Fluoroalkylphosphonic acid self-assembled monolayer gate dielectrics for threshold-voltage control in low-voltage organic thin-film transistors†

Ulrike Kraft, a,b Ute Zschieschang, a Frederik Ante, a Daniel Kälblein, a Claudia Kamella, a Konstantin Amsharov, a Martin Jansen, a Klaus Kern, a,c Edwin Weber b and Hagen Klauk a

Received 3rd May 2010, Accepted 22nd June 2010
DOI: 10.1039/c0jm01292k

An important prerequisite for the design of digital integrated circuits is the ability to control the threshold voltage of the individual transistors during manufacturing. To address the problem of controlling the threshold voltage of low-voltage organic transistors we have synthesized a fluoroalkylphosphonic acid that forms self-assembled monolayers on patterned, plasma-oxidized aluminum gate electrodes for use as high-capacitance, low-temperature gate dielectrics in p-channel and n-channel organic transistors. Compared with alkyl phosphonic acid-based monolayers, the strong electron-withdrawing character of the fluoroalkyl monolayers causes a change in the threshold voltage of the transistors by about 1 V, i.e. almost half of the supply voltage.

Many prospective applications of organic thin-film transistors (TFTs) benefit from gate dielectrics that can be processed at low temperature (and thus permit TFT fabrication on flexible polymeric substrates) and provide a large dielectric capacitance per unit area (so that the TFTs can be operated with low voltages). Several approaches to high-capacitance gate dielectrics for organic TFTs have been developed, including ultra-thin polymers, vapor-deposited metal oxides, self-assembled nanodielectrics, electrolytes and ion gels, and hybrid dielectrics based on alkylphosphonic acid self-assembled monolayers (SAMs) on plasma-oxidized aluminum gate electrodes. For none of these approaches, however, the deterministic control of the threshold voltage of the TFTs during manufacturing has been demonstrated. Threshold-voltage control is a prerequisite for the design of robust and low-power digital circuits.

In single-crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), the threshold voltage is controlled by incorporating small amounts of either electron-donating or electron-withdrawing impurity atoms (e.g. phosphorus or boron) into the silicon lattice in the channel region of the transistors. In organic TFTs, stable and controlled impurity doping is far more difficult, since the inter-molecular interactions in organic semiconductors are due to relatively weak non-covalent forces, rather than strong covalent bonds.

In 2004, Kobayashi et al. and Pernstich et al. demonstrated that the threshold voltage of organic TFTs fabricated on silicon dioxide gate dielectrics can be controlled by functionalizing the surface of the SiO2 gate dielectric with a silane-based SAM having electron-donating or electron-withdrawing substituents. In these experiments, a single-crystalline silicon wafer was employed as the substrate and also served as the gate electrode for all the TFTs on the substrate. The SiO2 gate dielectric was produced by oxidizing the silicon surface at a temperature of about 900 °C, which is incompatible with flexible polymeric substrates. Also, the SiO2 gate dielectrics employed by Kobayashi et al. and Pernstich et al. were several hundred nanometres thick, so the TFTs required operating voltages of 50 to 100 V.

Here we report on the synthesis of a fluoroalkylphosphonic acid that forms high-quality SAMs on patterned, plasma-oxidized aluminium gate electrodes and thus affords a high-capacitance, low-temperature gate dielectric with strong electron-withdrawing character for the reproducible adjustment of the threshold voltage in organic TFTs that have individual gate electrodes, can be fabricated on flexible polymeric substrates, and can be operated with low voltages (3 V).

The fluoroalkylphosphonic acid was synthesized in a two-step reaction (see Scheme 1). In the first step, the corresponding fluoroalkyl diethyl ester was obtained by a Michaelis–Arbuzov reaction of 1-iodo-1H,1H,2H,2H-perfluorododecane and triethylphosphite, purchased commercially and reacted at 150 °C for 1 d. The main byproduct, ethyl iodide, was distilled off continuously during the reaction in order to avoid side reactions, and excessive triethylphosphite was then eliminated by vacuum distillation. In the second step, the diethyl fluoroalkyl phosphonate was hydrolyzed in hydrochloric acid, yielding 1H,1H,2H,2H-perfluorododecylphosphonic acid (FC12-PA). The product was purified by recrystallization from methanol and characterized by mass spectrometry, infrared spectroscopy, and 1H-NMR (see ESI†).

Scheme 1 Synthesis of 1H,1H,2H,2H-perfluorododecylphosphonic acid (FC12-PA) for self-assembled monolayer (SAM) gate dielectrics.
The organic TFTs were fabricated using the inverted staggered (bottom-gate, top-contact) device structure. 30 nm thick aluminium gate electrodes were deposited by thermal evaporation through a shadow mask, followed by a brief oxygen plasma treatment to create a 3.6 nm thick AlOₓ layer.²¹ The substrate was then immersed in a 2 mM solution of the phosphonic acid in 2-propanol for about 1 h, then rinsed with pure 2-propanol and briefly baked on a hotplate in a 2 mM solution of the phosphonic acid in 2-propanol for about 1 s. This means that replacing the H-terminated SAM with an F-terminated SAM provides a change in threshold voltage by about 1 V, almost half of the supply voltage of the TFTs. A detailed statistical analysis of more than 40 pentacene p-channel TFTs and more than 40 F₁₆CuPc n-channel TFTs with HC₁₂-PA SAM and with FC₁₂-PA SAM gate dielectrics is provided in the ESI.²³

The pentacene p-channel TFTs have hole mobilities of 1 cm² V⁻¹ s⁻¹ when using the HC₁₂-PA SAM and 0.2 cm² V⁻¹ s⁻¹ when using the FC₁₂-PA SAM. These mobilities are similar to those reported by Fernstich et al. for pentacene TFTs with SiO₂ gate dielectrics functionalized with octadecyltrichlorosilane (1 cm² V⁻¹ s⁻¹) and perfluoroctyltrichlorosilane (0.15 cm² V⁻¹ s⁻¹).²⁷ On the other hand, Kobayashi et al. reported hole mobilities of 0.15 cm² V⁻¹ s⁻¹ and 0.2 cm² V⁻¹ s⁻¹ for pentacene TFTs with SiO₂ gate dielectrics functionalized with octyltrichlorosilane and perfluorodecyltrichlorosilane,²⁶ indicating that there is no simple relationship between SAM termination and hole mobility. Our F₁₆CuPc n-channel TFTs have electron mobilities of 0.03 cm² V⁻¹ s⁻¹ when using the HC₁₂-PA SAM and 0.006 cm² V⁻¹ s⁻¹ when using the FC₁₂-PA SAM, similar to the electron mobilities reported by Kobayashi et al. for C₆₀ n-channel TFTs with SiO₂ functionalized with octyltrichlorosilane (0.07 cm² V⁻¹ s⁻¹) and perfluorodecyltrichlorosilane (0.005 cm² V⁻¹ s⁻¹).²⁶

In summary, we have synthesized a fluorooalkyl phosphonic acid and prepared high-quality self-assembled monolayers on patterned, plasma-oxidized aluminium gate electrodes for use as high-capacitance, low-temperature gate dielectrics in low-voltage organic p-channel and n-channel thin-film transistors. The strong electron-withdrawing character of the fluorooalkyl SAM causes a change in threshold voltage by about 1 V, i.e., almost half of the transistors' supply voltage. These monolayers therefore provide a powerful method to reproducibly control the threshold voltage of low-voltage organic TFTs.

Acknowledgements

The authors thank Benjamin Stuhlhofer at the Max Planck Institute for Solid State Research and Maike Schmidt and Björn Moller at the...
University Stuttgart for expert technical assistance, and Richard Rook at CADiLAC Laser for providing high quality shadow masks. We gratefully acknowledge financial support provided by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References