Topological insulators and superconductors

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart

25th Jyväskylä Summer School

August 10-14, 2015
Over the last years, the number of known topological materials has exploded.

Can we bring some order in this zoo of topological materials?
Over the last years, the number of known topological materials has exploded. Can we bring some order in this zoo of topological materials?
Classification of chemical elements

Periodic table of the elements

Organize elements according to symmetries of electronic configurations

1860s Dimitri Mendeleev

prediction of new elements: Ge, Sc, Tc, Ga

Can topological materials be classified in a similar fashion?
Topological insulators and superconductors

1. Topological band theory
 - What is topology?
 - SSH model (polyacetylene)

2. Chern insulators and IQHE
 - Integer quantum Hall effect
 - Chern insulator on square lattice

3. Topological insulators w/ time-reversal symmetry
 - Quantum spin Hall state
 - \mathbb{Z}_2 invariants in 2D & 3D

4. Topological superconductors
 - Topological superconductors in 1D & 2D
 - Topological superconductors w/ TRS

5. Classification scheme and topological semi-metals
 - Tenfold classification of TIs and SCs
 - Topological semi-metals and nodal superconductors
Books and review articles

Review articles:
- Y. Ando and L. Fu, arXiv:1501.00531

Books:
1st lecture: Topological band theory

1. Introduction
 - What is topology?
 - Bloch theorem
 - Topological band theory

2. Topological insulators in 1D
 - Berry phase
 - Simple example: Two-level system
 - Polyacetylene (Su-Schrieffer-Heeger model)
 - Domain wall states
What is topology?

The study of geometric properties that are insensitive to smooth deformations

For example, consider two-dimensional surfaces in three-dimensional space

Closed surfaces are characterized by their genus \(g = \# \) holes

\[
g = 0.
\]

\[
g = 1
\]

Topological equivalence:

Two surfaces are equivalent if they can be continuously deformed into one another without cutting a hole.

topological equivalence classes distinguished by genus \(g \) (topological invariant)

Gauss-Bonnet Theorem

Genus can be expressed in terms of an integral of the Gauss curvature over the surface

\[
\int_S \kappa \, dA = 4\pi (1 - g)
\]
Band theory of solids and topology

Bloch’s theorem: consider electron wavefunction in periodic crystal potential

Electron wavefunction in crystal \(|\psi_n\rangle = e^{i\mathbf{k}\mathbf{r}} |u_n(\mathbf{k})\rangle \)

Bloch wavefunction has periodicity of potential

Bloch Hamiltonian
\[
H(\mathbf{k}) = e^{-i\mathbf{k}\mathbf{r}} H e^{+i\mathbf{k}\mathbf{r}}
\]

\(H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle \)

\(\mathbf{k} \in \text{Brillouin Zone} \)

Band structure defines a mapping:

Brillouin zone \(\xrightarrow{\quad} \quad H(\mathbf{k}) \quad \) Hamiltonians with energy gap

Topological equivalence:

Band structures are equivalent if they can be continuously deformed into one another without closing the energy gap
Topological band theory

- Consider band structure with a gap:

 \[H(k)|u_n(k)\rangle = E_n(k)|u_n(k)\rangle \]

 - *band insulator*: \(E_F \) between conduction and valence bands
 - *superconductor*: band structure of Bogoliubov quasiparticles

- **Topological equivalence:**

 Two band structures are equivalent if they can be continuously deformed into one another **without closing the energy gap** and **without breaking the symmetries** of the band structure.

- Symmetries to consider:

 - *particle-hole symmetry*, time-reversal symmetry
 - reflection symmetry, rotation symmetry, etc.

- Top. equivalence classes distinguished by:

 topological invariant (e.g. Chern no):

 \[n_Z = \frac{i}{2\pi} \int \mathcal{F} \, dk \in \mathbb{Z} \]

 Berry curvature
Topological band theory

- Consider band structure with a gap:
 \[H(k) |u_n(k)\rangle = E_n(k) |u_n(k)\rangle \]
 - **band insulator**: \(E_F \) between conduction and valence bands
 - **superconductor**: band structure of Bogoliubov quasiparticles

Topological equivalence:

Two band structures are equivalent if they can be continuously deformed into one another *without closing the energy gap* and *without breaking the symmetries* of the band structure.

- symmetries to consider:
 - particle-hole symmetry, time-reversal symmetry
 - reflection symmetry, rotation symmetry, etc.

- top. equivalence classes distinguished by:

 topological invariant (e.g. Chern no): \(n_{\mathbb{Z}} = \frac{i}{2\pi} \int F \, dk \in \mathbb{Z} \)

Bulk-boundary correspondence:

\[|n_{\mathbb{Z}}| = \# \text{ gapless edge states (or surface states)} \]
Band theory and topology

Berry phase:

Phase ambiguity of wavefunction \(|u(k)\rangle \rightarrow e^{i\phi_k} |u(k)\rangle \)

\(U(1)\) fiber bundle: to each \(k\) attach fiber \(\{ g |u(k)\rangle \mid g \in U(1) \} \)

define Berry connection: (like EM vector potential)

\[\mathcal{A} = \langle u_k | -i \nabla_k | u_k \rangle \]

under gauge transformation:

\[|u(k)\rangle \rightarrow e^{i\phi_k} |u(k)\rangle \quad \implies \quad \mathcal{A} \rightarrow \mathcal{A} + \nabla_k \phi_k \]

Berry phase: (gauge invariant quantity)

change in phase on a closed loop

\[\gamma_C = \oint_C \mathcal{A} \cdot dk \]

Berry curvature tensor: (gauge independent)

\[\mathcal{F}_{\mu\nu}(k) = \frac{\partial}{\partial k_\mu} \mathcal{A}_\nu(k) - \frac{\partial}{\partial k_\nu} \mathcal{A}_\mu(k) \]

For 3D: \(\mathcal{F} = \nabla_k \times \mathcal{A} \)

\[\mathcal{F}_{\mu\nu} = \epsilon_{\mu\nu\xi} \mathcal{F}_\xi \]

Stokes:

\[\gamma_C = \int_S \mathcal{F} \cdot dk \]

Topological invariants of band structures:

Topological property of insulating material given by Chern number (or winding number):

\[n = \frac{i}{2\pi} \sum_{\text{filled states}} \int \mathcal{F} d^2k \]
Berry phase for two-band model

Two-level Hamiltonian: \[H(k) = d(k) \cdot \sigma = \begin{pmatrix} d_x - id_y & d_x + id_y \\ d_z & d_x + id_y & -d_z \end{pmatrix} \]

param. by spherical coord.: \[d(k) = |d|(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \]

two eigenvectors with energies \[E_{\pm} = \pm |d| \] (north pole gauge)

\[|u_{k}^{-}\rangle = \begin{pmatrix} \sin(\theta/2)e^{-i\phi} \\ -\cos(\theta/2) \end{pmatrix} \quad |u_{k}^{+}\rangle = \begin{pmatrix} \cos(\theta/2)e^{-i\phi} \\ \sin(\theta/2) \end{pmatrix} \]

Berry vector potential: (gauge dependent)

\[A_{\theta} = i \langle u_{k}^{-}\ | \partial_{\theta} \ | u_{k}^{-}\rangle = 0 \quad A_{\phi} = i \langle u_{k}^{-}\ | \partial_{\phi} \ | u_{k}^{-}\rangle = \sin^{2}(\theta/2) \]

Berry curvature: (gauge independent)

\[\mathcal{F}_{\theta \phi} = \partial_{\theta} A_{\phi} - \partial_{\phi} A_{\theta} = \frac{\sin \theta}{2} \]

If \(d(k) \) depends on parameters \(k \):

\[\mathcal{F}_{k_i, k_j} = \frac{\sin \theta}{2} \frac{\partial(\theta, \phi)}{\partial(k_i, k_j)} \]

Simple example: \(d(k) = k \)

\[\mathcal{F} = \frac{1}{2} \frac{\hat{k}}{k^2} \] (monopole field)

\[\gamma_C = \int_{S} \mathcal{F}_{\theta \phi} d\theta d\phi = \frac{1}{2} \left(\text{solid angle swept out by } \hat{d}(k) \right) \]
Polyacetylene (Su-Schrieffer-Heeger model)

Su-Schrieffer-Heeger model describes polyacetylene $[C_2H_2]_n$

Hamiltonian:

$$\mathcal{H} = \sum_i \left[(t + \delta t) c_{A,i}^\dagger c_{B,i} + (t - \delta t) c_{A,i+1}^\dagger c_{B,i} + \text{h.c.} \right]$$

phonons lead to Peierls instability \rightarrow finite δt

two degenerate ground states:

$\delta t > 0$

$\delta t < 0$

in momentum space:

$$\mathcal{H}(k) = d(k) \cdot \sigma = \begin{pmatrix} 0 & h(k) \\ h^\dagger(k) & 0 \end{pmatrix}$$

$$d_x(k) = (t + \delta t) + (t - \delta t) \cos k$$
$$d_y(k) = (t - \delta t) \sin k$$
$$d_z(k) = 0$$

Sublattice symmetry: $\sigma_z \mathcal{H}(k) + \mathcal{H}(k) \sigma_z = 0$ \rightarrow $d_z = 0$ (energy spectrum is symmetric)

Energy spectrum:

$$E_{\pm} = \pm |d| = \pm \sqrt{2} \sqrt{t^2 + (\delta t)^2 + [t^2 - (\delta t)^2] \cos k}$$
Polyacetylene (Su-Schrieffer-Heeger model)

Su-Schrieffer-Heeger model describes polyacetylene $[\text{C}_2\text{H}_2]_n$

\[
\delta t > 0
\]

\[
\delta t < 0
\]

\[
\mathcal{H}(k) = d(k) \cdot \sigma = \begin{pmatrix} 0 & h(k) \\ h^\dagger(k) & 0 \end{pmatrix}
\]

\[
d_x(k) = (t + \delta t) + (t - \delta t) \cos k
\]

\[
d_y(k) = (t - \delta t) \sin k
\]

Winding no: $\nu_1 = \frac{i}{2\pi} \int dk \ \text{Tr} \ [q^{-1} \partial_k q]$

\[
q(k) = \frac{h(k)}{|d(k)|}
\]

$\delta t > 0$:

Berry phase 0

$\nu_1 = 0$

$\delta t < 0$:

Berry phase π

$\nu_1 = 1$

Provided $d_z = 0$ (required by sublattice symmetry) states with $\delta t > 0$ and $\delta t < 0$ are topologically distinct
Domain Wall States in Polyacetylene

Domain wall between different topological states has topologically protected zero-energy modes

Effective low-energy continuum theory: (expand around $k_0 = \pi$)

$$H(x) = -i \sigma_y \partial_x + m(x) \sigma_x \quad m(x) = 2 \delta t$$

Dirac Hamiltonian with a mass:

$$E(q) = \pm \sqrt{q^2 + m^2}$$

Sublattice symmetry ("chiral symmetry"):

$$\{\sigma_z, H\} = 0 \quad \rightarrow \quad \sigma_z |\psi_E\rangle = |\psi_{-E}\rangle$$

Consider domain wall:

Ansatz for boundstate:

$$\psi_0 = \chi e^{-\int_0^x m(x') dx'}$$

$$H\psi_0 = 0 \Rightarrow \chi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Bulk-boundary correspondence:

$$\Delta \nu = |\nu_R - \nu_L| = \# \text{ zero modes} \quad (\text{topological invariant characterizing domain wall})$$

[Su, Schreiffer, Heeger 79]
[Jackiw, Rebbi]