

Nonlinear electrical properties of grain boundaries in BaZrO₃

M. Shirpour, C. T. Lin, R. Merkle, and J. Maier

Max Planck Institute for Solid State Research, Stuttgart, Germany

GB electrical properties under DC bias:

Voltage dependent GB electrical properties explained by different models:

Schottky barrier with interface states

Thermionic emissionDrift-diffusion

Electron tunnelling

Schottky barrier without interface states

Continuous GB secondary phase as reason for blocking GB:
- could also lead to R_{GB} decreasing with blas
(BV-analogous increase of electron/proton hopping rate)
- but constant C_{GB} expected
Rese. Marc. Phys. Rev. Lett.
1002 (2009)

capacitance of space charge zones:

* model with interface states: core charge increases under bias → depletion zone broadens

→ C_{GB} decreases already at moderate bias

* model without interface states: large bias: imcomplete depletion on one side \rightarrow depletion zone broadens $\rightarrow C_{GB} \Downarrow$ Hothing Wate $\frac{1}{2,Agl, Phys}$

decrease of R_{GB} and C_{GB} under DC bias supports space charge model