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3rd lecture

1. Topological insulators w/ time-reversal symmetry
- Time reversal symmetry and Kramers theorem
- Quantum spin Hall state on square lattice
- Zo surface invariant & Z2 bulk invariant
- 3D topological insulator

[picture courtesy S. Zhang et al.]



Time-reversal symmetry & Kramers theorem

Presence of time-reversal symmetry gives rise to new topological invariants [Kane-Mele, PRL 05]
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Time-reversal symmetry implemented by anti-unitary operator:

complex conju- A
O =UrK = eiwgy/hK gation operator O = oS /hw*

For quadratic Hamiltonians in momentum space: OH (k)0 ' = +H(—k)
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Kramers theorem (for spin-1/2 particles): 0% = -1 = (Y|0y) = —(|0y) =0
—> all eigenstates are at least two-fold degenerate

—> for Bloch functions in k-space:
lu(k)) and |u(—k)) have same energy; degeneracy at TRl momenta

Consequences for edge states: A '
>
— states at time-reversal invariant momenta are degenerate S
— crossing of edge states is protected W
— absence of backscattering from non-magnetic impurities
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Time-reversal-invariant topological insulator

[Bernevig, Hughes, Zhang 2006]

2D topological insulator
[Kane-Mele, PRL 05]

(also known as Quantum Spin Hall insulator)

2D Bloch Hamiltonians in the presence of time-reversal symmetry:

OH(K)O " = +H(—k) O =io, ® 1K 02 — _1

Simplest model: H(ky k) = Hy 0\ (Hci(k) 0
(Chern insulator)? oYe 0 Hy) oo 0 H(—k)

Sz is conserved
edqge band structure:
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lattice momentum
Bulk energy gap but gapless edge: Spin filtered edge states

— protected by time-reversal symmetry

— half an ordinary 1D electron gas
— Is realized in certain band insulators with strong spin-orbit coupling



TRI topological insulator: HgTe quantum wells

i ’ _HgTe

d < 6.3 nm: Normal band order d > 6.3 nm: Inverted band order
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P observed in HgTe/(Hg,Cd) quantum wells

[Bernevig, Hughes, Zhang Science 2006] d

[M. Koenig, Buhmann,
Mohlenkamp, et al., Science 2007]




TRI topological insulator: HgTe quantum wells

[M. Koenig, Buhmann,

P observed in HgTe/(Hg,Cd) quantum wells Mohlenkamp, et al., Science 2007]

Measured conductance: 2¢”/h for short samples L < Lmag, Lis
(two terminal conductance)

d < 63 nm ¥e =l0_01 Ie2/hl
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Helical edge states are unique 1D electron conductor

e spin and momentum are locked
* no elastic backscattering from non-magnetic impurities
e perfect spin conductor!



2D topological insulator: Edge Z> invariant

Time-reversal invariant insulators with @2 = —1]

are classified by a Z, topological invariant (v =0,1)

[Kane Mele 05]

OH(k)O ! = +H(—k)

This can be understood via the bulk-boundary correspondence:

= consider edge states in half of the edge Brillouin zone (other half is related by TRS)

Edge Z: invariant:

v = ( : conventional insulator

Conduction band

 [—

Energy

at TRl momenta

E¢
Kramers degenerate_ S Q

Valence band

k=0 k=

trivial phase
even # Dirac cones

OR

Edge Z5 invariant distinguishes between
even / odd number of Kramers pairs of edge states

Energy

v = 1 : topological insulator

Conduction band
E¢
§ Dirac cone
Valence band
k=0 k=1

non-trivial phase
odd # Dirac cones

[after Hasan & Kane, RMP 2010]



2D topological insulator: First bulk Z> invariant

Bulk Z> invariant as an obstruction to define a “TR-smooth gauge”:

— [u{P(k)) and |u{? (k)) denote gauge choices in the two EBZs
— TR-smooth gauge: |u(! (—k)) = O]u? (k))

[Kane Mele 05]
[Fu and Kane]

=> consider anti-symmetric “t-matrix”: tmn (k) = (ur, (k)| O |u,

(k))

antisymmetry property: tT(k) = —t(k)

—> Pfaffian can be defined: Pf [t(k)] e.g.. Pf (_OZ g) = 2 = det [w(Aa)]
P Zeroes of Pf [t(k)] occur in
isolated points, carry phase winding AL A3.
P Due to time-reversal symmetry: Al A, kq
(i) |Pflt(k)]| = |Pflt(—=k)]| = zeros come in pairs . 4
(ii) At TRI momenta A, we have |Pf[t(A,)]| =1 ERZ

= zeros cannot be brought to TRI momenta



2D topological insulator: First bulk Z> invariant

Topological invariant = number or zeros of Pf [t(k)]| in EBZ modulo 2

conventional insulator topological insulator

P dk - Vlog (P [ (. (K)|©[u; (K)]) mod 2
21 Jo(EBZ)

It follows from bulk-boundary correspondence: edge Z> invariant = bulk Zz invariant



2D topological insulator: Second bulk Z> invariant

[Kane Mele 05]

Bulk Z> invariant as an obstruction to define a “TR-smooth gauge”:
[Fu and Kane]

— JufP(k)) and [u{?(k)) denote gauge choices in the two EBZs
— TR-smooth gauge: |u(! (—k)) = O]u? (k))

—> consider unitary sewing matrix:

Wmn (k) = (u,,(—k)|Ou, (k))

antisymmetry property: wh (k) = —w(=k)
at TRl momenta: A, = —A, = wT(Aa) = —w(A4) is antisymmetric
—> Pfaffian can be defined:  Pf [w(A,)] e.g.. Pf (_OZ g) =2

but smooth

(_1)1/ _ H Pt [W(Aa)] 11 (gauge invariant,
a=1 \/det [w(Aa)] gauge needed)

Bulk Z, invariant (/= 0,1):

It follows from bulk-boundary correspondence: edge Z: invariant = bulk Zz invariant



2D topological insulator: Bulk Z> invariants

Three equivalent definitions for bulk Z, topological invariant:

4

Pt [w(A, (gauge invariant,
(A) in terms of sewing matrix: (—1)" = H ©W(ha)l +1|  but smooth
a=1 \/det (w(Ag)] gauge needed)

sewing matrix: Wmn (k) — <ufr_n (_k) ‘@‘u:z (k)> g;nl:::z:?g Z?'?‘lgln:;omenta)

(B) count number of zeroes of Pf |(u,, (k)|O|u, (k)| inEBZ

P dk - V log (Pf [{uz, (k)]0 (K)]) mod 2

2m1 Jo(EBZ) -

Y

A

(antisymmetric at all momenta,
but not unitary)

(C) in terms of Berry connection:
1

V_—[]{ dk - A — dzk]:]mod 2
2m d(EBZ) EBZ




Three-dimensional
topological insulators




3D topological insulator: Surface Z> invariant

e How do surface states connect between TRI momenta? [after Hasan & Kane, RMP 2010]
0 ky (4 time-reversal invariant momenta in surface BZ)
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Energy
—>

Energy

surface Brillouin zone
ky

e Surface Z5 invariant:

v = 1 : Strong topological insulator

— Fermi surface encloses odd number of TRI momenta T Kz
— independent of surface orientation
— protected by time-reversal symmetry
v = 0 : Weak topological insulator
— Fermi surface encloses even number of TRI momenta
— .

— depends on surface orientation (quasi-2D topological insulator)

— protected by time-reversal and translation symmetry




3D topological insulator: Bulk Z2 invariant

[Kane-Mele, Moore-Balents, Roy,
Fu-Kane-Mele (06-07)]

e Bulk Z5 invariant:

tmn (K)

(tp, (k)| © |u, (k)

— Zeros of Pflt(k)| are lines

— Due to time-reversal symmetry there are

only 16 possibilities for the arrangement of the lines:

(Vo; Vi, V2, V3)

— Strong Zz invariant

8 TRI momenta in bulk BZ

1
>

Bulk-boundary correspondence: edge Z: invariant = bulk Zz invariant

ky



Experimental detection of 3D topological insulators

P> observed in certain band insulators with strong spin-orbit coupling

BiSb alloy, Bi2Ses, BizxTes, TIBiTez, TISbSey, etc ....

stable surface states cross a gap, that is opened up by spin-orbit coupling
. [Fu, Kane, PRL 2007]
e Bi;_, Sb,:

momentum resolved photoemission (ARPES)

[Hsieh, Hasan et al, Nature 2008]

Dl_li} D..E DI.4 D..Ei [}I.B 1I.D
T “k(A) M
five surface state bands cross Er between TRI momenta [ and M

—> strong topological insulator



Experimental detection of 3D topological insulators

® Blg Seg .

spin resolved and momentum resolved photoemission (ARPES)

a |Low s High

Tuned Bi,_sCa Se,

[H. Zhang et al., Nat Phys 2009]

[Hsieh, Hasan et al, Nature 2009]

2041 00 01
k, (A1)

simple surface state structure, similar to graphene

Unique properties of helical surface states:

e spin and momentum are locked
 half of an ordinary 2DEG, “1/4 of graphene”
e robust to disorder, impossible to localize




