besides adding a perfect slab, we can load in a full background structure
consisting of many building groups / atoms of various types. The idea is
that we might want to have a set of interesting background structures such
as slabs, zeolites, etc. ready at hand that are to be loaded in to describe
the kind of chemical environment the mobile atoms and building units are
supposed to encounter, and which, usually, will not be changed at all or, at
most, relax a little bit due to the presence of the mobile atoms.

• To use a background structure, we set backgroundflag = 1.

• The name of the background structure file is given by the variable
’backgroundflname’.

When initializing G42, we then load in this background structure. In order
to make sure that the same simulation cell is used both for the movable
atoms and the fixed background atoms, one needs to generate the movable
atoms in the new structure by using a prescribed initial cell with the same
cell parameters as the background structure. Furthermore, note that in the
background structure, only real atoms and building units that consist of
only real atoms, are allowed: no vacancies, forbidden zones, electron pairs
etc. should be part of a background structure.

62



• If the background structure is not to be changed during the calculati-
ons set fixflag = 1 (usual situation). In that case, we do not include
the background-background interaction in the internal potential cal-
culations, in order to save computation time.

• If we set fixflag = 2, then we want to allow the background atoms
to be able to change positions, as if they were regular atoms, but only
during local relaxations with external energy functions.

But keep in mind that this might contradict the calculations with
the internal potential that is allowed for ’abinitbackgroundflag’ = 2
or ’GULPbackgroundflag’ = 2 or ’guptabackgroundflag’ = 2. (It can
still make sense, if one e.g. has used the interaction potential only to
mimic some long-range vdW-interaction to pull the atoms closer to
the surface.)

• If we want the background atoms to be mobile for all calculations, we
need to include the background-background interaction in all energy
calculations (only makes sense if ’fixbg’ > -2 for the building units /
atoms that are part of the background structure, of course). This is
achieved by setting fixflag = 3.

• Finally, fixflag = 4 is the same as fixflag = 3, but we also save the
resulting configuration including the background atoms.

• Note that if fixflag = 0, the background structure is ignored in the
energy calculation.

One needs to be very careful, if you allow cell-relaxations for ’fixflag’ = 2
(’fixflag’ = 1 forbids cell relaxations). The entries of these flags may be:
backgroundflag = 0, backgroundflname = ’background’ and fixflag
= 0

Furthermore, do not use any moves that change the cell during the global
exploration when using a background structure. The same caveats hold when
loading in a structure consisting of mobile atoms / building units using the
’loadnewcfg’ module, together with a background structure.

When constructing the structure file for the background structure and
possible (initial) structures to be loaded, and when setting up the parameters
in input.f, make sure that the types of the atoms and building units include
both those from the background structure and from the movable atoms. As
a consequence, there will usually be building unit types and atomtypes listed
in the mobile atom file to which no atom is associated since these types only
appear in the background structure (and conversely)!Remember that you
can define the same atomtype as coming from different building units (add
the additional building unit types into bgdatabase if necessary). Thus, if
e.g. the same type of atom is part of the fixed background structure and the

63



mobile part of the system, then define two building units that correspond
to this atom, where one of the building units is part of the background
structure and the other appears in the mobile part.

In particular, the ’fixbg’-settings for the building units that compose the
background structure are important to set correctly. If the building unit
has ’fixbg’ = -2, then this will override any movement, even when applying
external minimization routines (provided that the external minimization
routine allows keeping individual atoms fixed). Also, including atoms with
’fixbg’ = -2 must not be mixed with cell optimizations (since these implicitly
rearrange all atoms). The code does not explicitly forbid such a type of
cell relaxation with external energy functions, but if one does this kind of
calculation, one should not re-insert the outcome into the G42-optimization
run.

The variables ’nbgcur’ etc. still refer only to the movable atoms; ’nbgcur-
fix’ etc. refer to the atoms in the background structure. Values for ’nbgcurfix’
and ’natomcurfix’ are taken from the background file, but one must ensure
that they are smaller than the values of ’nbgmaxfix’ etc. in ’varcom.inc’.

For most practical purposes, the background structure appears in the
energy calculation like an external potential that is felt by the movable
atoms. It is present for all walkers, and extends over ’numbofcells’ simulation
cells.

Usually, there are no interactions computed among the atoms of the
background structure (see ’fixflag’ for exceptions). Note that for interacti-
ons with the background structure we can only use potentials built into G42.
If we want to use other (external) energy functions to describe interactions
with the background structure, we need to include the atoms of the back-
ground structure in the atom list for the ab initio calculations by setting
’abinitbackgroundflag’ and ’fixflag’ accordingly.

When mobile atoms are generated at random, they are kept a certain
distance from the background atoms, analogous to the allowed overlap with
other movable atoms. If a multilayered slab is used as a background struc-
ture, one should place the top layer at z = 1/2, and the rest below z = 1/2.
As mentioned above, background slabs can be combined with the perfect
slabs described above. Note that the background structure can be of any
kind and shape, i.e. it is not restricted to slabs.

Using the ’setfixflag’ command in the command array, we can switch
from ’fixflag’ = 1 to another value, e.g. ’fixflag’ = 0. When ’fixflag’ = 0,
the system behaves as if the background structure had vanished. If one
wants to reactivate the background structure, one has to ensure that the
cell parameters have not changed in-between. If we use this command to set
’fixflag’ = 2, then from this moment all atoms of the background structure
will be included in relaxations when using external codes, and analogously
for ’fixflag’ = 3 or 4.

64



Note that if the background atoms can change their positions (and pos-
sibly even the cell can change - watch out for problems then!), then we want
to write out the changed background structure under certain conditions: if
’fixflag’ = 2 or 3, then the changes in the background structure are not inte-
resting in themselves so much, so we only write out the atom-coordinates of
the background in a file with the suffix ’background’ in the ’at-’ file format.

But if ’fixflag’ = 4, we also write out the file with the background atoms
in the standard (’no-’) format, so we can use it in further calculations as
an (improved / relaxed) background-input. We never write out a ’bg-only’
type file for the background structure. If we want to avoid such files being
written even for ’fixflag’ = 2, 3 or 4, then we set backgroundoutputflag
= 0, but if we want to write such files, we set backgroundoutputflag =
1. Note that currently we are not producing backgroundoutput for ’mwi’-
modules or the ’pt’- or ’mc’-modules because the number of giant files would
become too large (recall that typically a background structure is rather
large - that is why it can serve as a background!). The standard setting is
’backgroundoutputflag’ = 0

5.4 Atom layers

A special type of calculation associated with surfaces is the computation of
optimal arrangement of atoms in a single layer or a multi-layer setting. This
set-up is actually part of the choice of generating initial configurations and
appears there again. But since it is related to slab-type calculations, we are
going to discuss it here, too.

Such layers are always assumed to be parallel to the x-y-plane, and are
thus determined by the value of the z-coordinate of the atoms in this layer.
If we want to place the atoms randomly in n zlayers layers with the same
z-value, we set zinitflag = 1, zinit(i1,i2) = desired value of layer i1 for
walker i2. This is usually used in combination with ’move2dflag’ = 1, i.e.
if the atoms are only allowed to move in the x-y-plane (z = constant), and
if only the cell parameters ’a(1,1)’, ’a(1,2)’, ’a(2,2)’ and ’a(2,1)’ are allowed
to be changed. For this we would preferably use only monoclinic cells that
have ’a(2,3)’ = ’a(1,3)’ = ’a(3,2)’ = ’a(3,1)’ = 0.

Starting cells can either be prescribed at the beginning (’volinitflag’ =
1) in toto, or we can prescribe only the length in z-direction by giving ’L z’,
and the two remaining cell vectors are generated using ’volfactor’ restricted
to n zlayers planes.

Filling more than one layer can be tricky, since for ’move2dflag’ = 1 no
moves are allowed to move atoms between the layers, and thus the number
of atoms within each layer are fixed. Note that since we can exchange atoms
between layers, the types can be changed; if one wants to also change the
number of atoms, one needs to provide lots of vacancies that can be ex-
changed for an atoms between layers. Making it possible for atoms to jump

65



between layers without the help of a vacancy is currently only a future opti-
on. If one wants to work with several layers with definite numbers of atoms
per layer, where atoms can only move within the assigned layer, one can
always prepare such an initial configuration file by hand.

• If we use random assignment of atoms positions, then we randomly
distribute all atoms over all layers for zinitflag = 1.

• For zinitflag = 3, ’numatoms zinit(i1,i3,i2)’ gives the number of
atoms of type i3 that are prescribed as initial number within layer
i1 for walker i2.

• If we set zinitflag = 2, then the total number of atoms per layer is
set equal to ’numatoms zinit(i1,0,i2)’.

• if we set zinitflag = 3, then the number of atoms of type i3 per
layer is equal to ’numatoms zinit(i1,i3,i2)’ for walker i2.

Make sure that the number of atoms per type defined for the whole system
in ’initntype’ correctly takes the distribution of atoms over the layers into
account! (Note that we have not distributed atoms according to their charge,
only according to type.)

Furthermore, if you combine ’zinitflag’ = 1 with prescribed slabs or a
prescribed background structure, you need to make sure that the values of
’zinit’ are compatible with the restrictions of atoms on slabs. In particular,
keep in mind that randomly placed (!) atoms are supposed to be at z > 0.6
(or 0.6 < z < 0.9 for two slabs). It might happen, that in such a case, one
needs to change the value of 0.6 explicitly in the code for some situations
(subroutine init2.f). Currently, the choice of ’zinit’ overrides this requirement
as long as ’zinit’ is larger than 0.5 (and smaller than 1.0 for two slabs)!
Furthermore, for this kind of situation, the rim of the unit cell is off limits
(i.e. as if ’rimflag’ were set to zero).

As mentioned above, if you want to perform a quasi-2d-optimisation,
where the atoms are only to be moved within planes, but you do not have
a background structure to worry about, and the cell parameters in the a-b-
plane can change and should be generated the atom positions at random at
the beginning, then use ’volinitflag’ = 0 and prescribe the desired (correct)
value for the c-axis by ’L z’. If we do not use ’zinitflag’ > 0, but still want
to have ’L z’ a fixed value > 0, then we must set Lzflag = 1. A possible
setting of these variables might be

zinitflag = 0
n zlayers = 1
do i2 = 0,nwalkmax
zinit(1,i2) = 0.5d0
numatoms zinit(1,0,i2) = 12
numatoms zinit(1,1,i2) = 6

66



numatoms zinit(1,2,i2) = 6
L z(i2) = 1.6d1
enddo
Lzflag = 0

6 Flexible building units

6.1 Control of allowed changes in positions and shapes of
molecules

6.1.1 Overall control: fixbg

For all building units, whether they are single atoms, rigid multi-atom buil-
ding units or flexible multi-atom building units, ’fixbg’ defines, whether they
can change as a whole, i.e. with respect to shifts and exchanges or shape
changes:

’fixbg(i1,i2,i3)’ indicates, whether for walker i1 a building group i3 may
be moved during moveclass i2:

• fixbg = 0: can move and can change shape

• fixbg = -1: can be second partner in an exchange with a building
unit with ’fixbg’ = 0, but must not change otherwise.

• fixbg = -2: must not be moved and must not be exchanged

• fixbg = i > 0: can be exchanged with other building units with eit-
her ’fixbg’ = i or ’fixbg’ = 0.

Depending on how many moveclasses are used, one needs to define possibly
different values for ’fixbg’. It is given as property of certain building units,
but at the same time it reflects the moveclass - the second entry refers to
the ’moveclassnumber’, the third to the type of building unit.

Note that fixbg < 0 is not compatible with changes of the origin of the
cell and the cutting off of a slice of the cell (’initmflag6’ and ’initmflag7’).
Changes of the cell by rescaling are okay, but need to be treated carefully.
The same applies for relaxations with external potentials. Thus, if possible,
avoid combining ’fixbg’ < 0 with cell changes; currently, the moveclasses are
not explicitly checking whether the atoms involved have ’fixbg’ < 0 before
attempting a cell move.

If we want to change the shape of a building unit or molecule, then we
need to have ’fixbg’ = 0.
do i1 = 0,nwalkmax fixbg(i1,1,1) = 0
fixbg(i1,2,1) = 0
fixbg(i1,1,2) = 0
fixbg(i1,2,2) = 0
enddo

67



6.1.2 Specific features of flexible building units

In order to be able to deal with complex (organic) molecules, which possess
a clear neighborhood structure, one can make the building units flexible.
In principle, everything can be changed, but as far as neighbor distances,
angle between triplets of atoms, and dihedral angles between quartets of
atoms are concerned, often simple constraints can be established. Note that
for each building unit type and each distance between atom neighbors in
the molecule, we can define the tolerance differently, i.e. by selecting ’tol’
= 1.0d-10, essentially no change in the bond etc. is allowed. Similarly, the
strength of the harmonic penalty depends on the type of building unit and
the pair/triplet/quartet of atoms involved.

All atoms in the building unit that are not interacting via covalent
bonding, experience a steric exclusion according to the array ’bgmindist’.
’bgmindist(i,j)’ gives minimal distances between atoms of types i and j,
which are the same for all building units. If one wants to have different di-
stances for atoms belonging to different building units, then one needs to
define more atom types. Note that currently this array is the same for all
moveclasses. Further note that this array should be symmetric.
bgmindist(1,1) = 0.5d0
bgmindist(1,2) = 1.5d0
bgmindist(2,1) = 1.5d0
bgmindist(2,2) = 2.0d0

’flexbgflag(i1,i2)’ indicates to what degree a building unit of type i1 can
be changed when using moveclass i2.

• flexbgflag = 0: no changes are allowed.

• flexbgflag = 1: all the constraints are rigid, but if there are some
other changes feasible, the structure is allowed to change in that re-
spect.

• flexbgflag = 2: the building unit of type i1 can be freely changed
within the given constraints, for moveclass i2.

• flexbgflag = 3: no constraints are activated - this should usually
only be used if the energy of the intramolecular forces are computed
via an external code, which already takes constraint-like forces into
account.

If one wants to allow change in some molecules and not in others of the
same type, then one should define them as two different building unit types.
Obviously, for different moveclasses i2, ’flexbgflag’ can have different values.
flexbgflag(1,1) = 3
flexbgflag(1,2) = 3

68



flexbgflag(2,1) = 3
flexbgflag(2,2) = 3

In addition to fixing the molecules on an individual basis, we have the
overall flexibility flag ’flexibilityflag(i1)’ for a given type of building unit
i1. This is needed, in order to avoid the need to include data on pairs,
triplets, etc. in building units that will be completely unchanged. Thus, if
the molecule is allowed to be changed at least partially, then one should
set flexibilityflag(i1) = 1, but if a building unit is to be treated as
completely rigid, then we set flexibilityflag(i1) = 0.

Note that if the building unit is of size 1 or if ’flexibilityflag(i1)’ = 0,
then all values of ’flexbgflag’ for this bgtype are set to zero automatically
when loading in the data from bgdatabase. In that case, bgdatabase will
not be searched for information about pairs, triplets or quartets, and this
information need not be included in the database. Setting ’flexibilityflag(i1)’
= 0 overrides any setting of flexbgflag(i1,i2).
flexibilityflag(1) = 0
flexibilityflag(2) = 0

We can also perform moves that correspond to the rotation of a connec-
ted set of atoms that lie between two axis-atoms of a building unit (c.f.
moveclass no. 24 and and the analogous jumpmove). ’bgsetpairflag(i1)’ sets
the parameter, if we really want to do this for building unit i1:

• ’bgsetpairflag(i1)’ = 1: yes, if size of building unit is larger than ’bgset-
pairmin’ (and at least larger than 4)

• ’bgsetpairflag(i1)’ = 0: no

do i1 = 1,bgtypemax
bgsetpairflag(i1) = 1
enddo
bgsetpairmin = 5

6.2 Penalty / energy terms associated with molecular cons-
traints

Three kinds of constraints are possible:

• ’...flag’ = 1: no penalty within the interval ±’bg...tol(i1,i2)’ around the
prescribed distance (angle) between the atoms of pair/triplet/quartet
i2 in building unit of type i1, and infinite penalty outside the tolerance
interval about the ideal distance / angle.

• ’...flag’ = 2: harmonic penalty

• ’...flag’ = 3: harmonic penalty inside the tolerance interval, and infinite
one outside the interval.

69



Usually, one provides information about pairs, triplets and quartets in bgda-
tabase. In this fashion, we can specify, which angles and bond lengths etc.
are variable during the exploration of the energy landscape. But one can re-
strict oneself to only the pairs, and derive the triplets and quartets from the
pair graph inside G42+. In that case, all these bonds and angles will be free
to vary, but when we enter these data into the bgdatabase, we can specify
which ones are to be kept constant.In that case, the angles and dihedrals are
computed from the atom positions. Note that in the ’converalltoall’-routine
(external to G42+), we can take a molecule given by its atom coordinates,
e.g. in the pdb-format, prescribe the atom-atom-distances typical for bon-
ding distances in the molecule, generate the pair graph and subsequently
the triplet and quartets, and produce an entry ready for the database.

All these triplets/quartets that G42+ can generate automatically for
building units of type i1 are either free or not, depending on the value of
’gentripletflag(i1)’ / ’genquartetflag(i1)’:

• Setting = 0: no generation, regardless of whether triplets / quartets
are provided

• Setting = 1: fill empty(!) list with free triplets / quartets

• Setting = 2: fill empty(!) list with non-free triplets / quartets

• Setting = 3: fill up incomplete(!) list with free triplets / quartets

• Setting = 4: fill up incomplete(!) list with non-free triplets / quartets

gentripletflag(1) = 0
gentripletflag(2) = 0

Note that already if only one triplet or quartet is provided for the mo-
lecule (’bgtripletsize’ > 0 / ’bgquartetsize’ > 0 in the database), we do not
compute any triplets or quartets, respectively, for the settings 1 and 2 of
’gentripletflag(i1)’ / ’genquartetflag(i1)’. If we want to fill up an incomplete
list with free or non-free triplets/quartets, use the setting 3 and 4. (Do not
mix incomplete lists with settings 1 and 2)

Note that without the list of pairs it is not possible to generate the
graph, triplets, quartets, or use any of the moves for flexible building units.
Similarly, unless one provides / generates the triplets and quartets, the cor-
responding moves in the moveclass cannot be executed and will be ignored.
Warning: if the atom-chain is linear, then a dihedral cannot be defined.
Currently, the code sets the value of this angle to zero. ***Since this can
be a general problem in the calculations, it might be useful, to drop the
dihedral angle?***

If we want to have the code compute constraint terms in the energy
calculation, we need to set ’ebgflag’ = 1. Note that these constraint terms

70



are only applicable to mobile building units, not to background building
units. ebgflag = 0

Such constraint terms apply to bond distances, angles for triplets of
neighboring atoms, and dihedral angles for quartets of neighboring atoms.
In each case, the same options of constraints apply.

• ’potpairbgflag’ refers to distances between neighbor atoms

1. ’potpairbgflag’ = 0: no special constraint pair-potential active

2. ’potpairbgflag’ = 1: constraint potential equals 0 for distance wi-
thin tolerance interval about ideal distance, and equals infinity
else

3. ’potpairbgflag’ = 2: harmonic constraint potential for all distan-
ces (zero for distance = ideal distance, of course)

4. ’potpairbgflag’ = 3: harmonic constraint potential for distances
within tolerance interval, equals infinity else

potpairbgflag = 0
The necessary parameters for the constraints are

1. ’bgpairdisttol(i1,i2)’ is the distance tolerance for atom pair num-
ber i2 in building unit i1 (applicable for ’potbgpairflag’ = 1,3).

2. ’Aharmpotbgpair(i1,i2)’ is the strength of the harmonic potential
for atom pair i2 in building unit i1 (applicable for flag = 2,3).

do i1 = 1,bgtypemax
do i2 = 1,bgpairmax
bgpairdisttol(i1,i2) = 0.1d0
Aharmpotbgpair(i1,i2) = 10.0d0
enddo
enddo

• ’pottripletbgflag’ refers to angles between triplets of neighbor atoms.

1. ’pottripletbgflag’ = 0: no special constraint triplet-potential ac-
tive

2. ’pottripletbgflag’ = 1: constraint potential = 0 for angle within
tolerance interval around ideal angle, = infinity else

3. ’pottripletbgflag’ = 2: harmonic constraint potential for all angles
(zero for ideal angle, of course)

4. ’pottripletbgflag’ = 3: harmonic constraint potential within tole-
rance interval, = infinity else

pottripletbgflag = 0 The necessary parameters for the constraints
are

71



1. ’bgtripletangletol(i1,i2) is the angle tolerance in degrees for triplet
i2 in building unit i1 (applicable for ’pottripletbgflag’ = 1,3).

2. ’Bharmpotbgtriplet(i1,i2) is the strength of the harmonic potenti-
al for triplet i2 in building unit i1 (applicable for ’pottripletbgflag’
= 2,3).

do i1 = 1,bgtypemax
do i2 = 1,bgtripletmax
bgtripletangletol(i1,i2) = 10.0d0
Bharmpotbgtriplet(i1,i2) = 10.0d0
enddo
enddo

• ’potquartetbgflag’ refers to dihedral angles between quartets of neigh-
bor atoms

1. ’potquartetflag’ = 0: no special constraint quartet-potential acti-
ve

2. ’potquartetbgflag’ = 1: constraint potential = 0 for dihedral angle
within tolerance interval about ideal angle, = infinity else

3. ’potquartetbgflag’ = 2: harmonic constraint potential for all di-
hedral angles

4. ’potquartetbgflag’ = 3: harmonic constraint potential within to-
lerance interval about ideal angle, = infinity else

potquartetbgflag = 0 The necessary parameters for the constraints
are

1. ’bgquartetangletol(i1,i2)’ is the angle tolerance in degrees for quar-
tet number i2 in building unit i1 (applicable for flag = 1,3).

2. Charmpotbgquartet(i1,i2)’ is the strength of the harmonic poten-
tial for quartet number i2 in building unit i1 (applicable for flag
= 2,3)

do i1 = 1,bgtypemax
do i2 = 1,bgquartetmax
bgquartetangletol(i1,i2) = 10.0d0
Charmpotbgquartet(i1,i2) = 10.0d0
enddo
enddo

7 Modules and commands

We distinguish between the full program consisting of many sub-runs and the
different modules one might use during an individual sub-run. The modules

72



are exploration procedures that range from a single energy calculation to a
rather complex threshold run. They are called as commands in the command
list; and at the beginning of each module, an input configuration file is
created, and similarly at the end an output file. Currently the following list
of modules is available:

• ’simann’ = Simulated Annealing
’mws simann’ = Multi walker separate simulated annealing
’mwi simann = Multi walker interacting simulated annealing

• ’thresh (Elimit,looplim)’ = Threshold-Run (’Elimit’ = upper energy
lid; ’looplim’ = number of steps)
’mws thresh (Elimit,looplim)’ = Multi walker separate threshold run

• ’graddesc’ = Gradient Descent
’mws graddesc’ = Multi walker separate gradient descent

• ’linesearch’ = Linesearch
’mws linesearch’ = Multi walker separate linesearch

• ’quench’ = Quench
’mws quench’ = Multi walker separate quench
’mwi quench’ = Mulit walker interacting quench

• ’multiquench’ = Multiple Quench (MC/SA with T = 0 alternating
with T large)
’mws multiquench’ = Multi walker separate multiple quench
’mwi multiquench’ = Multi walker interacting multiple quench

• ’simplex’ = simplex routine (not activated?)
’mws simplex’ = Multi walker separate simplex run

• ’powell’ = powell-routine (not activated?)
’mws powell’ = Multi walker separate powell run

• ’salocrun’ = MC/SA-run with local runs shadowing
’mws salocrun’ = Multi walker separate MC/SA-run with local runs
shadowing
’mwi salocrun’ = Multi walker interacting MC/SA-run with local runs
shadowing

• path = Follow a prescribed path with local runs shadowing
’mws path’ = Multi walker separate path run

• ’monte’ = Monte Carlo run at set of fixed temperatures with search
for local equilibrium
’mws monte’ = Multi walker separate Monte Carlo run
’mwi monte’ = Multi walker interacting Monte Carlo run

73



• ’mwi partemp’ = Multi walker interacting parallel tempering run

• ’calcenergy’ = Calculates the energy of the current configuration

• ’findcell’ = Findcell

Note that many of these subroutines are available in two or three different
versions: Version one is for a single walker (e.g. called with the command
’simann’), version two is for many independent walkers that are proceedings
separately, either in parallel or consecutively, (e.g. called with the command
mws simann), and finally the interacting multi-walker version where all wal-
kers interact in some fashion during the run by exchanging landscape infor-
mation or via an adaptive stopping criterion (e.g. called with the command
mwi simann).

Since the subroutines that load or generate starting configurations always
do so for a set of walkers (it can be only one walker in the set, of course!),
the most clean way is to use just the ’mws ’-type of command for a only one
walker ’nwalk = 1’: As a result, you perform the run for just one walker,
just as you would have for the ’simann’ command.

Two important modules describe the loading in of an externally prepared
(or by a previous module specially prepared) configuration, and the genera-
tion of a random configuration according to some generation parameters:

• ’loadnewcfg (confname,initdata,rsfactorflag,countinitdata1,countinitdata2)’
= loading of one or many new configurations

• ’gennewcfg (confname,initflag1,initflag2,initflag3,initflag4,countinitdata1,countinitdata2)’
= generating of one or many new configurations

In addition to the modules, there exist a couple of simple commands
which can be used to explicitly set some parameters (pressure, random seed,
moveclass, etc.) during a run:

• ’seticurr(i)’ = sets the value of the single current walker to i

• ’setwalkcurr(walk1,walk2)’ = sets the range of the current walker to
lie between walk1 and walk2

• setseed (i) = initializes the random number generator with the seed i

• ’setnatominit (i)’ = sets the number of atoms initially to i

• ’setvolfactor (r.eal)’ = sets the ratio between the starting volume and
the total volume occupied by the atoms when densely packed

• ’setTinit (r.eal)’ = sets the initial temperature of a simulated annealing
run

• ’setmoveclass (i)’ = sets the moveclass explicitly to i

74



• ’setabinitinputflag (i)’ = sets the input for ab initio calculations expli-
citly

• ’setfixflag (i)’ = sets the value of fixflag explicitly

• ’setpress (real,integer)’ = sets the pressure explicitly

Finally, there is the command that tells G42+ that it is to stop the
run(s),

• ’end’ = end of program

Note that the name of the files that are produced by a module consist
of the general ’confname’ that belongs to the run, the prefix that indica-
tes which module is being run, a counter ’countmodule’ for the number
of modules that have been called since the last ’loadnewcfg’ or ’gennewcfg’
command, and usually one or more suffixes which tell us about which part of
the module we are in, e.g. which stopping point (where local minimizations
take place), which minimization, etc.

7.1 Load new configuration

The subroutine ’loadnewcfg’ loads one or several new configurations into the
program. When this happens, G42+ first writes end configuration(s) of the
previous sub-run of the program and closes the protocol. Then, the init.f
subroutine is called, which initializes the new sub-run. In particular, the
loadbg-subroutine loads configuration with the name given by the variable
’initdata’, and starts a new protocol for a sub-run with the name given by
the variable ’confname’. Note that the very first configuration can be loaded
in by directly entering information in the input-file. This is usually only
used for a single reference configuration that is employed to check many
variables, flags and array sizes for consistency and write out the complete
list of commands for the meta-program in G42+.

7.1.1 Method description

The command for loading a new configuration is
command(..) = loadnewcfg (confname,initdata,rsfactorflag,
countinitdata1,countinitdata2)
’confname’ is the family name of the files that will be generated, and the
number of the walker is added as a four-digit number after the confname.
’initdata’ is the family name of the files that need to be read in, e.g. init-
data = ’loadme’. All files that are to be loaded in have to have the name:
’loadme ????’, where ???? is a four-digit number (including preceding zero-
es). Thus, wherever ’hvwalk’ is mentioned, this refers to a four-digit number
written as four-digit character-string.

75



All files with values of ???? between ’countinitdata1’ and ’countinitda-
ta2’ will be read in, and assigned to walkers with the numbers ????. Make
sure that there are no files missing in this interval, and that ’nwalk’ ≥ ’coun-
tinitdata2’ ≥ ’countinitdata1’ ≥ 1. Typically, the range of files will be from
countinitdata1 = 0001 to countinitdata2 = nwalk.

If both ’countinitdata1’ and ’countinitdata2’ are set equal to zero, then
only one file with the name ’initdata’ is read in and assigned to walker iwalk
= countinitdata1; this case is usually treated as a reference configuration
for initial testing of the input of the system.

’rsfactorflag’ = 1 indicates that when loading the configuration, the rs-
factor is the one originally defined in input.f, and the ionic radius ’rion’
is computed as ’rs*rad’ for single atoms or ’rs*bgrad’ for larger building
units, respectively. Else (’rsfactorflag’ = 0), the rs-factor is computed by
dividing ’rion’ from the file by the value ’rad’ or ’bgrad’, respectively, from
the atomdatabase or bgdatabase, respectively.

7.1.2 Entries of parameters (in input.f)

If one wants to load a configuration at the beginning of the program for
reference purposes, the following entries in the input-file are needed:

• confname = ’reference’

• iwalk = 0

• initdataflag = 1

• natomfix = 0

• ntypfix = 0

This might be needed if there are complicated settings involving background
structures that would lead to contradictions if we generate the reference
configuration in the usual fashion via the random structure generator.

7.2 Generate new configuration

The subroutine ’gennewcfg’ generates a new configuration for a new sub-run
of the program. When this happens, G42+ first writes an endconfigurati-
on of the previous sub-run of the program and closes the protocol. Then,
the init.f subroutine is called, which initializes the new sub-run. The new
configuration is generated according to the value of the four parameters
’initflag1’, ’initflag2’, ’initflag3’ and ’initflag4’ (see below), and is assigned
the name given by the variable ’confname’. Of course, there are many more
parameters set in the input file that control the initial configuration that is
being generated. These parameters are set once and for all in the input file.

76



Note that the very first configuration is always generated (or, alternatively,
loaded in) by directly entering information in the input-file. This is usually
used as a dummy configuration called ’reference’, and is used to check for
obvious mistakes in the metascript, databases, etc.

7.2.1 Method description

A new configuration is generated by the command
command(..) = gennewcfg (confname,initflag1,initflag2,
initflag3,initflag4,countinitdata1,countinitdata2)
Here, ’confname’ is the family name of the files that will be generated and
is the variable naming the new sub-run, and ’initflag1’, ’initflag2’, ’initflag3’
and ’initflag4’ are integer parameters (c.f. section on generation of random
starting configurations). The number of the walker is added as (four-digit)
number (in form of a character string of length 4: ????; it includes preceding
zeroes) after the confname.

Thus, random configurations with values of ???? between ’countinitda-
ta1’ and ’countinitdata2’ will be generated, and assigned to walkers with the
numbers ????. Make sure that you want to generate walkers for the whole
interval, and that ’nwalk’ ≥ ’countinitdata2’ ≥ ’countinitdata1’ ≥ 1. Typi-
cally, the range of files will be from countinitdata1 = 0001 to countinitdata2
= nwalk.

If both ’countinitdata1’ and ’countinitdata2’ are set equal to zero, then
only one file with the family name ’confname’ is generated and assigned to
walker iwalk = countinitdata1 (= 0000). Again, this is usually a reference
configuration for testing purposes.

7.2.2 Entries of parameters (in input.f)

If one wants to generate a configuration at the beginning of the program,
the following entries in the input-file are needed (of course, one can choose
different values for ’initflag1’, etc.):

• confname = reference

• iwalk = 0

• initdataflag = 0

• natomfix = 0

• ntypfix = 0

• initflag1 = 1

• initflag2 = 1

77



• initflag3 = 0

• initflag4 = 0

7.2.3 Parameters directly or indirectly involved in generation of
new configuration

Several parameters are set in input.f outside of the actual ’gennewcfg’ com-
mand that influence the randomly generated configuration. Of course, there
are parameters like the number of atoms and building units of various types,
but there are some that are only specific for the generation of the cell and
the atom positions inside the cell. These are given here:

• Prescription of initial cell parameters

1. ’volinitflag’ indicates whether initial cell parameters should be
prescribed. For different moveclasses i1, different choices of ’voli-
nitflag’ are possible.
volinitflag(i1) = 1: Simulation cell must have parameters gi-
ven by ’ainit’
volinitflag(i1) = 2: The volume per atom is prescribed ’vol-
peratom’, and G42+ generates the cell accordingly.
volinitflag(i1) = 0: The cell is not generated with fixed cell
parameters.
If we continue our run by loading in a new configuration, then
the cell parameters are always taken from this configuration. If
you use ’fixflag’ = 1 (add a fixed background structure), then all
’volinitflag’ must be set equal to 1 and all ’ainit’ must be the
same cell (for all walkers) which must be identical to the cell of
the background structure.

2. ’ainit(i1,i2,i3,i4)’ is the cell parameter ’a(i2,i3)’ for walker i1 and
moveclass i4, which is prescribed from the outset if ’volinitflag’
= 1.

3. ’volinit’ should be given and be equal to the volume computed
from ’ainit’ (± 1.0). This is just a check. If the two values ’volinit’
and the volume from ’ainit’ do not agree, a warning is written,
and the values of ’ainit’ are assumed to be the correct ones.

4. ’volperatom’ is the volume per atom for an orthorhombic or cubic
cell with volume natominit*(volume/atom)

• ’placetry’ is the number of attempts to place one atom or building unit
without overlap. placetry = 5000

• ’volfactor’ determines for random cell generations, by what factor the
starting cell volume should be larger than the volume vol of all the

78



atoms together, vol =
∑

j Vj , where the atoms are considered spherical,
Vj = (4π/3)rmax(atype(j), ch(j))3; based on this, the length of the
cell vectors ’a(i,j)’ are computed. Note that the cases of only atoms
(e.g. ’volfactor’ = 3) and ion cores plus electrons are different (e.g.
’volfactor’ = 1).
Furthermore, note that here the atom volume refers to the largest (!)
possible ionic radius available for the atoms that participate, not the
one of the initial atoms or ions; especially for feasible large values of
the ionic charge, this can be quite different from the neutral atom
radius (c.f. atomdatabase). Thus, sometimes, even rather small values
of ’volfactor’ such as 1.0 can be sensible, if one wants to start with a
density close to the final solid for neutral atoms instead of the more
gaseous densities usually used for long simulations.
Also, one would usually pick ’volmaxfact’ such that the maximal cell
size is larger than ’vol’*’volfactor’.
Keep in mind that ’volfactor’ is not active if ’volinitflag’ = 1 or 2, i.e.
if the initial cell is prescribed at the beginning.
Finally, note that if we deal with layers of atoms, then we can fix the
z-direction c (= a(3,3)), and use ’volfactor’ to compute the a- and b-
parameters in the xy-direction (see below).
volfactor = 1.0d0
We also have the option to enter a value for ’volfactor’ from an external
file without having to recompile the code, using the flag ’readinflag4’
(’readinflag4’ = 0: no external data):
if ((readinflag4.eq.1).and.(readinflag.eq.1)) then
volfactor = hvdat4
endif

• Next we come to tolerance in the random generation of configurations
(once the cell has been generated or taken from ’ainit’:

1. ’tol3’ is the minimal distance allowed during the initialization
between building units. If these correspond to individual atoms,
then ’tol3’ should have the same value as ’tol4’. Note that ’tol3’ is
not automatically compared with ’mindist’; if you use a ’mindist’-
potential, then one should go with ’tolatomflag’ =1 and compare
with the atoms themselves, unless ’tol3’ is already larger than all
the ’mindist’ involved. Since ’tol3’ refers to distances between the
reference points of whole building units, then for large building
units, use larger values of ’tol3’ to avoid big overlaps once the
atoms are put in.
tol3 = 0.1d0

2. ’tol4’ controls the overlap of atoms directly. For very large and
convoluted building units, it might be necessary to base the deci-

79



sion whether a randomly placed building unit is compatible with
the rest of the structure on the overlap of the atoms. This is mea-
sured by the value of ’tol4’. In addition, we set ’tolatomflag’ =
1, to make sure that not only the centers of the building units
are far enough from one another, but that also all atoms do not
overlap too much. In that case, we also check whether there is
overlap between the atoms of a building unit with atoms in a
neighbor cell since the building units can reach into neighboring
cells; thus here we do not need to set ’rimflag’ = 1 (see below).
Note that if one selects ’pottype’ = 12 (and ’potflag’ = 1, of
course), then the program automatically uses the larger value of
’tol4’ and the predefined values in ’mindist’ as tolerances when
generating a random starting configuration. Further note that
the program does not prevent you from loading in explicitly a
configuration that violates ’mindist’ ! Also, one should avoid a
building unit to have atoms that lie beyond perfect slabs of some
kind (’slabmirrorflag’ or ’slabvdWflag’ > 0). Thus, one should set
’tolatomflag’ = 1 for such situations to be on the safe side.
Note furthermore that we would get into trouble, if we intertwine
two large molecules and at the same time perform calculations
that only refer to atom positions such as ab initio energy calcula-
tions because then the molecules will be reorganized and atoms
from one molecule will be assigned to another one!
tol4 = 0.1d0

3. The distance of the atoms away from the perfact slab is given by
’tol5’ in Angstrom.
tol5 = 1.0d0

4. ’tolatomflag’ indicates whether it is checked that the atoms of
two building units are sufficiently far away from each other when
we generate the initial configuration. ’tolatomflag’ = 0: no check;
’tolatomflag = 1’: make check.
tolatomflag = 0

5. ’rimflag’ checks whether a rim a the border of the unit cell can
be (’rimflag’ = 0) or cannot be occupied by a randomly placed
atom (’rimflag’ = 1) for an (orthorhombic) simulation cell. The
size of the rim is given by (’tol3’)/2. Usually, rimflag = 1 makes
sense, but when using certain kinds of slabs, occupation of only
planes, or fixed background structures, it might make sense to set
’rimflag’ = 0. Also, if we use ’tolatomflag’ = 1, then the rim is
already checked, and we can set ’rimflag’ = 0, if we want to.
Note that if you use a prescribed initial cell that is not orthorhom-
bic, then ’rimflag’ = 1 is not very useful, since it can be tricky to
compute the right kind of rim size. In that case, use ’tolatomflag’

80



= 1, in order to take overlaps at the rim of the cell into account.
rimflag = 0

• Atoms in layers as starting configurations

1. ’zinitflag’ allows us to place atoms into layers parallel to the xy-
plane: If we want to place the atoms randomly in ’n zlayers’ layers
with the same z-value, we set ’zinitflag’ = 1, ’zinit(i1,i2)’ = desi-
red value of layer i1 for walker i2.
This is usually used in combination with move2dflag = 1, i.e.
if the atoms are only allowed to move in the x-y-plane, and if
only the cell parameters ’a(1,1)’, ’a(1,2)’, ’a(2,2)’ and ’a(2,1)’ are
allowed to be changed. For this we would preferably use only mo-
noclinic cells that have ’a(2,3)’ = ’a(1,3)’ = ’a(3,2)’ = ’a(3,1)’ =
0.

2. Starting cells can either be prescribed at the beginning (’volinit-
flag’ = 1) in toto, or we can prescribe only the length in z-direction
by giving ’L z’, and the two remaining cell vectors are genera-
ted using ’volfactor’ restricted to ’n zlayers’ planes, i.e., with re-
spect to the maximal area occupied by the atoms j: A =

∑
j Aj ;

Aj = π ∗ (radmax(j)2). In that case, ’volinitflag’ must be equal
to zero, of course.
Filling more than one layer can be tricky, since for ’move2dflag’
= 1 no moves are allowed to move atoms between the layers, and
thus the number of atoms within each layer are fixed. (Note that
since we can exchange atoms between layers, the types can be
changed; if one wants to also change the number of atoms, one
needs to provide lots of vacancies that can be exchanged for an
atoms between layers.) Making it possible for atoms to jump bet-
ween layers without the help of ’dummy vacancies’ is currently
only a future option, so one should use now only ’n zlayers’ = 1.
If one wants to work with several layers with definite numbers
of atoms per layer, where atoms can only move within the assi-
gned layer, one would prepare such an initial configuration file by
hand.

3. If we use random assignment of atoms positions, then we ran-
domly distribute all atoms over all layers for ’zinitflag’ = 1. For
’zinitflag’ = 3, ’numatoms zinit(i1,i3)’ gives the number of atoms
of type i3 that are prescribed as initial number within layer i1. If
we set ’zinitflag’ = 2, then the total number of atoms per layer
is set equal to ’numatoms zinit(i1,0,i2)’; if we set ’zinitflag’ = 3,
then the number of atoms of type i3 per layer is equal to ’numa-
toms zinit(i1,i3,i2)’ for walker i2. Make sure that the number of
atoms per type defined for the whole system in ’initntype’ cor-

81



rectly takes the distribution of atoms over the layers into account!
(Note that we have not distributed atoms according to their char-
ge, only acccording to type.)
Note that if you combine ’zinitflag’ = 1 with prescribed slabs or a
prescribed background structure, you need to make sure that the
values of ’zinit’ are compatible with the restrictions of atoms on
slabs. In particular, keep in mind that randomly placed (!) atoms
are supposed to be at z > 0.6 (or 0.6 < z < 0.9 for two slabs).
(Possibly one needs to change the value of 0.6 explicitly in the
code for some situations.) Currently, the choice of ’zinit’ overrides
this requirement as long as ’zinit’ is larger than 0.5 (and smaller
than 1.0 for two slabs)! Furthermore, for this kind of situation,
the rim of the unit cell is off limits (i.e. as if ’rimflag’ were set to
zero).
Note: As mentioned above, if you want to perform a quasi-2d-
optimisation, where the atoms are only to be moved within pla-
nes, but you do not have a background structure to worry about,
and the cell parameters in the a-b-plane can change and should
be generated at random at the beginning, then use ’volinitflag’
= 0 and prescribe the correct value for the c-axis by ’L z’. If we
do not use ’zinitflag’ > 0, but still want to have L z > 0, then we
must set ’Lzflag’ = 1.
zinitflag = 0
n zlayers = 1
do i2 = 0,nwalkmax
zinit(1,i2) = 0.5d0
numatoms zinit(1,0,i2) = 12
numatoms zinit(1,1,i2) = 6
numatoms zinit(1,2,i2) = 6
L z(i2) = 1.6d1
enddo
Lzflag = 0

• Flags for type, charge and position allocation of atoms/ units

1. ’initflag1’ determines whether the atoms are given their types
from a distribution or according to pre-fixed numbers: 0 = chosen
randomly according to a distribution described by ’tflag’ etc. 1
= ’initntype(i)’ atoms of type i allocated one after the other. 2
= ’initntype(i)’ atoms allocated in a regular fashion. In this case,
the type of the biggest number must be listed first.
Currently, only ’initflag1’ = 1 is active, since we do not work with
variable composition.
initflag1 = 1

82



2. ’initflag2’ determines whether the charges are allocated according
to a distribution or according to pre-fixed numbers. Do not use
pre-fixed numbers in ’initflag2’ together with random allocati-
on in ’initflag1’. 0 = allocate randomly according to distribution
determined by ’ctflag’ etc. > 0 = allocate according to pre-fixed
numbers ’initnctype(i,j)’ of amount of charge j for type i. Current-
ly, only ’initflag2’ = 1 is active.
initflag2 = 1

3. ’initflag3’ determines whether the original positions of the atoms
are supposed to be random or ëquallyßpaced; 0 = random posi-
tions; 1 = random positions but distances between atoms ¿ sum
of ionic radii * ’fact1’. 2 = equally spaced. Note that if we use
1 for building units of size larger 1, then we need to use ’tola-
tomflag’ = 1. Furthermore, remember to set ’fact1’ according to
the amount of overlap that is to be allowed. In this context, also
check, which potential is being used, to make sure that there are
no contradictions. The setting 2 is currently not active.
initflag3 = 0
fact1’ gives the fraction of the sum of the (ionic) radii of the
atoms that are being inserted, which is allowed for ’initflag3’ = 1
as minimium separation between atoms during the initialization
stage.
fact1 = 1.0d0

4. If we want to not only place the building units at random po-
sitions, but also rotate them about an arbitrary angle, then set
’rotateinitflag’ to 1 (0 = no rotation)
rotateinitflag = 0

5. ’initflag4’ determines, whether there shall be a randomization of
positions before the actual simulated annealing run occurs. The
length of the run is determined by the value of ’initflag4’: 0 = no
randomization run, n = Each atom makes n moves in a random di-
rection (or is exchanged with another atom etc.). Use ’stepsmax0’
( < ’stepsmax’), if we use ’flagT’ = 1. Currently, ’stepsmax0’ >
0 is not active!
stepsmax0 = 0
initflag4 = stepsmax0

7.3 Calculate single energy

The subroutine ’calcenergy’ makes the program perform a single energy
calculation for the current walker.

83



7.3.1 Method description

The command call for ’calcenergy’ is:
command(..) = calcenergy
No parameters are set when using this command, i.e., all energy calculati-
ons are performed using the potential currently being active according to
the input to G42+. The prefix indicating that the output files have been
generated during a single energy calculation is ’onece’.

7.3.2 Entries of parameters (in input.f)

No parameter entries at the current time.

7.4 Simulated annealing

The simulated annealing module is essentially a random walk for a decre-
asing sequence of temperatures. The attempted moves are selected from a
moveclass, and they are accepted according to the Metropolis criterion. In
addition, further criteria can be given, such as minimum/maximum energy
difference thresholds, absolute values for minimum/maximum energies, etc.
The size of some of the moves can be reduced with decreasing temperature,
in order to allow for a more efficient refinement of the minima (see section
moveclass for more details). The temperature in the acceptance criterion is
reduced either by following a prescribed schedule or adapted according to
the success of the run. Similarly, the simulated annealing module finishes
either after some prescribed length or in an adaptive fashion.

As for all ’mws ’-type runs, each of the (nwalk) walkers performs its
own individual simulated annealing run. They can either be performed con-
secutively (when one runs the G42+ part of the calculations on only one
processor) or in parallel distributed over several processors (if the G42+
part is on several processors but the external codes - if employed - only run
on one processor each).

For the ’mwi ’-type runs, all walkers must run in parallel, of course. The
following information exchange can take place:

• Cross-over moves in the moveclass, where a pair of two walkers ge-
nerates two new candidate configurations by taking part (half) of the
configuration from one walker and put it together with the complemen-
tary part (half) from the other. For more details, c.f. the description
of the multi-walker moveclass ’moveclassmulti’.

• Penalty terms (= increase in energy) when the configuration of one
walker becomes too similar to the configuration of another walker.
This is meant to keep up diversity during the exploration such that
each basin is only studied by one walker, preferably.

84



• Multi-walker criterion for the decision to lower the temperature during
the simulated annealing run and/ or to stop the run.

Note that options in the penalty function which automatically keep track
of the results of previous searches and save these minimum configurations
as static penalty configurations (if you get too close to one of them, your
energy increases rapidly) for the next run will probably crash if they are run
for more than one walker at a time ????????CHECK????????

7.4.1 Method description

The command call for simulated annealing is:
command(..) = simann, command(..) = mws simann, command(..) = mwi simann.
No parameters are set when using this command, i.e., all simulated anne-
aling runs will follow the set of parameters defined in the input to G42+
(note that most of these can be different for different walkers). The pre-
fix indicating that the output files have been generated during a simulated
annealing run is ’onesa’, ’mwssa’ or ’mwisa’, respectively.

During the run, it is possible to periodically stop the walker at inter-
mediary configurations (holding points) along the trajectory and perform
one or more local runs (typically local minimizations). The number of ti-
mes to stop along simulated annealing for walker i1 is given by ’saquen-
chloop(i1)’ (must be smaller than ’saquenchloopmax’ set in ’varcom.inc’):
do i1 = 0,nwalkmax
saquenchloop(i1) = 10
enddo
In principle, each walker can have a different number of holding points.
’msa2max’ is the number of times we quench from a holding point, e.g.
msa2max = 2.

’satypeflag’ indicates, which kind of local run-algorithm is to be used in
the local-runs that starts from the holding points:

• satypeflag = 0: standard stochastic quench

• satypeflag = 1: gradient steepest descent with built-in potential

• satypeflag = 2: simplex-method (not yet activated)

• satypeflag = 3: line search

• satypeflag = 4: powell-method

• satypeflag = 5: no stepwise minimization

As discussed below in the local-run module, for such local explorations we
employ a local moveclass, the number of which is given by the value of the
global variable ’mclflag local’ (Remember that we can in that case use e.g.

85



another energy function, too!). However, we might want to perform this in-
between local mimization with a different moveclass than this standard local
moveclass, or perhaps with the same moves as prescribed for ’mclflag local’
but a different energy function such as an ab initio energy. In that case, we
can pick our own special moveclass by setting the variable ’samclflag local’ to
the number of the moveclass. If ’samclflag local’ = 0, then we take the usual
’mclflag local’ moveclass, which is the standard case, samclflag local =
0.

If we want to perform a quench run, gradient steepest descent with built-
in potential, or line search with built-in potential, for an intermediary con-
figuration over a certain fixed number of steps, we set ’saquenchnum’ =
number of steps of these runs. If no such run is intended, set saquenchnum
= 0, or satypeflag = 5. This is useful, if we want to follow up the local
minimization with the built-in moveclass (with the specific choice of energy
function, fixed atoms, etc. that can be prescribed via the choice of moveclass)
by a full local gradient based minimization using either the built-in poten-
tial or an external code: If we want to perform a gradient descent after the
quench for each local best configuration, set sagraddescflag = 1. If one
only wants a gradient descent, use satypeflag = 5 and sagraddescflag =
1. If sagraddescflag = 0, then no such gradient minimization takes place
after the actual local run.

7.4.2 Entries for parameters (in input.f)

The main issue is the control of the temperature during the simulated anne-
aling: choice of cooling schedule, length of run, criterion of switching between
temperatures. In principle, nearly all of these parameters can be chosen to
be different for different walkers.

• ’Tinf’ sets temperature equals to infinity (real number). This acts as
a reference value in various subroutines. In particular, the ratio of
log10(’Tinit’)/log10(’Tinf’) controls the initial value of the step size
for atom positions and cell parameters, ’dT’ and ’dcellT’, respectively,
in tupdate. (for other values of T, the ratio is log10(T)/log10(’Tinf’),
of course). Typically, we chose ’Tinf’ = 10**5 * ’Tinit’, e.g. for various
quench runs.
Tinf = 1.0d5

• ’flagT’ determines which temperature schedule is to be used.

1. flagT = 1 : T = ’Tinit’ * (’decrease1’)**nT;

2. flagT = 2 : T = ’Tinit’ / (nT * ’decrease2’ + 1);

3. flagT = 3 : Huang adaptive schedule; For details, c.f. tupdate.f
or input.f

86



4. flagT = 4 : Schedule similar to Huang, but with T**2 instead
of T in the (differential) equation; For details, c.f. tupdate.f or
input.f

5. flagT = 5 : T = T - (T * ’decrease5’) (own schedule);

6. flagT = 6 : linear schedule: T = T - ’decrease6’ (best for com-
parison with quench experiments);

7. flagT = 7 : T = const. (corresponds to T = ’Tinit’ and thus
produces a Monte Carlo run with constant temperature: use only
together with ’abbrflag’ = 0 !!)

• Some values for the decrease parameters might be

1. decrease1 = 0.995d0

2. decrease2 = 2.0d0

3. decrease3 = 0.005d0

4. decrease4 = 0.005d0

5. decrease5 = 0.01d0

6. decrease6 = 0.0001d0

Note that ’decrease1’ (real number) < 1, ’decrease2’ (real number) >
0, in order to make sense.

• ’Tinit’ is the initial temperature (real number).
Tinit = 1.00000d0

• Parameters for the adaptive choice of ’Tinit’:
The subroutine ’init5’ performs simulated annealing steps at a tempe-
rature T (starting with ’Ttest’), and adjusts the temperature depen-
ding on whether the fraction of accepted moves lies within the interval
’accmin’ and ’accmax’.
init5flag = 0: no adjusting;
init5flag = 1: use initialization routine.
’init5steps’ is the number of steps at T, ’init5max’ = number of att-
empts to optimize ’Tinit’. ’init5fact’ > 1 is the factor to increase the
test temperature (1 / ’init5fact’ decreases). Typical values may be:

1. init5flag = 0

2. Ttest = 1.0d-3

3. accmin = 0.95d0

4. accmax = 0.99d0

5. init5fact = 1.5d0

87



6. init5steps = 1000

7. init5max = 20

• ’Tlimit’ is the absolute lower limit to which the temperature can go.
Tlimit = 0.00001d0

• The next flags serve for the precise setting of the stopping criterion of
the simulated annealing. ’abbrflag’ gives the general class of stopping
criterion:

1. abbrflag = 0: Stop after ’nTmax’ temperature steps;

2. abbrflag = 1: Stop if the average energy after ’numTchange’
temperature changes has not changed by more than a factor
’dchangeEav’;

3. abbrflag = 2: Stop if the average of the best energies so far
’Ebest’ after ’numTchange’ temperature changes has not changed
by more than a factor ’dchangeEbest’;

4. abbrflag = 3: Stop if ’Ebest’ after ’numBchange’ temperature
changes has not changed by more than a factor ’chEbest’;

5. abbrflag = 4: Stop when temperature ’Tlimit’ has been reached.

For options ’2’ and ’3’, the computation of the average for the check of
the stopping criterion only begins after ’droptime’ loops, unless ’drop-
time’ > 5000 or ’Ebest’ < 10. Note that ’numTchange’ must not exceed
Ebstmax (set in ’varcom.inc’), and similarly ’numBchange’ must not
be bigger than EBmax (set in ’varcom.inc’).
During option ’3’, the check of the stopping criterion is always activa-
ted for T < 0.0001 K.
Note that if one only wants to perform a single energy calculation, one
can use ’abbrflag’ = 0 and ’ntmax’ = 0 (this is an alternative to using
the command ’calcenergy’).

Next, we list the variables needed for the stopping criterion:

1. nTmax = 1000: Number of temperature changes, needed for ’ab-
brflag’ = 0

2. nTmaxlimit = 10000000: Maximum number of temperature chan-
ges to avoid infinite loops

3. dchangeEav = 0.00001d0: Change in the average energy, needed
for ’abbrflag’ = 1

4. dchangeEbest = 0.0001d0: Change in the best energy observed,
needed for ’abbrflag’ = 2

88



5. Parameters for ’abbrflag’ = 3:
chEbest = 0.0000000001d0
numBchange = 50

6. Parameters needed for equilibrium detection:
’equildetect’ indicates whether G42+ should run for so long at one
temperature, until equilibrium at that temperature has been re-
ached (= 1, detector active), or if the temperature should always
change after ’stepsmax’ steps (= 0, detector inactive, ’stepsmax’
must be smaller than ’stepsmainmax’).
Equilibrium is suppose to have been reached, if the average ener-
gy after at least ’numEchange’+1 steps becomes bigger that the
average energy had been ’numEchange’ steps ago. Note that ’nu-
mEchange’ must not exceed Eeqmax (set in ’varcom.inc’)

7. stepsmax = 100: Number of loops between temperature changes
if ’equildetect’ = 0

8. stepsmaxlimit: maximum number of such loops needed for multi-
walker implementations, to ensure smooth stopping. It is usually
chosen to be equal to ’stepsmax’ plus one.

9. numEchange = 100: Parameter for ’equildetect’ = 1

• Next, we deal with checks on the energy range where the exploration
is taking place.

1. we can check, whether a given minimum energy has been reached,
and stop the simulated annealing:
Eminimumlimitflag = 1: check whether the walker has reached
’Eminimumlimit’.
This is useful, if one knows, where the energies of low-lying mi-
nima in the system are, and thus when it is time to stop the
simulated annealing and start e.g. a quench. Note that this is
different from rejecting moves that reach unphysical energies, or
from forcing the walker to stay in an energy band, ’EMCbottom’
- ’EMCtop’.

2. ’cutoff1’ is the value for the ratio deltaE/T above which the mo-
ve is always rejected. Similarly, ’cutoff2’ is the value of deltaE/T
below which the move is always accepted. ’cutoff2’ = 0.0 corre-
sponds to regular simulated annealing. ’cutoff2’ = ’cutoff1’ gives
the ’threshold accepting algorithm’. Typical values of these va-
riables might be:
cutoff1 = 10.0d0
cutoff2 = 0.0d0

89



3. ’Einf’ is an infinitely large energy, which is assigned to configu-
rations that are unphysical and should be forbidden, such as e.g.
too high ionization energies, or atoms getting too close, without
having to compute all the other terms in the energy function of
a configuration. A typical value would be
Einf = 1.0d+13

4. ’Eflag’ determines whether the program shall use the full ’energy’-
or the so-called ’deltaE’-subroutine in order to calculate the ener-
gy difference (useful when only a few atoms are moved such as
for a simple atom exchange or a single atom move). Eflag = 0:
use energy routine
Eflag = 1: use deltaE routine
The deltaE-subroutine works by computing only the terms in the
energy that belong to those atoms that are being moved, both be-
fore and after the move, and taking this difference. It assumes that
the energy function is written as a simple sum of two-body and
possibly multi-body potentials (such as the Gupta-potential).
The option for using the deltaE-routine is at the moment not
active for moves involving changes of the cell (all atoms are affec-
ted!), variations of stoichiometry, simulations with free parame-
ters (non-trivial space groups), and runs along a prescribed path.
Furthermore, we cannot use the deltaE-routine for calculations
with external codes, of course. Thus, before using the deltaE-
routine, check whether it is available for kind of calculations plan-
ned.

5. If E is outside of the allowed interval between ’EMCtop’ and
’EMCbottom’, the move gets rejected during simulated annealing,
Monte Carlo or threshold runs. In order to allow decrease from
some random position with energy outside the energy band, this
criterion does not apply, if Ecurrent (the previous energy), is also
above/below the energy lid. For standard simulated annealing,
we only use these values to eliminate crazy energies:
EMCtop = 1.0d13
EMCbottom = -1.0d13

7.5 Stochastic quench

The stochastic quench is a random walk with T = 0. In order to allow for
more efficient search using smaller steps, a pseudo-temperature is defined ac-
cording to which the step-size is adjusted just as the moveclass in simulated
annealing.

90



7.5.1 Method description

The command call for the quench is: command(..) = ’quench’. No parameters
are set when using this command, i.e., all regular quench runs will follow
the set of parameters defined in the input to G42+. The prefix indicating
that the output files have been generated during a quench run is ’qu’.

7.5.2 Entries of parameters (in input.f)

• The parameter ’numsteps’ denotes the number of steps for a quench
or multi-walker quench. If ’numsteps’ = 0, ’lpquench’ is used as stop-
ping criterion. In order to avoid endless loops, ’numstepslimit’ gives
the absolute limit in the number of allowed quench steps. Note that
’numsteps’ can be read in from an external file to avoid recompilation
if ’readinflag5’ = 1.
numsteps = 1000
readinflag5 = 0
if ((readinflag5.eq.1).and.(readinflag.eq.1)) then
numsteps = hvdat5
endif
numstepslimit = 1000000

• ’wrstep’ gives the number of steps between output in multiquench and
quench, and also in prescribed path.
wrstep = 100

• ’lpquench’ denotes the number of steps, during which one waits for an
improvement in energy. If during this interval nothing has happened
- defined by the energy not improving by more than ’qulimit’ -, the
quench (both a single-walker, and, if all walkers show no change, a
multi-walker quench) is stopped. ’lpquench’ should not exceed ’EB-
max’ which is set in ’varcom.inc’. Note that ’lpquench’ and ’qulimit’
are the values also used when running a quench inside ’localrun’ and
’palocalrun’ using this adaptive criterion for stopping.
lpquench = 20
qulimit = 0.001d0

• ’quTdecrease’ indicates, by which factor the control temperaturëıs de-
creased after ’lengthquloop’ quenchsteps, T(n+1) = T(n) * ’quTde-
crease’. This temperature is used to adjust the step lengths in the
moveclass towards the end of the quench to smaller values from in-
itially rather large ones. ’quTdecrease’ = 1 implies T = const. (=
’Tquinit’). ’Tquinit’ is the starting temperature of each quench run.
’Tlocalqu0’ is the temperature of a local run that may be called from
the mwi-quench module. Note that all these values can be chosen dif-
ferently for different walkers; however, ’numsteps’ and ’numstepslimit’

91



must be the same, in order to allow interacting runs to proceed.
do i1 = 0,nwalkmax
quTdecrease(i1) = 1.0d0
Tquinit(i1) = 1.0d0
Tlocalqu0(i1) = 1.0d0
enddo
lengthquloop = 100

7.6 Gradient descent

The gradient descent implements a steepest descent in the direction of the
gradient of the configuration. Note that both atom-positions and cell para-
meters are included in the gradient for periodic systems. If you are using the
built-in gradient, then, after the gradient has stopped, we perform a local
exploration along all coordinate directions, in order to check, whether we
are in a real minimum or on a saddle point. Interacting multi-walker runs
do not make sense. Note that if we are using external codes for the energy
computation, then the gradient descent minimization needs to be run via
these codes since we cannot extract gradients from the external programs.
However, not all these external codes contain appropriate gradient and mi-
nimization routines.

7.6.1 Method description

The command call for the gradient is: command(..) = ’graddesc’ or com-
mand(..) = ’mws graddesc’ for several parallel non-interacting walkers, re-
spectively. No parameters are set when using this command, i.e., all gra-
dients will follow the set of parameters defined in the input to G42+. The
prefix indicating that the output files have been generated during a gradient
descent run is ’onegd’ or ’mwsgd’, respectively.

7.6.2 Entries of parameters (in input.f)

• ’lpgradient’ denotes the maximal number of steps allowed for a full
gradient run.
lpgradient = 1000

• ’lpoutputgrad’ gives the number of steps between write commands in
the gradient routine.
lpoutputgrad = 1

• ’dstep0’ denotes the basic stepsize of the gradient routine.
dstep0 = 0.01d0

92



• If the energies of two consecutive configurations in the gradient descent
differ by less than ’gdlimit’, then the gradient descent will be stopped.
gdlimit = 1.0d-6

• checkstep is the size of the step away from a possible minimum confi-
guration in the gradient methods, in order to find out, whether we are
really dealing with a local minimum.
checkstep = 0.001d0

• ’normlimit’ is the norm of a gradient, below which the check routine
for a local minimum is activated.
normlimit = 0.001d0

7.7 Line search

Instead of re-evaluating the gradient after each step, we proceed along the
direction of the gradient until a minimum along this line in configuration
space has been reached. Then the gradient is again computed. Interacting
multi-walker runs do not make sense.

7.7.1 Method description

The command call for the linesearch is: command(..) = ’linesearch’ or com-
mand(..) = ’mws linesearch’ for several non-interacting walkers, respectively.
Again, interacting walkers do not make sense. No parameters are set when
using this command, i.e., all linesearches will follow the set of parameters
defined in the input to G42+. The prefix indicating that the output files
have been generated during a line search run is ’onels’ or ’mwsls’.

7.7.2 Entries of parameters (in input.f)

• ’dstepls0’ is the basic step of a line search gradient.
dstepls0 = 0.01d0

• ’lpoutputls’ is the number of steps between write commands in the
linesearch routine.
lpoutputls = 1

• ’lsloopmax’ = maximum total number of steps within a line search
(’lsloopmax’ ≥ ’lplinesearch’ * ’climit’).
lsloopmax = 5000

• ’lplinesearch’ is the number of line searches in the line search routine.
lplinesearch = 10

• ’climit’ is the maximal number of steps between two gradient evalua-
tions (for a line search).
climit = 50

93



7.8 POWELL

See literature (numerical recipes) for description of POWELL minimization
routine. Interacting multi-walker runs do not make sense.

7.8.1 Method description

The command call for the POWELL is: command(..) = ’powell’ or com-
mand(..) = ’mws powell’ for non-interacting multi-walker runs, respectively.
No parameters are set when using this command, i.e., all POWELL searches
will follow the set of parameters defined in the input to G42+. The prefix
indicating that the output files have been generated during a POWELL run
is ’onepo’ or ’mwspo’.

7.8.2 Entries of parameters (in input.f)

Note that many of the variables in the POWELL-routine are denoted ’detsea ’...
(short for ’deterministic search’ that is based only on energy evaluations).

• Relative uncertainty of minimum.
detsea ftol = 1.0d-14

• Starting values for step-size in powell for axes and position coordinates.
detstepa = 1.0d-1
detstepx = 1.0d-2

• maximum number of ’ATOM EXCHANGE RELAX’-calls.
detsea naermax = 3

• maximum number of cycles of searches along all directions within PO-
WELL.
detsea ncipmax = 20

• maximum number of POWELL calls.
detsea npcmax = 60

• Parameters in the subroutine ’MNBREAK’:
gold = 1.618034d0
glimit = 100.d0
itermax = 30
tiny = 1.0d-20

• Parameters in the function ’BRENT’:
itbrmax = 100
cgold = 0.381966d0
zeps = 1.0d-4

• Parameters in function ’LINMIN’:
TOLlm = 1.0d-3

94



7.9 Simplex

See literature (numerical recipes) for description. This routine is not yet
activated.

7.9.1 Method description

The command call for the simplex routine is: command(..) = ’simplex’.
No parameters are set when using this command, i.e., all simplex searches
will follow the set of parameters defined in the input to G42+. The prefix
indicating that the output files have been generated during a simplex run is
’onesx’.

7.9.2 Entries of parameters (in input.f)

No entries, since not activated.

7.10 Monte Carlo

The Monte Carlo routine performs constant temperature random walks
using the Metropolis criterion. The temperatures are drawn from a list or
generated by some rule (see below). Along these runs, we use observation ti-
me windows, in order to find candidates for locally ergodic regions at a given
temperature, i.e. we check whether we are in local equilibrium. As indica-
tor observables serve the potential energy/enthalpy and the pair correlation
function (not activated).

We average over the time intervals, and compare the difference in the
observables from one interval to the next with the fluctuations within the two
intervals under consideration. Once we observe the system to get into local
equilibrium, we register the configuration with the lowest energy where this
happens, for future analysis. In addition, we register for each temperature
the configuration with the lowest energy for the whole run.

Periodically, we check along the run, which kind of local minima are
residing ’below’ the trajectory.

We can restrict the run to be between two energy levels, like in simulated
annealing (’EMCbottom’ and ’EMCtop’).

In the case of multiple interacting walkers, the only interaction is the
penalty for getting too close.

7.10.1 Method description

The command call for the Monte Carlo run is: command(..) = ’monte’, or
command(..) = ’mws monte’ or command(..) = ’mwi monte’, respectively.
No parameters are set when using this command, i.e., all Monte Carlo runs
will follow the set of parameters defined in the input to G42+. The prefix

95



indicating that the output files have been generated during a Monte Carlo
run is ’onemc’, ’mwsmc’ or ’mwimc’.

7.10.2 Entries of parameters (in input.f)

• ’mcintmax’ is the number of intervals employed for a given tempera-
ture. It should be smaller than 10000. The length of each interval is
’mcintlength’. If we only want to start with the analysis of intervals
after ’mcintdelay’ intervals have elapsed, set ’mcintdelay’ to that num-
ber. Else, set ’mcintdelay’ equal 0. Never put in a negative number for
’mcintdelay’.
do i20 = 0,nwalkmax
mcintmax(i20) = 100
mcintlength(i20) = 10000
mcintdelay(i20) = 50
enddo

• ’mcflagT’ controls the way we pick the temperatures for the sequence
of Monte Carlo runs.

1. ’mcflagT’ = 0: Read from an array

2. ’mcflagT’ = 1: T = mcTinit*(mcdecr)**mcloop

3. ’mcflagT’ = 2: T = mcTinit/(mcloop*mcdecr+1.0d0)

4. ’mcflagT’ = 3: T = mcTinit - mcloop*mcdecr

mcflagT = 0
The number of temperatures employed is given by a) ’mcloopmax’, b)
’mcTlimit’, c) ’mcnumTarray’. Unless we pick the temperatures from
a pre-defined array called ’mcTarray’, we stop if either ’mcloopmax’ or
’mcTlimit’ has been reached. If we pick from an array with ’mcnumT-
array’ entries, we stop once these have been run through. ’mcloopmax’
must be smaller than 1000, ’mcnumTarray’ smaller or equal ’tempmax’
(given in ’varcom.inc’).

We start counting the runs for different temperatures with the internal
counter ’mcloop’ set to 0, unless we read from the temperature list (
then we start with ’mcloop’ equal 1). The starting temperature is
’mcTinit’.
do i20 = 0,nwalkmax
mcloopmax(i20) = 10
mcTlimit(i20) = 0.1d0
mcTinit(i20) = 1.0d0
mcnumTarray(i20) = 10
enddo

96



Note that we can pick different temperature programs for different wal-
kers, thus covering many more temperatures than when giving each
walker the same list of temperatures. On the other hand, we might
want to establish a certain number of samples for the same run con-
ditions but with different random number sequences, of course.
do i20 = 0,nwalkmax
mcTarray(i20,1) = 1.0d0
mcTarray(i20,2) = 0.8d0
...
mcTarray(i20,10) = 0.01d0
mcdecr(i20) = 0.05d0
enddo

• ’mcmoveTflag’ is the analogous flag to ’moveTflag’ in the other types
of random walk based runs. It tells us, whether to adjust the step-size
according to some rule (’mcmoveTflag’ = 1) or keep the values fixed
(’mcmoveTflag’ = 0).
mcmoveTflag = 0

• ’mccurnum’ is analogous to ’savecurnum’. Every ’mccurnum’ steps
we write out the current configuration. ’mccurnum’ = 0 means that
nothing is written (recall that these configurations are being overwrit-
ten every time, so if the machine uses a large memory buffer before
writing out a new configuration file, the old one in the buffer will have
been overwritten already.
mccurnum = 0

• ’mcwatchenergy’ indicates whether the average energy and standard
deviation sigma should be printed for each interval (=1) or note (=
0).
mcwatchenergy = 1

• If we want to perform a quench run for every local best configuration
that appears to be in equilibrium, we set ’mcquenchnum’ = number of
steps in the quench run. If no quench run is intended, set ’mcquench-
num’ = 0.
mcquenchnum = 10000

• If we want to perform a gradient descent after the quench for each
local best configuration, set ’mcgraddescflag’ = 1.
mcgraddescflag = 1

7.11 Parallel Tempering

Parallel Tempering performs multi-walker runs with each walker at a dif-
ferent temperature and pressure. As usual, all walkers are random walkers.

97



Periodically, they switch temperatures and pressures, either automatically
(Texternal = infinity) or if the combined weighted energy / enthalpy would
improve due to the switch: 〈E(before)〉 = E(1) ∗ p(E(1);T (1)) + E(2) ∗
p(E(2);T (2)) > 〈E(after)〉 = E(1) ∗ p(E(1);T (2)) + E(2) ∗ p(E(2);T (1)).
This is like a quench-like solution (Texternal = 0). Of course, one can al-
so implement some external control ’temperature’ Texternal and accept the
switch according to some Metropolis-like rule; this option is not yet imple-
mented.

We note that we can run all the walkers with varying temperatures
(either taken sequentially from an array of variable according to some rule
like in simulated annealing).

For the different walkers, the only direct interaction is the penalty for
getting too close (if this penalty term is activated). Else, we just need the
walkers to interact indirectly via exchange of temperatures and pressures.

Currently, one should not use more than 999 walkers (corresponding
essentially to maximally 999 different pressures). Since each walker has in
principle its own temperature and pressure, then ’nwalk’ should in practice
not exceed ’pressmax’ and ’tempmax’ (which must also be equal in parallel
tempering). This can be different in the Monte-Carlo runs described earlier.

7.11.1 Method description

The command call for the Parallel Tempering run is: command(..) = ’mwi partemp’.
Of course, only interacting walkers can be involved and parallel tempering
with only one walker is rather pointless. No parameters are set when using
this command, i.e., all Parallel Tempering runs will follow the set of para-
meters defined in the input to G42+. The prefix indicating that the output
files have been generated during a Parallel Tempering run is ’mwipt’.

7.11.2 Entries of parameters (in input.f)

• ’ptTswitchflag’ and ’ptPswitchflag’ control whether we switch between
temperatures / pressures, and which value Texternal is to have when
evaluating the switching probability

1. ’ptTswitchflag’ = 0: Switch between temperatures; Texternal =
infinity

2. ’ptTswitchflag’ = 1: Switch between temperatures; Texternal =
0.

3. ’ptTswitchflag’ = 2: Do not switch temperatures at all

We proceed analogously for the pressures:

1. ’ptPswitchflag’ = 0: Switch pressures; Texternal = infinity, i.e.
all switches are accepted

98



2. ’ptPswitchflag’ = 1: Switch pressures: Texternal = 0, i.e. only
improvements in weighted enthalpy are accepted.

3. ’ptPswitchflag’ = 2. Do not switch between pressures

Note that setting both ’ptTswitchflag’ and ’ptPswitchflag’ to 2, re-
sults in only a bunch of Monte-Carlo simulations at various constant
temperatures and pressures.

There are many combinations and schedules one can envision. If we
want to perform e.g. a regular simulated annealing with pressure swit-
ches along the way, then select ’ptTswitchflagT’ = 2, with all initial
temperatures and temperature decrease parameters identical, and dif-
ferent exchangeable pressures for all the walkers.
ptTswitchflag = 1
ptPswitchflag = 1

• ’ptintmax’ is the number of intervals employed for a given set of tem-
peratures and pressures. After each interval, a switch of temperatures
and pressures occurs. ’ptintmax’ should be smaller than 10000. The
length of each interval is ’ptintlength’.
ptintmax = 100
ptintlength = 1000

• We adjust the temperature program with ’ptflagT’, analogously to the
Monte Carlo runs.

1. ’ptflagT’ = 0: Read from an array

2. ’ptflagT’ = 1: T = ptTinit*(ptdecr)**ptloop

3. ’ptflagT’ = 2: T = ptTinit/(ptloop*ptdecr+1.0d0)

4. ’ptflagT’ = 3: T = ptTinit - ptloop*ptdecr

ptflagT = 0

The number of different starting sets of temperatures+pressures is gi-
ven by a) ’ptloopmax’, b) ’ptTlimit’, c) ’ptnumTarray’. Unless we pick
the temperatures from a pre-defined array, called ’ptTarray’, we stop
if either ’ptloopmax’ or ’ptTlimit’ has been reached. If we pick from
an array with ’ptnumTarray’ entries, we stop once these have been
run through. ’ptloopmax’ must be smaller than 1000; ’ptnumTarray’
must be smaller or equal tempmax. We start counting with the in-
ternal counter ’ptloop’ = 0, unless we read from the temperature list
when we start with ’ptloop’ = 1. The starting temperature is ’ptTinit’,
unless we read from the temperature list.
ptloopmax = 2
ptTlimit = 0.0001d0
ptnumTarray = 2

99



For the array with eight walkers and two temperatures per walker, we
would have entries like
do i20 = 0,nwalkmax
do i1 = 1,ptnumTarray
ptTarray(i20,i1) = 1.0d4
enddo
ptdecr(i20) = 0.05d0
ptTinit(i20) = 1.0d0
enddo
ptTarray(1,1) = 1.0d0
ptTarray(2,1) = 0.9d0
...
ptTarray(8,2) = 0.25d0 The entries for the walker 0 are not relevant
in the application envisioned.

Note that every walker will have its own variable temperature sche-
dule. The idea is that we can e.g. slowly decrease all temperatures at
some rate, while still performing our parallel tempering temperature
switches, of course. Of course, ’ptTinit’ needs to be different for diffe-
rent walkers (if we switch temperatures) if we do not choose from an
array.

• The pressure is always read from the pressure list, and we must make
sure that ’pressmax’ is large enough to keep in step with the number of
different temperature sets! If we do not want to change the pressures,
then we set ’ptPswitchflag’ = 2. If ’ptflagT’ > 0, then we may use
different values for ’tempmax’ and ’pressmax’ in defining array sizes for
’ptTarray’ and ’ptParray’ (and also different values for ’ptnumTarray’
and ’ptnumParray’), in principle.

Note that we need to enter these data; however, the pressure(s) might
be unchanged from step to step. Also, if we want to run only an ex-
change of temperatures, with the same pressure everywhere, then set
’ptPswitchflag’ = 2, and give all the pressures the same value.
ptnumParray = ptnumTarray
do i20 = 0,nwalkmax
do i1 = 1,ptnumParray
ptParray(i20,i1) = 1.0d4
enddo
enddo

The pressure array may look like (again the walker zero is irrelevant
but still needs an entry)
ptParray(1,1) = 1.0d-5
...
ptParray(8,2) = 0.55d-2

100



• ’ptmoveTflag’ is the analogous flag to ’moveTflag’ in the other types of
random walker based runs. It tells us, whether to adjust the step-size
according to some rule (’ptmoveTflag’ = 1) or keep the values fixed
(’ptmoveTflag’ = 0).
ptmoveTflag = 0

• ’ptcurnum’ is analogous to ’savecurnum’. Every ’ptcurnum’ steps we
write out the current configuration, overwriting the one written out
before, in order to get some feeling where the walkers are. ’ptcurnum’
= 0 means that nothing is written.
ptcurnum = 0

• ’ptwatchenergy’ indicates whether the average energy and standard
deviation sigma should be printed for each interval (=1) or not (=0).
Currently, this option is not active
ptwatchenergy = 0

• If we want to keep track of the local best configuration in each interval
and save it (and possibly the result of quenching this configuration),
then we set ’ptsavelocflag’ equal 1. If we want to perform a quench
run for every local best configuration after each interval, we set ’pt-
quenchnumloc’ = number of steps in the quench run. If no quench
run is intended, set ’ptquenchnumloc’ = 0. If we want to perform a
gradient descent after the quench for each local best configuration, set
’ptgraddesclocflag’ = 1.
ptsavelocflag = 1
ptquenchnumloc = 10
ptgraddesclocflag = 0

• If we want to perform periodically local minimizations along the trajec-
tories of the walkers, set ’ptminimizationflag’ equal 1. ’ptquenchloop’
is the number of times one stops along the trajectory (must be smal-
ler than ’ptquenchloopmax’). ’mpt2max’ is the number of times we
quench from a holding point.
ptminimizationflag = 1
ptquenchloop = 5
mpt2max = 5

• ’pttypeflag’ indicates, which kind of local run-algorithm is to be used
in the local minimization method for ’ptminimizationflag’ = 1.

1. ’pttypeflag’ = 0: standard stochastic quench

2. ’pttypeflag’ = 1: gradient steepest descent

3. ’pttypeflag’ = 2: simplex-method (not yet activated)

4. ’pttypeflag’ = 3: line search

101



5. ’pttypeflag’ = 4: powell-method

6. ’pttypeflag’ = 5: no stepwise minimization

pttypeflag = 0 If we want to perform a quench run for an inter-
mediary configuration for ’pttypeflag’ = 0, we set ’ptquenchnum’ =
number of steps in the quench run. If no quench run is intended, set
’ptquenchnum’ = 0, or ’pttypeflag’ =5. Using ’ptgraddescflag’ = 1, one
can perform a single one-step gradient descent nevertheless.
ptquenchnum = 1000

If we want to perform a gradient descent after the quench for each
local best configuration, set ’ptgraddescflag’ = 1. If one only wants a
gradient descent, use ’pttypeflag’ = 5 together with ’ptgraddescflag’
= 1.
ptgraddescflag = 1

• If we want to start for each new pressure/temperature set with the sa-
me input configuration (randomly generated or loaded in before star-
ting parallel tempering), then set ’useptinpflag’ = 1). If ’usptinpflag’
= 2, then we use the configuration we have saved as the ’ptbest’ con-
figuration of the particular walker. Else (’useptinpflag’ = 0) we con-
tinue with the preceding configuration (usually a pretty good one for
each walker from the preceding set of temperatures and pressures.
useptinpflag = 2

7.12 Threshold

The threshold subroutine performs a run starting from a configuration usual-
ly loaded in in the step before (typically deep-lying in energy). The length
of the threshold-run is given by ’looplim’ in the call of the subroutine, and
the maximal allowed energy (energy lid) is given by ’Elimit’ in the call of
the subroutine, both in the control-program.

Along the threshold run, one can perform many local samplings of the
underlying local minima. This can be either done by setting up a command
structure (see section ’metascripts’) or by performing every ’thqloop’ thres-
hold steps a set of ’numthq’ quench runs of length ’numthqsteps’ each. If
no such sampling is required, we set ’thqloop’ larger than ’looplim’, and one
only performs a quench at the end of the threshold run, according to the
metascript.

Furthermore, during the threshold run, the density of states can be sam-
pled, and the result stored in bins. Similar to the DOS below the threshold,
one can also measure the DOS of attempted moves, and also register a sam-
ple of the states one visits or attempts to visit during the run.

Finally, it is always checked, whether the run stays within the ener-
gy interval from ’EMCbottom’ to ’EMCtop’. In this way, one can explore

102



particular slices of the energy landscape. When starting from an energy mi-
nimum below ’EMCbottom’, this restriction is activated once the walker
has entered the energy slice. Note that this slice is currently once and for
all defined in input.f, and is not changed when changing the lid.

7.12.1 Method description

The command call for the threshold run is: command(..) = ’thresh(Elimit,looplim)’
or command(..) = ’mws thresh(Elimit,looplim)’ for many non-interacting
walkers, respectively. Two parameters are set when using this command:
’Elimit’ = lid energy, up to which the walker can rise, and ’looplim’ =
length of the threshold run. The prefix indicating that the output files have
been generated during a Monte Carlo run is ’oneth’ or ’mwsth’, respectively.

Interacting multi-walker runs make not much sense for the applications
envisioned for threshold explorations, and are currently not implemented.

7.12.2 Entries of parameters (in input.f)

• The threshold performs runs starting from a configuration usually loa-
ded in in the step before, and which typically is deep-lying in energy.
The length of the threshold-run is given by ’looplim’ in the call of the
subroutine, and the maximal allowed energy (energy lid) is given by
’Elimit’ in the call of the subroutine, both in the control-program.

• Note that you can also force the threshold run to be performed under
the lid but only accept moves with energies that lie within a certain
energy interval given by ’EMCtop’ and ’EMCbottom’ (< ’EMCtop’),
which is defined in the input for the simulated annealing routine.

A special feature is that we can start a threshold run outside this
interval and have the actual threshold criterionönly get activated once
we are inside this energy interval. Such options are of interest, if we
want to explore a certain energy interval in detail while starting from
a minimum whose energy lies outside this interval.

• In addition, we define ’Ebottom’ as the value of the energy, where the
run can be stopped when an energy is found that lies below this value.
If ’Ebottomflag’ = 0, then the prescribed value ’Ebottom’ is used, while
if ’Ebottomflag’ = 1, the value of the starting configuration minus a
tolerance ’tolthresh’ is used.
Ebottomflag = 1
tolthresh = 1.0d-4
Ebottom = -10.0d0

• There are three options available for E < ’Ebottom’, depending on the
value of ’Threshcontflag’:

103



1. ’Threshcontflag’ = 0 makes the program stop, and the final con-
figuration is saved as ’lowEner’... This is usually employed if one
wants to analyze this new configuration, minimize it and restart
the threshold from this state, especially if one attempts to use the
threshold run as a global minimizer starting from some high-lying
minima. One hopes that the threshold will ’dig itself’ deeper into
the landscape this way.

2. ’Threshcontflag’ = 1 makes the run stop, and moves the program
automatically to the end of the threshold run. This option is
either used when we assume that for E < ’Ebottom’ the energy
calculation has gone haywire and we want to stop the run before
it produces nonsense, or if there is already an automatic quench
planned at the end of the threshold run when searching for new
minima.

3. ’Threshcontflag’ = 2 continues the run, but if at the same time
’Ebottomflag’ = 1, then ’Ebottom’ is reset to ’Ecurrent’, and the
current configuration is saved as ’lowEner’... This scheme is the
one most useful if we perform regular threshold runs from some
low-lying local minimum, and we want to register lower energies
(or course), but do not want to interrupt the regular threshold
search.

4. ’Threshcontflag’ = else, ignores the fact that a lower energy has
been found and just continues the run.

Threshcontflag = 2

• Furthermore, during the threshold the DOS is sampled, and the result
stored in boxes. In order to make the DOS compatible for different
Lid-values and starting minima, two options are offered, controlled by
’Ebinflag’.

1. If ’Ebinflag’ = 1, bins are defined by the energy interval ’Ebin-
bottom’ < ’Ebintop’, and ’deltabin’, where ’deltabin’ is the width
of a bin, which appears ’binfact’ times in the interval ’Ebintop’ -
’Ebinbottom’.

2. If ’Ebinflag’ = 2, then we ignore those energies where ’Ecurrent’
exceeds ’Ebintop’ or -’Ebinbottom’, and just not register those
values. Apart from that, ’Ebinflag’ = 2 is like ’Ebinflag’ = 1

3. On the other hand, if ’Ebinflag’ = 0, then ’Ebinbottom’ = ’Ebot-
tom’, and ’Ebintop’ = ’Elimit’.

In all cases, ’deltabin’ is calculated from ’binfact’ (inside the code ’del-
tabin’ corresponds to the local variable ’hvdeltabin’). Thus, ’binfact’
must be an integer larger than zero.

104



Note that if an energy is found below ’Ebinbottom’, or if an accepted
energy is above ’Ebintop’, the program is stopped - thus one should
be careful when using the option ’Ebinflag’ = 0 or ’Ebinflag’ = 1, if
one is not sure whether states exceeding the given range might appear
(due to deeper minima or accidental starting points at higher energies.
Ebinflag = 2
Ebinbottom = -5.0d0
Ebintop = 5.0d0
binfact = 1000

• ’dosstep’ counts the number of steps between sampling the DOS. Thus,
’dosstep’ should be an integer larger than zero. If no sampling is de-
sired, chose ’dosstep’ larger than ’looplim’ or set ’Edosflag’ equal 0
instead of 1.
Edosflag = 1
dosstep = 100

• Similar to the DOS below the threshold, one might want to measure
the DOS of attempted moves, controlled by ’Eattflag’.

1. If this is to be done, with every move, we set ’Eattflag’ = 1.

2. If we want to use only every ’attstep’ move, we set ’Eattflag’ =
2.

3. Not checking of attempted moves occurs for ’Eattflag’ = 0.

The values for bottom and top energies are given by ’Eattbottom’ and
’Eatttop’. ’attbinfact’ is the analogous factor to ’binfact’.
Eattflag = 1
Eattbottom = -5.0d0
Eatttop = 95.0d0
attbinfact = 1000
attstep = 1

• In addition to the DOS, one might want to register the configurations
along the threshold run, and those that one has only attempted to
reach. In the former case, one can use the savetrajectory scheme, while
for the latter one, one sets ’thconfsaveflag’ = 1, and one will register
every ’thconfstep’ moves the attempted configuration.
thconfsaveflag = 0
thconfstep = 100

• Along the threshold run, one might want to perform many local samp-
lings of the underlying local minima. This can be either done by setting
up a command structure (see section ’metascript’) or by performing
every ’thqloop’ threshold steps a set of ’numthq’ quench runs of length

105



’numthqsteps’ each. If no such sampling is required, set ’thqloop’ lar-
ger than ’looplim’.For the quench runs, we also need a temperature
update with starting value ’Tmthinit’.
do i1 = 0,nwalkmax
thqloop(i1) = 900000
numthq(i1) = 2
numthqsteps(i1) = 1000
Tmthinit(i1) = 1.0d0
enddo

The type of quench routine is analogous to the options in the multi-
quench procedure according to the value of ’mthtypeflag’:

1. ’mthtypeflag’ = 0: standard stochastic quench

2. ’mthtypeflag’ = 1: gradient steepest descent

3. ’mthtypeflag’ = 2: simplex-method (not yet activated)

4. ’mthtypeflag’ = 3: line search

5. ’mthtypeflag’ = 4: no quench is run (usually one runs a gradi-
ent descent in one step instead, i.e. ’mthgraddescflag’ = 1). Else,
nothing happens for ’mthtypeflag’ = 4!

mthtypeflag = 0

If we want to run a gradient descent in one step after the quench, set
’mthgraddescflag’ = 1.
mthgraddescflag = 0

7.13 (Simulated Annealing) Local (shadow) run

The simulated-annealing-with-local-run-option allows a defined number of
sequences of local runs (e.g. quench or Monte Carlo) alternating with random
walks (free or at some temperature). We call this a shadow run procedure,
because after several random walk steps between two reference configura-
tions, we generate a shadow configuration using a local run, and then can
e.g. compare the energies of the outcome of the shadow runs, in order to
decide, whether we accept the move from one shadow configuration to the
next. One uses two different moveclasses for the random walk (no. 1) and
the local run (no. 2).

7.13.1 Method description

The command call for the shadow (local) run is: command(..) = ’salocrun’ or
command(..) = ’mws salocrun’ or command(..) = ’mwi salocrun’ for single
walker, many separate walkers and many interacting walkers, respectively.
No parameters are set when using this command, i.e., all shadow runs will

106



follow the set of parameters defined in the input to G42+. The prefix in-
dicating that the output files have been generated during a shadow(local)
run is ’onelr’, ’mwslr’, or ’mwilr’. Note that there can be many intermediary
configurations (outcomes of the local quenches) that are saved, too, indica-
ted by the prefix ’imlr’. The local minimizations take place in the module
’Local Run’. Such a minimization / local run can be a stochastic quench,
gradient, line search, simplex, MonteCarlo-run, graddesc or powell routine.
Also, we can perform a local run and follow it up with a graddesc. The
special feature is that moves are accepted not based on their current energy
but based on the energies of their ’shadow’ configuration, i.e. the outcome
of a minimization or a local run after the actual move.

7.13.2 Entries of parameters (in input.f)

Note: If not specifically defined here, the values in the local run called by sa-
locrun are the ones given in the default local-run parameters (see subsection
’Local Run’ below).

• The Simulated Annealing Local Run-option allows a defined number of
local run (e.g. quench or Monte Carlo) + random walk (free or at some
temperature) cycles, where the number of steps and temperature for
each local run (’salrnumsteps’, T = 0 or T = ’Tlocal’) and random walk
(of length ’lrtnum’, T > ’Tinf’ or T = ’Tlr’) is prescribed, according
to the flag ’lrTinfflag’:

1. If we want to use an infinite temperature for the random walk,
set ’lrTinfflag’ = 1.

2. For a finite temperature ’Tlr’, ’lrTinfflag’ = 0.

The currently envisaged application is with ’lrtnum’ = 1 and ’lrTinf-
flag’ = 1, i.e. T(random walk) > ’Tinf’.
lrtnum = 1
lrTinfflag = 1

• Analogous to the multi-quench procedure, one block corresponds to
’lrnum’ local runs (of length ’salrnumsteps’ where applicable) and
’lrnum’-1 Monte Carlo runs of length ’lrtnum’ at temperature ’Tlr’
- given adaptively or with exponential decrease -, or at temperature
’Tinf’ (also called heating runs). One such sequence defines a block.
lrnum = 10

• ’lrloop’ counts the number of blocks (run at constant temperature).
lrloop = 1

Note that ’lrnum’ and ’lrloop’ should be smaller than ’lrloopmax’ and
’lrnummax’ set in ’varcom.inc’.

107



• Temperature control of the random walk in the heating phase

1. ’Tlr0’ is the initial temperature for the heating in the shadow run
subroutine, and Tlr(n) = Tlr(n-1)*(’flr’).

2. If we want free random walks for the heating, we should set ’Tlr0’
equal to ’Tinf’ (defined below), and ’flr’ = 1.0d0. Alternatively,
we use ’lrTinfflag’ = 1.

3. If the initial temperature ’Tlr0’ is to be adjusted automatically,
one should set ’Ttest’ to some reasonable starting value, and ’in-
it5flag’ = 1 (see description of initial temperature initialization
in simulated annealing routine).

4. ’Tlrinit’ is the starting temperature of each of the quench runs in
the local run subroutine (no longer active? CHECK).

flr = 1.0d0
do i20 = 1,nwalkmax
Tlr0(i20) = 1.0d9
Tlrinit(i20) = 1.0d0
enddo

• Temperature control of random walks inside the local run called by
salocrun.

1. ’Tlocalsalr0’ is the starting temperature of the local run Monte
Carlo walks (MC and short simann runs, instead of a quench) in
’salocalrun’.

2. The local temperature can be adjusted for each loop by a decre-
asing factor ’fsalrlocal’: Tlocal(n) = Tlocal(n-1)*’fsalrocal’.

fsalrlocal = 1.0d0
do i20 = 1,nwalkmax
Tlocalsalr0(i20) = 1.0d0
enddo

• ’lrflag1 controls how the temperature of the heating phase should be
adjusted after each block

1. ’lrflag1’ = 1: automatic temperature decrease after each block

2. ’lrflag1’ = 0: corresponds to adaptive schedule (not active)

lrflag1 = 1

• ’lrflag2’ controls the saving of the final configuration of a local run
within a block

108



1. ’lrflag2’ = 1: save final configuration of each block, plus the wri-
ting of its energy into the protocol

2. ’lrflag2’ = 0: no recording.

lrflag2 = 1

• ’lrflag3’ controls the recording of rejection/acceptance of moves for
statistical purposes

1. ’lrflag3’ = 1: Yes
2. ’lrflag3’ = 0 No

lrflag3 = 0

• ’salrtypeflag’ indicates, which kind of local run-algorithm is to be used
in the sa-local-run-method.

1. ’salrtypeflag’ = 0: standard stochastic quench
2. ’salrtypeflag’ = 1: gradient steepest descent
3. ’salrtypeflag’ = 2: simplex-method (not yet activated)
4. ’salrtypeflag’ = 3: line search
5. ’salrtypeflag’ = 4: powell-method
6. ’salrtypeflag’ = 5: Monte Carlo at temperature ’Tlocal’
7. ’salrtypeflag’ = 6: gradient steepest descent in one step (e.g. with

GULP)
8. ’salrtypeflag’ = 7: quench followed by gradient descent in one step
9. ’salrtypeflag’ = 8: MC at ’Tlocal’ followed by gradient descent in

one step

salrtypeflag = 0

The cut-off criterion for a local run in salocrun is given by ’salrnum-
steps’. Adaptive halting criteria for MC/SA are not implemented; flag
for adaptive is ’salrnumsteps’ = 0)
salrnumsteps = 1000

7.14 Thermal cycling / multi quench

Thermal cycling / multi-quench is a special case of the simulated anne-
aling/salocrun procedure. It allows a defined number of quench+random-
walk sequences, where the quench can be a stochastic quench, gradient, line
search, simplex or the powell routine. During the random walk, steps are
accepted either always ( T = ’Tinf’) or according to simulated annealing at
some temperature which is reduced according to a schedule. In contrast to
salocrun, we continue our search from the local minimum we have reached
and do not jump back to the previous local minimum if the current one has
higher energy than the previous one.

109



7.14.1 Method description

The command call for the multi-quench is: command(..) = ’multiquench’ or
command(..) = ’mws multiquench’ or command(..) = ’mwi multiquench’.
No parameters are set when using this command, i.e., all multi-quench runs
will follow the set of parameters defined in the input to G42+. The prefix in-
dicating that the output files have been generated during a multi-quench run
is ’onemq’, ’mwsmq’ or ’mwimq’. Note that there can be many intermediary
configurations (outcomes of the local quenches) that are saved, too, indica-
ted by the prefix ’im’. Note that for interacting multiple walkers, we only
take the interaction into account when we perform the high-temperature
phase of the walk, and not during the local minimizations.

7.14.2 Entries of parameters (in input.f)

The MQ-option allows a defined number of minimization+random walk cy-
cles, where the number of steps for each minimization (’mqnumsteps’) and
random walk (’tnum’) at temperature Tmq is prescribed.

• ’mqloop’ counts the number of blocks (each bloack is run at a constant
temperature ’Tmq’, but the temperature can be varied from block to
block - adaptively or with exponential decrease). ’mqloop’ should be
smaller than ’mqloopmax’ (defined in varcom.inc)
mqloop = 20

• One block corresponds to ’mqnum’ quenches and ’mqnum’-1 heatings
at temperature ’Tmq’ - given adaptively or with exponential decrease.
One such sequence defines a block. ’mqnum’ should be smaller than
’mqnummax’ (set in ’varcom.inc’).
mqnum = 40

• Number of steps for each random walk at the heating stage is ’tnum’.
tnum = 1000

• ’Tmq0’ is the initial temperature for the heating in the multiquench
subroutine, and Tmq(n) = Tmq(n-1)*(’fmq’). If we want free random
walks for the heating, we should set Tmq0 larger or equal to ’Tinf’
(defined below), and ’fmq’ = 1.0d0. If the initial temperature ’Tmq0’
is to be adjusted automatically, one should set ’Ttest’ to some rea-
sonable starting value, and ’init5flag’ = 1 (see below; CHECK whe-
ther still active!). ’Tmqinit’ is the starting temperature of each of the
quench runs in the multi-quench subroutine. ’fmqlocal’ is the decrease
exponent for the MonteCarlo-local run called from multiquench, and
’Tlocalmq0’ the starting temperature.
fmq = 0.95d0
fmqlocal = 1.0d0

110



do i20 = 1,nwalkmax
Tmq0(i20) = 1.0d0
Tmqinit(i20) = 1.0d0
Tlocalmq0(i20) = 1.0d0
enddo

• ’mqflag1’ controls the change of the temperature between blocks:

1. ’mqflag1’ = 1 corresponds to T-decrease after each block

2. ’mqflag1’ = 0 corresponds to adaptive schedule (not active).

mqflag1 = 1

• ’mqflag2’ controls the saving of the final configuration of a quench-run
with a block in the MQ-run, plus the writing of the energy into the
protocol

1. ’mqflag2’ = 1: save and record

2. mqflag2 = 0: no saving/recording.

mqflag2 = 1

• ’mqflag3’ controls the recording of rejection/acceptance of moves

1. ’mqflag3’ = 1: recording

2. ’mqflag3’ = 0: no recording.

mqflag3 = 0

• ’mqtypeflag’ indicates, which kind of quench-algorithm is to be used
in the multiquench-method when calling the Localrun subroutine.

1. ’mqtypeflag’ = 0: standard stochastic quench

2. ’mqtypeflag’ = 1: gradient steepest descent

3. ’mqtypeflag’ = 2: simplex-method (not yet activated)

4. ’mqtypeflag’ = 3: line search

5. ’mqtypeflag’ = 4: powell-method

6. ’mqtypeflag’ = 5: Monte Carlo at temperature Tlocal

7. ’mqtypeflag’ = 6: graddesc in one step

8. ’mqtypeflag’ = 7: quench plus graddesc in one step

9. ’mqtypeflag’ = 8: MC plus graddesc at the end

mqtypeflag = 0

• The following are cut-off criteria for the various kinds of quench algo-
rithms that can be used in MQ

111



1. Cut-off criterion for quench inside the multi-quench is given by
’mqnumsteps’ (adaptive halting criteria not implemented; flag for
adaptive is ’mqnumsteps’ = 0)
do i20 = 0,nwalkmax
mqnumsteps(i20) = 1000
enddo

2. ’dstepmq0’ is the (initial) step-size of the gradient in multiquench
(needed for gradient and line search option)
dstepmq0 = 0.01

3. ’climitmq’ is the number of downhill steps for a given gradient in
the line search in multiquench
climitmq = 50

7.15 Prescribed path

The prescribed path option permits a number of steps along a well-defined
route or within a well-defined set of possible moves (random walk at infinite
or finite temperature, usually for a highly restricted moveclass), which is
usually followed by a local minimization or short exploration starting from
these points (e.g. a stochastic quench, low-temperature Monte Carlo, or
Powell minimization), in order to explore specific parts or aspects of the
energy landscape. Such a route can constitute an attempt to move from one
minimum to another (exploring e.g. a phase transition if both modifications
involved are minima on the same landscape) where these minima do not
have to be neighbors. In that case, the exploration of the neighborhood of
the path on the landscape can give us information about important side-
minima that the system might encounter during the actual transition (the
first route proposed by e.g. defining a starting and and a target structure is
usually an unrealistic path on the landscape).

The currently envisaged application is with a quench after each step
along the path, and T (random walk at restricted moveclass) > ’Tinf’. Using
a finite temperature for the restricted random walk is not really useful for the
currently implemented set of paths - if you want to do e.g. a real simulated
annealing with a restricted moveclass, then it makes sense to set this up as
a standard annealing run instead of a prescribed path run.

Note that the local run is performed with moveclass no. 2, while the
prescribed path exploration uses moveclass no. 1. Furthermore, for the sto-
chastic random walks, these local runs can be restricted to the part of the
landscape that is orthogonal to the prescribed path (if such an orthogonality
can be defined and makes sense).

112



7.15.1 Method description

The command call for the prescribed path is: command(..) = ’path’ or com-
mand(..) = ’mws path’ for many independent walkers, respectively. No pa-
rameters are set when using this command, i.e., all path runs will follow the
set of parameters defined in the input to G42+. The prefix indicating that
the output files have been generated during a prescribed path run is ’onepa’
or ’mwspa’. Note that there can be many intermediary best or worst confi-
gurations (outcomes of the local quenches) that are saved, too, indicated by
the prefix ’impabe’ or ’impawo’, respectively.

7.15.2 Entries of parameters (in input.f)

• Temperature control

1. Number of steps and temperature (’patnum’, T > Tinf or T =
Tpa) when proceeding along the prescribed path (if a random
walk with a restricted moveclass is envisioned) before the local
quench takes place. The currently envisaged application is with
’patnum’ = 1 (quench after each step) and T (random walk) >
Tinf. If we want to use an infinite temperature for the random
walk, ’paTinfflag’ = 1. For a finite temperature ’Tpa’, ’paTinfflag’
= 0. This second option is currently not implemented.
patnum = 1
paTinfflag = 1

2. For ’paTinfflag’ = 0, ’Tpa0’ is the initial temperature for the
heating in the prescribed path subroutine, and Tpa(n) = Tpa(n-
1)*(’fpa’). Note that this option currently is not active! If we
want free random walks for the prescribed path random walk,
we should set ’Tpa0’ equal to ’Tinf’ (defined in simulated anne-
aling), and ’fpa’ = 1.0d0. Alternatively, we use ’paTinfflag’ = 1.
If the initial temperature ’Tpa0’ is to be adjusted automatically,
one should set ’Ttest’ to some reasonable starting value, and ’in-
it5flag’ = 1 (see simulated annealing).
Tpa0 = 1.0d9
fpa = 1.0d0

• Somewhat analogous to the multi-quench, the prescribed path module
proceeds via blocks or runs. Each block corresponds to ’panum’ local
runs of length ’patnum’. After each local run (for fixed pre-defined
paths this is usually only one step), a local relaxation or explorati-
on follows of length ’panumsteps’ (if applicable). One such sequence
defines a block. The product of ’panum’ and ’patnum’ (usually equal
1) must be equal to the total number of steps of the path, ’Npath’ =
’panum’ * ’patnum’! For special cases, one can choose not to fulfill this

113



condition, in order to go only a few steps along the full path (make
sure that ’Npath’ ≤ ’palengthmax’ given in ’varcom.inc’).
Make sure to set ’panum’ = number of possible permutations, and
’patnum’ = 1, if we test completely for all configurations in alloys that
are generated via atom exchange with ’pathflag’ = 4.
Npath = 100
panum = 100

• Block-structure of prescribed paths (currently only one block is active:
’paloop’ = 1, always)

1. ’paloop’ counts the number of blocks (run at constant tempera-
ture). Currently, there is no point in using values different from
’paloop’=1. The algorithmic block-based structure analogous to
the multi-quench is kept, in order to be able to run more complex
paths in a nested fashion (make sure that ’paloop’ ≤ ’paloopmax’
given in ’varcom.inc’)
paloop = 1

2. ’paflag1’ = 1 corresponds to T-decrease after each block; ’paflag1’
= 0 corresponds to adaptive schedule (not active).
paflag1 = 1

3. ’Tpainit’ is the starting pseudo-temperature of each of the quench
runs in the block-structure prescribed paths. Do not forget to
check ’quTdecrease’ etc. in the quench routine.
Tpainit = 1.0d0

4. ’Tlocal0pa’ is the starting temperature of the block-structure
Monte Carlo walks. It can be adjusted for each loop by a de-
creasing factor ’fpalocal’: Tlocal(n) = Tlocal(n-1) * ’fpalocal’.
This option is not active at the moment, since such a block-type
prescribed path is not implemented.
Tlocal0pa = 1.0d0
fpalocal = 1.0d0

5. ’paflag2’ = 1 corresponds to the saving of the final configuration
of a local run within a block in the sub-run, plus the writing of
its energy into the protocol. ’paflag2’ = 0 means no recording.
paflag2 = 1

6. ’paflag3’ = 1 means recording of rejection/acceptance of moves;
’paflag3’ = 0 means no recording.
paflag3 = 0

7. ’paflag4’ = 1 means saving every patnum steps the non-relaxed
configuration along the path; ’paflag4’ = 0 means no saving.
paflag4 = 1

114



• Control of the local runs

1. ’patypeflag’ indicates, which kind of local run-algorithm is to be
used in the prescribed path-method.
’patypeflag’ = 0: standard stochastic quench;
’patypeflag’ = 1: gradient steepest descent;
’patypeflag’ = 2: simplex-method (not yet activated);
’patypeflag’ = 3: line search;
’patypeflag’ = 4: powell-method;
’patypeflag’ = 5: Monte Carlo at temperature ’Tlocal’
’patypeflag’ = 6: One step gradient descent
’patypeflag’ = 7: quench followed by one step gradient descent
patypeflag = 0

2. If ’paorthoflag’ = 1, we only allow relaxation/MC moves ortho-
gonal to the path. No orthogonal gradient-descent is currently
implemented.
paorthoflag = 0

3. In addition, we have the option to set a specific local moveclass
just for the path minimizations (which then could be different
from the outcome of a regular minimization with the moveclass
’mclflag local’). If we set ’pamclflag local’ = 0, then we use the
normal moveclass ’mclflag local’ (which is going to the case for
most situations, and for which the default is 2).
pamclflag local = 0

4. Cut-off criterion for local run in prescribed run is given by ’pan-
umsteps’ (adaptive halting criterion for quenches is not imple-
mented; flag for adaptive is ’panumsteps’ = 0).
panumsteps = 30000

5. ’dsteppa0’ is the (initial) step-size of the gradient in local run
(needed for gradient and line search option).
dsteppa0 = 0.01

6. ’climitpa’ is the number of downhill steps for a given gradient in
the line search in local run.
climitpa = 50

• There are currently several types of prescribed-paths that have been
programmed for this module; in principle, these can be extended, and
additional paths be designed.

The variable ’pathflag’ denotes which kind of path is being prescribed.
’pathlist(i)’ lists the numbers of the building units, with i = 1,’Npath-
list’, which are to be changed along the path.

115



1. ’pathflag’ = 1: Rotation about an axis of a building unit.
Here, ’pathangleflag’ indicates the axis (1 = z, 2 = x, 3 = y).
’startangle’ and ’endangle’ are the starting and end angle of the
rotation, with ’Npath’ equidistant steps. ’pathlist(1)’ is the num-
ber of the building unit that is to be rotated. Make sure it is at
the right position in the starting configuration.
pathangleflag = 1
startangle = 0.0d0
endangle = 2.0d0*pi

2. ’pathflag’ = 2: Translation of one or several building units from
their starting values to target values ’xtarget’, with ’Npath’ equi-
distant steps.
Note that the first index of ’xtarget’ gives the position in the
actual configuration (and not the position in the ’pathlist’), i.e.,
the first entry in the path list might be building unit no. 4, and
thus the first target has the coordinates ’xtarget(4,..)’ = ...
xtarget(1,1) = 0.0d0
xtarget(1,2) = 0.0d0
xtarget(1,3) = 0.0d0

3. ’pathflag’ = 3: Modification of the three cell vectors from the
initial values to target values ’atarget’, with ’Npath’ equidistant
steps.
atarget(1,1) = 0.0d0
atarget(1,2) = 0.0d0
atarget(1,3) = 0.0d0
atarget(2,1) = 0.0d0
atarget(2,2) = 0.0d0
atarget(2,3) = 0.0d0
atarget(3,1) = 0.0d0
atarget(3,2) = 0.0d0
atarget(3,3) = 0.0d0

4. ’pathflag’ = 4: Exchange of atoms systematically or at random.
Here, setting ’pathflag4’ = 1 means systematic exchange (possi-
ble for a small number of feasible exchanges, and ’pathflag4’ =
0 means at random (better for large numbers of exchanges, and
required for the exchange of more than two numbers of atoms
that are involved in the exchange.
pathflag4 = 0
The program takes the atoms that are allowed to be exchanged
according to the values of ’fixbg’ for moveclass number 1 (or the
currently set moveclass for the global module). You need to give
the total number of atoms affected (’Npathlist’) beforehand for a
check.

116



The entries in ’pathlist’ are overwritten at the beginning from the
path-module before the generation of new configurations takes
place. You should also, when attempting a systematic generati-
on of permutations, set ’panum’ equal to that number and make
sure it is < ’Npath’, and ’patnum’ = 1. Note that, currently, we
only can systematically permute two types of atoms. For more
building unit types, we have to use the random option

5. ’pathflag’ = 5: Make random steps according to a restrictive mo-
veclass, always starting from the same reference configuration.
The flag ’pathflag5’ = 1 indicates that only one building unit is
affected in the random walk (the first one in the ’pathlist’). Else
one should set this value to zero. So far, we have not implemented
the option that a selected group (¿ 1) of building units (given in
’pathlist’) can be moved during the random walk.

6. ’pathflag’ = 6: Move between the starting configuration and an
externally given target configuration (name: ’pathtarget’//confname//’ ’//hvwalk)
in equidistant steps. In this case, ’pathlist’ must include all atoms,
i.e. ’Npathlist’ = ’nbgcur’. Note that every walker ’hvwalk’ can
have its own target configuration if desired. pathflag5 = 1

7. Other values of ’pathflag’ correspond to more complicated paths,
which are not yet implemented.
pathflag = 1

Npathlist = 1
pathlist(1) = 1

Note that ’Npathlist’, ’pathlist’, ’xtarget’, ’atarget’, ’startangle’, ’endangle’
and ’Tlocalpa0’ all have an additional index giving the walker under consi-
deration, since each walker can have its own special path (’pathflag’ is the
same for all walkers, however).

7.16 Find periodic sub-cell of the simulation cell

The subroutine findcell can be used to determine whether parts (or the
whole) of a configuration exhibit approximately translational symmetry.

7.16.1 Method description

The command call for findcell is: command(..) = ’findcell’. No parameters
are set when using this command, i.e., all findcell searches will follow the set
of parameters defined in the input to G42+. The prefix indicating that the

117



output files have been generated during a findcell search is ’onefc’ or ’mwsfc’.
The output appears in the protocol. Not yet implemented are subroutines
that generate actual configuration files for the possible candidates ready for
plotting in the output in the protocol,

7.16.2 Entries of parameters (in input.f)

All the parameter refer to the acceptance criterion of the test-cells. Note
that only test cells are considered whose volume is less than the one of the
original cell (else one should directly proceed with the further analysis using
the tools in KPLOT).

• ’fctol1’ gives the sine of the angle between the vectors of the test cell.
fctol1 = dsin(pi/6.0d0)

• ’fctol2’ gives the latitude for hitting atoms of the shifted test cell.
fctol2 = 0.1d0

• ’fctol3’ gives the fractional shift of the testcell off the aufpunktposition.
fctol3 = 0.95d0

• ’fctol4’ gives the volume difference necessary for calling two subcells
similar enough to force a comparison analysis. Since this needs to be
computed according to
if (dim.eq.3) then
fctol4 = fctol4 0*(4d0*pi/3.0d0)*(radbest)**3
elseif (dim.eq.2) then
fctol4 = fctol4 0*pi*(radbest)**3
else
fctol4 = fctol4 0*radbest
endif,
we just assign a value to ’fctol4 0’.
fctol4 0 = 0.5d0

• ’fctol5’ gives the volume fraction of the test cell.
fctol5 = 0.55d0

• ’fctol6’ gives the flatness of the test cell.
fctol6 = 0.2d0

• ’countmin’ gives the minimum number of repetitions of the testcell
needed for acceptance. Recommended values for three, two and one
dimensions are 4, 3 and 2, respectively.
countmin = 4

118



7.17 Setting the pressure

There are two ways, the pressure can be set in G42+. There is the explicit
entry ’pressure = ...’ in the input.f file. Furthermore, we can use the ’setpress’
command to reset the pressure to a new value.

7.17.1 Method description

The command for setting a new pressure is command(..) = ’setpress (re-
al,integer)’. There are two parameters required, of which the second one is
currently a dummy variable (might be used as a counter, but is not yet
activated).

7.17.2 Entries of parameters (in input.f)

• ’press’ is the external pressure (real number in eV/Ang**3; 1eV/Ang**3
= 1.6 x 10**11 J/m**3 = 1.6 x 10**6 atm)
press = 0.0d0

• ’setpress (real,integer)’ is the command to set the pressure to a new
value. ’real’ represents a real variable, which must contain only num-
bers, a dot and a -sign; no letters are allowed. ’integer’ is a dummy
variable not yet activated (e.g. set equal to 1).

When using the metascript to run through many different pressures,
it is useful to employ an array called ’hvpress’, where all the pressures
to be used are listed. The number of different pressures is then given
by ’hv1press’. Alternatively, in a special scenario of running through
many different pressures starting from a certain configuration one uses
’npress’ as a counter. For more details see the metascript section.
setpress(0.00000,1)
hvpress(1) = ’0.00000000000000’
hv1press = 1
npress = 0

7.18 Random seed

The random seed generator is initialized by assigning a value to the variable
’seed’, which is the starting value for the random number generator. There
are two ways to do this: directly in the input file, and by using the ’setseed’-
command.

7.18.1 Method description

The command for setting a new random seed is command(..) = ’setseed(i)’,
which initializes the random number generator with the seed ’i’ (i must be
an integer larger than 0). This seed is then used as the current masterseed,

119



from which the individual seeds of the random walkers inside the mws-type
runs are derived: seed(iwalk) = masterseed + iwalk, or seed = masterseed for
single walker modules. For purposes of reproducibility, it is recommended
to explicitly use the ’setseed’ command before calling a module that em-
ploys random walks. Note that in mws-modules that do not employ random
numbers (gd, ls, po, sx, fc) the seed is not changed.

7.18.2 Entries of parameters (in input.f)

• ’seed’ is the initial starting value for the random number generator.
seed = 1

• ’setseed(i)’ is the command to set the seed to a new value. The new
seed i must be an integer.

• There are a number of instances when using metascripts that variables
are defined that have the meaning of a seed. The seed-value becomes
often part of the name of configuration files, in order to keep track
of themWhen blocks of commands are repeated for the different seed
values, then the first seed variable is ’hvstart’+1.
hvstart = 0000

• For threshold runs, ’nthseed’ is the number of seeds for a given lid value
’thseedinit’ is the value of the seed at the beginning of the generation
loop. (analagous to ’hvstart’) Note that we always generate a new
seed value at the beginning of another threshold. In this way, we can
reproduce pieces of the threshold analytically if desired.
nthseed = 30
thseedinit = 1

7.19 Set initial number of atoms

The variable ’natominit’ describes the initial number of atoms in a con-
figuration. It is meant to allow the user to load atomconfigurations with
different numbers of atoms, not even necessarily with the same stoichiome-
try. In its current form, the command is obsolete. There are two ways to
set the initial number of atoms: directly in the input file, and by using the
setnatominit-command.

7.19.1 Method description

The command for setting a new random seed is command(..) = ’setnatomi-
nit(i)’. Here, the integer i constitutes the number of atoms initially present
in the configuration.

120



7.19.2 Entries of parameters (in input.f)

The current standard way to enter the number of atoms is via the entry
natominit = 6
in the input-file. This is assumed to be the initial value for each sub-run of
the G42+-program.

7.20 Set initial temperature

The command ’setTinit’(r.eal) = sets the initial temperature of a simulated
annealing run, where r.eal is a real floating point variable in the F-format
(like the pressure in the ’setpress’ command). Note that for multi-walker
runs, all Tinit are set equal to this value. This command is currently rarely
used.

7.21 Set volume factor

The variable ’volfactor’ determines how much larger the initial cell volume
will be than the volume of the single atoms taken together. There are two
ways to do this: directly in the input file, and by using the setvolfactor-
command.

7.21.1 Method description

The command for setting a new ’volfactor’ is command(..) = ’setvolfac-
tor(r.eal)’. Here, the real number r.eal is the new ’volfactor’. The format is
F4.2.

7.21.2 Entries of parameters (in input.f)

In the input file, the entry is
volfactor = 3.0d0

7.22 Set moveclass

Several moveclasses can be defined in G42+. The ’setmoveclass’-command
allows the switch to a new moveclass, indicated by the value of ’mclflag’.
The default value of the moveclass is ’mclflag = 1’, explicitly set in the input
file. This default value is automatically set at the beginning of simulated
annealing, Monte Carlo, multi-quench and threshold runs. In prescribed-
path and local/shadow runs, there is an automatic switch from ’mclflag
= 1’ to ’mclflag = 2’: ’mclflag = 1’ is for the prescribed path / general
exploration, while ’mclflag = 2’ is for the local relaxation etc.
The use of freely choosing different moveclasses is envisioned for optimizing
structures via a sequence of different quench runs, each with a different type
of moveclass.

121



7.22.1 Method description

The command for setting a new moveclass is command(..) = ’setmove-
class(i)’. In order to vary the moveclass in both local and non-local modules
independently, in the following, it is assumed that not more than 9 different
moveclasses are defined (Thus: 2 ≤ mclassnum ≤ moveclassmax ≤ 9).

i should be a two digit integer between 00 and 99, i = jk, with the
following interpretation:

1. j = 0: all local modules are set to the default value mclflag = 2

2. k = 0: all non-local modules are set to the default value mclflag = 1

3. 1 ¡ j ¡ 9: Local modules are set to value mclflag = j.

4. 1 ¡ k ¡ 9: Non-local modules are set to value mclflag = k.

Thus: i = 0 implies that all modules are set to default value. Note that with
’setmoveclass’ we always affect both the local and non-local moveclasses.
Thus, we have now two parameters that are active and determine, which
moveclass is being employed: j and k!

7.22.2 Entries of parameters (in input.f)

The explicit initial setting of the moveclass is given in input.f.The standard
initial choice of moveclass is moveclassflag (’mclflag’) = 1. Since this is the
default value, we also set ’mcldefaultflag’ = 0. This means that in all non-
local modules, we employ ’mclflag’ (= ’mclflag global’) = 1. Remember that
for local runs, the default value for ’mclflag’ (= ’mclflag local’) = 2. At the
very beginning, we usually set ’mclflag local’ and ’mclflag global’ both equal
zero, in order to indicate that we are using the default values.
mcldefaultflag = 0
mclflag = 1
mclflag global = 0
mclflag local = 0

7.23 Set abinitinput

The variable ’abinitinputflag’ is set by the command ’setabinitinputflag’. It
indicates which of several possible ab initio inputs are chosen for calculations.
The default value is ’abinitinputflag = 1’, set explicitly in the input file.

7.23.1 Method description

The command for setting the ’abinitinputflag’ is command(..) = ’setabini-
tinputflag(i)’. Here, the integer i constitutes the value of ’abinitinputflag’.

122



7.23.2 Entries of parameters (in input.f)

The explicit initial setting is in the input as
abinitinputflag = 1

7.24 End of metascript

The command ’end’ indicates to G42+ that no further valid commands are
coming. Upon encountering this command, G42+ terminates the run in an
orderly fashion. Note that you are always required to have this command at
the end of your metascript.

7.24.1 Method description

The command for ending the complete run is command(..) = ’end’. This
command has no parameters.

7.24.2 Entries of parameters (in input.f)

This command has no parameters.

7.25 setfixflag

The variable ’fixflag’, which describes whether a background structure should
be ignored or not, can be changed with the command ’setfixflag(i)’ = ...
This command changes the value of fixflag. For this to make sense, one
needs to have set ’fixflag’ = 1 in input.f for loading the background struc-
ture when initializing G42 (see section on background structure for more de-
tails). ’fixflag’ = 0 means that the background atoms are ignored from now
on. If one reactivates ’fixflag’ by setting it to 1 again, these atoms ’reappear’,
however!This can lead to massive overlaps if the rest of the structure has
moved in the mean-time, thus, such a re-activation should be used only in
special cases, or if one starts a new run and thus needs to have the original
background structure be present.

7.26 Setting number of walkers

• setwalkcurr The command ’setwalkcurr’(walk1,walk2) sets the range
of the current walker to lie between walk1 and walk2. This is to be
used when running a small group of walkers, but one usually employs
the standard values ’walk1’ = 1 and ’walk2’ = ’nwalk’. Keep in mind
that when you do some calculations only for a subset of the walkers,
and then return to all walkers, you might be mixing explorations that
have proceeded in quite some different fashion. Note that ’setwalkcurr’
and using the mws- or mwi-type option of module always go together.

123



• seticur The command ’seticurr(i)’ sets the value of the single current
walker to ’i’. For single-walker runs, this value should be between 1 and
nwalk (¡ nwalkmax). This command should always be used when run-
ning a single walker module (or at the beginning of a sequence of single-
walker modules), and picking the walker for which this should take
place. An alternative commonly used is to use the mws-option of the
module of interest and use the command ’setwalkcurr’(walk1,walk1)
to pick the desired walker (essentially setting ’icurr’ = walk1).
Note that after calling any of the multi-walker modules (mws- or mwi-
type), ’icurr’ is automatically set to zero; thus one needs to reset ’icurr’
to the desired value afterwards, if one wants to perform a single walker
run.
Furthermore, the only time ’icurr’ is to be used with the value 0 is for
the initialization routines that generate the ’reference’ configuration
when starting G42+.

8 Moveclass

The moveclass is a list of possible moves during a random walk on the energy
landscape. Each move is called a certain fraction of the time as prescribed by
the moveclass. In general, three types of moves can be employed: Small moves
for single walkers, large moves for single walkers (so-called jumpmoves),
and multi-walker moves that combine information from several walkers to
generate new configurations. In many ways, the small and large moves for
single walkers are qualitatively quite similar, but with the jumpmoves, we
can perform a local run (typically a local minimization) after executing the
moves before its acceptance is decided upon.

The moveclass is the same for all the walkers. If one wants the walkers
to perform runs with different kinds of acceptance probabilities, one can
assign e.g. different temperature programs for each walker during e.g. a
simulated annealing run, even for interacting walkers. But the length of the
runs must be the same for the interacting multi-walker runs (mwi-modules).
Since separate multi-walker runs (mws-modules) are performed one after the
other, the run lengths can be different in principle - however this would not
be very efficient for a parallel-computer-implementation, of course, where
each walker has its own processor and one wants to avoid idle processors.

Furthermore, we can enhance / decrease the acceptance probability of a
given type of single walker or jump move (at non-zero / non-infinity tempe-
rature), by setting the factor ’moveacceptfact’ to a value different from 1.0.
Whenever we compute the acceptance probability, we multiply the tempera-
ture by this factor, i.e., if ’moveacceptfact’ > 1, then this move is more likely
to be accepted, and if ’moveacceptfact’ < 1, then the move is less likely to
be accepted than for the standard value ’moveacceptfact’ = 1.

124



In order to be more flexible, we are going to introduce several (’mclas-
snum’ ≤ ’mclassnummax’) moveclasses. Note that ’mclassnum’ must be at
least 2, and must not be larger than 9. The different types of moveclasses
are activated by the command ’setmoveclassflag’ (see subsection on setting
the moveclass), and all of them need to be defined beforehand in the input.f
file, even if one does not want to use e.g. the multi-walker moveclass. Each
entry in the moveclass is given as an array, with one of the fields indicating
the number of the moveclass, e.g. ’moveTflag(1)’ = ...; ’moveTflag(2)’ = ...,
etc.

Typically, there are two types of entries in the moveclass. First, there are
the parameters that define step sizes, both general ones that apply for many
moves and specific ones that apply for only one of the moves - in the latter
case, these parameters are usually defined as part of the specific move. These
parameters can often be adjusted as function of the current temperature, in
order to keep the acceptance probability relatively constant by e.g. making
the step size smaller at lower temperatures. The second type of entry deals
with the specific moves and defines the probability to attempt these moves
plus the acceptance probability factor of each move. For each of the three
types of moveclasses (standard single, jumpmove and multiwalker-move),
the sum over these probabilities has to add to one ( = 100 %) separately.

Finally, there are two sets of moves in the single-walker moveclass that
are not allowed to be mixed: Those moves that refer to atoms/building units
and cells in space group P1 (which is the standard exploration scheme), and
those that consist of symmetry adapted moves for space groups that differ
from P1. These latter moves are usually used to check whether a particular
given structure is a minimum on the energy landscape for fixed symmetries.
In that case, only those atom and cell parameters that are still free to be
varied for a given space group are allowed to be changed. These are the so-
called free-parametermoves and are listed in moves 18 and 19 in the single
walker standard moveclass. Note that either moves 18 and 19 are together
selected with 100 % probability or the probability of all the other moves
together (1 - 17 plus 20 - 25) must add up to 100 %.

8.1 General parameters for standard and jump moves of sin-
gle walkers

At the beginning, there are some lines where we initialize the probabilities
to initial values (all are zero), and all acceptfactors (all are one). Do not
change these entries.
do i1 = 1,mclassnum
do i2 = 1,mflagmax
initmflag(i1,i2) = 0.0d0
initjumpmflag(i1,i2) = 0.0d0
initmultmflag(i1,i2) = 0.0d0

125



moveacceptfact(i1,i2) = 1.0d0
enddo
enddo

Similarly, ’nmovesingle’ is the total number of regular single walker mo-
ves. We would only change this value, if a new moveclass has been added in
moveclasssingle.f, else you will get an error message. Currently, we have 25
single walker standard moves.
nmovesingle = 25

Finally, we usually do not change the entries for the initial choice of
which moveclass is to be active, and use ’mclflag’ = 1. Since this is the
official default value, we also set ’mcldefaultflag’ = 0. This setting of ’mcl-
defaultflag’ means that in all non-local modules, we employ ’mclflag’ (=
’mclflag global’) = 1. Remember that for local runs, the default value for
’mclflag’ (= ’mclflag local’) = 2. This is the reason we need to list at least two
moveclasses in input.f. Furthermore, at the beginning, we set ’mclflag local’
and ’mclflag global’ both equal zero, in order to indicate that we are using
the default values.
mcldefaultflag = 0
mclflag = 1
mclflag global = 0
mclflag local = 0

8.1.1 Movement in two dimensions

Usually, both atoms and cell parameters can be changed in three dimensions.
However, this can be restricted by setting the flag ’move2dflag’(mclass): If
we set ’move2dflag’ = 1, then only the locations in the x-y-plane can be
changed. This is of interest, if we want to find optimal 2d-structures, or only
want the study the landscape of atoms moving in contact with a surface.

Usually, no rotations of building units should be attempted in such a case
- an explicit rotation around the z-axis of the general coordinate system is
not implemented in moveclass. An exception would be if we had aligned the
one of the Euler-axes of the molecule with the z-axis of the general coordinate
system - in such a case a rotation about that Axis would be okay. Rotations of
molecules are not forbidden explicitly for two-dimensional explorations, since
under certain circumstances a rotation of the building units while keeping
the centers of the building units on a given plane might be of interest.

Similarly, keep in mind that exchange moves can include atoms that have
different z-values. (if useful, modify exchange moves to refer to only atoms
with the z-same value?) If several z-planes are used, one might actually
want to move between such planes as part of single atoms displacements. In
that case, set the percentage of such attempts to ’jumpzplane’ ¿ 0.0d0. (see
below)

For jumpmoves, be careful when trying to exchange slices or invert slices

126



of the structure in the 2d-mode. Also, regarding multi-walker moves, one
needs to ensure that the length of the cell in z-direction is the same for all
walkers before attempting such moves. Also, keep in mind that moves which
mix slices of different walkers can switch the z-values of the atoms (all atoms
within one plane will move together). Such moves should be avoided in the
2d-mode unless a specific purpose is aimed at.
move2dflag(1) = 0
move2dflag(2) = 0

If we deal with mobile background atoms that are supposed to move in-
side a 2d-plane, we use ’move2dfixflag’(mclass), analoguosly to ’move2dflag’,
and ’jumpzplanefix’, analogous to ’jumpzplane’.
move2dfixflag(1) = 0
move2dfixflag(2) = 0

8.1.2 Temperature dependence of moves

In order to take into account that at low temperatures most of the larger
moves will be rejected and in order to allow a more finely tuned search for
the local minima, one can adapt some of the step-sizes to the temperature
by setting various flags and parameters.

• The variable ’moveTflag’(mclass) decides on whether the stepsizes are
fixed or adaptive

1. ’moveTflag’ = 0 : Moveclass mit fixed value of step-sizes indepen-
dent of temperature

2. ’moveTflag’ = 1 : Moveclass mit temperature adapted step-sizes.

moveTflag(1) = 1
moveTflag(2) = 1

• The flags ’dcellTflag’, ’dTflag’, ’frTflag’, ’frT2flag’ indicate that the
move will be adaptive for different temperatures. Note that there is no
point in activating ’frTflag’ unless ’dcellTflag’ or ’dTflag’ are active.
If these flags are set equal to zero, then the maximal values of the
corresponding parameters are employed:
’dmax’ is the maximal size (in Angstrom) of the shift of an individual
atom, ’dcellmax’ is the maximal size (in Angstrom) of the shift in a
component of the cell vectors, ’frmax’ and ’frT2max’ are the maximum
degree to which the random number can influence the step-sizes of
atoms and cell vectors, respectively.

They enter into the formulae for the atom shift and the cell shift as
follows (’rnumber’ is a random number between zero and one):
’d’ = 0.5 * ’dT’ * (1 + ’frT’ * (’rnumber’ - 0.5)),
’dcell’ = 0.5 * ’dcellT’ * (1 + ’frT’ * (’rnumber’ - 0.5)),

127



and ’a(i1,i2)’ = ’a(i1,i2)’ - (’shift’ * ’a(i1,i2)’)
with ’shift’ = (’rnumber’ - ’shiftfr2’) * ’frT2’.

’frT2’ is used when the cell vectors are changed without changing the
atom positions themselves, i.e., a slice of a certain thickness is removed
from the cell, but the positions of the atoms in cartesian coordinates
are unchanged (of course, the fractional coordinates refering to the
cell vectors change!). ’dcell’ is used when the cell vectors are changed
and the fractional coordinates of the atoms remain unchanged, i.e. the
atoms move relative to each other in cartesian coordinates due to the
change in cell vector.

Quite generally, the flags are set equal to zero, then the maximal values
are employed (Suggested values for ’dmax’, ’dcellmax’, ’frmax’ and
’fr2max’ are: ’dmax’ = ??, ’dcellmax’ = ?? < ’dmax’, ’frmax’= 2.0,
’fr2max’ = 0.1, ’frfactmax’ = 0.1.

1. ’dTflag’ = 1 gives ’dT’ = ’dmax’ * log10(T * 10000 + 1) / ’cinf’.
dTflag(1) = 1
dTflag(2) = 1
dmax(1) = 0.05d0
dmax(2) = 0.05d0

2. ’dcellTflag = 1’ gives ’dcellT’ = ’dcellmax’ * log10(T * 10000 +
1) / ’cinf’, where ’cinf’ = log10(10000 * ’Tinf’ + 1) is calculated
in the subroutine ’inpcalcwrite’.
dcellTflag(1) = 1
dcellTflag(2) = 1
dcellmax(1) = 0.05d0
dcellmax(2) = 0.05d0

3. ’frTflag’ = 1 gives ’frT’ = ’frmax’ * (’fract’ * ’dT’) / (1 + (’fract’
* ’dT’)**2).
frTflag(1) = 0
frTflag(2) = 0
frmax(1) = 0.1d0
frmax(2) = 0.1d0
fract(1) = 1.0d0
fract(2) = 1.0d0

4. ’frT2flag’ = 1 gives ’frT2’ = ’fr2max’ * (’fract2’ * ’dcellT’) / (1
+ (’fract2’ * ’dcellT’)**2).
frT2flag(1) = 0
frT2flag(2) = 0
fr2max(1) = 0.15d0
fr2max(2) = 0.15d0
fract2(1) = 1.0d0
fract2(2) = 1.0d0

128



5. The general formula for a cell change is ’a(i1,i2)’ = ’a(i1,i2)’ -
(’shift’ * ’a(i1,i2)’) with ’shift’ = (’rnumber’ - ’shiftfr2’) * ’frT2’.
Note that if ’shiftfr2’ = 0.0, we can only remove slices of the cell.
shiftfr2(1) = 0.50d0
shiftfr2(2) = 0.50d0

6. In moves 14 - 17 and 19, we employ ’frfactTflag’ and ’a(...,...)’ =
’a(...,...)’ * ’factcell’, where ’factcell’ = 1 + ’frfactT’ * (’rnumber’
- 0.5), and ’frfactT’ = ’frfactmax’ * (’fract2’ * ’dcellT’) / (1 +
(’fract2’ * ’dcellT’)**2).
frfactTflag(1) = 0
frfactTflag(2) = 0
frfactmax(1) = 0.1d0
frfactmax(2) = 0.1d0

• 2*pi*’deuler’ is the maximal change in an Eulerangle. If we make ran-
dom rotations of only one building unit starting from the same refe-
rence configuration, it is best to set ’deuler’ = 1.0d0
deuler(1) = 0.5d0
deuler(2) = 0.5d0

• ’drs’ is the maximal change in the radiusfactor during a step. This
is only of interest, if we deal with pseudo-atoms consisting of many
electrons where the volume of this electron-group is part of the opti-
mization.
drs(1) = 0.1d0
drs(2) = 0.1d0

• ’dtheta21’ gives the maximum rotation angle in move 21, 22 and 25
for moveclasssingle. ’dtheta21’ = 1.0 corresponds to rotation up to
2pi, analogous to the Euler angle. Usually one uses relatively small
rotations, since they can have quite massive effects.
dtheta21(1) = 0.2d0
dtheta21(2) = 0.2d0

• dtheta21j gives the maximum rotation angle in the analogous moves
for moveclassjump (nos. 14, 15, 18). Usually, one uses a pretty large
value like 1.0, in order to allow for a sizeable rotation in the jumpmove
(which is usually followed up by a local minimization).
dtheta21j(1) = 1.0d0
dtheta21j(2) = 1.0d0

• If we make changes in the magnetization, we set ’dmagmax’ as the
maximal allowed incremental change.
dmagmax(1) = 0.5d0
dmagmax(2) = 0.5d0

129



8.2 Lists of possible moves for standard single walkers: shifts
/ rotations of building units, and cell variation

The arrays ’initmflag(...,...)’ give the fraction of moves for the different mo-
veclasses (indicated in first field in the array). The sum over all values of
’initmflag(...,...)’ must equal 1.0 for each moveclass individually. We need to
list as many moveclasses as given by ’mclassnum’. In addition to the proba-
bilities ’initmflag(...,...)’, we have to set the ’moveacceptfact(...,...)’ for each
move and moveclass.

• ’initmflag(...,1)’ is the fraction of building-group-moves (real number)
of one building unit, including both rotation and translation. If we use
’move2dflag’ = 1 for ’n zlayers’ > 1, we can allow a certain percentage
of attempts to hop between two z-layers, given by ’jumpzplane’ > 0.0
(but ≤ 1.0, of course). The value of ’jumpzplane’ also applies to the
case of purely translational moves in initmflag(2).
initmflag(1,1) = 0.00d0
initmflag(2,1) = 0.00d0
jumpzplane(1) = 0.00d0
jumpzplane(2) = 0.00d0
moveacceptfact(1,1) = 1.0d0
moveacceptfact(2,1) = 1.0d0

• ’initmflag(...,2)’ is the fraction of building-group-moves (real), where
only translations are performed for one unit (particularly useful for
building units of size one). Check for the value for jumpzplane under
initmflag(1).
initmflag(1,2) = 0.00d0
initmflag(2,2) = 0.80d0
moveacceptfact(1,2) = 1.0d0
moveacceptfact(2,2) = 1.0d0

• ’initmflag(...,3)’ is the fraction of building-group-moves (real), where
only rotations are executed. ’eulerangleflag’ indicates whether every
rotation (0), or only a rotation around the z-axis (1), x-axis (2), or
y-axis (3) of the molecule in its reference frame is allowed.
initmflag(1,3) = 0.00d0
initmflag(2,3) = 0.00d0
moveacceptfact(1,3) = 1.0d0
moveacceptfact(2,3) = 1.0d0
eulerangleflag(1) = 0
eulerangleflag(2) = 0

• ’initmflag(...,4)’ is the fraction of moves that exchange the position of
two atoms (the second one chosen randomly). Building units are exclu-
ded in this case, if their size is larger than 1. Note that for jumpmoves,

130



such molecule exchanges are allowed since the large overlap usually ge-
nerated can be reduced during a follow-up local minimization.
In order to be able to do some ’kinetic MonteCarlo’ type of simula-
tions, we add an option that restricts the exchange to atoms in the
neighborhood. This option is active, if ’exchdistflag(mclflag)’ is equal
to 1. The radius within which the target atoms is allowed to be loca-
ted is ’exchangedist(mclflag)’. ’exchpairattempts’ gives the number of
attempts to find an atom to exchange / to find an atom to serve as
partner in the exchange.
initmflag(1,4) = 0.00d0
initmflag(2,4) = 0.00d0
moveacceptfact(1,4) = 1.0d0
moveacceptfact(2,4) = 1.0d0
exchdistflag(1) = 0
exchdistflag(2) = 0
exchangedist(1) = 1.0d3
exchangedist(2) = 1.0d3
exchpairattempts(1) = 1000
exchpairattempts(2) = 1000

• ’initmflag(...,5)’: Fraction of moves that change the cell vectors, while
changing the positions of the building units in cartesian coordinates
at the same time, but where the fractional coordinates of the building
units are unchanged. Indicate if you also restrict the volume range (see
below).
initmflag(1,5) = 0.00d0
initmflag(2,5) = 0.10d0
moveacceptfact(1,5) = 1.0d0
moveacceptfact(2,5) = 1.0d0

• ’initmflag(...,6)’: Fraction of moves that change the cell vectors, while
not changing the positions of the building units (in cartesian coordi-
nates) at the same time, i.e. the fractional coordinates of the building
units are changed. This corresponds to taking a slice out of the unit
cell. Any atom that are in the slice that is taken out are moved into
the next ’periodically repeated cell’ and then shifted back by a lattice
translation into the actual simulation cell. Indicate if you also restrict
the volume range (see below).
initmflag(1,6) = 0.00d0
initmflag(2,6) = 0.05d0
moveacceptfact(1,6) = 1.0d0
moveacceptfact(2,6) = 1.0d0

• initmflag(...,7): Fraction of moves to displace the origin of the coor-
dinate system, i.e. a shift of the cell translation lattice with respect

131



to the Cartesian arrangement of the atoms. (perhaps combine it with
initmflag6 in the future?!) Used to address cut-offs in the potential.
Usually, the energy change is essentially zero for this move.
initmflag(1,7) = 0.00d0
initmflag(2,7) = 0.05d0
moveacceptfact(1,7) = 1.0d0
moveacceptfact(2,7) = 1.0d0

• ’initmflag(...,8)’: Generation of a pair of charges via transfer of one
unit of charge from one atom to another (only for building units of
size 1).
initmflag(1,8) = 0.00d0
initmflag(2,8) = 0.00d0
moveacceptfact(1,8) = 1.0d0
moveacceptfact(2,8) = 1.0d0

• ’initmflag(...,9)’: Removing an atom, but leaving its charge; only for
building units of size 1 (Currently not active).
initmflag(1,9) = 0.00d0
initmflag(2,9) = 0.00d0
moveacceptfact(1,9) = 1.0d0
moveacceptfact(2,9) = 1.0d0

• ’initmflag(...,10)’: Adding a neutral atom; only for building units of
size 1 (Currently not active). ’simax’ and ’tol1’ are parameters needed
for such a move. ’simax’ gives the number of steps in the i direction
while searching for holes in the structure to place the atom. ’sleni’ =
1.0/’simax’ is the size of these steps in units of the current cell. If the
dimension ’dimens’ = 2, set ’s3max’ = 1. ’tol1’ is the required tolerance
for assuming that an atom is far enough away from the place of the
hole during the subroutine holesearch. One should probably pick twice
the maximal radius available among the participating atoms.
initmflag(1,10) = 0.00d0
initmflag(2,10) = 0.00d0
moveacceptfact(1,10) = 1.0d0
moveacceptfact(2,10) = 1.0d0
s1max = 10
s2max = 10
s3max = 10
tol1 = 3.63d0

• ’initmflag(...,11)’: Exchange of atom of type a for one of type b; only
for building units of size 1 (Currently not active).
initmflag(1,11) = 0.00d0
initmflag(2,11) = 0.00d0

132



moveacceptfact(1,11) = 1.0d0
moveacceptfact(2,11) = 1.0d0

• ’initflag(...,12)’: Addition of a slice of cell plus an atom (like in ’in-
itmflag(...,6)’); only for building units of size 1 (Currently not active).
initmflag(1,12) = 0.00d0
initmflag(2,12) = 0.00d0
moveacceptfact(1,12) = 1.0d0
moveacceptfact(2,12) = 1.0d0

• ’initmflag(...,13)’: Change of the radiusfactor of an ion, only for buil-
ding units of size 1.
initmflag(1,13) = 0.00d0
initmflag(2,13) = 0.00d0
moveacceptfact(1,13) = 1.0d0
moveacceptfact(2,13) = 1.0d0

The following four moves are restricted cell moves, i.e. we try to keep
certain (usually symmetry-related) aspects of the cell fixed. Unless explicit-
ly necessary, these moves should not be mixed with the arbitrary volume
changes listed above.

A particular special case is the one, where the symmetry of the configura-
tion is given, and thus a small set of (free) cell and atom parameters needs
to be varied, which affect many atoms, while some atoms can be treated
as completely fixed. These moves can be mixed with restricted cell moves,
which respect the symmetry of the structure. The moves 14 - 17 allow us
to focus on special aspects of the cell parameters alone of the symmetric
configuration, while moves 18 - 19 are for considering both all atom and all
cell symmetry adapted parameters. In this specific case, the earlier warning
(of never mixing moves 18 and 19 with any of the other moves in the single
walker standard moveclass) can be ignored.

• ’initmflag(...,14)’: Rescaling of the whole cell, while keeping the relative
positions of the atoms fixed (analogous to ’initmflag(...,5)’, where only
individual cell vectors were rescaled).
initmflag(1,14) = 0.0d0
initmflag(2,14) = 0.0d0
moveacceptfact(1,14) = 1.0d0
moveacceptfact(2,14) = 1.0d0

• ’initmflag(...,15)’: Rescaling of cell vectors, while keeping the angles
between them constant. This would preferably be used for the ’ideali-
zed’ cell input: (a,0,0),(b1,b2,0),(c1,c2,c3).
For ’initmflag(...,15)’, we also need to set the flag ’factcellflag(...)’,
which specifies the type of scaling.

133



1. ’factcellflag(...)’ = 1: scale a, while keeping b/a and c/a constant

2. ’factcellflag(...)’ = 2: scale a or c, while keeping b/a constant

3. ’factcellflag(...)’ = 3: let all cell length vary keeping only the
angles constant

4. ’factcellflag(...)’ = 4: a,b,alpha=beta=90o, are kept constant, whi-
le c1 or c3 are varied. Thus, for a monoclinic system we can vary
specifically the angle gamma.

5. ’factcellflag(...)’ = 5: Full variation allowed in the monoclinic sy-
stem.

6. ’factcellflag(...)’ = 6: Rescale only the third cell vector; this is
particularly useful for changing the cell when using a fixed slab
in the x-y plane.

Both for ’factcellflag(...)’ = 4 and ’factcellflag(...)’ = 5, do we require
that the description of the cell is such that b1 = c2 = 0. Do remember
to set ’initmflag(...,15) to zero unless you want to restrict the cell
moves. If we want only changes in the shape of cell in the x-y-plane,
one would probably prefer to use the ’move2dflag’ (however, keep in
mind that this would also restrict the atom moves to only shifts parallel
to the x-y-plane).
initmflag(1,15) = 0.0d0
initmflag(2,15) = 0.0d0
factcellflag(1) = 0
factcellflag(2) = 0
moveacceptfact(1,15) = 1.0d0
moveacceptfact(2,15) = 1.0d0

• ’initmflag(...,16)’: Rescaling of cell vectors, while keeping the total vo-
lume constant. This would preferably be used for the ’idealized’ cell
input: (a,0,0),(b1,b2,0),(c1,c2,c3).
For ’initmflag(...,16)’, we also need to set the flag ’vol0flag(...)’, which
tells us, whether we are to scale a or c, while keeping b/a constant
(’vol0flag(...)’ = 2), or let all vary keeping only the angles constant
(’vol0flag(...)’ = 3). These are the only choices available for such con-
stant volume moves.
Note that for constant volume moves, it makes most sense to have
prescribes an initial cell volume (unless we read in a starting confi-
guration), since the density of the automatically generated simulation
cell is usually much too low (or too large, for zeolites). Do remember
to set ’vol0flag(...)’ to zero unless you want to use the fixed volume
option.
initmflag(1,16) = 0.0d0
initmflag(2,16) = 0.0d0

134



vol0flag(1) = 0
vol0flag(2) = 0
moveacceptfact(1,16) = 1.0d0
moveacceptfact(2,16) = 1.0d0

• ’initmflag(...,17)’: Rescaling of cell vectors, while keeping the volume
between ’volrangetop’ and ’volrangebottom’. This would preferably be
used for the ’idealized’ cell input: (a,0,0),(b1,b2,0),(c1,c2,c3).
For ’initmflag(...,17), we also need to set the flag ’volrangeflag(...)’,
which tells us, how we are supposed to scale the cell parameters.

1. ’volrangeflag(...)’ = 1: scale a, while keeping b/a and c/a constant

2. ’volrangeflag(...)’ = 2: scale a or c, while keeping b/a constant

3. ’volrangeflag(...)’ = 3: let all vary keeping only the angles constant

4. ’volrangeflag(...)’ = 4: a,b,alpha=beta=90o, are kept constant,
while c1 or c3 are varied. Thus, for a monoclinic system we can
vary specifically the angle gamma.

5. ’volrangeflag(...)’ = 5: Full variation in the monoclinic system

Both for ’volrangeflag(...)’ = 4 and ’volrangeflag(...)’ = 5, do we require
b1 = c2 = 0. Do remember to set the ’volrangeflag(...)’ to zero unless
you want to restrict the cell moves.
initmflag(1,17) = 0.0d0
initmflag(2,17) = 0.0d0
volrangeflag(1) = 0
volrangeflag(2) = 0
moveacceptfact(1,17) = 1.0d0
moveacceptfact(2,17) = 1.0d0

• Volume range restriction during cell moves: We need a flag ’volcheck-
flag(...)’ that controls whether there are explicit restrictions to the
volume range that the walker is allowed to explore. Note that this vo-
lume range restriction is not only active for moves 14 - 17 but also for
the completely free variation of the cell volume under moves 5 and 6.

1. ’volcheckflag(...)’ = 1: only ’volrangebottom’ needs to be consi-
dered

2. ’volcheckflag(...)’ = 2: both a lower and an upper bound is requi-
red

3. ’volcheckflag(...)’ = 0: no restriction on the overall volume given
(but do check the general restrictions regarding the volume of the
cell compared to the total volume of the atoms). This is usually
the option for the moves 5 and 6.

135



’volrangebottom’ and ’volrangetop’ are given in Ang**3. If the optimi-
zation is to stay within a volume range, it is necessary to prescribe an
initial volume that lies within the range, unless a specific configuration
is being read in at the outset (whose volume should be within the pre-
scribed range, of course). If only a minimum volume is prescribed, we
can usually start with a large initial volume as one does in a standard
exploration.
Do remember to set the flags ’volcheckflag(...)’ and ’volrangeflag(...)’
(see above) to zero unless you want to use the volume range limitation.
volcheckflag(1) = 0
volcheckflag(2) = 0
volrangebottom(1) = 1000
volrangebottom(2) = 100
volrangetop(1) = 1600
volrangetop(2) = 200

8.2.1 Free parameter moves (moves adapted to space group sym-
metry)

If we want to use free parameters of a structure with given symmetry, then
we set ’freeparamflag’ = 1, and us this set of moves for changes in atom
positions. Remember that the ’free parameters’ refer to all those atom and
cell variables that can be changed while still preserving the symmetry of the
structure - all the other variables are fixed by symmetry once the free pa-
rameters are set. Typically, such explorations only take place when we load
in a structure that has a certain symmetry given by its space group, and we
only want to vary the free parameters that leave the symmetry of the struc-
ture unchanged. The number of degrees of freedom, i.e. the number of free
parameters of the atoms, ’nfapcur’ plus the cell lengths and angles, ’nLfap’
and ’nWfap’, respectively, are initialized here. Furthermore, we initialize all
the free-parameter arrays (to zero). Note that these are overwritten when
loading in the starting configuration - this configuration must already con-
tain all the information needed to identify the free parameters in the system.
Usually, one employs the GASP-command in KPLOT to find these free pa-
rameters.
freeparamflag(1) = 1
freeparamflag(2) = 0
nfapcur = 0
nLfap = 3
nWfap = 3 Make sure that moves 18 and 19 are not mixed with the mo-
ves 1 - 17 and 20 - 25, i.e., the sum of ’initflag(...,18)’ and ’initflag(...,19)’
must be equal to 1 and the sum of ’initflag(...,1)’ to ’initflag(...,17)’ plus
’initflag(...,20)’ to ’initflag(...,25)’ must be equal to zero, or the other way
around (for all moveclasses defined). The exception can be mixing some va-

136



riants of the moves 14 - 17 that are compatible with the symmetry of the
structure, with the free parameters moves 18 and 19.

• ’initflag(...,18)’ makes changes in freely variable atom parameters. Re-
call that with free parameter runs, we cannot have building units of
size larger than 1, due to the symmetry restrictions (moving a molecule
while keeping all the symmetries of the structure is a rather complex
operation in general).
initmflag(1,18) = 0.40d0
initmflag(2,18) = 0.00d0
moveacceptfact(1,18) = 1.0d0
moveacceptfact(2,18) = 1.0d0

• ’initflag(...,19)’ makes changes in cell lengths/angles. Note that the
starting configurations might correspond to rather strangely shaped
unit cells that violate restrictions on what kind of unit cells are allowed
during global exploration runs (see configuration section). If necessary,
increase these limits.
initmflag(1,19) = 0.60d0
initmflag(2,19) = 0.00d0
moveacceptfact(1,19) = 1.0d0
moveacceptfact(2,19) = 1.0d0

8.3 Lists of possible moves for standard single walkers: flexi-
ble building units, magnetization, background structure

8.3.1 Changes of flexible building units

For large building units, it no longer makes sense to treat them as rigid,
and one wants to introduce flexibility via ’flexbgflag’ instead. However, this
requires special types of moves that allow us to vary not only the position
and orientation of the building unit but also its internal structure, i.e. the
internal position vectors ’uref’ that describe the positions of the atoms in
the molecule with respect to some reference point (usually some atom in the
center of the molecule or the center of mass of the initial molecule). The
following moves deal with such building units.

(Note that in the future, we might want to be more restrictive with
the choice of atoms that are allowed to be involved in a defining role for
these large moves. Especially, we might want to exclude terminal (hydrogen)
atoms. This would involve changes in the moveclass-files, and perhaps also
some restrictions in the computation of free triplets etc. and axis-atoms in
inpclcwr.f in order to have smaller sets of moves and fewer uninteresting
moves. But at the moment we are very general in our moves.)

• ’initmflag(...,20)’ varies positions of individual atoms, pairs, triplets
and quartets according to probability ’move20flag’(mclflag,1/2/3/4),

137



respectively. Make sure that the ’move20flag’-entries add up to 1.0
for each moveclass. Keep in mind the number of atoms vs. number
of pairs vs. number of triplets vs. number of quartets when selecting
the ’move20flag’-entries. The pairs/triplets/quartets are shifted by the
same amount, changing the ’uref’(...) for the randomly chosen building
unit.
initmflag(1,20) = 0.00d0
initmflag(2,20) = 0.00d0
move20flag(1,1) = 0.25d0
move20flag(1,2) = 0.25d0
move20flag(1,3) = 0.25d0
move20flag(1,4) = 0.25d0
move20flag(2,1) = 1.00d0
move20flag(2,2) = 0.00d0
move20flag(2,3) = 0.00d0
move20flag(2,4) = 0.00d0
moveacceptfact(1,20) = 1.0d0
moveacceptfact(2,20) = 1.0d0

• ’initmflag(...,21)’ changes the building unit by rotating a piece of the
structure that can be disconnected by breaking the free atom pair AB
(inside a sequence XiABYi; A and B can be branch nodes) around
either the axis XiA or BYi, where we move the atoms B plus the rest
of the molecule on the B-side of the breakable pair AB (or atoms A and
the rest on the A-side of the pair AB). Again, the change is effected
by changing the ’uref’(...)-values of the atoms in the building unit.
initmflag(1,21) = 0.00d0
initmflag(2,21) = 0.00d0
moveacceptfact(1,21) = 1.0d0
moveacceptfact(2,21) = 1.0d0

• ’initmflag(...,22)’ changes the building unit by changing distances/angles/dihedrals
that separate the building unit into two unconnected pieces. Again, the
change is effected by changing the ’uref’(...)-values of the atoms in the
building unit. The probability of attempts to change distances / angles
/ dihedrals is given by ’move22flag’(mclflag,1/2/3), respectively. Make
sure that these values add up to 1 for each moveclass.
initmflag(1,22) = 0.00d0
initmflag(2,22) = 0.00d0
move22flag(1,1) = 0.00d0
move22flag(1,2) = 0.50d0
move22flag(1,3) = 0.50d0
move22flag(2,1) = 0.00d0
move22flag(2,2) = 0.50d0

138



move22flag(2,3) = 0.50d0
moveacceptfact(1,22) = 1.0d0
moveacceptfact(2,22) = 1.0d0

• ’initmflag(...,25)’ deals with a move for the flexible building unit, where
we select two atoms inside the building unit, and then take one set of
atoms that lie between these two atoms, and rotate this set around
the axis connecting the two atoms.
initmflag(1,25) = 0.00d0
initmflag(2,25) = 0.00d0
moveacceptfact(1,25) = 1.0d0
moveacceptfact(2,25) = 1.0d0

8.3.2 Changes in magnetization

Currently varying magnetization makes only sense with QE-calculations.
Also, set ’magnetflag’ = 3.

• ’initmflag(...,23)’ changes individual settings of the magnets (’magne-
tatom’ - do not confuse with the magnetization, which is the output
of the QE-calculation).
initmflag(1,23) = 0.00d0
initmflag(2,23) = 0.00d0
moveacceptfact(1,23) = 1.0d0
moveacceptfact(2,23) = 1.0d0

8.3.3 Changing the background structure

The common use of a background structure is as an unmovable set of back-
ground atoms that provide the environment of the mobile atoms and buil-
ding units. However, we might want to consider small relaxations of the
background structure as part of the moveclass, especially for the local mi-
nimizations of already pre-optimized structures. In that case, some moves
of the atoms and building units that constitute the background structure
might be useful as part of a local stochastic random walk (see also secti-
on background structure for more information about background structures
and how to keep them fixed.)

• ’initmflag(...,24)’ is the fraction of building-group-moves in the back-
groundstructure (real atoms, not idealized perfect slab), including both
rotation and translation. These are analogous to the moves 1 - 3 for
normal mobile atoms - the shape of building units that are part of the
background structure cannot be changes with this move (molecules are
assumed to be rigid). Note that for this move to be active, we need to
have set ’fixflag’ = 3, else one just wastes these moves.

139



If we use ’move2dflagfix’ = 1 for ’n zlayers’ > 1, we can allow a certain
percentage of attempts to hop between two z-layers, given by ’jumpz-
planefix’ > 0.0 (but ≤ 1.0, of course). Usually, this kind of move will
not be used for a background structure since this structure is suppo-
sed to be already pretty well optimized, and we only look for small
relaxations of the background in response to the atoms, molecules and
clusters on the surface or inside the background structure. Thus, we
also do not permit any changes in cell parameters. If such large chan-
ges are desired, one should enter the ’background structure’ as a list
of regular atoms/building units with specified positions and specific
choices of ’fixbg’ as function of moveclass, and let this structure relax
on its own (with or without other molecules) as far as the cell para-
meters are concerned, and then use the output of this calculation as
new background structure.
initmflag(1,24) = 0.00d0
initmflag(2,24) = 0.00d0
jumpzplanefix(1) = 0.00d0
jumpzplanefix(2) = 0.00d0
moveacceptfact(1,24) = 1.0d0
moveacceptfact(2,24) = 1.0d0

8.4 Large moves (jumpmoves) for single walkers

8.4.1 General aspects

An important option for many modules is the ability to perform large moves
on the landscape, often followed by a local minimization of configuration.
Sometimes, such jumping on the landscape is given the general name ’basin-
hopping’, but this term also refers to a particular implementation of such
explorations for the purpose of global optimization. Here, the jumpmoves
are moves that are performed by single walkers. Many of the jumpmoves
are large versions of the standard single walker moves (large displacements
of atoms and changes of cell vectors), while others involve many atoms or
building units being shifted and rotated at the same time.

If jump moves are used outside of the salocrun-module (where local runs,
especially minimizations, take place by definition), then one frequently wants
to perform a local minimization, similar to the one during a multi-walker
move (see below). The length and type of the minimization / local run are
defined in the poolmove section (see below). Note that the index counting
the acceptance factors equals (30 + number of jumpmove).

• ’fractjump(mclflag)’ indicates the fraction of single walker moves that
are very large jump moves. This fraction depends on the moveclass.
Since moveclass 2 is nearly always used for the local minimization as
default, fractjump(2) should usually be set equal to 0. (As a precauti-

140



on, wherever a local minimization takes place automatically, only calls
to moveclasssingle are performed by default during such a local run.)
fractjump(1) = 0.1d0
fractjump(2) = 0.0d0

• ’nmovejump’ is the number of types of (active) single walker jump
moves. Do not change this number unless moveclassjump.f has been
changed.
nmovejump = 18

8.4.2 General parameters specific to many single walker jump
moves

’initjumpmflag(...,...)’ indicates percentages of large moves involving many
atoms and cell parameters. To set the size of such moves, the following
parameters are needed:

• ’djumpfact’: factor to multiply the value of the stepsize of atom shifts
’d’ from standard single walker moves

• ’numexchjump’: number of exchanges of single atoms that take place
during a multi-exchange move. Note that the value for ’exchpairat-
tempts(mclflag)’ (how often the walker tries to finds two atoms or
building units that can be be exchanged) is defined as part of the
single-walker moveclass.

• ’dcelljumpfact’: factor to multiply the stepsize of cell changes ’dcell’
from standard single walker moves

• ’shiftjumpfact’: factor to multiply the shift parameter ’shift’ from stan-
dard single walker moves

• ’nshufflebins’: number of slices to partition a cell in, before shuffling

• ’ntupleslice’: number of times one slice of the cell is multiplied to gene-
rate a new cell. (E.g., if ’ntupleslice’ = 3, then one third of the cell (A)
is kept and the other two thirds (B) are removed and replaced by two
slices A.) The corresponding move (jumpmove 18) is not yet active.

• ’dbox’ is the size of the box (+- ’dbox’ in the x, y and z directi-
on measured in relative units of the cell vector) around a randomly
picked atom, where the atoms inside the box are moved (’dbox’ must
be smaller than 0.5, else it would include all atoms in the cell. For ex-
ample, the atoms in the box can be randomly interchanged. If we only
shift the atoms that are in the box, then they are moved by (rnumber-
0.5)*’dboxfract’ * ’dbox’ in all three direction x,y,z.

141



djumpfact = 5.0d0
dcelljumpfact = 5.0d0
shiftjumpfact = 5.0d0
numexchjump = 10
nshufflebins = 4
ntupleslice = 2
dbox = 0.2
dboxfract = 0.5

8.4.3 List of jumpmoves for atoms and rigid building units

• ’initjumpmflag(...,1)’: Shift and rotation of all atoms
initjumpmflag(1,1) = 0.0d0
initjumpmflag(2,1) = 0.0d0
moveacceptfact(1,31) = 1.0d0
moveacceptfact(2,31) = 1.0d0

• ’initjumpmflag(...,2)’: Only shift of all atoms
initjumpmflag(1,2) = 0.2d0
initjumpmflag(2,2) = 0.2d0
moveacceptfact(1,32) = 1.0d0
moveacceptfact(2,32) = 1.0d0

• ’initjumpmflag(...,3)’: Only rotation of all atoms
initjumpmflag(1,3) = 0.0d0
initjumpmflag(2,3) = 0.0d0
moveacceptfact(1,33) = 1.0d0
moveacceptfact(2,33) = 1.0d0

• initjumpmflag(...,4): Multiple exchange among all atoms (’numexch-
jump’ is the number of valid exchanges that take place)
initjumpmflag(1,4) = 0.1d0
initjumpmflag(2,4) = 0.1d0
moveacceptfact(1,34) = 1.0d0
moveacceptfact(2,34) = 1.0d0

• ’initjumpmflag(...,5)’: Change of all cell parameters with co-moving
atoms (analogue to standard move 5)
initjumpmflag(1,5) = 0.1d0
initjumpmflag(2,5) = 0.1d0
moveacceptfact(1,35) = 1.0d0
moveacceptfact(2,35) = 1.0d0

• ’initjumpmflag(...,6)’: Change of all cell parameters with fixed atoms
(i.e. fixed cartesian coordinates analogue to standard move 6)
initjumpmflag(1,6) = 0.1d0

142



initjumpmflag(2,6) = 0.1d0
moveacceptfact(1,36) = 1.0d0
moveacceptfact(2,36) = 1.0d0

• ’initjumpmflag(...,7)’: Shift of all atoms and change of all cell parame-
ters with co-moving atoms
initjumpmflag(1,7) = 0.2d0
initjumpmflag(2,7) = 0.2d0
moveacceptfact(1,37) = 1.0d0
moveacceptfact(2,37) = 1.0d0

• ’initjumpmflag(...,8)’: Exchange of two cell slices
initjumpmflag(1,8) = 0.0d0
initjumpmflag(2,8) = 0.0d0
moveacceptfact(1,38) = 1.0d0
moveacceptfact(2,38) = 1.0d0

• ’initjumpmflag(...,9): Inversion of a cell slice
initjumpmflag(1,9) = 0.0d0
initjumpmflag(2,9) = 0.0d0
moveacceptfact(1,39) = 1.0d0
moveacceptfact(2,39) = 1.0d0

• ’initjumpmflag(...,10)’: Random exchange of atoms within a box around
a randomly selected atom
initjumpmflag(1,10) = 0.0d0
initjumpmflag(2,10) = 0.0d0
moveacceptfact(1,40) = 1.0d0
moveacceptfact(2,40) = 1.0d0

• ’initjumpmflag(...,11)’: Random shift of atoms within a box around a
randomly selected atom
initjumpmflag(1,11) = 0.3d0
initjumpmflag(2,11) = 0.3d0
moveacceptfact(1,41) = 1.0d0
moveacceptfact(2,41) = 1.0d0

• ’initjumpmflag(...,12)’: n-tupling of a cell. This is not yet active.
initjumpmflag(1,12) = 0.0d0
initjumpmflag(2,12) = 0.0d0
moveacceptfact(1,42) = 1.0d0
moveacceptfact(2,42) = 1.0d0

143



8.4.4 List of jumpmoves for flexible building units

Similar as for the standard single walker moveclass, for large building units,
one wants to introduce flexibility via the flag ’flexbgflag’. The following jump
moves deal with such building units, where again the coordinates ’uref’ of the
atoms in the building unit with respect to the reference point are changed.

• ’initjumpmflag(...,13)’ varies positions of many individual atoms, pairs,
triplets and quartets according to probability ’movej20flag’(mclflag,1/2/3/4),
respectively, in analogy to move 20 of the standard single walker mo-
ves. Make sure that the ’movej20flag’-entries add up to 1.0 for each
moveclass.

For the jumpmove, we select several atoms/pairs/etc. when making the
configuration change, not only one as for the standard single walker
moves. We can choose explicitly the fraction of atoms etc. by setting
’bgfractionjump’ to a number larger than zero. The computation of the
number of atoms proceeds via ’number of atoms selected’ = ’number
of atoms in molecule’/’bgfractionjump’.

1. ’bgfractionjump’ = 1: All atoms in the building unit

2. ’bgfractionjump’ = 2: Half of the atoms (chosen at random)

3. ’bgfractionjump’ = 3: One third of the atoms (chosen at random)

4. ...

5. ’bgfractionjump’ = 0: some fraction between one half and one
fifth is chosen at random.

bgfractionjump = 0

All atoms belonging to the same pair/triplet/quartet are shifted by the
same amount, changing uref(...) for the randomly chosen building unit.
Note that each randomly chosen atom / pair etc. gets its own shift.
Also, some atoms can be moves several times depending on whether
they are chosen several times (or partake in more than one of the
pairs/triplets/quartets that are chosen.
initjumpmflag(1,13) = 0.00d0
initjumpmflag(2,13) = 0.00d0
movej20flag(1,1) = 1.00d0
movej20flag(1,2) = 0.00d0
movej20flag(1,3) = 0.00d0
movej20flag(1,4) = 0.00d0
movej20flag(2,1) = 1.00d0
movej20flag(2,2) = 0.00d0
movej20flag(2,3) = 0.00d0
movej20flag(2,4) = 0.00d0

144



moveacceptfact(1,43) = 1.0d0
moveacceptfact(2,43) = 1.0d0

• ’initjumpmflag(...,14)’ is analogous to move 21 of the standard single
walker moves. It changes the building unit by rotating a piece of the
structure that can be disconnected by breaking the free atom pair AB
(inside a sequence XiABYi; A and B can be branch nodes) around
either the axis XiA or BYi, where we move the atoms B plus the rest
of the molecule on the B-side of the breakable pair AB (or atoms A and
the rest on the A-side of the pair AB). Note that the only difference
to the standard move is that one usually would use larger values for
’dtheta21j’ than for ’dtheta21’. (In principle, we could perform several
such rotations for a large molecule at the same time, but this option
has not been implemented.)

Again, the change is effected by changing the ’uref’(...)-values of the
atoms in the building unit.
initjumpmflag(1,14) = 0.00d0
initjumpmflag(2,14) = 0.00d0
moveacceptfact(1,44) = 1.0d0
moveacceptfact(2,44) = 1.0d0

• ’initjumpmflag(...,15)’ is the analogue to move 22 of the standard
single walker moves. It changes the building unit by changing di-
stances/angles/dihedrals that separate the building unit into two un-
connected pieces. Again, the change is effected by changing the ’uref’(...)-
values of the atoms in the building unit. The probability of attempts to
change distances / angles / dihedrals is given by ’movej22flag’(mclflag,1/2/3),
respectively. These values should add up to 1. Again, the only diffe-
rence to the standard moves is the larger value for ’dtheta21j’. (In
principle, we could perform several rotations for a large molecule at
the same time, but this option is not implemented.)
initjumpmflag(1,15) = 0.00d0
initjumpmflag(2,15) = 0.00d0
movej22flag(1,1) = 0.50d0
movej22flag(1,2) = 0.50d0
movej22flag(1,3) = 0.00d0
movej22flag(2,1) = 0.50d0
movej22flag(2,2) = 0.50d0
movej22flag(2,3) = 0.00d0
moveacceptfact(1,45) = 1.0d0
moveacceptfact(2,45) = 1.0d0

• ’initjumpmflag(...,16)’ exchanges several building units of size larger
than one, but does not rotate them at the same time. The maximum
number of exchanges is given by ’numexchjumplarge’. The number of

145



attempts to find a pair of units that can be exchanged is given by
’exchpairattempts’ as in the standard moves. Note also, that if you
have activated ’exchdistflag’ (see move 4 among the standard single
walker moves), then you will only allow the exchange of building units
where the first atoms listed in the building units have a distance smal-
ler than ’exchangedist’. The reason for this choice is that in many
descriptions of the building unit, the first atom on the list is either the
reference atom or the atom closest to the center of mass.
initjumpmflag(1,16) = 0.00d0
initjumpmflag(2,16) = 0.00d0
moveacceptfact(1,46) = 1.0d0
moveacceptfact(2,46) = 1.0d0
numexchjumplarge = 1

• ’initjumpmflag(...,17)’ aligns several building units by setting their first
two Euler angles equal, and adds a specific angle (i1 = 1,2,3,4,5,6,7
corresponds to an angle of 0,30,45,60,90,120,180, respectively) to the
third Euler angle of the second building unit after setting them first
equal. The number of building units that can be aligned is given by
’numalignjumplarge’. The percentage of attempts for a particular angle
are given by ’alignangle’(i1,mclflag). Make sure that the percentages
add up to 1 for each moveclass. Note that only building units with
non-negative ’fixbg’ (= 0 or positive number) for the moveclass can
participate in an alignment. The number of attempts to find such a
pair of building units is given by the variable ’exchpairattempts’ set
in the standard single walker moveclass.
initjumpmflag(1,17) = 0.00d0
initjumpmflag(2,17) = 0.00d0
moveacceptfact(1,47) = 1.0d0
moveacceptfact(2,47) = 1.0d0
numalignjumplarge = 1
alignangle(1,1) = 1.0d0
alignangle(1,2) = 1.0d0
alignangle(2,1) = 0.0d0
alignangle(2,2) = 0.0d0
alignangle(3,1) = 0.0d0
alignangle(3,2) = 0.0d0
alignangle(4,1) = 0.0d0
alignangle(4,2) = 0.0d0
alignangle(5,1) = 0.0d0
alignangle(5,2) = 0.0d0
alignangle(6,1) = 0.0d0
alignangle(6,2) = 0.0d0
alignangle(7,1) = 0.0d0

146



alignangle(7,2) = 0.0d0

• ’initjumpmflag(...,18)’ generates a partial rotation move for the flexible
building unit, in analogy to move 25 of the standard single walker
moves: we select two atoms inside the building unit, and then take
one set of atoms that lie between these two atoms, and rotate this set
around the axis connecting the two atoms. The size of the move is
controlled by ’dtheta21j’.
initjumpmflag(1,18) = 0.00d0
initjumpmflag(2,18) = 0.00d0
moveacceptfact(1,48) = 1.0d0
moveacceptfact(2,48) = 1.0d0

8.5 Multi-walker (interacting) moves

For interacting-multi-walker modules, we can generate new configurations
by mixing information taken from two (or more) different walkers. These
so-called cross-over moves are the central element of genetic (or evolutio-
nary) algorithms for the global optimization of complex energy landscapes.
However, one should note that such explorations do not produce much in-
formation regarding the barrier structure of a landscape. Quite generally,
one prefers to perform for all the newly generated structures a local mini-
mization since the mixed structures (similar to the configurations generated
by jumpmoves) are usually very high in energy and thus one would reject
most of them off-hand during e.g. a simulated annealing run (unless one uses
very high temperatures, but then one performs essentially an unrestricted
random walk, which is not very suitable for optimization purposes.) Once a
new set of walkers has been generated, we then use an ensemble acceptance
criterion, in order to select from among the old and new walkers the ’best’
set of ’nwalk’ walkers with which we continue our exploration via further
jumpmoves, multi-walker moves or standard single walker moves. What is
called ’best’ can either be ranking by energy, or ranking by Boltzmann-
probability, i.e. by Boltzmann factor multiplied by a random number drawn
according to the Boltzmann distribution.

8.5.1 Parameters regarding number of walkers

• ’nwalkdum’ is the number of new walkers that can be generated during
a mixing step. It should be similar to the total number of walkers
’nwalk’; usually one set ’nwalkdum’ = ’nwalk’. Make sure that (nwalk
+ nwalkdum + 2) is smaller than nwalkmax, in order to have some
play in the number of walkers.
nwalkdum = 0

• For multi-walker-separate runs (i.e. independent walkers) , one can use

147



the ’setwalkcurr’ command to define a subset of walkers from ’walk1’ to
’walk2’ that are being run through. Note that ’walk1’ and ’walk2’ are
automatically being reset to 1 and ’nwalk’, respectively, when ’load-
newcfg’ or ’gennewcfg’ have been active. This holds even if ’countinit-
data1’ and ’countinitdata2’ in these commands are unequal to 1 and
’nwalk’, respectively, or if one uses the ’setwalkcurr’ command to re-
strict the subset of active walkers. Similarly, we always set ’walk1’ and
’walk2’ equal to 1 and ’nwalk’ when calling a mwi-type subroutine.
The reason for this is that for multi-walker moves the new walkers are
generated and then accepted or rejected via an walker ensemble eli-
mination move, and these generation and acceptance routines assume
implicitly that the current ensemble contains ’nwalk’ walkers.

Thus one should be very careful when loading/generating only a sub-
set of the total of ’nwalk’ configurations before starting a mwi-run.
This option might be useful, if one wants to add some ’fresh’ external
configurations to a pool, which might be the results of some other si-
mulation performed earlier during the G42-run, thus replacing e.g. the
worst configurations in the pool of ’nwalk’ walkers. Of course, then one
needs to write a detailed meta-program for running such a complex
search (see meta-program section below).

Because of this, one should always explicitly use the ’setwalkcurr’ com-
mand before calling the mws module(s), if one wants to use only a
subset of walkers instead of all ’nwalk’ walkers.
walk1 = 1
walk2 = nwalk

8.5.2 Parameters regarding treatment of the pool of configurati-
ons newly generated by multi-walker moves or jumpmoves

After mixing moves or jumpmoves, one usually wants to perform some local
minimization before accepting or rejecting the new configuration(s). For this,
we need certain parameters controlling these local runs. Note that if we
are working inside the sa-loc-run module most such parameters are already
selected when setting up this module.

• ’poolminimizationflag’ = 1 indicates that after a mixing move resulting
in ’nwalkdum’ new configurations or after a jumpmove outside of the
’sa-localrun’ module a local minimization is supposed to take place.
poolminimizationflag = 1

• If a jumpmove is called from another module besides local-run-simulated
annealing, then one would want to have the option to perform a short
minimization right after the move; this is done by setting ’jumpminflag’
= 1. Then one needs to set ’jumpminflag’ and ’poolminimizationflag’

148



both equal one. Note that such a minimization after jumpmoves al-
ways takes place in salocruns; thus we use ’jumpminflag’ = 0 for that
module.
jumpminflag = 1

• ’poolgraddescflag’ = 1 indicates that after the local minimization a
gradient descent shall take place. This option is nowadays part of ’pool-
mintypeflag0’; thus this variable is inactive.
poolgraddescflag = 0

• ’poolmintypeflag0’ indicates, which kind of local run-algorithm is to be
used during the poolminimization as part of the call to the moveclass
(-multi and -jump), unless the calling module overrides this choice:

1. ’poolmintypeflag0’ = 0: standard stochastic quench

2. ’poolmintypeflag0’ = 1: gradient steepest descent

3. ’poolmintypeflag0’ = 2: simplex-method (not yet activated)

4. ’poolmintypeflag0’ = 3: line search

5. ’poolmintypeflag0’ = 4: powell-method

6. ’poolmintypeflag0’ = 5: Monte Carlo run at temperature ’Tlocal’

7. ’poolmintypeflag0’ = 6: gradient steepest descent in one step cal-
ling an external code (e.g. with GULP, QE)

8. ’poolmintypeflag0’ = 7: quench followed by gradient descent in
one step

9. ’poolmintypeflag0’ = 8: Mone Carlo run at ’Tlocal’ followed by
gradient descent in one step

poolmintypeflag0 = 7

• ’poolminsteps0’ indicates the length of the quench / Monte Carlo /
gradient run, while ’Tlocalpool0’ gives the local temperature for the
moveclass of the quench (step-size adaptive), and Monte Carlo-run.
Note that when calling the poolminimization from within a sa-local-
run, then ’salrsteps’ replaces ’poolminsteps’. ’poolflrlocal’ sets the de-
crease exponent of the local Monte Carlo run being called in the local
run after generating the new configuration. In principle, each walker
can have it own temperature for the local run and its own run length,
but one usually sets them equal.
poolflrlocal = 1.0d0
do i20 = 0,nwalkmax
poolminsteps0(i20) = 100
Tlocalpool0(i20) = 0.01d0
enddo

149



• ’poolminsaveflag’ = 1 indicates that the result of all of these minimi-
zations are to be saved. Considering how much time one has spent
in producing the minima, this often makes sense. But note that af-
ter 100000 such minimization procedures (for ’nwalkdum’ walkers) we
start overwriting the old results. If one wants to enlarge this number,
one needs to modify the subroutine that enumerates the minima and
provides the appropriate suffixes.
poolminsaveflag = 1

8.5.3 Multi-walker moves

• ’fractmulti(mclflag)’ indicates the fraction of mixing moves among the
multi-walker moves for interacting walkers. This value can be different
for different moveclasses. Since moveclass 2 is usually used for the
local minimizations as default, one should therefore set ’fractmulti’(2)
= 0. Although the moveclass for multi-walker moves ’moveclassmulti’
currently can only be called from a mwi-type module, it is still better
to keep the setup clean.
fractmulti(1) = 0.0d0
fractmulti(2) = 0.0d0

• ’nmovemult’ is the number of possible type of multi-walker moves.
Only change this entry when a new move has been added to ’move-
classmulti’.
nmovemult = 4

As for the standard moves and jump moves for single walkers, ’initmultmflag(...,...)’
indicates the percentages with which the multi-walker moves are attempted.
Thus, they need to add up to one for each moveclass. Furthermore, each mo-
ve generates two new configurations from a starting pair of configurations.

• ’initmultmflag(...,1)’: Merging cell parameters of two configurations
but keeping atom positions the same
initmultmflag(1,1) = 0.25d0
initmultmflag(2,1) = 0.25d0

• ’initmultmflag(...,2)’: Merging atom positions for two configurations
but keeping cell parameters unchanged
initmultmflag(1,2) = 0.25d0
initmultmflag(2,2) = 0.25d0

• ’initmultmflag(...,3)’: Generating an averaged structure weighted by
random numbers from two structures
initmultmflag(1,3) = 0.25d0
initmultmflag(2,3) = 0.25d0

150



• ’initmultmflag(...,4)’: Joining bottom and top halves of two structures
initmultmflag(1,4) = 0.25d0
initmultmflag(2,4) = 0.25d0

8.5.4 Limitations on cell parameters and atom-atom distances

The next entries deal with the limitations on the cell volume and atom
distances etc. during the runs.

• ’volmaxabs’ gives the maximum volume a cell is allowed to have (in
Ang**3).
volmaxabs = 4.0d8

• ’volmaxfact’ gives the ratio between the maximum volume and the mi-
nimum volume (multiplied by 3) a cell is allowed to have (the standard
value for ’volmaxfact’ is 10, which gets adjusted in subroutine volume-
min as long as ’volrangeflag’ or ’volinitflag’ are not active). Note that
we need a rather large value for ’volmaxfact’ (100?), if we prescribe a
starting cell of large volume, in order to study porous structures.
volmaxfact = 10.0d0

• ’volminabs’ gives the minimum volume the cell is allowed to have
volminabs = 1.0d0

• ’lmin’ gives the minimum length of a basisvector of the cell
lmin = 1.0d0

• ’aspratio’ gives the maximal ratio in the lengths of two cell vectors.
This value might need adjusting when one uses starting cells from
experiment.
aspratio = 3.0d0

• ’angmin’ gives the minimum angle of the cell (in degrees)
angmin = 45.0d0

• ’angmax’ gives the maximum angle of the sum of the three angles in
a 3-dim simulation (in radian)
angmax = 5.58d0

• ’tol2’ is the minimal allowed distance between two atoms during the
energy calculation
tol2 = 0.001d0

• ’rectifyflag’ = 1 means that after each accepted move that involves
the change of the cell, we rectify the cell and make it as compact as
possible. (afterwards, the energy is recalculated, in order to deal with
boundary effects)
rectifyflag = 0

151



8.6 ’Nochange’: outright rejection of proposed moves

Since the chemical system being studied has to obey certain physical limita-
tions, and since we have some limitations on the computational capabilities
available, certain proposed moves during the landscape exploration can be
(and usually should be) rejected outright before even an energy computation
has been performed (or are rejected during some early stage of the energy
computation). Each such rejection has its own ’nochange’ code.

Whenever such a rejection happens, the corresponding entry in the ’nochange’-
array is increased, and we can at the end of each phase of the exploration
receive a list of such rejected moves, which can be useful in analyzing the
performance of the algorithms and in understanding features of the energy
landscape.

The following values of ’nochange’ can appear:

• ’nochange’ = 1: No choice made in moveclass (in moveclss.f)

• ’nochange’ = 3: No move found for move 4 (in moveclss.f); No move
found for move 11 (in moveclss.f)

• ’nochange’ = 4: length of cell vector smaller than ’lmin’ (in chckcell.f);
cell angle smaller than limit value ’cemax’ (in chckcell.f); ratio between
two cell length larger than ’aspratio’ (in chckcell.f); cell too flat, sum
over cosines larger than angmax (in chckcell.f); no move found for
move 5 (in moveclss.f); no move found for move 6 (in moveclss.f); no
move found for move 14 (in moveclss.f); no move found for move 15
(in moveclss.f); no move found for move 16 (in moveclss.f); no move
found for move 17 (in moveclss.f)

• ’nochange’ = 6: cell volume larger than ’volmax’ (in chckcell.f)

• ’nochange’ = 7: cell volume smaller than ’volmin’ (in chckcell.f)

• ’nochange’ = 8: volume less than volrangebottom (in moveclss.f); vo-
lume larger than volrangetop (in moveclss.f); no move found for move
8 (in moveclss.f)

• ’nochange’ = 9: No success for move 9 (in moveclss.f)

• ’nochange’ = 10: atom distance smaller than ’tol2’ (in deltae.f); atom
distance smaller than ’tol2’ (in deltamadelung.f); atom distance smal-
ler than ’tol2’ (in energy.f)

• ’nochange’ = 11: cell volume larger than ’volmax’ while stoichiometry
change active (in chckcell.f); cell volume smaller than ’volmin’ while
stoichiometry change active (in chckcell.f)

152



• ’nochange’ = 12: negatives freies Volumen (in deltae.f); no success in
finding a free space for placing an atom (in holesrch.f); no success for
move 10 (in moveclss.f)

• ’nochange’ = 13: No move found in move 12 (in moveclss.f)

• ’nochange’ = 14: No move found for move 13 (in moveclss.f)

• ’nochange’ = 17: distance between atoms too small (in pot.f)

• ’nochange’ = 15: no move found for move 1 (in moveclss.f); no mo-
ve found for move 2 (in moveclss.f); no move found for move 3 (in
moveclss.f);

• ’nochange’ = 16: free volume negative (in energy.f)

• ’nochange’ = 20: volume larger than ’volmax’ while stoichiometry
change active (in deltae.f); volume smaller than ’volmin’ while stoi-
chiometry change active (in deltae.f); volume larger than ’volmax’
while stoichiometry change active (in energy.f); volume smaller than
’volmin’ while stoichiometry change active (in energy.f)

• ’nochange’ = 21: volume smaller than ’volmin’ (in deltae.f); volume
smaller than ’volmin’ (in energy.f)

• ’nochange’ = 22: volume larger than ’volmax’ (in deltae.f); volume
larger than ’volmax’ (in energy.f)

• ’nochange’ = 30; ’nochange1’ = 30: distance in penalty space too small
for two configurations for penalty function 3 (in penaltyupdate.f)

• ’nochange’ = 31; ’nochange1’ = 31: distance in penalty space too small
for two configurations for penalty function 4 (in penaltyupdate.f)

9 Flowchart of the program

9.1 General aspects

The main program begins in the file g42prog.f. First the entries in the in-
put.f file are read, and the metascript (commandscript) is generated. This
script is written into a dummy-protocol of a run usually called ’reference’,
together with the entries set in input.f. (In this ’run’ only a random starting
configuration is generated, the database is loaded in, consistency checks are
made in inpclcwr.f, and one energy calculation is performed).

Next, the program looks for entries in the command-script, and then
follows this script. Whenever it encounters the command ’gennewconf’ or
’loadnewconf’, it assumes that a sub-run or a major piece thereof has been

153



finished, and writes an endconfiguration for the current run (three versions:
with full coordinates of all building units and atoms, only atom coordinates,
and only coordinates of the centers of mass of the building units), closes the
protocol and writes the newly generated configuration into a start configu-
ration file and opens a new protocol. Furthermore, it loads the data from
the database and checks whether all parameters are appropriate.

Whenever the command corresponds to calling a module, g42 writes the
current configuration into a temp-file and copies this file into an input-file
for the module. After the module is finished, an output file for the module is
generated (usually in the three versions mentioned above). The next module
continues with the last configuration of the current module.

If the command contains parameters, these are read and set at this sta-
ge. Of course, this holds in particular for those commands that only set
parameters and do not activate a module. Note that some parameters are
set directly inside the sub-routine that is called. In this case, the externally
assigned parameters are overwritten.

9.2 Metascripts

An important feature of the G42+-program is its metascript capability, the
ability to programthe code internally by prescribing or automatically gene-
rating a metascript, which gives the order in which various modules and
simple commands are called and executed. To control this, we define a flag,
’hvprogramflag’. The simplest way to run G42+, is to write the sequence
of commands explicitly. This is okay for e.g. testing purposes or for quick
runs combining only a couple of modules, or when you explore a particular
starting configuration. However, it becomes quite tiresome, if e.g. the sub-
runs are repeated for many different random number sequences. Thus, there
exists the possibility to program essentially a ’subroutine’ within input.f,
which generates the full command script automatically.

To achieve such a programmed sequence of commands, we can also have
pre-prepared sets of flexibly constructed commands constituting small inter-
nal pieces of code inside input.f, which then automatically generate many
commands for complex but nevertheless repetitive pieces of command code.
Currently, three such types of command meta-programs are provided, with
the choice given by the setting of ’hvprogramflag’.

1. ’hvprogramflag’ = 0: sequence of explicit commands listed by hand

2. ’hvprogramflag’ = 1: repetition of a sequence of exploration runs for
different starting configurations, different pressures, and different seeds.
Especially useful for massive landscape exploration and global optimi-
zations

3. ’hvprogramflag’ = 2: sequence of setpressure-relaxation-setpressure-...
commands, which is used to check whether various starting minima

154



found at one type of pressure remain minima at higher (or lower)
pressures.

4. ’hvprogramflag’ = 3: sequence of threshold runs for various lids star-
ting from a single starting minimum.

hvprogramflag = 0
Since generating the commands automatically involves the generation of

more or less complex character strings, we need to involve many character
variables. For simplicity, these are all 80 characters long, and fall into two
different groups: hvc80 n (n is an integer 1,2,3,...) for configuration names
etc., and hvcsuff n (n = 1,2,3...) for suffixes (or prefixes), which are added
to the root of the configuration names in order to let us know, which part of
the exploration is currently active. Finally, there are the 80-character strings
for lists of lid-values, pressure values, names of initial configurations, initda-
ta and fixdata. The other character variables with names hvc... represents
pieces of stringtext of defined length that have been used in the past to
construct the repeated parts of the commands.

Please keep always in mind that several strings will be concatenated with
various suffixes and prefixes, both during the generation of commands and
during the output phase of various modules. Thus, 1) always use the ’trim’
command when calling or concatenating one of the string-variables, and 2)
do not choose configuration or initdata names that exceed 30 characters!

Quite generally, the commands used in the metascripts consist basically
of some sequence like this: Load new configuration, set new seed for random
number generator, set new pressure value, perform simulated annealing sub-
run, perform quench sub-run, load new configuration,... An important aspect
is the fact that sometimes we need to load in the output configuration of
the previous sub-run, in order to use it as the input configuration of the
new sub-run. Sometimes, this is already provided for, i.e., the new module
automatically uses the last file (! This is sometimes, but not always, identical
with the output file of the previous module; thus if one wants to use the
output file one has to load it in explicitly !) of the previous module to
continue the run.

However, one often wants to have more control, i.e., we want to make su-
re that we read-in the outputfile of the previous module and not the last one
etc.. Thus, we need to think about what the name of the previous outputfile
is going to be, and then make sure that we enter this name in the charac-
ter variable in the command ’loadnewcfg’, and similarly, we have to think
of giving the new configuration an appropriate name. In order to achieve
this automatically, we use character variables, which are placed after each
other using the Fortran ’//’ syntax. But this requires that we do not have
empty spaces in the names, and the names must have exactly the number
of characters as the definition demands. In particular, this must also hold

155



true for all the character variables that are constructed from joining sever-
al such character-name-pieces! This is one of the two reasons for using the
’trim’ command; the other is that we do not want to create character strings
that are beyond our capability to handle properly resulting in undesirable
cut-offs.

Note that when you create your own character variables, make sure they
start with ’hv’ (for local ’help variable’), in order to avoid interference with
names that have already been used globally in ’varcom.inc’. Furthermore,
note that most of the arrays employed have no more than 99 entries. If you
want to use arrays with more entries, you will have to change the entries in
the ’tform’-function, which converts numbers to character strings, accordin-
gly.

Concerning the actual program set-up, remember that in (primitive)
Fortran only 72 columns of a line are taken into account when compiling.
The actual executable commands start in line 7, and have to finish by line
72 (unless continued to the next line). The first six columns are employed for
specifying line numbers (to serve as targets of ’goto’ commands) and num-
bers of format statements, for indicating that the current line is a comment,
or for indicating that the current line is a continuation of the previous line.
A ’c’ at the beginning of a line (first column) indicates a comment (the line
is ignored), and a ’f’ in the sixth column of a line indicates that the line is a
continuation of the formula from the preceding line (thus allowing to evade
the 72 character limitation).

If you do want to add your own complex metascript inside input.f, be
careful: Make sure that ’icheck’ is correctly calculated. Add the command
’end’ at the end. Make sure that the new character variables ’hvc...’ are
consistent in length and that the ’trim’ command is used everywhere. Be
careful, not to introduce new global variables: all the variables should be
contained inside input.f. Finally, ’tform(in1,length1)’ is a function that ge-
nerates for an integer number ’in1’ a character string of length ’length1’.
This string that is returned is always padded to be of length 5, but the rele-
vant information is in the first ’length1’ characters. When we use a ’smaller’
string variable in the calling program to place ’tform’ onto, we read off from
the beginning. An error occurs, if we send from ’tform’ with length ’length1’
= 5, but use a string variable with length equal e.g. 4. Always match the
’length1’ parameter with the length of the receiving string.

9.2.1 Parameters for meta-program: repeated block of commands

The typical situation consists of small blocks of commands that are repeated
for many seeds. This is now usually replaced by running the many seeds via
the multi-walker-separate option. But if we need to repeat the same run
hundreds or more times, then we cannot do this with a simple multi-walker
option anymore since the required memory is too large.

156



Of course, the kind of repeated set of commands is up to the user, so you
will have to insert them on your own inside the script at the appropriate
place! Several of the commands that have been used in the past have been
left inside the script but commented out (’c’ character at the beginning of
the line.

The seed we set at the beginning is thus the ’masterseed’. If one wants to
repeat multi-walker modules for new ’masterseeds’, one can do that, of cour-
se. ’commrepflag’ gives the number of repeats of a block in the command-
array. ’commblk’ denotes the length of this block. ’hvstart’ is the starting
number for the masterseeds and the suffixes of the new name of the gene-
rated function. ’hvseeddiff’ is the difference between two successive master
seeds. The first ’masterseed’ is ’hvstart’+1. Make sure that you separate
two ’masterseeds’ by at least ’nwalk’ (’hvseeddiff’ ≤ ’nwalk’); else you just
repeat runs. Note that one might want to expand/modify this initial set-up
appropriately for other types of repeated blocks.
commrepflag = 0
hvstart = 0000
hvseeddiff = 10
commblk = 5
If we want to set ’hvstart’ via reading from an external file, then set both
’readinflag1’ and readinflag’ to one. readinflag1 = 0

Note that if we want to run, e.g., several different ’initdata’-configurations,
the loop over these configurations is external to the block of commands de-
scribed by ’commrepflag’ and ’commblk’. ’hvlconf’ gives the number of con-
figurations, for which the whole inner block is to be repeated ’commrepflag’
times.

You are free to use these array names in your own script program, but in
the meta-program(s) provided, they denote the list of root names for the sub-
runs (’hv80confname(...)’), the list of files to be loaded in (’hv80initdata(...)’),
the list of files with fixed atoms to be loaded in (’hv80fixdata(...)’); further-
more, the list of pressures being investigated (’hv80press(...)’) and lids to
be studied (hv80thlid(...)). These arrays can contain up to 99 entries each.
Note that we need to provide at least the first entry in these arrays, even
if we only perform random generation of new files, i.e. we have only one
configuration name, for initialization purposes. Also, even if we only want
to use the pressure given in the main part of input.f, we have to provide it
again as the first entry in ’hv80press’ since the meta-script explicitly sets
the pressure according to the array (unless you change the meta-script, of
course).
hv80confname(1) = ’cov003-14.1.7.0’
hv80confname(2) = ’chck38.0.8.0.02’
hv80confname(3) = ’chck38.0.8.0.03’

hv80initdata(1) = ’Test-MgO-Bulk’

157



hv80initdata(2) = ’db38.0.8.0-02tri8.dat’
hv80initdata(3) = ’db38.0.8.0-03tri8.dat’

hv80fixdata(1) = ’test’
’hvlconf’ is the number of different configuration names

hvlconf = 1
Note that if we want to run for several different pressures, we must enter

values into the variable array ’hv80press’. This should be done in a F-format,
so that G42+ can interpret the string. In order to allow a smooth operation,
one should make each entry of the same length (e.g. 15 characters, including
the . and the -sign.). Remember that pressure is given in units of eV/Ang**3.
hv80press(1) = ’0.0000000000000’
hv80press(2) = ’10.000000000000’
hv80press(3) = ’1.0000000000000’

hvlpress is the number of different pressures used and ’hvpressoffset’
is the offset in ’hv80press’. This is useful for the purpose of adding more
pressures to the same type of exploration when starting a new set of runs.
This way, you can keep the same naming conventions where the pressures
are included by their position in the ’hv80press’-array (e.g. pressure = 0
corresponds to pressure-suffix 1, and pressure = 10 to pressure-suffix 2,
respectively).
hvlpress = 1
hvpressoffset = 0

9.2.2 Parameters for meta-program: Slowly changing pressures

We also can be interested in the following scenario: We have found a local
minimum at some pressure, and now we want to know, whether it is still
a minimum at other pressures. Thus, we construct the following sequence:
Quench-Change Pressure- Load output-Quench-... We can employ the pres-
sure list above, and the command sequence given below for ’npress’ greater
than zero.

’npress’ is the number of pressure steps to be explored, ’hvc80 1’ is the
overall ’confname’, ’hvc80 2’ is the name of the initial starting configuration.
Note that we use only one seed value, given by the explicit seed-declaration
in input.f. In principle, one could write a larger metascript with additional
loops, that allows for several quenches with different random seeds at each
pressure stage, of course.
npress = 0
hvc80 1 = ’testconf’
hvc80 2 = ’testinitdata’

158



9.2.3 Parameters for meta-program: Multi-lid threshold runs

The set-up of for threshold runs with many stops in-between and several lids
is somewhat more complicated. Of course, we can stop the threshold runs
many times along their trajectories and perform many quenches, but in this
case, we cannot reproduce only some piece of a run that is of particular
interest (e.g. in order to measure some additional quantity along the way) -
We would have to repeat the whole run if we wanted to do so because of the
random number generator. But if we set it up as a piece-wise procedure with
well-defined random number selections and input-files, then this is possible,
of course. To achieve this, we can use the block of commands below to
generate the sequence of necessary commands automatically.

The basic scheme is the following: We start from a given initial minimum,
select a lid from the lid-array, run a short threshold-run below this lid, use
the final configuration of this run as starting point for several quench runs,
perform a second threshold run starting from the final configuration of the
first run, etc. For every lid, we repeat this sequence of run threshold-quench-
threshold-... runs for different random number sequences. Finally, the whole
process is repeated for the next lid in the lid-array.

’hvc80 1 is the underlying ’confname’ during the threshold run, and
’hvc80 2’ is the name of the starting configuration at the beginning of the
first threshold run (usually a local minimum).
hvc80 1 = ’testthreshMgO4’
hvc80 2 = ’no-endcfgtestMgO’

’nthlids’ gives the number of lid values to be explored from the starting
minimum (’hvc80 2’). ’nthlids’ should be smaller or equal to the length of
the array ’hv80thlid’ where the energies of the lids are stored.
nthlids = 0

’hv80thlid’ is an array with a sequence of lids to be investigated
by the program. The energies of the lids are given as character
variables in the F-format. They should not be given in exponential
format.
hv80thlid(1) = ’-18.600000’
hv80thlid(2) = ’-18.500000’
hv80thlid(3) = ’-18.400000’
hv80thlid(4) = ’-18.300000’
hv80thlid(5) = ’-18.200000’
hv80thlid(6) = ’-18.100000’
hv80thlid(7) = ’-18.000000’
hv80thlid(8) = ’-17.900000’
hv80thlid(9) = ’-17.800000’
hv80thlid(10) = ’-17.700000’

’hvlidoffset’ gives an offset, i.e., if we want to start the
labeling of lid runs not with the bottom lid, but with a higher

159



number. This can make sense, if one wants to ’add’ higher lids without
having to relabel the output files (e.g. if one has already made
runs with lids one and two, and now starts a new set of runs for
lids three and four). Furthermore, one usually wants to use the
same sequence of lids for many different minima in a system, in
order to match the observed barriers. But since it does not make
sense to perform a lid run at lids (and thus energies) that are
below the starting minimum, one would want to use the same list
of lids but a different offset for each minimum.
hvlidoffset = 0

’nthseed’ is the number of seeds for a given lid value; one wants
to repeat the runs for the same lid and starting minimum, in order
to gain some statistics regarding the landscape. ’hvthseedinit’
is the value of the seed (= masterseed) at the beginning of the
generation loop (analogous to ’hvstart’) Note that we always generate
a new seed value at the beginning of another piece of threshold
run. In this way, we can reproduce pieces of the threshold analysis
if desired. In order to take the multi-walker option into account,
we select the difference between subsequent random number seeds
’hvthseeddiff’ to be larger or equal to the number of walkers employed.
nthseed = 3
hvthseedinit = 1
hvthseeddiff = 1

’nthrun’ is the number of pieces of a threshold run of individual
length (’looplim’ =) ’hvc80 3’. The length ’hvc80 3’ is given as
a character string in the I-format.
nthrun = 10
hvc80 3 = ’005000’

’nthquench’ is the number of quenches to be started at the end
of each such threshold run piece. The length of the quenches etc.
should be set in the quench-module. Note that the pressure used
in the run is the one given by ’press = ’ in input.f.
nthquench = 5

9.3 Metascripts: code of the meta-programs

Next, we provide the explicit codes provided in input.f for the
different meta-program options described above. After each command
has been put into the command-array, we also print it to screen
(or nohup.out) in order to gain an overview over what the commands
will be. A complete list of the commands generated is also provided
in the protocol of the test (reference) configuration.

160



9.3.1 Meta-program 0: Explicit list of commands

if (hvprogramflag.eq.0) then
command(1) = ’setseed(00002)’
command(2) = ’gennewcfg(test2La2F2Se QE1,1,1,0,0,1,1)’
command(3) = ’setwalkcurr(1,1)’
command(4) = ’mws simann’
command(5) = ’mws graddesc’
command(6) = ’end’

Set ’icheck’ equal to the number of the last command (’end’)
icheck = 5

9.3.2 Meta-program 1: Script for repeated block of commands

The outermost loop is the choice of different root-configuration
names. Usually, different root-configuration names are needed if
we are loading in from a set of dfiferent starting configurations
from the array ’hv80initdata’. Next we have a loop over different
pressures (including the ’setpress’ command), and then the loop
over different random numbers. Inside this last loop we have the
actual sequence of commands such as the selection of a new random
seed (’setseed’ command), generation or loading of a starting configuration,
setting the number of walkers to be used, and the actual modules
to be run in sequence.
elseif (hvprogramflag.eq.1) then
icheck = (commrepflag*commblk + 1)*hvlconf*hvlpress + 1
if (icheck.gt.commax) then
print *,’too many commands’
stop
endif
commcount = 0
do i7 = 1,hvlconf
do i6 = 1,hvlpress
hvcsuff 2 = tform(hv3+i6,2)
The suffix ’hvcsuff 2’ indicates the pressure being used
commcount = commcount + 1
command(commcount) =
f ’setpress(’//trim(hv80press(hvpressoffset+i6))//’,’
f //trim(hvcsuff 2)//’)’
print *,commcount,command(commcount)
hvstart0 = hvstart
do i5 = 1,commrepflag
hv1 = hvstart0+i5*hvseeddiff
hvcsuff 1 = tform(hv1,5) ’hvcsuff 1’ is both the ’masterseed’ of

161



the run and one of the suffixes to its name, hv80confname//hvcsuff 1,
giving the full ’confname’ (together with the suffix for the pressure
’hvcsuff 2’. Note that the suffix indicating the identity of the
walker is added subsequently during the loading or the new generation
of starting configurations.

Now comes the start of the repeated block of commands:
commcount = commcount + 1
command(commcount) =
f ’setseed(’//trim(hvcsuff 1)//’)’
print *,commcount,command(commcount)
hvc80 1 = trim(hv80confname(i7))//’-’//trim(hvcsuff 2)
f //’-’//trim(hvcsuff 1)
The next piece is the (commented out) alternative of loading in
a configuration from the array ’hv80initdata’. Remember that you
need to provide the configurations to be loaded in with already
a suffix ’ ????’, where ’????’ corresponds to the number of the
walker, e.g. ’0001’.
c commcount = commcount + 1
c command(commcount) =
c f ’loadnewcfg(’//trim(hvc80 1)//’,’
c f //trim(hv80initdata(i7))//’,1,1,4)’
c print *,commcount,command(commcount)
This piece generates a new random configuration (typical for the
start of a global exploration):
commcount = commcount + 1
command(commcount) =
f ’gennewcfg(’//trim(hvc80 1)//’,1,1,0,0,1,4)’
print *,commcount,command(commcount)
Next we select the walkers:
commcount = commcount + 1
command(commcount) = setwalkcurr(1,4)
print *,commcount,command(commcount)
Now come the actual module commands; most of them are commented
out:
c commcount = commcount + 1
c command(commcount) = ’mws path’
c print *,commcount,command(commcount)
commcount = commcount + 1
command(commcount) = ’mws simann’
print *,commcount,command(commcount)
c commcount = commcount + 1
c command(commcount) = ’mws monte’
c print *,commcount,command(commcount)
commcount = commcount + 1

162



command(commcount) = ’mws quench’
print *,commcount,command(commcount)

This is the end of the repeated block of commands. Remember:
the numbers of commands in the block that is to be repeated must
be equal to ’commblk’ (= 5 in this example: ’setseed’, gennewcfg’,
’setwalkcurr’, mws simann’, mws quench’).
enddo
End of the repeating of the inner command block
enddo
End of the repeating the pressure loop
enddo End of the run over all the confnames/initdata. Now follows
the final ’end’ command:
commcount = commcount + 1
command(commcount) = ’end’
print *,commcount,command(commcount)
Finally, we check that the total number of commands is correct:
if (commcount.ne.icheck) then
print *,commcount,icheck
stop
endif

9.3.3 Meta-program: Script for quench-pressure-quench sequence

Note that here you have to count yourself the number of commands that are
needed for each pressure (= 4 in this example). Of course, you can extend
this script, e.g. by adding a gradient descent after the quench module.
elseif (hvprogramflag.eq.2) then
icheck = npress*4 + 1
if (icheck.gt.commax) then
print *,’too many commands’
stop
endif
commcount = 0
do i7 = 1,npress
hvc80 3 = trim(hv80press(i7+hvpressoffset)
’hvcsuff 1’ indicates the number of the pressure in the pressure array ’hv80press’,
and is used to specify configuration name.
hvcsuff 1 = tform(i7+hvpressoffset,2)
commcount = commcount+1
Note that we need to make a distinction concerning the file that gets loaded
in: For the first pressure (i7 = 1), we take the initial data provided from
outside G42+, while for the subsequent pressures, we take the outcome of
the local minimization at the previous pressure. if (i7.eq.1) then
command(commcount) =

163



f ’loadnewcfg(’//trim(hvc80 1)//’-’//trim(hvcsuff 1)//’,’
f //trim(hvc80 2//’,1,1,1)’
else
hvc80 4 = ’no-mwsquoutp’//trim(hv80 5)
command(commcount) =
f ’loadnewcfg(’//trim(hvc80 1)//’-’//trim(hvcsuff 1)//’,’
f //trim(hvc80 4)//’,1,1,1)’
endif
print *,commcount,command(commcount)
commcount = commcount + 1
setwalkcurr(1,1)
print *,commcount,command(commcount)
hvc80 5 = trim(hvc80 1)//’-’//trim(hvcsuff 1)
commcount = commcount + 1
command(commcount) = ’setpress(’//trim(hvc80 3)//’,1)’
print *,commcount,command(commcount)
commcount = commcount + 1
command(commcount) = ’mws quench’
print *,commcount,command(commcount)
enddo
End of the loop over all the pressures. Now follows the ’end’ command:
commcount = commcount + 1
command(commcount) = ’end’
print ’,commcount,command(commcount)
We next check whether the number of command is correct:
if (commcount.ne.icheck) then
print *,commcount,icheck
stop
endif

9.3.4 Meta-program: Script for sequence of threshold runs

Again keep in mind that you have to compute the number of commands
yourself: Here: for each of the ’nthquench’ quenches after a threshold run
piece, we need 5 commands, and in addition each threshold run piece requires
another 4 commands, and there are ’nthrun’ threshold run pieces that are
repeated for ’nthseed’ random number sequences, and the whole takes place
for ’nthlids’ lid values.
elseif (hvprogramflag.eq.3) then
icheck = nthlids*nthseed*nthrun*
f (4 + 5*nthquench) + 1
if (icheck.gt.commax) then
print *,’too many commands’
stop

164



endif
commcount = 0
seedcur = hvthseedinit - 1
do 1 i6 = 1,nthlids
hvc80 4 = trim(hv80thlid(i6+hvlidoffset))
hvcsuff 1 = tform(i6+hvlidoffset,2)
’hvcsuff 1’ indicates which of the lids in the lid-array is being studied.
do 2 i5 = 1,nthseed
hvcsuff 2 = tform(i5,2)
’hvcsuff 2’ indicates which seed is being used as master seed
do 3 i7 = 1,nthrun
hvcsuff 3 = tform(i7,2)
’hvcsuff 3’ indicates, which piece of the threshold run is being performed.

The next lines corresponds to loading in a new configuration. This will
either be the external configuration (i7 = 1), i.e. the starting minimum
’hvc80 2’, or the output configuration of the previous threshold run piece,
’hvc80 6’. Remember that the name of the external starting configuration
must be of the form ’hvc80 2’ ????, where ???? is the number of the walker
that is supposed to use the file ’hvc80 2’ ???? as starting minimum. ’hvc80 5’
is the ’confname’ of the threshold run piece to be started, whose name
indicates that it is for lid number ’hvcsuff 1’, repeat number of threshold
’hvcsuff 2’ and threshold run piece number ’hvcsuff 3’.
hvc80 5 = trim(hvc80 1)//’-’//trim(hvcsuff 1)
f //’-’//trim(hvcsuff 2)//’-’//trim(hvcsuff 3)
commcount = commcount + 1
if (i7.eq.1) then
command(commcount) =
f ’loadnewcfg(’//trim(hvc80 5)//’,’//trim(hvc80 2)//’,1,1,1)’
else
command(commcount) =
f ’loadnewcfg(’//trim(hvc80 5)//’,’//trim(hvc80 6)//’,1,1,1)’
endif
print *,commcount,command(commcount)
Now we pick the walkers to be used:
commcount = commcount + 1
command(commcount) = setwalkcurr(1,1)
print *,commcount,command(commcount)
hvc80 6 = ’no-mwsthoutp’//trim(hvc80 5)
Note that the reference to which walker is meant is added automatically
when executing the loadnewcfg command. The previous threshold-section
has just produced ’nwalk’ outputs that now serve as inputs for the next
section.

The next line corresponds to ’setseed(seedcur)’. Remember to make sure
that ’hvseeddiff’ is larger or equal to the number of walkers being used, since

165



’setseed’ changes the master seed.
seedcur = seedcur + hvseeddiff
hvcsuff 4 = tform(seedcur,5)
commcount = commcount + 1
command(commcount) = ’setseed(’//trim(hvcsuff 4)//’)’
print *,commcount,command(commcount)
The next line corresponds to calling the threshold module, ’thresh(Elimit,looplim)’:
commcount = commcount + 1
command(commcount) =
f ’mws thresh(’//trim(hvc80 4)//’,’//trim(hvc80 3)//’)’
print *,commcount,command(commcount)
After the threshold run piece, we perform ’nthquench’ local minimizations
(here: long quench followed by gradient descent):
do 4 i8 = 1,nthquench
hvcsuff 5 = tform(i8,2)
’hvcsuff 5’ indicates the number of the quench run being performed. Next
we load in the output of the threshold run piece for all walkers, pick the
walkers to be used, set the seed, and perform the local minimization:
hvc80 7 = trim(hvc80 5)//’-’//trim(hvcsuff 5)
commcount = commcount + 1
command(commcount) =
f ’loadnewcfg(’//trim(hvc80 7)//’,’//trim(hvc80 6)//’,1,1,1)’
print *,commcount,command(commcount)
commcount = commcount + 1
command(commcount) = setwalkcurr(1,1)
print *,commcount,command(commcount)
seedcur = seedcur + hvseeddiff
hvcsuff 6 = tform(seedcur,5)
commcount = commcount + 1
command(commcount) = ’setseed(’//trim(hvcsuff 6)//’)’
print *,commcount,command(commcount)
commcount = commcount + 1
command(commcount) = ’mws quench’
print *,commcount,command(commcount)
commcount = commcount + 1
command(commcount) = ’mws graddesc’
print *,commcount,command(commcount)
enddo
End of loop over quenches from end point of threshold piece
enddo
End of loop over pieces of threshold run
enddo
End of loop over repetitions of threshold run enddo End of loop over lids
being explored. Now follows the ’end’ command:

166



commcount = commcount + 1
command(commcount) = ’end’
print *,commcount,command(commcount)
Finally, we check whether the number of commands is correct:
if (commcount.ne.icheck) then
print *,commcount,icheck
stop
endif

10 Input by user

There are several ways G42+ receives input from the user:

• Setting of array limits in ’varcom.inc’ (c.f. section ...).

• Entering entries in the various databases: defining building groups and
atoms (c.f. section ...).

• Providing a starting configuration that is to be loaded in (c.f. section
...).

• Creating the command metascript in the input.f file (c.f. section ...).

• Defining the configurations in the input.f file (c.f. section ...).

• Setting output flags in the input.f file (c.f. section ...).

• Defining the parameters of the various modules in the input.f file,
which generate/load configurations and perform explorations (c.f. sec-
tion ...).

• Selecting the energy functions in the input.f file (c.f. section ...).

• Defining the moveclasses for the random-walk based runs in the input.f
file (c.f. section ...).

• Setting parameters for the initialization routines in the input.f file (c.f.
section ...).

• Setting additional global parameters for the runs in the input.f file (c.f.
section ...).

10.1 Data read-in from external parameter file

The program has the option that a few parameters can be read in from an
external datafile, called ’externaldata’, in order to avoid having to recompile
G42+ again. If the flag ’readinflag’ is set to one, ’readinflag’ = 1, this file is
read in. In input.f, we have at each of those variables which can be be read in,

167



in principle, a second specific flag (’readinflag1’,...,’readinflag6’) that must
be set equal to 1, if one wants to overwrite the value from input.f with the
value taken from the external datafile. Note that if the code expects such a
value to appear in ’externaldata’, then it will crash if not provided with it.

Currently, the following variables can be read in from an external file
(these variables will be the same for all walkers!):

1. ’hvdat1’ = ’hvstart’ (format I6)

2. ’hvdat2’ = ’nTmax’ (format I9)

3. ’hvdat3’ = ’tolhs’ (format F10.5)

4. ’hvdat4’ = ’volfactor’ (format F10.5)

5. ’hvdat5’ = ’numsteps’ (format I9)

6. ’hvdat6’ = eabinitsafe (format F15.5)

Note that once you decide to read in data from an external file, entries
for all six variables have to be provided in ’externaldata’. You decide later
when filling in input.f, whether you actually want to use them according to
the value you give for the second, specific flag.
readinflag = 0 if (readinflag.eq.1) then
open (10,file=’externaldata’)
read (10,1100) hvdat1
1100 format (I6)
read (10,1101) hvdat2
1101 format (I9)
read (10,1102) hvdat3
1102 format (F10.5)
read (10,1102) hvdat4
read (10,1101) hvdat5
read (10,1103) hvdat6
1103 format (F15.5)
close(10)
endif

10.2 Data for initial dummy test configuration ’reference’

Originally, only one run (today we would call it a sub-run) was being per-
formed with G42+. Thus, we still can define the name of the initial confi-
guration and the various ways to generate it within input.f without having
to use the command ’gennewcfg’ or ’loadnewcfg’. Nowadays, we use this in-
itial configuration as a dummy configuration called ’reference’, in order to
test whether all the parameters, flags, configuration variables, etc. that are
entered in input.f are consistent.

168



Note that most of the variables (e.g. dimensionality of the system: ’di-
mens’; name of the database with atom-specific information ’atombasena-
me’; maximum number of atoms allowed: ’numatommax’; etc.) set in input.f
for the purpose of generating this test configuration are actually global and
are not changed again during the many subsequent sub-runs, whenever a
new configuration is generated or loaded in from an external file! Only those
variables and parameters which are explicitly set as part of a command that
calls a run-module or explicitly sets a particular variable can be changed
during the run.

We now use the initial set-up of one empty reference run for registering
the command-sequence etc. We only look at one walker, setting it equal to
’iwalk’ = 0. Also, we usually do not load in a configuration but generate one
at random. By setting iwalk = 0 at this stage, we only produce one reference
configuration. Note that, we assume that no further modules are applied
to this reference configuration: After the test-stage, we proceed always via
loadnewcfg or gennewcfg. Because of this, all entries that depend on a walker-
index ’iwalk’ should also include the value for ’iwalk’ = 0, even if later only
walkers starting with ’iwalk’ ≥ 1 are being used in the explorations.
iwalk = 0

At this stage, we also define the number of active walkers that we in-
tend to employ during out explorations, ’nwalk’. Make sure that (’nwalk’ +
’nwalkdum’ + 2) ≤ ’nwalkmax’ (set in ’varcom.inc’). The variable ’nwalk-
dum’, which defines the number of walkers that can be generated during
cross-over moves is set together with the multi-walker moves.
nwalk = 1

NOTE: THE FILES AND ARRAYS OFTEN ARE QUITE BIG SIN-
CE THERE CAN BE MANY WALKERS PRESENT. THUS MAKE SURE
TO USE AS SMALL VALUES IN ’VARCOM.INC’ FOR THE ARRAY SI-
ZES AS POSSIBLE. THIS TAKES A MINUTE, BUT IT WILL BE WOR-
THWHILE !

• ’confname’ is the variable that serves as the root-designation of a con-
figuration during a sequence of sub-runs. It will be changed whenever
you use the ’gennewcfg’ or ’loadnewcfg’ commands (of course, you can
give the same name again, but that will usually only lead to confusion
when analyzing the output data). Note that ’confname’ is going to be
extended by many prefixes and suffixes indicating what kind of confi-
guration file is generated at what stage of the run. Thus it is strongly
recommended to use a moderately short name not exceeding thirty
characters (the limit is 80, but then there will be unpleasant cut-offs
of parts of the name along the way). For consistency purposes, we cho-
se as the name of the test configuration always the name ’reference’ as
initial ’confname’.
confname = ’reference’

169



• ’atombasename’ is the file name for the database containing informa-
tion about atoms. This database must be provided with all necessary
entries for the atoms etc. involved. For more information about the
set-up of the atomdatabase, see section .... This variable is not chan-
ged throughout the sequence of runs set up in the metascript.
atombasename = ’atomdatabase’

• ’bgbasename’ is the file name for the building unit database. This da-
tabase must be provided with all necessary entries for the building
units involved. For more information about the set-up of the bgdata-
base, see section .... This variable is not changed later.
bgbasename = ’bgdatabase’

• guptabasename is the file name for the gupta-interaction database.
This variable is not changed later. A file with the specified name is
only needed if both ’guptaflag’ and ’readguptaflag’ are set equal to
one. For more information on the guptadata information, see section
...
guptabasename = ’guptadatabase’

• ’initdata’ : File name for a complete initial configuration ready to be
loaded in. This variable will be changed when using the ’loadnewcfg’
command. Since for the initial test we usually only generate a new
configuration, no file with this name needs to be provided.
initdata = ’test.dat’

• ’initdataflag’ indicates whether the starting configuration should be
generated:

1. ’initdataflag’ = 0 : generate a new configuration from scratch (the
usual case for the reference configuration)

2. ’initdataflag’ = 1 : Load in the configuration with the name ’in-
itdata’

3. ’initdataflag’ = 2 : Use configuration that contains fixed atoms
called ’fixdata’. Warning: for fixed atoms, the moveclass only al-
lows atom moves; for all other moveclasses ’natomfix’ and ’nty-
pfix’ must be equal to zero. If only the cell is to be prescribed,
then in ’fixdata’ one must set ’natumcur’ = 0, but ’numtypes’
= number of types. In general: ’natumcur’ in the configuration
file ’fixdata’ must equal the total number of atoms that are to
be read in and are fixed. CURRENTLY, FIXDATA IS NOT AC-
TIVE, because we now have another possibility to deal with the
case of having some atoms reside in fixed positions by assigning
values ’fixbg(...)’, according to which the atoms of a certain type
are not to be changed in their positions. Thus, one should not use

170



’initdataflag’ = 2, and one does not need to provide a file ’fixdata.
(As usual, such outdated options are kept for future reference in
the code.)

fixdata = ’fixed.data’
do i1 = 0,nwalkmax
natomfix(i1) = 0
ntypfix(i1) = 0
do i2 = 1,natommax
fixatom(i1,i2) = 0
enddo
enddo
initdataflag = 0

• ’seed’ is the initial value for the random number generator (must be
an integer). This value can (and should) be re-set using the command
’setseed’.
seed = 0001

• ’dimens’ is the dimensionality of the system. Currently, only three-
dimensional simulations are active, although quasi-two-dimensional sy-
stem can be studied (c.f. ’move2dflag’).
dimens = 3

• ’spgroup’ sets the space group of the configuration. This information is
only needed for those sub-runs, where one runs optimizations of ’freely
variable parameters’ (a subset of the actual coordinates connected via
symmetry operations). The default value is 1, which is the value requi-
red for the usual calculations without explicit symmetry constraints
being enforced. In particular, the information about the space group
is used for restrictions on cell moves in order to keep the symmetry.
Note that we get into trouble if we switch from runs with moveclasses
that assume no symmetry to those with symmetry and conversely. In
principle, one can use the combination of moveclasses together with
the ’setwalkcurr’ command to write a metascript that allows mixing
such explorations (one walker with and one without space group), but
this is no recommended.
do i1 = 0,nwalkmax
spgroup(i1) = 1
enddo

• ’icheck’ is the number of commands in the command array. It is later
to be calculated and defined explicitly when one constructs the list of
commands in the command array; at this early stage, it is only defined
as a default value.
icheck = 0

171



• Note that every time you call the modules ’gennewcfg’ or ’loadnewcfg’,
you define a new ’confname’. Thus, you will be able to distinguish the
output files among the data you produce. However, if you should call
the same module several times before generating a new ’confname’,
then outputs might be overwritten (e.g., in a module sequence ’quench
- gradient descent - quench - gradient descent’). Thus, there exists a
module counter ’countmodule’, which counts how many modules are
called since the last creation of a new ’confname’, and is set back to
zero when we call ’gennewcfg’ or ’loadnewcfg’. Up to 999 modules can
be called before a repetition occurs. If larger numbers are needed, then
one needs to change the appropriate locations in the code (i.e. wherever
’tform(countmodule,3)’ appears). Initially, this module counter is set
to zero in input.f.
countmodule = 0

10.3 Output control

The main output of G42+ are: configuration files (of bg-, at-, and bgonly-
type), a protocol (possibly in several pieces if one uses a parallelized version
of G42+), and sample files of the density of states (DOS) and attempted
moves (ATT) generated by the threshold algorithm. Important data put into
the protocol are: initial settings of flags and other variables, acceptance ratios
of moves and counters of how often moves are rejected outright (and for what
reasons), energies at various stages, ’best’ configurations’ (nowadays mostly
superfluous since these configurations are also saved as individual files), error
messages and warnings.

Also, keep in mind that one should use the ’nohup’-command to run
G42+, such that the file nohup.out gives a list of run-time messages that
are not inside the code but provide information where the code is currently,
and whether unusual things are happening.

In order to control what is being written by G42+, one can use certain
flags for output control.

10.3.1 Output of configuration files

• Under certain circumstances, it might be useful to save all the confi-
guration files as a concatenation of in form of one or a few giant files
(at-config, bg-config, no-config), in order to avoid having a thousands
of millions of tiny files inside one directory. This can be controlled
by the flag ’writeconfflag’, where we can distinguish between different
kinds of files (and the points at which such files are produced during
the runs). For the meaning of the prefixes in the file names, see ...
. Note that certain files (’temp’, ’im’, ’ref’, ’sha’) are never saved in
their standard (no-) format in the big files, since they are always nee-

172



ded for transferring data during a run, or for the comparison between
configurations.

1. ’writeconfflag’ = 0: No files saved in big file

2. ’writeconfflag’ = 1: all local minimizations, saved trajectories, etc.
for at-, bg- and no-configuration files.

3. ’writeconfflag’ = 2: The same as 1 plus ’start’, ’end’, ’last’, ’inp’,
’outp’, ’im’, etc. for the at- and bg-configuration files.

writeconfflag = 0

• ’writeatflag’ indicates where at-type configuration files are to be saved,
which only contain the positions of the atoms but no building unit in-
formation. In principle, all this information is already contained inside
the standard (no-) format, but usually it is helpful to also have the
(at-) format files available for easy visualization

1. ’writeatflag’ = 0: No at-configuration files are saved

2. ’writeatflag’ = 1: All at-configuration files are saved

writeatflag = 1

• ’writebgflag’ indicates whether bg-type configurations, where only the
position (of the centers) of the building units are given, should be
saved. Saving these files is useful when trying to understand the general
shape of a structure based on the arrangement of the building units
alone.

1. ’writebgflag’ = 0: No bg-config are saved

2. ’writebgflag’ = 1: All bg-config are saved

writebgflag = 0

• ’saveenergyflag’ indicates, under which conditions we recalculate the
energy when we save a configuration as a file. Usually, whenever a
configuration is written, its energy is again computed, but this can
become unnecessarily time-consuming if the energy is computed by an
external code on ab initio level. Currently, the setting is:

1. ’saveenergyflag’ = 0: we never recalculate the energy of a no-
, at- or bg- file, and instead enter the value of the last energy
calculation that has been performed.

2. ’saveenergyflag’ = 1: we recalculate only for no-files, and never
for any savecurr or savetraj files

3. ’saveenergyflag’ = 2: we recalculate only for the no-files

173



4. ’saveenergyflag’ = 3: we recalculate for all files, except for savecurr
or savetraj files

5. ’saveenergyflag’ = 4: we recalculate for all files (up to now the
default, but a problem for ab initio calculations which take lots
of time!)

saveenergyflag = 1

• Often, one might want to save configurations in alternative file-formats
that can be read easily by some external codes. While we can use the
convertall2all-program to achieve this in individual cases, it is often
more useful to have G42+ do it right away. This is controlled by setting
the appropriate flag. If you want additional formats being written, add
an appropriately named flag and modify the sub-routine where files
in different formats are being written. Furthermore, note that these
additional formats are only saved whenever the at-type configuration
files are saved by G42+, since the information in the (no-) format is
usually only useful within G42+ (note that this might change if we are
dealing with file formats that contain molecule-topology information
such as prmtop-files in AMBER; however, at least the prmtop-files are
too complex to generate within G42). The formats available for GULP
calculations are generated directly from GULP when the appropriate
’GULPformatflag’ is set (see GULP-section).

1. If we want to save files in the XCRYSTDEN format, set the flag
’XSFformatflag’ = 1.

2. For files in the XYZ-format, there is the flag ’XYZformatflag’ =
1. This is not activated, since the XYZ format is not uniquely
defined.

XSFformatflag = 0
XYZformatflag = 0

• If the atoms in the backgroundstructure are also to be included in the
saved configuration file, then set ’outputbackgroundflag’ = 1. Note
that currently this option is only active for the files that are saved in
the XSFformat. If e.g. the ’slightly relaxed’ background structure is of
interest as a future background structure for other calculations, then
one should extract it directly from the XSF-format file.
outputbackgroundflag = 1

• ’watchtraj’ determines whether every ’savestep’ steps the current con-
figuration is registered. Note that for the powell routine, ’savestep’
should be rather small. We always start a new trajectory when we en-
ter a new module. Note that the maximum number of files we register

174



for one such trajectory is 99999.
watchtraj = 0
savestep = 100

• ’savecurnum’ indicates, after how many (simulated annealing) steps
the current configuration should be saved (it will be always overwrit-
ten when the next configuration is save. ’savecurnum’ = 0 means ’No
saving’.
savecurnum = 0

• ’savecurbestnum’ indicates, after how many (simulated annealing) steps
a local best energy state should be saved. ’savecurbestnum’ = 0 means
’No saving’. Currently, savecurbestnum is not active.
savecurbestnum = 0

10.3.2 Energy output

• ’watch’ indicates, whether all Ebest configurations should be written
into the protocol (’watch’ = 1) or not (’watch’ = 0).
watch = 0

• ’watchenergy’ determines whether every ’energystep’ steps the current
energy is registered (implemented in simann-routine and in montecarlo
routine)
watchenergy = 0
energystep = 10000000

• ’watchpowell’ determines, whether every iteration in the powell-cycle
is registered with its energy.
watchpowell = 0

• ’wrflag1’ indicates, after how many steps an update of the run should
be written into the protocol.
wrflag1 = 1000000

• ’plotflag1’ indicates, whether xbest should be written in protocol (1 =
yes)
plotflag1 = 0

• ’plotflag2’ indicates, whether abest should be written in protocol (1 =
yes)
plotflag2 = 0

• ’plotflag3’ indicates, whether the mass of the cell should be written in
protocol (1 = yes)
plotflag3 = 0

175



• ’plotflag4’ indicates, whether Ebest should be written in protocol (1
= yes)
plotflag4 = 0

• ’plotflag5’ indicates, whether ’nochange’ (outright rejection of moves)
should be printed. This information is often quite useful in analyzing
the behavior of the system during the exploration.

1. ’plotflag5’ = 1: yes
2. ’pltoflag’ = 2: Make statistics over rejections

plotflag5 = 2

• ’plotflag6’ indicates, whether ’btabest’ and ’bta’ should be printed in
files (’bta’ is the cut-off parameter in the Ewald-type summation of
Coulomb energies)
plotflag6 = 0

• ’plotflag7’ indicates whether the acceptance rate is to be printed (af-
ter every temperature step in simulated annealing etc.; at the end in
quench and threshold)
plotflag7 = 1

• ’plotflag8’ indicates whether the movetype should be printed

1. ’plotflag8’ = 1: in the nohup.out file
2. ’plotflag8’ = 2: in the protocol
3. ’plotflag8’ = 3: both in nohup.out and protocol files

plotflag8 = 0

• If calls to energies, gradients, 2nd derivatives are to be counted, set
’counterenergiesflag’ = 1.
countenergiesflag = 0

• In order to avoid having gigantic numbers files in some scratch direc-
tory of an external machine, we can collect the most important ones
(configuration, protocol) into tar-files, by setting ’maketarflag’ =1.
maketarflag = 0

• If we do not use different parameters for different walkers, then we
do not need to write the (identical) entries of the various arrays into
the protocol for all walkers (since they are identical). This can be
controlled by ’writeallinitflag’.

1. If all entries for all walkers are to be written into the protocol in
’inpcalcwrite.f’, then set ’writeallinitflag’ = 1.

2. Else, only the value for ’iwalk’ = 0 is written (’writeallinitflag’ =
0)

176



10.4 varcom.inc

In the file ’varcom.inc’, we define all the global variables and the sizes of
all the global arrays in G42+. This includes maximum values for various
system sizes such as number of atoms, building groups etc.. These size para-
meters need to be adjusted, either reducing them in order to create a smaller
executable file, or enlarging them to take larger system sizes or more com-
plicated definitions of the systems into account (e.g. when defining the same
atom many times with different properties.)

• ’writeprotmax’: Maximal number of write statements stored when run-
ning modules (i.e. between calls to subroutine ’writeprot’)
parameter (writeprotmax = 1000)

• ’writeconfmax’: Maximal number of stored configurations when run-
ning modules (i.e. between calls to subroutine ’writeconf’)
parameter (writeconfmax = 100)

• ’wrfemax’: Maximal number of entries needed to convey error informa-
tion as double precision, integer or character variables (do not change
unless you have added long error description statements to the code)
parameter (wrfemax = 10)

• ’nprocmax’: Maximal number of processors for parallel computations
(only refering to the G42+ code, not to any external programs)
parameter (nprocmax = 1)

• ’nwalkmax’: Maximal number of walkers
parameter (nwalkmax = 12)

• ’chargemin’ and ’chargemax’ give the range of allowed ion charges in
arrays.
parameter (chargemin = -2, chargemax = 4)

• ’natommax’ is the maximal number of atoms; ’typemax’ is the maxi-
mal number of atom types.
parameter (natommax = 2000, typemax = 3)

• ’mflagmax’: Maximum number of types of moves. Currently, the value
of ’mflagmax’ equals 30+number of jumpmoves (the total number of
standard single walker moves is 25).
’stepsmainmax’: Maximal number of steps between temperature chan-
ges in simann (needed for arrays of data).
parameter (mflagmax = 20,stepsmainmax = 10000)

• ’configmax’: maximum number of testcells saved in a cell search when
trying to find periodic cells in a given configuration using the subrou-
tine ’findcell’;

177



’zeilmax’ is the maximal number of lines dealt with in the search
through the databases.
parameter (configmax = 10,zeilmax = 10000)

• ’groupmax’ = ’typemax’ * (’chargemax’ - ’chargemin’ + 1): needed
to define the maximum number of classes of atoms in the cell search
algorithm.
’commax’: maximum number of commands that can be executed by
the metascript in G42+.
parameter (groupmax = 32,commax = 5000)

• ’EBmax’: array size for attempts memorized in an adaptive schedule
for quench runs, and also the number of temperature changes in the
stopping criterion no. 3 in simulated annealing.
’Ebstmax’: maximum number of temperature changes involved in the
stopping criteria nos. 1 and 2 in simulated annealing.
’Eeqmax’: maximum number of ’numEchange’ steps in Monte-Carlo /
simulated annealing with equilibrium detection
parameter(Ebstmax = 50, EBmax = 500, Eeqmax = 5000)

• ’numkmax’: maximum number of vectors in reciprocal space used du-
ring Ewald summation.
parameter (numkmax = 100)

• ’mclassnummax’: maximum number of different moveclasses available
to chose from (should be at least 2).
parameter (mclassnummax = 3)

• ’boxmax’: maximum number of bins in sampling the local density of
states (DOS) in threshold runs.
parameter (boxmax = 100)

• numchangemax: is the maximum number of ’nochange’ indicators (should
only be changed if new ’nochange’ categories are added)
parameter (numchangemax = 40)

• ’bgtypemax’: maximum number of building unit types in the configu-
ration
’nbgmax’: maximum number of building units
’bgsizemax’: maximum size of a building unit
parameter (bgtypemax = 7,nbgmax = 1000, bgsizemax = 20)

• ’atomintmax’: maximum number of interacting atom types (for GRO-
MACS, AMBER, etc.)
parameter (atomintmax = 1000)

178



• ’bgpairmax’: maximum number of neighbor pairs in a building unit
’bgtripletmax’: maximum number of neighbor triplets in a building
unit
’bgquartetmax’: maximum number of neighbor quartets in a building
unit
parameter (bgpairmax = 80, bgtripletmax = 1000)
parameter (bgquartetmax = 500 )

• ’bgrotpairmax’: maximum number of pairs that can serve as axis-atoms
(ca. ’bgsizemax’**2)
parameter (bgrotpairmax = 1000)

• ’nbgmaxfix’: maximum number of building units in a fixed background
structure
’natommaxfix’: maximum number of atoms in a fixed background
structure
parameter (nbgmaxfix = 1, natommaxfix = 1)

• ’mqloopmax’: maximum number of loops in multi-quench runs
’mqnummax’: maximum number of quenches in a block in multi-quench
runs
parameter (mqloopmax = 1000, mqnummax = 100)

• ’saquenchloopmax’: maximum number of times we perform a quench
during a simulated annealing run
parameter (saquenchloopmax = 1000)

• ’ptquenchloopmax’: maximum number of times we perform a quench
during a parallel tempering run
parameter (ptquenchloopmax = 1000)

• ’lrloopmax’: maximum number of temperature loops in local (shadow)
runs in saloc-run module
’lrnummax’: maximum number of e.g. quenches in a block in local
(shadow) runs in saloc-run module (essentially the number of reference
configurations generated for a fixed temperature).
parameter (lrloopmax = 100, lrnummax = 1000)

• ’palengthmax’: maximum number of points along the path in a pres-
cribed path scenario.
parameter (palengthmax = 1000)

• ’paloopmax’: maximum number of loops in a prescribed path scenario.
parameter (paloopmax = 1)

• ’tempmax’ is the maximal size of the temperature array in Monte Carlo
or parallel tempering runs; usually this will be a small number - else

179



one would use a rule to generate temperatures automatically.
parameter (tempmax = 10)

• ’pressmax’: size of the pressure array in parallel tempering runs; usual-
ly a small number - else one would use a rule to generate pressures
automatically. Note that for parallel tempering at the moment one
might use a big value, where all columns are the same, if one does not
read the temperatures from an array. If both temperature and pressure
are read from an array, then ’tempmax’ should be equal to ’pressmax’.
parameter (pressmax = 10)

• ’detsea nmax’: maximum number of variables in the (meta)powell-
routine. This value should be larger or equal to ( 6 + 3 * (number
of atoms - 1) ).
parameter (detsea nmax = 200)

• ’Npairtypemax’: maximum number of pairs of atomtypes in a distance-
bin-routine. It should be equal or larger than ’typemax’ * (’typemax’
+ 1) / 2
parameter (Npairtypemax = 6)

• ’Ndistbinmax’: maximum number of bins in a distance-bin routine.
Note that the first and last bins are overflow due to non-precise atom-
atom distances. Thus one should add always 3 more bins to the value
one gets from the formula ’Distbinmax’ / ’distbinsize’ (the third bin
is for overflow-safety reasons).
parameter (Ndistbinmax = 103)

• ’Npenstructmax’: maximum number of structures that can be forbid-
den via a penalty term.
’Npenpairmax’: maximum number of pairs of such structures excluding
pairs with itself, thus ’Npenpairmax’ = ’Npenstructmax’ * (’Npen-
structmax’ - 1) / 2.
parameter (Npenstructmax = 501)
parameter (Npenpairmax = 260000)

• ’Nlaststructmax’: maximum number of structures that can be included
in the ’distancelast’ evaluation. It should be at least as large as ’icheck’
in input.f.
parameter (Nlaststructmax = 600)

• ’SIMPLMPmax’ and ’SIMPLNPmax’ are parameters in the SIMPLEX
routine (currently not active).
parameter (SIMPLMPmax = 201,SIMPLNPmax = 200)

180



• ’linescrystmax’: maximum number of invariable lines in a CRYSTAL-
input.
parameter (linescrystmax = 200)

• ’N zlayermax’: Maximum number of fixed z-layers in structure
parameter (n zlayermax = 1)

10.5 databases

10.5.1 atomdatabase

In the file ’atomdatabasemaster’, all the atoms are listed with their ato-
mic properties relevant for the calculations. Usually, we copy the data for
the chemical system of interest into a smaller file named ’atomdatabase’ to
speed up the runs (the reloading of the data for each new sub-run is much
faster than having to scan the full database). Note that all the atoms in-
cluded are repeated with a 100, 200 etc. added. This is for certain ab initio
calculations, where the atom numbers are needed again when using certain
pseudo-potentials.

Also, we include the following pseudo-atoms: Voids of different sizes
(Hohlraumgroesse) that mimic e.g. templates. Vacancies (placeholders in
structures for disordered or ordered atom arrangements). Electron bond.
Electron atom consisting of one or more electrons inside a spherical ’bag’.
These pseudo-atoms are listed with numbers 1000 and beyond. Note that
these number ranges are needed for G42+ to recognize that certain atoms
are in reality pseudo-atoms and should be treated differently from standard
atoms.

Concerning the entries, the atom mass is given in atomic units (mC/12),
the chemical potential is the enthalpy of formation at standard conditions
when available, melting and boiling points are all in eV/atom, the ionization
energies are in eV/atom, the electron affinities (in eV/atom) have been esti-
mated if no data were available, and the radii in Angstrom are taken from
Emsley (The Elements) and are interpolated if some valences were missing.

The names of the entries vary between German and English. In the fol-
lowing, we show a number of example entries. If you want to add your own
entriesto the file ’atomdatabasemaster’, follow these examples, and, if neces-
sary, check with the readinfo.f and getinfo.f Fortran files. Quite generally,
make sure that you not only use the correct sequence of entries, but also
that the same rightward shifts (in units of two empty characters) are inclu-
ded (these are indicated by dashes ’-’ in this manual). These are crucial for
the read-sub-routines to recognize which level of the search hierarchy the
read-routine has reached.

• 1.0
--Wasserstoff

181



--Chemisches potential <chempot> = 2.257
--Atommasse <mass> = 1.008
--Schmelzpunkt <tmelt> = 0.0012
--Siedepunkt <tboil> = 0.00175
--Minimum Ladung <minch> = -1.0
--Maximum Ladung <maxch> = 1.0
--Ladung <chrg> = -1.0
----Radius <rad> = 1.54
----Ionisierungsenergie <ion> = -0.754
--Ladung <chrg> = 0.0
----Radius <rad> = 0.78
----Ionisierungsenergie <ion> = 0.0
--Ladung <chrg> = 1.0
----Radius <rad> = 0.01
----Ionisierungsenergie <ion> = 13.595

• 1101.0
--HohlraumGroesse1(HG1)
--Chemisches potential <chempot> = 0.0
--Atommasse <mass> = 0.0
--Schmelzpunkt <tmelt> = 10.0
--Siedepunkt <tboil> = 10.0
--Minimum Ladung <minch> = 0.0
--Maximum Ladung <maxch> = 0.0
--Ladung <chrg> = 0.0
----Radius <rad> = 1.0
----Ionisierungsenergie <ion> = 0.0

• 1150.0
--Vacancy (size 0)
--Chemisches potential <chempot> = 0.0
--Atommasse <mass> = 0.0
--Schmelzpunkt <tmelt> = 10.0
--Siedepunkt <tboil> = 10.0
--Minimum Ladung <minch> = 0.0
--Maximum Ladung <maxch> = 0.0
--Ladung <chrg> = 0.0
----Radius <rad> = 0.01
----Ionisierungsenergie <ion> = 0.0

• This electron bond corresponds to charges in certain regions of a mo-
lecule. The actual charge is associated with this ’potential electron’ in
the building unit.
1900.0
--Elektronen-bond (used to associate charge with regions in

182



a molecule)
--Chemisches potential (standard bildungsenthalpie) <chempot>
= 0.0
--Atommasse <mass> = 0.0005
--Schmelzpunkt <tmelt> = 0.0
--Siedepunkt <tboil> = 0.0
--Minimum Ladung <minch> = 0.0
--Maximum Ladung <maxch> = 0.0
--Ladung <chrg> = 0.0
----Radius (geschaetzt) <rad> = 0.1
----Ionisierungsenergie (geschaetzt) <ion> = 0.0

• This electron bond is a charge in potentia used to model covalent
bonds. The charge is associated with this ’potential electron’ in the
building unit.
1950.0
--Electron available for bond (used to model covalent bonds)
--Chemisches potential (standard bildungsenthalpie) <chempot>
= 0.0
--Atommasse <mass> = 0.0005
--Schmelzpunkt <tmelt> = 0.0
--Siedepunkt <tboil> = 0.0
--Minimum Ladung <minch> = 0.0
--Maximum Ladung <maxch> = 0.0
--Ladung <chrg> = 0.0
----Radius (geschaetzt) <rad> = 0.001
----Ionisierungsenergie (geschaetzt) <ion> = 0.0

• This ’electron atom’ corresponds to a ’movable bag’ containing bet-
ween zero and ten electrons. It is used for descriptions of systems
with ’free’ electrons. The ’ionization energy’ is zero, since this ’elec-
tron atom’ has its own energy terms with an internal Coulomb self
energy and a Pauli-energy. Typically, one would allow the radius of
the ’electron bag’ to vary during the exploration, in addition to the
change of its charge.
2000.0
--Elektronenatom, i.e. region in space occupied by electrons
--Chemisches potential (standard bildungsenthalpie) <chempot>
= 0.0
--Atommasse <mass> = 0.0005
--Schmelzpunkt <tmelt> = 0.0
--Siedepunkt <tboil> = 0.0
--Minimum Ladung <minch> = -10.0
--Maximum Ladung <maxch> = 0.0

183



--Ladung <chrg> = -10.0
----Radius (geschaetzt) <rad> = 2.2
----Ionisierungsenergie (geschaetzt) <ion> = 0.0
--Ladung <chrg> = -9.0
----Radius (geschaetzt) <rad> = 2.1
----Ionisierungsenergie <ion> = 0.0
--Ladung <chrg> = -8.0
----Radius <rad> = 2.0
----Ionisierungsenergie <ion> = 0.0
--Ladung <chrg> = -7.0
----Radius (geschaetzt) <rad> = 1.9
----Ionisierungsenergie (geschaetzt) <ion> = 0.0
--Ladung <chrg> = -6.0
----Radius (geschaetzt) <rad> = 1.8
----Ionisierungsenergie (geschaetzt) <ion> = 0.0
--Ladung <chrg> = -5.0
----Radius (geschaetzt) <rad> = 1.7
----Ionisierungsenergie <ion> = 0.0
--Ladung <chrg> = -4.0
----Radius <rad> = 1.5
----Ionisierungsenergie <ion> = 0.0
--Ladung <chrg> = -3.0
----Radius (geschaetzt) <rad> = 1.3
----Ionisierungsenergie (geschaetzt) <ion> = 0.0
--Ladung <chrg> = -2.0
----Radius (geschaetzt) <rad> = 1.0
----Ionisierungsenergie (geschaetzt) <ion> = 0.0
--Ladung <chrg> = -1.0
----Radius (geschaetzt) <rad> = 0.7
----Ionisierungsenergie <ion> = 0.0
--Ladung <chrg> = 0.0
----Radius <rad> = 0.01
----Ionisierungsenergie <ion> = 0.0

10.5.2 bgdatabase

In the file ’bgdatabasemaster’, all the building groups (building units) are
listed with their constituents (atoms, electron bonds, etc.) and their spatial
and charge arrangement relevant for the calculations. Usually, we copy the
data for the chemical system of interest into a smaller file named ’bgdata-
base’ to speed up the runs (the reloading of the data for each new sub-run
is much faster than having to scan the full database). Also, we include a
number of special pseudo-atom types.

Note that compared to the earlier version of ’bgdatabasemaster’, which

184



only allowed for rigid molecules, we have now flexible molecules, where we
can enter in addition topological information about established atom pairs,
triplets and quartets (and whether the bond distances and angles can be
modified during the exploration), information about the ’atom interaction
type’ needed for external molecule codes like GROMACS or AMBER, and
the magnetization of the atoms.

The names of the entries vary between German and English. In the fol-
lowing, we show a number of example entries. If you want to add your own
entries to the ’bgdatabasemaster’, follow these examples, and, if necessary,
check with the readinfo.f and getinfobg.f Fortran files. Like in ’atomdataba-
semaster’, do not forget the hierarchy-determining pairs of ’empty spaces’
(here shown as pairs of dashes).

Note that all atoms have relative coordinates via Cartesian position vec-
tors with respect to a reference point. Try to choose for reference either the
’center of mass’ of the building unit, or at least an atom close to the center.
Also, place this atom, or (in the case of the reference point being the center
of mass but with no atom at this place) the atom closest to the center of
mass, at the first position of the atom list of the building unit. The chemical
potential for a building unit is set equal to zero throughout, since it is not
quite clear, what number one would have to enter here.

The charges and radii entered here override other declarations in the
’atomdatabase’ except for building groups that represent individual atoms
(Size of building unit <unitsize> = 1.0). Unless we are dealing with indivi-
dual atoms, we cannot change the charges of the building unit during the
simulation run.

Note that if you only want to use the building unit as a rigid one, or if you
want G42+ try to figure out the topology of the building unit by itself (this
option is not yet active - use the program ’convertall2all’ instead to generate
the toplogy and add this information to the entry in ’bgdatabasemaster’ !),
then you set ’<pairsize>’, ’<tripletsize>’, and ’<quartetsize>’. Thus, e.g.
’<pairsize>’ = 0 does not mean that one is not able to define ’bonds’ - one
just does not need them for the calculations intended.

We now present a couple of typical examples of building units:

• 1.0
--Hydrogen-atom
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 1.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 1.0

185



------Radius <bgrad> = 0.78
------Charge <chrg> = 0.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0

• This vacancy is a void, i.e. an empty forbidden zone of radius 1 Angstrom
1101.0
--Vacancy size 1 (HG1)
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 1.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 1101.0
------Radius <bgrad> = 1.00
------Charge <chrg> = 0.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0

• This is a real (infinitesimally small) vacancy, not a forbidden zone like
the vacancies of size 1 - 7 Angstrom
1150.0
--Vacancy size 0 (HG0)
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 1.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 1150.0
------Radius <bgrad> = 0.01
------Charge <chrg> = 0.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0

186



------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0

• Electron Pseudo-atom 1160.0
--Electron-pseudo-atom
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 1.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 2000.0
------Radius <bgrad> = 0.01
------Charge <chrg> = 0.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0

• This is a rigid complex NO3(1-) ion, where we have associated the
nitrogen atom with a charge of +5, and all the oxygen atoms with a
charge of -2.
1201.0
--N03-unit (5,-2,-2,-2)
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 4.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 7.0
------Radius <bgrad> = 0.05
------Charge <chrg> = 5.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 2.0
------Element number <bgatom> = 8.0
------Radius <bgrad> = 1.4

187



------Charge <chrg> = -2.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 1.2
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 3.0
------Element number <bgatom> = 8.0
------Radius <bgrad> = 1.4
------Charge <chrg> = -2.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = -0.6
------Y-Coordinate <uy> = 1.039
------Z-Coordinate <uz> = 0.0
----Atom <number> = 4.0
------Element number <bgatom> = 8.0
------Radius <bgrad> = 1.4
------Charge <chrg> = -2.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = -0.6
------Y-Coordinate <uy> = -1.039
------Z-Coordinate <uz> = 0.0

• Rigid oxygen-molecule with quadrupole-like charge distribution
1204.7
--02-molecule (distance as in O2; +0.5,-1,+0.5; vdW-radius)
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 3.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 8.0
------Radius <bgrad> = 1.4
------Charge <chrg> = 0.5
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.6
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 2.0

188



------Element number <bgatom> = 8.0
------Radius <bgrad> = 1.4
------Charge <chrg> = 0.5
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = -0.6
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 3.0
------Element number <bgatom> = 1900.0
------Radius <bgrad> = 0.1
------Charge <chrg> = -1.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0

• This is a rigid tin(II) ion with a steric electron pair 1217.2
--Sn+electronpair (charge: +2,0)
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 2.0
--Pairsize of building unit <pairsize> = 0.0
--Tripletsize of building unit <tripletsize> = 0.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 50.0
------Radius <bgrad> = 0.93
------Charge <chrg> = 2.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 2.0
------Element number <bgatom> = 1900.0
------Radius <bgrad> = 1.40
------Charge <chrg> = 0.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 0.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 2.14

189



• This is a flexible test-water molecule (atom distances and angles are
far from optimal). Both atom pairs (bond distance) and the triplet
(angle) are free to change (’<freepair>’ = 1.0, and ’<freetriplet>’ =
1.0, respectively.) Furthermore, we list for each atom pair (numbered
consecutively via ’<pairnumber>’) both participating atoms given ac-
cording to their numbers in the list of atoms, and also the ’ideal’ bond
distance. In this test molecule, the bond distance is only a rough num-
ber. The analogous holds true for the description of each triplet: They
are numbered by ’<tripletnumber>’, and we list the three atoms ABC
(identified by their numbers in the atom list) in such an order that the
angle is about the atom B in the middle. For this to make sense, one
should always have bonds AB and BC. Finally, we proceed analogous-
ly with the quartets of atoms ABCD, where the order in which they
are listed should be such that a sensible dihedral angle is defined by
these four atoms, and there exist reasonable bonds AB, BC and CD
between them.
2002.0
--H2O-test-molecule
--Creation energy <chembgpot> = 0.0
--Size of building unit <unitsize> = 3.0
--Pairsize of building unit <pairsize> = 2.0
--Tripletsize of building unit <tripletsize> = 1.0
--Quartetsize of building unit <quartetsize> = 0.0
--Description level <level> = 1.0
----Atom <number> = 1.0
------Element number <bgatom> = 8.0
------Radius <bgrad> = 1.40
------Charge <chrg> = -2.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 81.0
------X-Coordinate <ux> = 0.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 2.0
------Element number <bgatom> = 1.0
------Radius <bgrad> = 0.1
------Charge <chrg> = 1.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 10.0
------X-Coordinate <ux> = 1.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
----Atom <number> = 3.0
------Element number <bgatom> = 1.0

190



------Radius <bgrad> = 0.1
------Charge <chrg> = 1.0
------Magnetization <magnetization> = 0.0
------Atominteractionpotentialtype <atominttype> = 10.0
------X-Coordinate <ux> = -1.0
------Y-Coordinate <uy> = 0.0
------Z-Coordinate <uz> = 0.0
--Description level <level> = 2.0
----Pair number <pairnumber> = 1.0
------First pair atom <pairatom1> = 1.0
------Second pair atom <pairatom2> = 2.0
------Ideal distance <distance> = 1.0
------Freepairflag <freepair> = 1.0
----Pair number <pairnumber> = 2.0
------First pair atom <pairatom1> = 1.0
------Second pair atom <pairatom2> = 3.0
------Ideal distance <distance> = 1.0
------Freepairflag <freepair> = 1.0
--Description level <level> = 3.0
----Triplet number <tripletnumber> = 1.0
------First triplet atom <tripletatom1> = 2.0
------Second triplet atom <tripletatom2> = 1.0
------Third triplet atom <tripletatom3> = 3.0
------Ideal angle <angle> = 180.0
------Freetripletflag <freetriplet> = 1.0

• The description of flexible molecules with enough atoms to allow for
dihedral angles, or quite generally one or more quartets of atoms, is
analogous to the case of the molecules with triplets of atoms. The in-
formation regarding the dihedral angles appears in the data hierarchy
under the heading Description level <level> = 4.0 as
--Description level <level> = 3.0
----Quartet number <quartetnumber> = 1.0
------First quartet atom <quartetatom1> = 2.0
------Second quartet atom <quartetatom2> = 1.0
------Third quartet atom <quartetatom3> = 3.0
------Fourth quartet atom <quartetatom4> = 4.0
------Ideal angle <angle> = 180.0
------Freequartetflag <freequartet> = 1.0

10.5.3 guptadatabase

In the file ’gupatdatabasemaster’, all the atoms are listed with their atomic
properties relevant for a Gupta-potential calculation. Usually, we copy the

191



data for the chemical system of interest into a smaller file named ’guptada-
tabase’ to speed up the runs (the reloading of the data for each new sub-run
is much faster than having to scan the full database). Note that here we need
the names of partners, i.e., for each atom, we have a series of partner-atoms,
for which the coefficients in the Gupta-potential are given. Also, the data
for the Gupta-potential are taken from fits to experiment, which does pose
some problem regarding their validity on the whole energy landscape.

The names of the entries vary between German and English. In the
following, we show a number of example entries. If you want to add your
own entries to the file ’guptadatabasemaster’, follow these examples, and, if
necessary, check with the readinfo.f and getinfo.f Fortran files. The entries
are quite analogous to the ones in ’atomdatabase’. The charges are set to
zero since they are meaningless in the Gupta-potential.

• 13.0
Aluminium
Chemisches Potential <chempot> = 3.333
Atommasse <mass> = 26.98
Schmelzpunkt <tmelt> = 0.08
Siedepunkt <tboil> = 0.236
Minimum Ladung <minch> = 0.0
Maximum Ladung <maxch> = 0.0
Ladung <chrg> = 0.0
Radius <rad> = 1.43
Ionisierungsenergie <ion> = 0.0
Potential <pot> (8.0 entspr. Gupta) = 8.0
Partner <part> (Al) = 13.0
Ladung des Partners <ldpart> = 0.0
Agupta <agup> (aus PRB 48:22) = 0.1221
Qgupta <qgup> (aus PRB 48:22) = 2.516
Pgupta <pgup> (aus PRB 48:22) = 8.612
Zgupta <zgup> (aus PRB 48:22) = 1.316
Rgupta <rgup> (aus PRB 48:22) = 2.864

• 28.0
Nickel
Chemisches Potential <chempot> = 3.851
Atommasse <mass> = 58.69
Schmelzpunkt <tmelt> = 0.149
Siedepunkt <tboil> = 0.259
Minimum Ladung <minch> = 0.0
Maximum Ladung <maxch> = 0.0
Ladung <chrg> = 0.0
Radius <rad> = 1.24

192



Ionisierungsenergie <ion> = 0.0
Potential <pot> (8.0 entspr. Gupta) = 8.0
Partner <part> (Ni) = 28.0
Ladung des Partners <ldpart> = 0.0
Agupta <agup> (aus PRB 48:22) = 0.0376
Qgupta <qgup> (aus PRB 48:22) = 1.189
Pgupta <pgup> (aus PRB 48:22) = 16.999
Zgupta <zgup> (aus PRB 48:22) = 1.070
Rgupta <rgup> (aus PRB 48:22) = 2.491
Partner <part> (Al) = 13.0
Ladung des Partners <ldpart> = 0.0
Agupta <agup> (aus PRB 48:22) = 0.0563
Qgupta <qgup> (aus PRB 48:22) = 1.2823
Pgupta <pgup> (aus PRB 48:22) = 14.997
Zgupta <zgup> (aus PRB 48:22) = 1.2349
Rgupta <rgup> (aus PRB 48:22) = 0.0

Note that due to the non-transferability of the Gupta-parameters bet-
ween chemical systems, and the need to refit them for every pair of atom
types, it is debatable whether a ’guptadatabase’ is as useful as the ’atom-
database’ it is modeled on. Furthermore, we might want to employ smooth
cut-offs of the Gupta-potential, which need to be defined explicitly. Finally,
in order to be able to combine the Gupta-calculations with other potenti-
als, one should include the gupta interactions as part of this input.Thus, we
have the option to enter all the parameters relevant for the Gupta-potential
calculations directly inside input.f.

We now present the Gupta-parameter input inside input.f, plus the spline
information.
Agup(1,1) = 0.0d0
Agup(1,2) = 0.0d0
Agup(2,1) = 0.0d0
Agup(2,2) = 0.0d0
Pgup(1,1) = 0.0d0
Pgup(1,2) = 0.0d0
Pgup(2,1) = 0.0d0
Pgup(2,2) = 0.0d0
Rgup(1,1) = 0.0d0
Rgup(1,2) = 0.0d0
Rgup(2,1) = 0.0d0
Rgup(2,2) = 0.0d0
Zgup(1,1) = 0.0d0
Zgup(1,2) = 0.0d0
Zgup(2,1) = 0.0d0
Zgup(2,2) = 0.0d0

193



Qgup(1,1) = 0.0d0
Qgup(1,2) = 0.0d0
Qgup(2,1) = 0.0d0
Qgup(2,2) = 0.0d0
If we use the spline-cutoff version of the Gupta-potential, we need to add
values for the two cutoff-points (i.e. end of standard Gupta-potential, and
the end of spline-part at VGupta = 0) for each pair of atomtypes (make sure
that rc(i,j) = rc(j,i))
rc1(1,1) = 4.0d0
rc1(1,2) = 4.0d0
rc1(2,1) = 4.0d0
rc1(2,2) = 4.0d0
rc2(1,1) = 5.0d0
rc2(1,2) = 5.0d0
rc2(2,1) = 5.0d0
rc2(2,2) = 5.0d0

194


