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The temperature dependence of the structure of the clean, (1X2) reconstructed Pt(110) surface has
been investigated by thermal-energy helium-atom scattering and low-energy electron diffraction. Two
distinct phase transitions were observed: At about 1025 K a two-dimensional Isinglike transition from
the well-ordered (1X2) missing-row reconstructed surface to a disordered but flat surface takes place,
followed at about 1095 K by a Kosterlitz-Thouless transition into a rough phase. The measurements
provide strong evidence for the phase in the intermediate-temperature regime being a flat phase like the
disordered flat phase recently proposed by den Nijs. The precise microscopic structure of this intermedi-

ate phase, however, could not be quantified in detail.

I. INTRODUCTION

There is a fundamental interest of the surface science
in phase transitions: On one hand, surfaces or adlayers
constitute good testing grounds for theoretical models of
phase transitions in two-dimensional (2D) systems. On
the other hand, the analysis of the surface structure as a
function of temperature provides insight into the energet-
ics and thermodynamics of a surface. The Pt(110) surface
is of particular interest for the second type of investiga-
tion since it allows for various phase transitions including
deconstruction and roughening transitions. As platinum
is a fee crystal its (110) surface has the largest free energy
of the low indexed surfaces. For this reason (111) facets
(having the lowest surface free energy) can be built very
easily on this (110) surface.! This may lead to a recon-
struction or facetting of the crystal surface. Indeed, at
room temperature the clean Pt(110) surface exhibits a
(1X?2) reconstruction which has been studied in detail us-
ing ion scattering,”? low-energy electron diffraction
(LEED),? x-ray diffraction,* and scanning tunneling mi-
croscopy.’ Several reconstruction models have been dis-
cussed in the literature. The “missing-row” model [Fig.
1(a)], however, has been established by various measure-
ments and calculations.*™® Owing to the open structure
of the surface one expects clear manifestations of surface
structure modifications with increasing surface tempera-
ture up to surface melting.!° Indeed, a reversible order-
disorder transition of the (1X2) reconstructed phase and
a rough phase were observed well below the melting
point.!!

Besides the available experimental information, possi-
ble surface disordering mechanisms for the (1X2) recon-
structed surface of a fcc crystal have also been investigat-
ed in detail by theory.!? For the following discussion it is
helpful to recall the crystallographic properties of the
surface: Along the [001] direction of a (1X2) missing-
row reconstructed fcc(110) surface the structure repeats

0163-1829/94/50(24)/18505(12)/$06.00 50

every four distances d =a/V'2 (where a =2.77 A denotes
the bulk nearest-neighbor distance for platinum). Note
that d, rather than 2d, is the smallest distance between
atomic rows along the [001] direction if the second and
deeper layers are considered [see Fig. l(a)]. It is often
convenient to express disorder of the atomic arrangement
in terms of a phase difference, the periodic distance 4d of
the perfectly ordered (1X2) phase corresponding to a
phase difference of 27. Four nonequivalent sublattices of
the reconstructed surface can be defined, so that it is pos-
sible to generate three different “elementary displace-
ments” characterized by phase differences: nw/2, with
n=1, 2, and 3.1 These displacements can be divided
into two classes. Defects introducing a phase difference
of m, 3s,. .. [Figs. 1(b) and 1(c)] do not change the mean
surface level, and constitute conventional antiphase
domain boundaries within a (1X2) reconstructed single
terrace. The other class of defects lead to a phase
difference of 7/2 or 3w /2 and are necessarily connected
with a surface step [Figs. 1(d) and 1(e)]. Across the step
the terrace level changes by &, where h =a /2 is the inter-
layer spacing. All other surface defects along this direc-
tion can be generated by a combination of these elemen-
tary displacements.

The defects described above destroy the long-range
(1X2) order of the reconstructed surface. If only defects
of the first class are involved (phase difference m, 37,...)
the surface, ideally, remains perfectly planar. If defects
introducing surface steps are involved, the surface will
exhibit multiple terraces. Depending on the succession of
these defects on the surface, two fundamentally different
situations can arise: Either the surface becomes rough,
i.e., the height-height correlation along the surface
diverges with lateral separation or the surface remains
essentially flat, forming alternating up and down terraces.
In the latter case, the structure is called a “disordered flat
(DOF) phase.”™* Since defects introducing steps on the
surface seem to cost a relatively low extra free energy and
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FIG. 1. Side view of the (1X2) reconstructed fcc(110) surface. The structure of the reconstructed surface has a periodicity of 4d
along the [001] direction where d =a /V'2 and is the nearest-neighbor distance. A phase difference of 2 is assigned to the separation
between two equivalent lattice sites on the unperturbed surface (4d) (a). Two different classes of elementary surface defects can be
distinguished: (i) antiphase domain walls as shown in (b) and (c), introducing a phase difference of 7 or 37. Here the mean surface
level does not change, (ii) steps, as shown in (d) and (e), introducing a phase difference of 7/2 and 37 /2, respectively. Here the mean

surface level changes by an interlayer spacing.

can, therefore, be created rather easily on the surface,'® it
is interesting to characterize the two different order-
disorder transitions and to ask how they can be dis-
tinguished experimentally. We will start by briefly sum-
marizing the theoretical results obtained for the transi-
tion from a (1X2) flat phase into a rough phase and a
disordered flat phase, respectively.

The Pt(110) surface, ideally, is a flat surface and,
indeed, a phase transition of interest here would be a sur-
face roughening transition proceeded by the generation of
steps through defects as depicted in Figs. 1(d) and 1(e).
In general, the roughening temperature is defined as the
temperature at which the free energy for generating a
step vanishes.'® At this point, new steps are created
spontaneously on the surface'® and new terraces are gen-
erated. Chui and Weeks!” have shown that the surface
roughening transition is of the Kosterlitz-Thouless
type.'® It is a very smooth (infinite-order) transition. The
appropriate quantity that characterizes the rough surface
is the height-height correlation function. According to
theory this function diverges logarithmically for tempera-
tures above the roughening temperature Ty,

r2
—‘2“] . (1)

N1
([h(r0+r)—h(r0)]2>=Z;A(T)afln p

A (T) increases monotonously with temperature. At the
roughening temperature Ty, 4(Tg)=2/7. a, and a,
are the lattice parameters perpendicular and parallel to
the surface, respectively. Due to the logarithmic depen-
dence on r the divergence is rather weak. This becomes

more obvious in the “snapshots” of computer simulations
of thermal roughening based, for instance, on the solid-
on-solid (SOS) model. %

Besides a roughening transition, an ordered flat phase
can also turn into a DOF phase. A detailed discussion of
the DOF phase, which was introduced by den Nijs and
Rommelse, can be found in Refs. 14 and 21-23. As men-
tioned previously there are two classes of elementary sur-
face defects: domain walls and steps. To what extent
each of them will actually contribute to the DOF phase
depends on the ratio R =E, /E; between the free energy
E, needed to create a domain wall and E, needed to
create a step. Both types of defects introduce a local dis-
turbance of the surface order. In the case of a (1X2)
reconstructed fcc(110) surface the lateral periodicity of
4d is destroyed leading to a ‘“‘deconstruction.” Even
though steps are generated, these steps are correlated in
such a way that the height correlation function in the
DOF phase does not diverge. This is possible if a strong
interaction between steps exists in such a way that an ar-
rangement of successive up and down steps (i.e., steps
with opposite sign) is favored with respect to an arrange-
ment with neighboring steps having the same sign. In
such a situation a surface with a sequence of alternating
up and down steps is energetically favored with respect to
a system with steps of the same orientation. As a conse-
quence, the surface will remain essentially flat with only
two exposed terrace levels. This behavior can be de-
scribed in the framework of the restricted SOS model
which takes into account nearest-neighbor as well as
next-nearest-neighbor interactions.
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Since steps introduce a lateral phase shift on the (1X2)
reconstructed fcc(110) surface and hence destroy the
(1X2) order, a roughening transition on such a surface is
necessarily connected with a deconstruction, too—in
contrast to the reconstructed sc(100) surface.”* This im-
plies that on a fce(110)-(1X2) surface no roughening can
occur before the surface is deconstructed. Yet, two
different scenarios of the order-disorder transition of the
fec(110)-(1X2) surface are still possible: (1) the surface
first deconstructs and then roughens at some higher tem-
perature and (2) the disordering transition is a combina-
tion of a simultaneous deconstruction and roughening.
For R <2 Campuzano, Jennings, and Willis®® have calcu-
lated that the combined transition is an Ising transition.
den Nijs has calculated that, also for R > 2, the transition
would be of the Ising type. Hence, in the case of a com-
bined deconstruction and roughening the visible transi-
tion should be Ising-like. If, however, the deconstruction
is followed by a roughening we first expect an Ising tran-
sition (from the reconstructed to the deconstructed
phase) followed at higher temperature by a Kosterlitz-
Thouless transition (from the deconstructed fiat to the
rough phase).

The Pt(110)-(1 X 2) surface phase transition has already
been studied experimentally by Robinson and co-
workers!! using x-ray diffraction and Korte and Meyer-
Ehmsen?® using reflection  high-energy electron
diffraction (RHEED). Robinson and co-workers have re-
ported an increase of the step density connected with a
disordering of the (1X2) structure conforming to an Is-
ing transition at a critical temperature of about 1080 K.
Korte and Meyer-Ehmsen also find a 2D Ising-like transi-
tion (with a critical temperature T, =855 K) which they
attribute to a deconstruction of the (1X2) phase. In ad-
dition, they claim the onset of surface roughening to
occur at about 20-50 K above T,. This would suggest
separate deconstruction and roughening transitions.
However, the critical temperatures associated with the
two transitions are much lower than the roughening tem-
perature reported previously for this system.

A He-scattering investigation of the Au(110)-(1X2)
surface [which exhibits the same structure as Pt(110)-
(1X2)] by Sprosser, Salanon, and Lapujoulade?” has
shown that in this case there exist two separate transi-
tions: a deconstruction transition at T,=650 K and a
transition related to the onset of step proliferation at
Tp =690 K.

We note that there may exist still other structural tran-
sitions on the Pt(110)-(1X2) surface such as the genera-
tion of the particular defect structure described in Ref.
28.

¢

II. EXPERIMENT

The experiments were carried out in an ultrahigh vacu-
um He-scattering apparatus (base pressure in the 107!
mbar range). The apparatus is equipped with a four-grid
combined LEED-Auger optics, a nozzle generating a su-
personic thermal He beam, and a He time-of-flight (TOF)
spectrometer consisting of a pseudorandom chopper and
an electron impact He detector with quadrupole mass
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analyzer. The energy of the He beam can be varied con-
tinuously from 17.8 meV up to above 100 meV by chang-
ing the nozzle temperature. The detection efficiency of
the He detector is about 107°% the dead time of the
detector was determined to 73=0.7 us. In all the mea-
surements reported below, the He intensity has been
corrected for this dead time.

The overall scattering angle ¢ (i.e., the angle between
the incident beam and the detector line) can be varied be-
tween 55° and 125° by rotating the TOF spectrometer in
the horizontal scattering plane around the vertical polar
axis of the sample. In addition, the sample can be rotated
around its polar and azimuthal axes by means of a mani-
pulator. Therefore, diffraction spectra can be taken ei-
ther by “detector scans” or “manipulator scans.” In the
usual scattering geometry the incident beam, the scat-
tered beam, and the surface normal lie in the same plane.
In this case the He wave-vector transfer parallel to the
surface Q can be written as Q =k;[sin? , —sind;], where
k; is the wave vector of the incident He beam and &; and
¥ are the incident and outgoing angles, respectively,
measured against the surface normal. Bragg peaks are
expected if Q coincides with a reciprocal surface lattice
distance (for instance, Q=1.85 A™! for the (0,1) peak
and 0=0.93 A”! for the half-order diffraction peak
(0,%) along the [001] direction of the Pt(110) surface).
All peak heights and diffraction profiles reported in this
paper are based on time integrated intensities.

The Pt(110) crystal was cleaned in situ by repeated cy-
cles of heating in an oxygen atmosphere (1-5X107°
mbar at T =750 K), followed by flashing to T=1250 K,
and sputtering with 0.7 keV argon ions at T=700 K fol-
lowed by annealing at around 1200 K. During the final
cooling the crystal was held at 900 K for several minutes
allowing the development of a well-ordered (1X2) recon-
struction.

III. RESULTS

A, The Pt{110)-(1XX2) reconstructed surface

After sputtering and careful annealing of the Pt(110)
crystal a well ordered (1X2) reconstructed surface is ob-
tained at room temperature. This is evidenced by the
sharp half-order diffraction peaks along the [001] direc-
tion in the He-diffraction scans (Fig. 2). Due to preexist-
ing steps on the surface, the peak profile of the He-(0,0)-
diffraction peak (specular peak) depends on the scattering
conditions: If the scattering conditions are chosen such
that terraces separated by a monoatomic step of height 4
scatter in phase (.e., if k;[cos(d;)+cos(d,)}h =n2m,
with # an integer) the peak profile can be described quite
well by a single Gaussian curve [Fig. 3(a)]. This curve
has a full width at half maximum (FWHM) of
AQ=0.012 A™! and corresponds to the instrument func-
tion. Under antiphase conditions (.e., if
k;[cos(#;)+cos(d )]k =(n +$)2m, with n an integer) the
specular diffraction peak develops a markedly broadened
foot, reflecting the presence and distribution of terraces
separated by atomic steps [Fig. 3(b)]. By varying the
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FIG. 2. Helium diffraction spectrum of the clean Pt(110) sur-
face taken along the [001] direction (He beam energy:
E,;.=17.8 meV, surface temperature T =300 K).

scattering conditions (e.g., by changing the total scatter-
ing angle) while monitoring the diffraction peak height
and width the step height h can be extracted. As a result,
we obtain #=1.4010.01 A, in good agreement with the
expected crystallographic value h=a/2=1.39 A. The
antiphase profile [Fig. 3(b)] is well approximated by a
sum of a Gaussian (with the same FWHM as for the in-
phase diffraction peak) and a Lorentzian curve convolut-
ed with the same Gaussian instrument function. Hence,
the Gaussian part of the antiphase diffraction peak profile
corresponds to the Bragg peak due to the scattering from
extended terraces broadened only by the instrument func-
tion, while the Lorentzian part contains the contribution
from smaller terraces. From the FWHM of the Lorentzi-
an curve AQ, a characteristic terrace width D can be ex-
tracted according to AQ =27 /D. In the present case we
obtain D =130 i for the average size of the small ter-
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B. Debye-Waller attenuation
of the P£(110)-(1X2) diffraction intensities

In order to obtain information on the evolution of the
surface structure with temperature we have investigated
as a first step the height of the Pt(110)-(1X2) diffraction
peaks as a function of surface temperature. The peak
height of the diffraction peak intensities should decay
with temperature just because of the increasing contribu-
tion of thermally excited vibrations of the surface atoms.
This well-known Debye-Waller effect does not change the
peak profile. Quantitatively, the effect on the diffraction
peak height is given by3°

I(T)=Ige %D, )

Equation (2) should be regarded as a definition of a
Debye-Waller behavior. A proper derivation of W does
exist for neutron and x-ray scattering only, and is based
on the Born approximation. For He scattering from sur-
faces, calculations of the Debye-Waller factor do, howev-
er, suggest that a similar relation as for neutron and x-ray
scattering should also hold for He atoms,*! 33 namely

2W={(qug?) . 3)

Here w4 is the effective thermal displacement of the sur-
face atoms out of their equilibrium position, { ) denotes
the thermal averaging and q the scattering wave-vector
transfer. More precisely, u describes the local thermal
displacement of the He-surface interaction potential. As
a consequence, U,y is correlated with the position of the
lattice atoms via the electron-density distribution above

FIG. 3. He-diffraction peak
profiles of the specular peak for
in-phase (a) and antiphase
scattering conditions (b). The
upper panels provide a linear
scale, while the lower panels are
double-logarithmic representa-
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the surface from which the He atoms are scattered.* It
should be noted that the resulting electron-density distri-
bution depends on the position of several neighboring
atoms, especially for metals. This is a major difference
with respect to the physics of neutron or x-ray scattering.
This was pointed out by Hoinkes, Nahr, and Wilsch 5
and Armand and Manson®® and is often referred to as the
Armand effect. Another important aspect is the fact that
the well depth of the He-surface potential D has to be
taken into account to determine the perpendicular wave-
vector transfer (Beeby correction). With q=(Q,q,) we
get

Q=ky=kp) (42)
172 172

+ 2m

kle ——D

= (4b)

= |2 _2m
‘h‘[ku ﬁzD

The well depth D of the He-Pt(110) interaction potential
was obtained to be D=—8.17 meV." k;, ks and k;), k,
are the parallel and orthogonal components of the
momentum of the incoming and outgoing particle, re-
spectively, and m is the mass of the helium atom. Solving
(3) for parallel and orthogonal terms we obtain

2W(D=((q uer+QUes))
=qi ( u%ﬁ'>+2 [2qua( ueﬂ'Ueﬁ',a )
a

+Q2<U?éﬁ',a>] » (5)

with a=x,y and u., U the effective displacements of
the surface atoms out of their equilibrium positions per-
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pendicular and parallel to the surface, respectively. For
specular scattering (Q =0) (5) reduces to

W, (T)=q} uls) . 6

For usual scattering geometry it can be shown that the
sum in (5) is small compared to the first term, even for
the higher-order diffraction peaks,*® so that (6) can be
used as a good approximation for all diffraction peaks
considered here. {uly) is the temperature-dependent
part of the Debye-Waller factor. To a first approxima-
tion the dependence of {u%; ) on the surface temperature
is the same as the dependence of the displacement of the
surface atoms themselves. For a harmonic lattice the
mean-square displacement is proportional to the surface
temperature T.3’ We finally obtain an expression that is
similar to the one known for the bulk crystal*

(W)= t )

Note, however, that the Debye temperature of the solid
®p, has to be replaced by an effective surface Debye tem-
perature ®p 4.

In Fig. 4 the measured peak heights of the (0,0) and
(0,1) diffraction peaks of the Pt(110) surface for in-phase
and antiphase conditions are shown. In the lower-
temperature range the intensity of the peaks decreases ex-
ponentially as expected for a pure Debye-Waller effect.
A peak profile analysis showed no change in the profile
within this temperature range. According to Egs.
(2)-(7), we have extracted effective Debye temperatures
for the different peaks and scattering conditions. As a re-
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R ™

0.01 | (©0)anti-phas
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01k
0.01 3 (0,1) anti-phase %\

YN U RUT ST T SR SR T S i
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FIG. 4. Logarithm of the peak height of the integral-order diffraction peaks as a function of surface temperature: The diagrams
show the peak height of the specular diffraction peak (0,0) for in-phase (a) (Eg, =17.8 meV, ¢;=38.96°) and antiphase conditions (b)
(Ey.=17.8 meV, #,=54.32°), as well as the first-order diffraction peak (0,1) for in-phase (c) (Ey.=31.2 meV, &;=34.2°) and anti-
phase conditions (d) (Ey, =43.1 meV, §;=34.2°). Circles correspond to measurements taken while increasing the temperature and
squares while decreasing the temperature. The straight lines indicate a pure Debye-Waller behavior. The effective Debye tempera-
tures obtained from the fits in the lower temperature range are (a) @ ;=198 K, (b) @5 .y=196 K, (¢) @ =197 K, and (d)
®p,.r=200 K, resulting in a mean effective Debye temperature @, .»=198+2 K.
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sult, we find ®p +=198+2 K.* This value should be
compared to the measured effective Debye temperature
of the Pt(111) surface (@, =231%2 K).* The two
values are rather similar and, as expected, the surface
with the more open structure, the (110) surface, has a
lower effective Debye temperature than the more densely
packed Pt(111) surface.

An inspection of the curves in Fig. 4 clearly shows that
a deviation from the simple Debye-Waller behavior
occurs at around 1000 K for scattering at antiphase con-
ditions and somewhat lower temperatures for in-phase
scattering conditions. The precise origin of the earlier,
more gradual deviation for the in-phase intensity curves
is not known. We have, however, observed an even
smoother behavior than the one depicted in Figs. 4(b) and
4(d) during our first measurements on this surface. After
repeated careful preparation, the in-phase curves eventu-
ally approached the more abrupt shape characteristic for
the antiphase curves. The difference between the two
curves could, therefore, be possibly related to residual
steps or impurities on the surface. Note that the intensity
curves in Fig. 4 recorded during increasing and decreas-
ing the temperature are identical. Thus, the correspond-
ing thermal anomaly of the Pt(110) surface is completely
reversible. .

A deviation from the simple Debye-Waller behavior
above a given temperature has been observed previously
on several other surfaces as well. In some cases this was
attributed to an increase of the surface anharmonicity,
leading to an enhanced vibration amplitude for the sur-
face atoms.*** Besides, structural disorder, such as
thermally generated steps, adatom-vacancy pairs, or
(segregated) impurities, can be responsible for a sudden
decrease in the diffraction intensities.*’

To distinguish between the different possibilities and to
unravel the origin of the anomaly in the thermal attenua-
tion of the diffraction peaks, it is indispensable to analyze
the entire peak profiles of the various diffraction peaks.
This analysis is described in the following two sections.

C. Surface deconstruction

The information on the order parameter connected
with the (1X2) periodicity of the reconstructed surface
can be extracted from the change of the peak height and
the peak profile of the half-order diffraction peaks. The
corresponding peak profiles have been measured at
different surface temperatures to investigate the thermal
stability of the reconstruction. One problem in the
analysis of the half-order diffraction peak is the
knowledge of the correct in-phase and antiphase scatter-
ing conditions. They depend on the nature and on the
sign (i.e., up or down) of surface steps separating neigh-
boring terraces. The two types of steps [Fig. 1{d) and
1(e)] introduce a phase shift that differs by 7. If both of
them have the same sign, in-phase scattering across the
first type of steps corresponds to antiphase scattering for
the second type of steps and vice versa. In the case of
steps of the same type, but with opposite sign, the
behavior is similar: if the up step is in in-phase the down
step of the same type is in antiphase and vice versa. Ac-

cording to Fenter and Lu* the presence of steps can lead
to a periodic change in the position of the half-order peak
as the scattering condition (and hence the normal
momentum transfer) is varied. The amplitude of this
peak shift depends on the difference between the number
of the two types of steps. In the presence of a single type
of step the width of the half-order peaks does not depend
on the normal momentum transfer.*® However, a varia-
tion of the FWHM is expected if both types of steps
occur and if the majority of the type of up steps differs
from that of the down steps or if at the surface a
significant number of double height steps exist.?” By vary-
ing the scattering geometry as well as the energy of the
incident He beam for the (0,1) and (0, —1) diffraction
peaks no significant changing in the peak position nor in
the peak profile could be detected. Based on the FWHM
of the half-order peaks of about 0.02 A7t could be con-
cluded that the shift between in-phase and antiphase is
smaller than 0.01 A™). Therefore, the excess density of
the majority steps, i.e., the difference between the two
kinds of steps, is smaller than 0.06 steps per unit cell.*é
This value leads to an upper limit of the excess density of
about 1/130 A. Therefore, on the basis of these experi-
ments, no clear answer can be given with respect to the
energetically most favored type of step. It is also possible
that both types of steps are present on the surface in simi-
lar concentration. In order not to overlook any possible
effect on the change of the profile of the half-order
diffraction peak with temperature, measurements were
conducted for three different scattering conditions: the
in-phase and antiphase conditions for either type and sign
of step (corresponding to the antiphase and in-phase con-
ditions for the other type and sign of step) and for an in-
termediate condition where the phase shift between
neighboring terraces is 7 /2 for either type of step.

The results are shown in Fig. 5. For temperatures
below 1000 K the intensity decrease of the haif-order
diffraction peaks follows a Debye-Waller behavior. The
corresponding Debye temperatures are, as expected, con-
sistent to those obtained from the integral-order
diffraction peaks. Above 1040 K the peak heights of the
half-order peaks decrease very rapidly. At around 1080
K the peaks can no longer be separated from the back-
ground. This behavior was also observed with LEED (see
Fig. 6). The pictures show that the half-order diffraction
spots disappear between 1000 and 1100 K. In this tem-
perature range, the (1X2) reconstruction disorders com-
pletely, the surface deconstructs.

A more quantitative analysis of the He-diffraction in-
tensities of the half-order peaks is presented in Fig. 7.
After correction for the Debye-Waller factor the peak
height dependence was fitted to the algebraic form
characteristic for a second-order phase transition

IT<(T, =Ty, 8

The critical exponent ¥ was determined to be
y=0.131£0.02,” in good agreement with the value
y=0.1110.01 obtained by Robinson and co-workers'!
for Pt(110) and y=0.13%0.02 for Au(110.* These
values are close to the exponent of y =1 expected for a
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FIG. 5. Logarithm of the peak height of the half-order diffraction peaks as a function of surface temperature: (a) Ey, =31 meV,
#;=48.6°: The scattering phase shift between neighboring terraces separated by either type of step is an odd multiple of 7/2. (b)
Ey.=31 meV, ¢;=52.9%: In-phase scattering for terraces separated by 7/2 steps [Fig. 1(d)] and antiphase scattering for 37 /2 steps
[Fig. 1{e)]. (c) Ex.=31 meV, 4;=43.7": Antiphase scattering for terraces separated by 7 /2 steps and in-phase scattering for 3m/2
steps. Circles indicate measurements taken while increasing the temperature and squares measurements while decreasing the temper-
ature again. The straight lines correspond to an intensity decrease expected on the basis of the Debye-Waller effect. The effective
Debye temperatures calculated from the fits in the lower temperature range are (a) ®p ;=196 K, (b) Op =197 K, and (c)
Op =202 K.

FIG. 6. LEED images taken from the
Pt(110) surface for different surface tempera-
tures (electron energy E =136 e¢V): (a) T =300
K, (b) T=1000 K, () T=1040 K, (d)
T=1080 K, and (e) T=1120 K. At a temper-
ature of 1040 K (c) the half-order diffraction
peaks are broadened while the integral-order
peaks are still sharp. These integral-order
diffraction spots become diffuse only above
T=1080K (e).
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2D-Ising transition. Therefore, the deconstruction tran-
sition, indeed, appears to be of the Ising-type as predicted
by den Nijs.* The critical temperature obtained from
the fit in Fig. 7 is T,=1025+10 K, in good agreement
with the critical temperature obtained by Robinson and
co-workers!! but much higher than the value of 855 K re-
ported in Ref. 26,

The analysis of the profiles of the half-order diffraction
peaks (Fig. 8) shows that for all three scattering condi-
tions the diffraction peak can be described by a sharp
peak (broadened only by the instrument function) and by
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FIG. 8. Peak profiles of the (0, ) diffraction peak along the
[001] direction (Eg. =31 meV, &, =48.6") for different surface
temperatures. From top to boitom: (O0) T=400 K, (0)

T=1000 K, (A) T=1040 K, and (V) T=1060 K. For the oth-
er scattering conditions the profiles look very similar.

surface temperature (K)

the deconstruction transition.
The intensities are corrected for
the Debye-Waller factor. The
solid lines are fits to Eq. (9) with
(@) T,=1033 K and y=0.13, (b)
T.=1032 K and y=0.11, (c¢)
T.=1010 K and y=0.14. Oth-
er experimental parameters as in
Fig. 5.

—_l
1000 1100

a broader part in the foot of the diffraction peak. The
fact that no scattering conditions were found for which
only a single sharp peak is observed (c.f. Fig. 3) can be ex-
plained by the fact that no clearly defined in-phase
scattering condition exists, possibly due to the presence
of both kinds of steps and/or domain walls. Further-
more, a preexisting in-plane disorder of the (1X2)
periodicity, for instance due to local (1Xn) reconstruc-
tions with n =3,5,7, ..., would also introduce constant
phase shifts leading to a broadening of the half-order
diffraction peaks.

When increasing the surface temperature above 1000
K the intensity of the sharp component of the half-order
diffraction peak decreases rapidly (see Fig. 5) while its
width remains almost constant (Fig. 8). At temperatures
just above the critical temperature the broad component
of the diffraction peak becomes even broader and its rela-
tive condition to the total peak intensity increases rapid-
ly. This is generally explained by the increase of the criti-
cal fluctuations close to the transition temperature. At
still higher temperatures, the broad component of the
half-order diffraction peak also loses its intensity and
vanishes completely at around 1080 K.

Summarizing these results, we find strong evidence for
an Ising-like deconstruction of the Pt(110)-(1X2) surface
close to 1025 K. As we will show in the next section, the
Pt(110) surface does not undergo a simultaneous
roughening transition. Therefore, we believe that after
the deconstruction the Pt(110) surface is in the DOF
phase postulated by den Nijs.?*

There remains the interesting question on the micro-
scopic structure of this DOF phase. Comparing the in-
tensity curves of the integer-order peaks (Fig. 4) with
those of the half-order peaks (Fig. 7) in the temperature
range between 1000 and 1100 K, it is obvious that the at-
tenuation of the intensity of the half-order peaks is corre-
lated with a similar strong attenuation of the intensity of
the integer-order peaks above 1020 K. This can now be
explained by the fact that during the deconstruction de-
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fects are generated (see also Fig. 1), which scatter
diffusely, thereby leading to an attenuation of both the
in-phase and antiphase intensities of the integer-order
peak. It seems, however, that for antiphase conditions
the intensity of the integral-order peaks decreases more
rapidly above 1020 K than for in-phase scattering condi-
tions. This suggests that in addition to walls steps also
[Figs. 1(d) and 1(e)] are generated which in addition to
the diffuse scattering also lead to the appearance of new
terraces. Indeed, this contribution would not be notice-
able under in-phase conditions where the interference is
constructive but it would lead to an enhanced intensity
attenuation under antiphase conditions where the in-
terference is destructive. The generation of steps should
also affect the shape of the antiphase peak profiles of the
integral-order diffraction peaks. From a quantitative
analysis of the peak shapes the concentration and correla-
tion between these steps can be studied. In particular, it
is possible to conclude whether the generation of such
steps leads to a rough phase and, if so, to determine the
roughening temperature T,. These questions are ad-
dressed in the following section.

D. Surface-roughening transition

The most prominent change in the peak profile of the
integral-order peaks is the dramatic increase of the
FWHM of the antiphase peaks above 1100 K (Fig. 9).
The temperature-induced change of the profile, and hence
the corresponding structural transition, are completely
reversible. Since at this elevated temperature the half-
order diffraction signatures in He scattering (Figs. 5, 7,
and 8) and LEED (Fig. 6) have already disappeared we
conclude that the phase transition takes place on the
deconstructed surface. A broadening of the peaks at the
antiphase condition indicates a decrease of the mean ter-
race width and a simultaneous increase of the step densi-
ties. In fact, a strong increase of the FWHM of the anti-
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phase profile is expected for a surface-roughening transi-
tion.

The quantitative effect of a roughening transition on
the He-diffraction peak profiles has been treated exten-
sively in theory and experiment. ™52 With a few as-
sumptions the diffraction profiles of the rough phase
T > T can be described by a power-law line shape

T<Q=?™m), ©)

where the roughening exponent ¥ depends on the surface
temperature

=-721A(T)f<¢>) ) (10)

f(®) describes the dependence on the scattering condi-
tions. @ is the phase difference for scattering from ter-
races separated by a monoatomic step. The shape of
f(®) varies according to the microscopic model.”>%
However, for all models f(®)=0 for a phase difference
®=2nm (in-phase scattering) and f(P)=1 for
®=(2n +1)7 (antiphase scattering), with n being an in-
teger. The largest impact of the roughening transition on
the peak profile is, therefore, expected for antiphase
scattering conditions. A4 (T) is the monotonous function
defined in Eq. (1).

The peak profiles for the (0,0) specular diffraction
peak at antiphase conditions are shown in Fig. 10 for
different surface temperatures. With increasing tempera-
ture we observe a continuous change of the profile from a
sum of a 8 peak and a Lorentzian peak, both convoluted
with the instrument function (see Fig. 3) to a profile de-
scribed by Eq. (9) and convoluted with the instrument
function. Consequently, the observed phase transition is
consistent with a surface-roughening transition. At the
roughening temperature T, theory predicts that
A(TR)=2/w, corresponding to a power-law exponent
—[2—y(Tg)]=-1. A simple and precise way of deter-
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FIG. 10. Peak profiles of the specular (0,0) intensity along
the [001] direction for antiphase scattering conditions
(Eyue=17.8 meV, §,=>54.32°) at different surface temperature.
The profiles are plotted on a linear scale (right panel) and a
double-logarithmic scale (left panel). The peak profiles (except
for the upper curve at 350 K) can be described by a power-law
line shape convoluted with the Gaussian instrument function.
From a fit to the linear slope of the tails of the curves plotted in
the double-logarithmic scale the power-law exponent can be
determined for each temperature.

mining the power-law exponents from the experimental
diffraction spectra is to determine the slope of the peak
profile from a double-logarithmic representation of the
data (Fig. 10). The results are summarized in Fig. 11.
We find that the power-law exponent —1 is reached at a
temperature of about 1095 K, providing a quantitative
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FIG. 11. Negative exponent s of the power-law line shape
fitted to the tails of the antiphase (0,0) diffraction peaks in the
double-logarithmic plot as shown in Fig. 10. s =2~ decreases
with surface temperature and reaches a value of 1 at about 1095
K, which by definition is the surface roughening temperature
TR .
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FIG. 12. Peak profile of the specular peak (0,0) for antiphase
conditions (Ey, =17.8 meV, &;=54.32°) along the [001] direc-
tion at the roughening temperature Tz =1095 K. The line
shape expected from theory is indicated by the solid line.

measure of the roughening temperature: T =1095120
K. Note that this temperature is the same as that ob-
tained from the FWHM of the diffraction peaks shown in
Fig. 9. In Fig. 12, we have plotted the measured
diffraction peak profile of the specular peak (0,0) under
the antiphase condition at the roughening temperature
T, =1095 K together with the line shape given by the
convolution of the power-law line shape (exponent —1)
and the Gaussian instrument function.

It should be mentioned that the discussion of the
roughening transition is based on time integrated intensi-
ties, including the coherent elastic as well as the phonon
and diffuse elastic contributions. The theory, however,
treats the purely elastic scattering only. The inelastic
(multiphonon) scattering, which increases with the sur-
face temperature, affects the correct determination of the
roughening temperature. The peak profiles obtained
from time integrated intensities exhibit a power-law line
shape with exponent | at lower temperatures than the ac-
tual roughening temperature; i.e., they supply a lower
limit for T.’* Hence the separation between the decon-
struction and roughening temperature would be even
larger. In control experiments done during the present
study, we did not find evidence for a significant difference
between peak profiles with pure elastic intensity (using
the TOF spectrometer) and those obtained with time in-
tegrated intensities. Hence, the determination of the
roughening temperature seems not to be largely affected.

Finally, we point out that even at temperatures well
below Tz the antiphase diffraction profiles are slowly
changing with temperature (Figs. 9 and 11). This indi-
cates that steps are formed on the Pt(110) surface already
at lower surface temperature. This is not surprising and
confirms that steps are involved in the deconstruction
that precedes the surface roughening (see the discussion
in Sec. ITI C).

The present results clearly support a separation be-
tween deconstruction and roughening opposite to the
conclusions originally drawn from the x-ray diffraction
experiments of Robinson, Vlieg, and Kern.!! From the
observation of a diffraction peak shift at the deconstruc-
tion temperature, these authors concluded that decon-
struction and roughening take place at the same tempera-
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ture. Villian and Vilfan''® suggested an alternative ex-

planation of the x-ray diffraction experiments in which
the steps formed above the transition are bound together
in pairs. The imposition of paired steps leads necessarily
to a phase transition model in the Ising-universality class
due to the twofold degenerate ground state. This model
forbids any height divergence and the surface is never
rough. Villain and Vilfan suggest a step pair unbinding
transition at higher temperatures T, > T, which eventu-
ally roughens the surface. Den Nijs,”> however, suggests
a transition with real roughening character but Ising cri-
ticality. In the framework of a four-state chiral clock
step model, den Nijs demonstrates that for negligible
chirality the reconstructed (1X2) fec(110) surface decon-
structs and roughens in one single transition that is
characterized by Ising exponents. This transition has the
character of an incommensurate melting transition, with
respect to the reconstruction degrees of freedom, explain-
ing the peak shift and the linear vanishing of it at T,.
Zero chirality, however, requires that step defects with a
phase shift of 37 must also be present on the surface, but
are rarely observed and are expected to be energetically
unfavorable. More recently, Mazzeo et al.?® demonstrat-
ed that a small diffraction peak shift in the initial phase
of the transition might be obtained by a disordered flat
phase with a random mixture of odd and even (1Xn)
configurations. In the simulation, the Ising disordering
and the roughening are separated by about 30 K. At the
roughening temperature they observe already a peak shift
of 0.02 A~ Assuming that the same shift would be
characteristic for the roughening temperature of the
Pi(110) surface, the x-ray measurements would in fact be
consistent with the original Villian-Vilfan scenario of two
successive phase transitions, Ising deconstruction and
Kosterlitz-Thouless roughening.
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IV. CONCLUSION

The structure of the (1X2) reconstructed clean Pt(110)
surface and its changes with increasing surface tempera-
ture have been investigated using high-resolution thermal
helium-atom scattering. The thermal behavior of the sur-
face can be described by the following scenarios:

In the temperature range between 300 and 1000 K the
surface is (1X2) reconstructed. The decrease of the
diffraction peak intensities due to the increasing thermal
vibrations of the surface atoms is described rather well by
a conventional Debye-Waller factor. The effective Debye
temperature of the Pt(110)-(1X2) surface is determined to
be @p =198 K.

At temperatures around 1000 K surface defects
{domain walls and steps) are generated in a significant
quantity. This gives rise to a deconstruction of the sur-
face at T,=1025 K. The resulting structure is a disor-
dered flat (DOF) phase involving both types of defects,
domain walls as well as steps. However, the precise mi-
croscopic structure of the DOF phase could not be
quantified in detail. The deconstruction can be described
by a 2D Ising model, in agreement with previous experi-
mental work 26 and the theoretical prediction.?®

At even higher temperatures more and more steps are
generated spontaneously on the surface leading to a
roughening transition of the surface. The surface-
roughening transition can be described in terms of a
Kosterlitz-Thouless transition; the critical temperature
(roughening temperature) is determined to T =1095 K.

The entire thermal behavior and all structural phase
transitions involved are fully reversible.
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