# Topological insulators and superconductors

# Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart



25th Jyväskylä Summer School

August 10-14, 2015

# **5th lecture**

- 1. Symmetries & ten-fold classification
  - Symmetry classes of ten-fold way
  - Dirac Hamiltonians and Dirac mass gaps
  - Periodic table of topological insulators and superconductors

## 2. Topological semi-metals and nodal superconductors

- Momentum-dependent invariants
- Examples: Weyl semi-metal, Weyl superconductors, etc.
- Classification in terms of global symmetries

# Symmetry classes: "Ten-fold way"

(originally introduced in the context of random Hamiltonians / matrices)

> time-reversal invariance: 
$$T = U_T \mathcal{K}$$
 (is antiunitary)  
 $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k})$ 

$$2^{2} = -1$$
  
complex conjugation

 $T^2 = +1$ 

particle-hole symmetry ( $\Xi$ ):  $C = U_C \mathcal{K}$ 

$$C^{-1}\mathcal{H}(-\mathbf{k})C = -\mathcal{H}(\mathbf{k})$$

$$C: \begin{cases} 0 & \text{no particle-hole symmetry} \\ +1 & \text{particle-hole symmetry and} \quad C^2 = +1 \\ -1 & \text{particle-hole symmetry and} \quad C^2 = -1 \end{cases}$$

In addition we can also consider the "sublattice symmetry"  $S \propto TC$ 

S: 
$$S\mathcal{H}(\mathbf{k}) + \mathcal{H}(\mathbf{k})S = 0$$

Note: SLS is often also called "chiral symmetry"



#### **Ten-fold classification:**

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:



#### **Ten-fold classification:**

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:
  - time-reversal: particle-hole: sublattice:  $T\mathcal{H}(\mathbf{k})T^{-1} = +\mathcal{H}(-\mathbf{k}); \qquad T^{2} = \pm 1$   $C\mathcal{H}(\mathbf{k})C^{-1} = -\mathcal{H}(-\mathbf{k}); \qquad C^{02}_{AI} = -\mathbf{k} \pm 1$   $C\mathcal{H}(\mathbf{k})C^{-1} = -\mathcal{H}(-\mathbf{k}); \qquad C^{02}_{AI} = -\mathbf{k} \pm 1$   $C\mathcal{H}(\mathbf{k})E^{-1} = -\mathcal{H}(-\mathbf{k}); \qquad C^{02}_{AI} = -\mathbf{k} \pm 1$ ten symmetry classes All DIII CII  $\Pi H(\mathbf{k})\Pi^{-1} = -H(\mathbf{k}); \quad \Pi \propto \Theta \Xi$ Symmetry TSCClass 0 0 0 Α Random Matrix Classes 0 0 AIII 1 Altland-Zirnbauer 1 0 AI 0 For which symmetry class and 1 1 BDI 1 dimension is there a topological 0 1 0 D insulator/superconductor? DIII -1 1 1 -1 0 0 All -1 -1 CII 1 С -1 0 0 CI -1 1

# **Symmetries and Dirac Hamiltonians**

Dirac Hamiltonian in spatial dimension d:  $\mathcal{H}(k) = \sum_{i=1}^{a} k_i \gamma_i + m \gamma_0$   $E_{\pm} = \pm \sqrt{m^2 + \sum_{i=1}^{d} k_i^d}$ 

- Gamma matrices  $\gamma_i$  obey:  $\{\gamma_i, \gamma_j\} = 2\delta_{ij}$   $i = 0, 1, \dots, d$
- TRS, PHS and chiral symmetry lead to the conditions:

$$[\gamma_0, T] = 0 \qquad \{\gamma_{i \neq 0}, T\} = 0 \{\gamma_0, C\} = 0 \qquad [\gamma_{i \neq 0}, C] = 0 \qquad \{\gamma_i, S\} = 0$$

• Topological phase transition as a function of mass term  $m\gamma_0$ 



**?** are there extra symmetry preserving mass terms  $M\gamma_{d+1}$  that connect the two phases without gap closing?

$$\{\gamma_{d+1}, \gamma_i\} = 0 \quad i = 0, 1, \dots 2$$
 $E_{\pm} = \pm \sqrt{m^2 + M^2 + \sum_{i=1}^d k_i^d}$ 

**O**: topologically non-trivial

**ES:** topologically trivial

# **Symmetries and Dirac Hamiltonians**

- Dirac Hamiltonian in spatial dimension d:  $\mathcal{H}(k) = \sum_{i=1}^{n} k_i \gamma_i + m \gamma_0$   $E_{\pm} = \pm \sqrt{m^2 + \sum_{i=1}^{d} k_i^d}$ 
  - Gapless surface states (interface states):

$$\mathcal{H} = \gamma_0 \left( \widetilde{m} \mathbb{I} - i\gamma_0 \gamma_d \frac{\partial}{\partial r_d} \right) + \sum_{i=1}^{d-1} k_i \gamma_i$$

surface state  $\phi$ :  $i\gamma_0\gamma_d\Phi = \pm \Phi$ surface Hamiltonian:  $\mathcal{H}_{surf} = \sum_{i=1}^{d-1} k_i \mathbf{P}\gamma_i \mathbf{P}$ gapless surface spectrum:  $E_{surf}^{\pm} = \pm \sqrt{\sum_{i=1}^{d-1} k_i^2}$   $\mathbf{P} = (\mathbb{I} - i\gamma_0\gamma_d)/2$ 

- Presence of extra symmetry preserving mass term implies gapped surface states
  - extra mass term projected onto surface is non-vanishing

$$M\mathbf{P}\gamma_{d+1}\mathbf{P}$$
 anti-commutes with  $\mathbf{P}\gamma_i\mathbf{P}$   $i=1,\ldots,d-1$ 

gapped surface spectrum

$$k_d \to i\partial/\partial r_d$$

$$m < 0$$
  $m > 0$   
n=1 n=0  
 $r_d < 0$   $r_d > 0$ 

# **Dirac Hamiltonian in symmetry class Alll**

• Topological phase transition as a function of mass term  $m\gamma_0$ 



$$S = \sigma_1 \qquad S\mathcal{H}(\mathbf{k}) + \mathcal{H}(\mathbf{k})S = 0$$

• One-dimensional Dirac Hamiltonian with rank 2:

 $\mathcal{H}(k) = k\sigma_3 + m\sigma_2$ 

no extra symmetry preserving mass term exists

 $\Rightarrow$  class AIII in 1D is topologically non-trivial

- space of normalized mass matrices  $V_{d=1,r=2}^{\text{AIII}} = \{\pm \sigma_2\}$ 

## **One-dimensional Dirac Hamiltonian in symmetry class All**

 $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k}) \qquad T^2 = -1$ 

\*Dirac matrices with rank 2:

 $\mathcal{H}(k) = k\sigma_3 \qquad \qquad T = i\sigma_2 \mathcal{K}$ 

- no symmetry-allowed mass term exists  $\Rightarrow$  impossible to localize  $(\sigma_1 \text{ and } \sigma_2 \text{ violate TRS})$ 

- describes edge state of 2D topological insulator in class All

\*Dirac matrices with rank 4:

$$\mathcal{H}(k) = k\sigma_3 \otimes \tau_1 + m\sigma_0 \otimes \tau_3 \qquad T = i\sigma_2 \otimes \tau_0 \mathcal{K}$$

- extra symmetry preserving mass term:  $M\sigma_3\otimes au_2$ 

 $\implies$  class All in 1D is topologically trivial

space of normalized mass matrices

$$V_{d=1,r=4}^{\text{AII}} = \{ \mathbf{M} \cdot \mathbf{X} | \mathbf{M}^2 = 1 \} = S^1 \qquad R_3 : U(2N)/Sp(N)$$
$$\mathbf{M} = (m, M), \qquad \mathbf{X} = (\sigma_0 \otimes \tau_3, \sigma_3 \otimes \tau_2)$$

• connectedness of space of normalized Dirac masses:  $\pi_0(R_3) = 0$ 

## **Two-dimensional Dirac Hamiltonian in symmetry class All**

 $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k}) \qquad T^2 = -1$ 

• Dirac matrices with rank 4:  $T = i\sigma_2 \otimes \tau_0 \mathcal{K}$ 

$$\mathcal{H}(\mathbf{k}) = k_1 \sigma_3 \otimes \tau_1 + k_2 \sigma_0 \otimes \tau_2 + m \sigma_0 \otimes \tau_3$$

- no symmetry-allowed mass term exists  $\Rightarrow$  topologically non-trivial ( $\sigma_1 \otimes \tau_1, \sigma_2 \otimes \tau_1$  violate TRS)

• "Doubled" Dirac Hamiltonian:

$$\mathcal{H}_{2}(\mathbf{k}) = \begin{pmatrix} \mathcal{H}(\mathbf{k}) & 0\\ 0 & \hat{\mathcal{H}}_{\mu\nu\lambda}(\mathbf{k}) \end{pmatrix} \qquad \mu, \nu, \lambda \in \{+1, -1\}$$
$$\hat{\mathcal{H}}_{\mu\nu\lambda}(\mathbf{k}) = \mu k_{1}\sigma_{3} \otimes \tau_{1} + \nu k_{2}\sigma_{0} \otimes \tau_{2} + \lambda m\sigma_{0} \otimes \tau_{3}$$

- extra symmetry preserving mass terms:

e.g. for 
$$\mu = +, \nu = +, \lambda = +: \sigma_2 \otimes \tau_1 \otimes s_1, \sigma_1 \otimes \tau_2 \otimes s_2$$

- $\implies$  gapped surface spectrum
- $\implies$  class All in 2D has  $Z_2$  classification
- space of normalized mass matrices:  $R_2 = O(2N)/U(N)$   $\pi_0(R_2) = \mathbb{Z}_2$

## **Dirac Hamiltonian in symmetry class A**

• One-dimensional Dirac Hamiltonian with rank 2:

 $\mathcal{H}(k) = k\sigma_1 + m\sigma_2 + \mu\sigma_0$ 

— extra symmetry preserving mass term:  $M\sigma_3$ 

 $\implies$  class A in 1D is topologically trivial

- space of normalized mass matrices

 $V_{d=1,r=2}^{A} = \{\tau_2 \cos \theta + \tau_3 \sin \theta | 0 \le \theta < 2\pi\} = S^1 \qquad C_1: \ U(N)$ 

- connectedness of space of normalized Dirac masses:  $\pi_0(C_1) = 0$
- *Two-dimensional* Dirac Hamiltonian with rank 2:

 $\mathcal{H}(\mathbf{k}) = k_x \sigma_x + k_y \sigma_y + m \sigma_z + \mu \sigma_0$ 

- no extra mass term exists  $\Rightarrow$  class A in 2D is topologically non-trivial
- describes two-dimensional Chern insulator
- *Two-dimensional* "doubled" Dirac Hamiltonian:

 $\mathcal{H}_2(\mathbf{k}) = \mathcal{H}(\mathbf{k}) \otimes \tau_0$ 

- no extra gap opening mass term exists  $\Rightarrow$  topologically non-trivial

 $\Rightarrow$  indicates  $\mathbbm{Z}$  classification

# Homotopy classification of Dirac mass gaps

\* The space of mass matrices  $V_{d,r=N}^s$  belongs to different

classifying spaces  $C_{s-d}$  (for "complex class") or  $R_{s-d}$  (for "real class")

- the relation between AZ symmetry class and classifying space is as follows:

|                 | classifying space                                                                                                                                            | $\pi_0(*)$     | 1D AZ class                                               | 2D AZ class          |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------|----------------------|
| $\mathcal{C}_0$ | $\cup_{n=0}^{N} \{ U(N) / [U(n) \times U(N-n)] \}$                                                                                                           | $\mathbb{Z}$   | AIII                                                      | А                    |
| $\mathcal{C}_1$ | U(N)                                                                                                                                                         | 0              | А                                                         | AIII                 |
| $\mathcal{R}_0$ | $\cup_{n=0}^{N} \{ O(N) / [O(n) \times O(N-n)] \}$                                                                                                           | $\mathbb{Z}$   | BDI                                                       | D                    |
| $\mathcal{R}_1$ | O(N)                                                                                                                                                         | $\mathbb{Z}_2$ | D                                                         | DIII                 |
| $\mathcal{R}_2$ | O(2N)/U(N)                                                                                                                                                   | $\mathbb{Z}_2$ | DIII                                                      | AII                  |
| $\mathcal{R}_3$ | U(N)/Sp(N)                                                                                                                                                   | 0              | AII                                                       | $\operatorname{CII}$ |
| $\mathcal{R}_4$ | $\cup_{n=0}^{N} \{Sp(N)/[Sp(n) \times \$p(\mathbb{N}^{\operatorname{tal}\underline{p}has})]\}$                                                               | $\mathbb{Z}$   | CII                                                       | $\mathbf{C}$         |
| $\mathcal{R}_5$ | Sp(N)                                                                                                                                                        | 0              | C                                                         | $\operatorname{CI}$  |
| $\mathcal{R}_6$ | Sp(2N)/U(N)                                                                                                                                                  | 0              | $\left(\begin{array}{c} I \\ CI \\ CI \end{array}\right)$ | AI                   |
| $\mathcal{R}_7$ | $\frac{U(N)/O(N)}{(N)} \qquad \qquad$ | 0              | X                                                         | BDI                  |

\* The 0th homotopy group indexes the disconnected parts of the space of  $n_{n}^{\text{Even } N}$  matrices



#### **Ten-fold classification:**

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:



Schnyder, Ryu, Furusaki, Ludwig, PRB (2008)

A. Kitaev, AIP (2009)

#### **Ten-fold classification:**

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:

| - time-revers  | al:      | 7              | $\Gamma \mathcal{H}($            | $\mathbf{k}$ )7    | n—1                                                                        | = +                       | $-\mathcal{H}(-1)$                                                                | $\mathbf{k}); \qquad T^2 = \pm 1$                                |
|----------------|----------|----------------|----------------------------------|--------------------|----------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|
| - particle-hol | e:       | (              | $C\mathcal{H}($                  | $(\mathbf{k})$     | <b>k</b> ); $\mathbf{c}_{AI} = \mathbf{c}_{BD} \pm 1$ ten symmetry classes |                           |                                                                                   |                                                                  |
| - sublattice:  |          | Θ/<br>Ξ/<br>Π/ | 5( <b>¥)</b> (<br>∀(k)∃<br>∀(k)I | $\mathbf{\bar{k}}$ | ₹ <i>H</i> @–<br>- <i>H</i> (–I<br>- <i>H</i> (k                           | <u>k);</u><br>();<br>); П | $\frac{\Theta^2 \mathcal{H}(\mathbf{k}^1)}{\Xi^2 = \pm 1}$ $I \propto \Theta \Xi$ | $(); \underbrace{cS \propto T_{D}P_{\Xi^{2}}}_{CII AII DIII}$    |
|                | Sv       | mme            | etrv                             |                    |                                                                            | dim                       |                                                                                   |                                                                  |
|                | Class    | $\mid T$       | C                                | S                  | 1                                                                          | 2                         | 3                                                                                 | $\mathbb{Z}$ : integer classification                            |
|                | <u> </u> | 0              | 0                                | 0                  | 0                                                                          | 7.                        | 0                                                                                 | $\mathbb{Z}_2$ : binary classification                           |
| Ses            | AIII     | 0              | 0                                | 1                  | Z                                                                          | 0                         | Z                                                                                 | 0 <sup>-</sup> : no topological state                            |
| lass           | AI       | 1              | 0                                | 0                  | 0                                                                          | 0                         | 0                                                                                 |                                                                  |
| x C            | BDI      | 1              | 1                                | 1                  | $\mathbb{Z}$                                                               | 0                         | 0                                                                                 | chiral p-wave superconductor (Sr <sub>2</sub> RuO <sub>4</sub> ) |
| atri           | D        | 0              | 1                                | 0                  | $\mathbb{Z}_2$                                                             | $\mathbb{Z}^{+}$          | ×0 -                                                                              |                                                                  |
| -pu            | DIII     | -1             | 1                                | 1                  | $\mathbb{Z}_2^-$                                                           | $\mathbb{Z}_2$            | $\mathbb{Z}$ $\checkmark$                                                         | TRI topological triplet SC ( <sup>3</sup> He B)                  |
| dom            | All      | -1             | 0                                | 0                  | 0                                                                          | $\mathbb{Z}_2$            | $\mathbb{Z}_2$                                                                    |                                                                  |
| and            | CII      | -1             | -1                               | 1                  | $\mathbb{Z}$                                                               | 0                         | $\mathbb{Z}_2$                                                                    | chiral d-wave superconductor                                     |
| r (            | С        | 0              | -1                               | 0                  | 0                                                                          | $\mathbb{Z}^{\prec}$      | <0>                                                                               |                                                                  |
|                | CI       | 1              | -1                               | 1                  | 0                                                                          | 0                         | $\mathbb{Z}$                                                                      |                                                                  |

#### **Ten-fold classification:**

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:

| <ul> <li>time-revers</li> <li>particle-hole</li> <li>sublattice:</li> </ul> | al:<br>e: | 7<br>()<br>Э/<br>Е/ | ΓΗ(Ξ<br>CH(<br>5∰@<br>7(k)Ξ<br>7(k)Π | $\mathbf{k} T$ $\mathbf{k} C$ $\mathbf{k} S$ | y — 1 =<br>y — 1 =<br>g H(I—k<br>g H(I—k)<br>- H(k) | $= +7$ $= -7$ $\underline{)}; \underline{-9}$ $(); \Xi$ | $\mathcal{H}(-]$<br>$\mathcal{H}(-]$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$<br>$\mathcal{H}(\mathbf{k})$ | k);<br>k);     | CI<br>C <i>I</i><br>CII |                | $\pm 1$ ${}{\rightarrow} 1$ |                | ten s<br>cl | ymmetry<br>asses |
|-----------------------------------------------------------------------------|-----------|---------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|----------------|-----------------------------|----------------|-------------|------------------|
|                                                                             | Sy        | /mm                 | etry                                 |                                                                                                                                                                      |                                                     |                                                         | S                                                                                                                                                                                                                                                                            | oatial         | Dime                    | ensior         | n d                         |                |             |                  |
|                                                                             | Class     | $\mid T$            | $\dot{C}$                            | S                                                                                                                                                                    | 1                                                   | 2                                                       | 3                                                                                                                                                                                                                                                                            | 4              | 5                       | 6              | 7                           | 8              | •••         |                  |
| <b>(</b> )                                                                  | A         | 0                   | 0                                    | 0                                                                                                                                                                    | 0                                                   | $\mathbb{Z}$                                            | 0                                                                                                                                                                                                                                                                            | $\mathbb{Z}$   | 0                       | $\mathbb{Z}$   | 0                           | $\mathbb{Z}$   | •••         |                  |
| , see                                                                       | AIII      | 0                   | 0                                    | 1                                                                                                                                                                    | $\mathbb{Z}$                                        | 0                                                       | $\mathbb{Z}$                                                                                                                                                                                                                                                                 | 0              | $\mathbb{Z}$            | 0              | $\mathbb{Z}$                | 0              | •••         |                  |
| las                                                                         | AI        | 1                   | 0                                    | 0                                                                                                                                                                    | 0                                                   | 0                                                       | 0                                                                                                                                                                                                                                                                            | $\mathbb{Z}$   | 0                       | $\mathbb{Z}_2$ | $\mathbb{Z}_2$              | $\mathbb{Z}$   | • • •       |                  |
| nba<br>N C                                                                  | BDI       | 1                   | 1                                    | 1                                                                                                                                                                    | $\mathbb{Z}$                                        | 0                                                       | 0                                                                                                                                                                                                                                                                            | 0              | $\mathbb{Z}$            | 0              | $\mathbb{Z}_2$              | $\mathbb{Z}_2$ | •••         |                  |
| Zirr                                                                        | D         | 0                   | 1                                    | 0                                                                                                                                                                    | $\mathbb{Z}_2$                                      | $\mathbb{Z}$                                            | 0                                                                                                                                                                                                                                                                            | 0              | 0                       | $\mathbb{Z}$   | 0                           | $\mathbb{Z}_2$ | •••         |                  |
| לים<br>ביר                                                                  | DIII      | -1                  | 1                                    | 1                                                                                                                                                                    | $\mathbb{Z}_2$                                      | $\mathbb{Z}_2$                                          | $\mathbb{Z}$                                                                                                                                                                                                                                                                 | 0              | 0                       | 0              | $\mathbb{Z}$                | 0              | •••         |                  |
| ltla                                                                        | All       | -1                  | 0                                    | 0                                                                                                                                                                    | 0                                                   | $\mathbb{Z}_2$                                          | $\mathbb{Z}_2$                                                                                                                                                                                                                                                               | $\mathbb{Z}$   | 0                       | 0              | 0                           | $\mathbb{Z}$   | •••         |                  |
| A                                                                           | CII       | -1                  | -1                                   | 1                                                                                                                                                                    | $\mathbb{Z}$                                        | 0                                                       | $\mathbb{Z}_2$                                                                                                                                                                                                                                                               | $\mathbb{Z}_2$ | $\mathbb{Z}$            | 0              | 0                           | 0              | •••         |                  |
| æ (                                                                         | С         | 0                   | -1                                   | 0                                                                                                                                                                    | 0                                                   | $\mathbb{Z}$                                            | 0                                                                                                                                                                                                                                                                            | $\mathbb{Z}_2$ | $\mathbb{Z}_2$          | $\mathbb{Z}$   | 0                           | 0              | •••         |                  |
|                                                                             | CI        | 1                   | -1                                   | 1                                                                                                                                                                    | 0                                                   | 0                                                       | $\mathbb{Z}$                                                                                                                                                                                                                                                                 | 0              | $\mathbb{Z}_2$          | $\mathbb{Z}_2$ | $\mathbb{Z}$                | 0              | •••         |                  |



• Topological invariants: Chern numbers and winding numbers

$$Ch_{n+1}[\mathcal{F}] = \frac{1}{(n+1)!} \int_{\mathrm{BZ}^{d=2n+2}} \operatorname{tr}\left(\frac{i\mathcal{F}}{2\pi}\right)^{n+1}$$
$$\nu_{2n+1}[q] = \frac{(-1)^n n!}{(2n+1)!} \left(\frac{i}{2\pi}\right)^{n+1} \int_{\mathrm{BZ}} \epsilon^{\alpha_1 \alpha_2 \cdots} \operatorname{tr}\left[q^{-1} \partial_{\alpha_1} q \cdot q^{-1} \partial_{\alpha_2} q \cdots\right] d^{2n+1}k$$

## **Extension I: Weak topological insulators and supercondutors**

strong topological insulators (superconductors): not destroyed by positional disorder

weak topological insulators (superconductors): only possess topological features when translational symmetry is present

weak topological insulators (superconductors) are topologically equivalent to parallel stacks of lowerdimensional strong topological insulator (SCs).

co-dimension k=1

co-dimension k=2



|      | Symi | metry |   | Dime           | nsior          | 1              |                |
|------|------|-------|---|----------------|----------------|----------------|----------------|
| AZ   | Т    | С     | S | 1              | 2              | 3              | 4              |
| А    | 0    | 0     | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AIII | 0    | 0     | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   | 0              |
| AI   | 1    | 0     | 0 | 0              | 0              | 0              | $\mathbb{Z}$   |
| BDI  | 1    | 1     | 1 | Z              | 0              | 0              | 0              |
| D    | 0    | 1     | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              | 0              |
| DIII | -1   | 1     | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
| All  | -1   | 0     | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| CII  | -1   | -1    | 1 | Z              | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| С    | 0    | -1    | 0 | 0              | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| CI   | 1    | -1    | 1 | 0              | 0              | $\mathbb{Z}$   | 0              |

d-dim.weak topological insulators (SCs) of co-dimension k can occur whenever there exists a strong topological state in same symmetry class but in (d-k) dimensions.



top. invariants  $0 < k \le d$ 

cf. Kitaev, AIP Conf Proc. 1134, 22 (2009)

## Extension II: Zero mode localized on topological defect

Protected zero modes can also occur at topological defects in D-dim systems

Point defect (r=0): Hedgehog (D=3), vortex (D=2), domain wall (D=1)





Line defect (r=1): dislocation line (D=3) domain wall (D=2)

Two-dim defects (r=2): domain wall (D=3)

Freedman, et. al., PRB (2010) Teo & Kane, PRB (2010) Ryu, et al. NJP (2010)

|      | Symi | metry |   | Dime       | nsion          |                |                |
|------|------|-------|---|------------|----------------|----------------|----------------|
| AZ   | Т    | С     | S | 1          | 2              | 3              | 4              |
| Α    | 0    | 0     | 0 | 0          | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| AIII | 0    | 0     | 1 | Z          | 0              | $\mathbb{Z}$   | 0              |
| AI   | 1    | 0     | 0 | 0          | 0              | 0              | $\mathbb{Z}$   |
| BDI  | 1    | 1     | 1 | Z          | 0              | 0              | 0              |
| D    | 0    | 1     | 0 | <b>Z</b> 2 | $\mathbb{Z}$   | 0              | 0              |
| DIII | -1   | 1     | 1 | <b>Z</b> 2 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
| All  | -1   | 0     | 0 | 0          | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| CII  | -1   | -1    | 1 | Z          | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| С    | 0    | -1    | 0 | 0          | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
| CI   | 1    | -1    | 1 | 0          | 0              | $\mathbb{Z}$   | 0              |

Can an r-dimensional topological defect of a given symmetry class bind gapless states or not?

look at column d=(r+1)

(answer does not depend on D!)

line defect in class A:

$$n = \frac{1}{8\pi^2} \int_{T^3 \times S^1} \operatorname{Tr}[\mathcal{F} \wedge \mathcal{F}]$$

(second Chern no = no of zero modes)



# Topological semi-metals and nodal superconductors





# **Topological nodal superconductors**

- P How about topology of nodal superconductors and semi-metals?
- Problem: Global topological number ill-defined (no gap!)
- **Solution:** (assume translational symmetry)

Define momentum-dependent topological number

$$W_{\mathcal{C}}^{\pm} = \frac{1}{2\pi} \oint_{\mathcal{C}} \omega_{\pm}(\mathbf{k}) dk_l$$







 ${\cal C}$  does enclose Fermi point

 $W_{\mathcal{C}}^{\pm} = \pm 1 \implies \text{topologically stable}$ 

## **Topologically stable point nodes in dx2-y2 -wave SCs**

Consider  $d_{x^2-y^2}$  -wave superconductor

$$\mathcal{H}(\boldsymbol{k}) = \begin{pmatrix} +\varepsilon_{\boldsymbol{k}} & \Delta_{\boldsymbol{k}} \\ \Delta_{\boldsymbol{k}} & -\varepsilon_{\boldsymbol{k}} \end{pmatrix} \qquad \Delta_{\boldsymbol{k}} = \Delta_0(\cos k_x - \cos k_y)$$

Satisfies time-reversal symmetry T and particle-hole symmetry C

Combination of particle-hole symmetry and time-reversal symmetry gives

$$S\mathcal{H}(\boldsymbol{k})S^{\dagger} = -\mathcal{H}(\boldsymbol{k})$$
 with  $S = TC = \sigma_2$ 

In basis in which S is diagonal  $\mathcal{H}(\mathbf{k})$  takes off-diagonal form:  $\tilde{\mathcal{H}}(\mathbf{k}) = \begin{pmatrix} 0 & \varepsilon_{\mathbf{k}} - i\Delta_{\mathbf{k}} \\ \varepsilon_{\mathbf{k}} + i\Delta_{\mathbf{k}} & 0 \end{pmatrix}$ 

Spectrum flattening:  $q(\mathbf{k}) = \frac{\varepsilon_{\mathbf{k}} + i\Delta_{\mathbf{k}}}{\sqrt{\varepsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}}$  Consider:  $q(\mathbf{k}): S^1 \longrightarrow S^1$ 

 $\pi_1(S^1) = \mathbb{Z} \longrightarrow$  nodal points are protected by one-dimensional *winding number:* 

$$W_{\mathcal{L}} = \frac{1}{2\pi i} \oint_{\mathcal{L}} dk_l \operatorname{Tr} \left[ q^{-1} \partial_{k_l} q \right] = \pm 1$$

Note:  $W_{\mathcal{L}}$  is invariant under path deformation.



## **Topologically stable point nodes in dx2-y2 -wave SCs**

- Consider  $d_{x^2-y^2}$  -wave superconductor

$$\mathcal{H}(\boldsymbol{k}) = \begin{pmatrix} +\varepsilon_{\boldsymbol{k}} & \Delta_{\boldsymbol{k}} \\ \Delta_{\boldsymbol{k}} & -\varepsilon_{\boldsymbol{k}} \end{pmatrix} \qquad \Delta_{\boldsymbol{k}} = \Delta_0(\cos k_x - \cos k_y)$$

Satisfies time-reversal symmetry T and particle-hole symmetry C

Combination of particle-hole symmetry and time-reversal symmetry gives

$$S\mathcal{H}(\boldsymbol{k})S^{\dagger} = -\mathcal{H}(\boldsymbol{k})$$
 with  $S = TC = \sigma_2$ 

In basis in which S is diagonal  $\mathcal{H}(\mathbf{k})$  takes off-diagonal form:  $\tilde{\mathcal{H}}(\mathbf{k}) = \begin{pmatrix} 0 & \varepsilon_{\mathbf{k}} - i\Delta_{\mathbf{k}} \\ \varepsilon_{\mathbf{k}} + i\Delta_{\mathbf{k}} & 0 \end{pmatrix}$ 

Spectrum flattening:  $q(\mathbf{k}) = \frac{\varepsilon_{\mathbf{k}} + i\Delta_{\mathbf{k}}}{\sqrt{\varepsilon_{\mathbf{k}}^2 + \Delta_{\mathbf{k}}^2}}$  Consider:  $q(\mathbf{k}): S^1 \longrightarrow S^1$ 

 $\pi_1(S^1) = \mathbb{Z} \longrightarrow$  nodal points are protected by one-dimensional *winding number:* 

$$W_{\mathcal{L}} = \frac{1}{2\pi i} \oint_{\mathcal{L}} dk_l \operatorname{Tr} \left[ q^{-1} \partial_{k_l} q \right] = \pm 1$$

Note:  $W_{\mathcal{L}}$  is invariant under path deformation.



#### **Topologically stable point nodes in d<sub>x2-y2</sub> -wave SCs**



Ky' [cf, Hu, PRL 94, Wakabayashi et al. '05]

#### **Topologically stable point nodes in d<sub>x2-y2</sub> -wave SCs**



Experimental observation in high-Tc cuprates:



[Wei et al. PRL '98]

[Kashiwaya et al. '95, Alff et al. '97]

# Weyl semi-metal

• Weyl Hamiltonian:  $\mathcal{H}(\mathbf{k}) = \mathbf{N}(\mathbf{k}) \cdot \vec{\sigma}$ 

 $\mathbf{N}(\mathbf{k}) = v_F(k_x, k_y, k_z)^{\mathrm{T}}$ 

- No symmetries:  $\Rightarrow$  class A
- Topologically stable Weyl points protected by Chern number:  $N_{\mathcal{C}} = \frac{1}{4\pi} \oint_{\mathcal{C}} d^2 \mathbf{k} \mathbf{n}_{\mathbf{k}} \cdot [\partial_{k_1} \mathbf{n}_{\mathbf{k}} \times \partial_{k_2} \mathbf{n}_{\mathbf{k}}] = \pm 1$   $\mathbf{n}_{\mathbf{k}} = \frac{\mathbf{N}(\mathbf{k})}{|\mathbf{N}(\mathbf{k})|}$ 
  - Weyl nodes are sources/drains of Berry flux

 $\mathbf{n_k} \cdot [\partial_{k_1} \mathbf{n_k} \times \partial_{k_2} \mathbf{n_k}] = \pm 1$   $\mathbf{n_k} = \frac{\mathbf{N}(\mathbf{k})}{|\mathbf{N}(\mathbf{k})|}$ Experimentally realized in: TaAs and NbAs [Su-Yang Xu et al., Science 2015]

#### • Fermi arc surface states



#### Fermi arcs





# Weyl superconductor: 3D chiral p-wave superconductor



- Topologically stable Weyl points protected by Chern number:  $N_{\mathcal{C}} = \frac{1}{4\pi} \oint_{\mathcal{C}} d^2 \mathbf{k} \, \mathbf{n}_{\mathbf{k}} \cdot [\partial_{k_1} \mathbf{n}_{\mathbf{k}} \times \partial_{k_2} \mathbf{n}_{\mathbf{k}}] = \pm 1 \quad \mathbf{n}_{\mathbf{k}} = \frac{\mathbf{N}(\mathbf{k})}{|\mathbf{N}(\mathbf{k})|}$
- Bulk-boundary correspondence: *surface arc* connecting the projected nodal points

Surface spectrum in slab geometry with (111) face





## Weyl superconductor: 3D chiral p-wave superconductor

Chern number can be rewritten in terms of Berry curvature  $~{f F}({f k})$ 

$$N = \frac{1}{2\pi} \int dk_x dk_y F_z(\mathbf{k}) = \pm 1$$

with  $\mathbf{F}(\mathbf{k}) = \nabla_{\mathbf{k}} \times \mathbf{A}(\mathbf{k})$  and  $\mathbf{A}(\mathbf{k}) = i \langle u_{-}(\mathbf{k}) | \nabla_{\mathbf{k}} | u_{-}(\mathbf{k}) \rangle$ 

$$F_{x}(\mathbf{k}) = \frac{\Delta_{0}^{2}k_{F}^{2}k_{x}k_{z}}{\mu^{2}\left[(k^{2}-k_{F}^{2})^{2}+\frac{\Delta_{0}^{2}}{\mu^{2}}k_{F}^{2}(k_{x}^{2}+k_{y}^{2})\right]^{\frac{3}{2}}}$$
$$F_{y}(\mathbf{k}) = \frac{\Delta_{0}^{2}k_{F}^{2}k_{y}k_{z}}{\mu^{2}\left[(k^{2}-k_{F}^{2})^{2}+\frac{\Delta_{0}^{2}}{\mu^{2}}k_{F}^{2}(k_{x}^{2}+k_{y}^{2})\right]^{\frac{3}{2}}}$$
$$F_{z}(\mathbf{k}) = \frac{\Delta_{0}^{2}k_{F}^{2}\left(k_{z}^{2}-k_{x}^{2}-k_{y}^{2}-k_{F}^{2}\right)}{2\mu^{2}\left[(k^{2}-k_{F}^{2})^{2}+\frac{\Delta_{0}^{2}}{\mu^{2}}k_{F}^{2}(k_{x}^{2}+k_{y}^{2})\right]^{\frac{3}{2}}}$$

- Weyl nodes are sources and drains of Berry curvature
- $\bullet$  Berry flux of  $\,2\pi$  flowing from one Weyl node to the other



Berry curvature:



## "Double" Weyl superconductor: 3D chiral d-wave SC

possible experimental realizations: URu<sub>2</sub>Si<sub>2</sub>, SrPtAs

Lattice BdG model: 
$$H_{BdG} = \frac{1}{2} \sum_{\mathbf{k}} \begin{pmatrix} c^{\dagger}_{\mathbf{k\uparrow}} & c_{-\mathbf{k\downarrow}} \end{pmatrix} \mathcal{H}_{BdG} \begin{pmatrix} c_{\mathbf{k\uparrow}} \\ c^{\dagger}_{-\mathbf{k\downarrow}} \end{pmatrix}$$

 $\mathcal{H}_{\mathrm{BdG}}(\mathbf{k}) = \mathbf{N}(\mathbf{k}) \cdot \vec{\tau} \quad \mathbf{N}(\mathbf{k}) = \left(\Delta_0 (k_x^2 - k_y^2) / k_F^2, 2\Delta_0 k_x k_y / k_F^2, h_{\mathbf{k}}\right)$ 

PHS and SU(2) spin-rotation symmetry  $\Rightarrow$  class C

 Topologically stable double Weyl points protected by Chern number:

$$N_{\mathcal{C}} = \frac{1}{4\pi} \oint_{\mathcal{C}} d^2 \mathbf{k} \, \mathbf{n}_{\mathbf{k}} \cdot \left[\partial_{k_1} \mathbf{n}_{\mathbf{k}} \times \partial_{k_2} \mathbf{n}_{\mathbf{k}}\right] = \pm 2 \qquad \mathbf{n}_{\mathbf{k}}$$

$$\mathbf{n_k} = rac{\mathbf{N}(\mathbf{k})}{|\mathbf{N}(\mathbf{k})|}$$

double Weyl points

• Bulk-boundary correspondence: *two spin-degenerate* arc surface states



## "Double" Weyl superconductor: 3D chiral d-wave SC

Chern number can be reexpressed in terms of Berry curvature  $\mathbf{F}(\mathbf{k})$ 

$$N = \frac{1}{2\pi} \int dk_x dk_y F_z(\mathbf{k}) = \pm 2$$

with  $\mathbf{F}(\mathbf{k}) = \nabla_{\mathbf{k}} \times \mathbf{A}(\mathbf{k})$  and  $\mathbf{A}(\mathbf{k}) = i \langle u_{-}(\mathbf{k}) | \nabla_{\mathbf{k}} | u_{-}(\mathbf{k}) \rangle$ 

$$F_{x}(\mathbf{k}) = \frac{2\Delta_{0}^{2}k_{x}k_{z}(k_{x}^{2} + k_{y}^{2})}{\mu^{2} \left[ (k^{2} - k_{F}^{2})^{2} + \frac{\Delta_{0}^{2}}{\mu^{2}}(k_{x}^{2} + k_{y}^{2})^{2} \right]^{\frac{3}{2}}}$$

$$F_{y}(\mathbf{k}) = \frac{2\Delta_{0}^{2}k_{y}k_{z}(k_{x}^{2} + k_{y}^{2})}{\mu^{2} \left[ (k^{2} - k_{F}^{2})^{2} + \frac{\Delta_{0}^{2}}{\mu^{2}}(k_{x}^{2} + k_{y}^{2})^{2} \right]^{\frac{3}{2}}}$$

$$F_{z}(\mathbf{k}) = \frac{2\Delta_{0}^{2}(k_{z}^{2} - k_{F}^{2})(k_{x}^{2} + k_{y}^{2})}{\mu^{2} \left[ (k^{2} - k_{F}^{2})^{2} + \frac{\Delta_{0}^{2}}{\mu^{2}}(k_{x}^{2} + k_{y}^{2})^{2} \right]^{\frac{3}{2}}}$$

• Weyl nodes are double anti-monopoles of the Berry curvature



Berry curvature:



## **Nodal non-centrosymmetric superconductors**

#### [E. Bauer et al. PRL '04]

• Lack of inversion causes anti-symmetric SO coupling:

Normal state: 
$$\mathcal{H} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \left( \varepsilon_{\mathbf{k}} \sigma_{0} + |\mathbf{g}_{\mathbf{k}}| \sigma_{3} \right) \Psi_{\mathbf{k}}$$
  
SO coupling for C<sub>4v</sub> point group:  $\mathbf{q}_{\mathbf{k}} = k_{u} \hat{\mathbf{x}} - k_{x} \hat{\mathbf{y}}$ 

• Lack of inversion allows for admixture of spin-singlet and spin-triplet pairing components

$$\Delta_{\mathbf{k}} = (\Delta_{\mathbf{s}}\sigma_0 + \Delta_{\mathbf{t}}\,\mathbf{d}_{\mathbf{k}}\cdot\vec{\sigma})\,i\sigma_y \qquad (g_{\mathbf{k}} \parallel d_{\mathbf{k}})$$

Gaps on the two Fermi surfaces:

$$\Delta_{\boldsymbol{k}}^{\pm} = \Delta_s \pm \Delta_p \left| \boldsymbol{d}_{\boldsymbol{k}} \right|$$



# **Nodal non-centrosymmetric superconductors**

#### [E. Bauer et al. PRL '04]

• Lack of inversion causes anti-symmetric SO coupling:

Normal state: 
$$\mathcal{H} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \left( \varepsilon_{\mathbf{k}} \sigma_{0} + |\mathbf{g}_{\mathbf{k}}| \sigma_{3} \right) \Psi_{\mathbf{k}}$$
  
SO coupling for C<sub>4v</sub> point group:  $\mathbf{q}_{\mathbf{k}} = k_{u} \hat{\mathbf{x}} - k_{x} \hat{\mathbf{y}}$ 

• Lack of inversion allows for admixture of spin-singlet and spin-triplet pairing components

$$\Delta_{\mathbf{k}} = (\Delta_{\mathrm{s}}\sigma_0 + \Delta_{\mathrm{t}}\,\mathbf{d}_{\mathbf{k}}\cdot\vec{\sigma})\,i\sigma_y \qquad (\mathbf{g}_{\mathbf{k}} \parallel \mathbf{d}_{\mathbf{k}})$$

Gaps on the two Fermi surfaces:

 $\Delta_s > \Delta_t$ 

full gap



negative helicity FS



 $\Delta_{\mathbf{k}}^{\pm} = \Delta_s \pm \Delta_p \left| \mathbf{d}_{\mathbf{k}} \right|$ 

full gap

#### **Nodal topological superconductors**

#### **Consider nodal topological superconductor**

Non-centro SC: 
$$\mathcal{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \varepsilon_{\mathbf{k}}\sigma_{0} + \lambda \mathbf{g}_{\mathbf{k}} \cdot \vec{\sigma} & [\Delta_{s}\sigma_{0} + \Delta_{t}d_{\mathbf{k}} \cdot \vec{\sigma}](i\sigma_{y}) \\ (-i\sigma_{y})[\Delta_{s}\sigma_{0} + \Delta_{t}d_{\mathbf{k}} \cdot \vec{\sigma}] & [-\varepsilon_{\mathbf{k}}\sigma_{0} - \lambda \mathbf{g}_{\mathbf{k}} \cdot \vec{\sigma}^{*} \end{pmatrix}$$
  
Spin-split Fermi surfaces:  $\xi_{\mathbf{k}}^{\pm} = \varepsilon_{\mathbf{k}} \pm \lambda |\mathbf{g}_{\mathbf{k}}|$   
Gaps on the two Fermi surfaces:  $\Delta_{\mathbf{k}}^{\pm} = \Delta_{s} \pm \Delta_{t} |d_{\mathbf{k}}|$   
 $\Delta_{s} > \Delta_{t} \qquad \Delta_{s} \sim \Delta_{t} \qquad \Delta_{s} < \Delta_{t}$   
negative helicity  
Fermi surface  
 $\int_{full \ gap}$   
 $\Delta_{s} \sim \Delta_{t} \qquad \int_{full \ gap}$ 

## **Nodal topological superconductors**

Topological characteristics depend on the symmetries of BdG Hamiltonian restricted to contour C.



|          | Sy    | mme | etry |   |                | dim            |                |
|----------|-------|-----|------|---|----------------|----------------|----------------|
|          | Class | T   | P    | S | 1              | 2              | 3              |
|          | А     | 0   | 0    | 0 | 0              | $\mathbb{Z}$   | 0              |
| <u>ō</u> | AIII  | 0   | 0    | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}$   |
| ati      | AI    | 1   | 0    | 0 | 0              | 0              | 0              |
| Ö        | BDI   | 1   | 1    | 1 | $\mathbb{Z}$   | 0              | 0              |
| lf       | D     | 0   | 1    | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}$   | 0              |
| SS       | DIII  | -1  | 1    | 1 | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}$   |
| a        | All   | -1  | 0    | 0 | 0              | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ |
| C        | CII   | -1  | -1   | 1 | $\mathbb{Z}$   | 0              | $\mathbb{Z}_2$ |
|          | С     | 0   | -1   | 0 | 0              | $\mathbb{Z}$   | 0              |
|          | CI    | 1   | -1   | 1 | 0              | 0              | $\mathbb{Z}$   |

$$\mathbf{d}_{\mathbf{k}} = (\sin k_x + \sin k_y, \sin k_x + \sin k_y, \sin k_z)^{\mathrm{T}}$$
$$\Delta_s \sim \Delta_t$$

If 1D contour *is not* centrosymmetric: TRS XPHS XTRS+PHS (chiral sym S) V

AIII: 1D Winding number:

$$W_C = \frac{1}{2\pi} \oint_{\mathcal{C}} dk_l \,\partial_{k_l} \left[ \arg(\xi_{\mathbf{k}}^- + i\Delta_{\mathbf{k}}^-) \right]$$

flat band surface states





in terms of global symmetries (TRS, PHS, SLS)

Classification of topological nodal semimetals and superconductors depends on:

• symmetry of Hamiltonian (TRS, PHS, SLS)

 $\Rightarrow$  symmetry classes of ten-fold way

Zhao, Wang, PRL 2013

Matsuura, Schnyder, et al. NJP 2013

- co-dimension  $p = d d_{FS}$  of Fermi surface (  $d_{FS}$ : dimension of Fermi surface)
- how Fermi surface transforms under global symmetries



(ii) Fermi surfaces *pairwise related* by global symmetries



#### **Gapless Dirac Hamiltonians**

(i) Fermi surface is *invariant* under global symmetries

$$\mathcal{H}(k) = \sum_{i=1}^{d} k_i \gamma_i \qquad \qquad E_{\pm} = \pm \sqrt{\sum_{i=1}^{d} k_i^2}$$



are there symmetry preserving mass terms  $M\gamma_{d+1}$ that open up a gap in the spectrum?

$$\{\gamma_{d+1}, \gamma_i\} = 0 \quad i = 0, 1, \dots 2$$

$$\{+1, \gamma_i\} = 0$$
  $i = 0, 1, \dots 2$   $E_{\pm} = \pm \sqrt{M^2 + \sum_{i=1}^d k_i^2}$   
**NO:** topologically non-trivial **YES:** topologically

- to distinguish between  $\mathbb{Z}_2$  and  $\mathbb{Z}$  classification consider doubled version of Hamiltonian

(ii) Fermi surfaces *pairwise related* by global symmetries

$$\mathcal{H}(k) = \sum_{i=1}^{p-1} \sin k_i \gamma_i + \left(1 - p + \sum_{i=1}^p \cos k_i\right) \gamma_0$$

- semi-metal with (d-p)-dimensional Fermi surface





Fermi surface is *invariant* under global symmetries

$$p = d - d_{\rm FS}$$

classification of *Fermi* points with  $d_{\rm FS}=0$  in **d** dimensions



classification of *fully gapped* topological materials in **d+1** dimensions



| at high-sym. point | T  | C  | S | <i>p</i> =1                  | p=2                          | <i>p</i> =3                  | p=4                          | p=5                          | p=6                          | p=7                          | p=8                          |
|--------------------|----|----|---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| А                  | 0  | 0  | 0 | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            |
| AIII               | 0  | 0  | 1 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 |
| AI                 | +1 | 0  | 0 | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            |
| BDI                | +1 | +1 | 1 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 |
| D                  | 0  | +1 | 0 | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ |
| DIII               | -1 | +1 | 1 | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger,\S}$  |
| AII                | -1 | 0  | 0 | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            |
| CII                | -1 | -1 | 1 | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                |
| C                  | 0  | -1 | 0 | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            |
| CI                 | +1 | -1 | 1 | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            |

Zhao, Wang, PRL 2013

Matsuura, Schnyder, et al. NJP 2013

| (i) Fermi surface<br>under global                                             | e is <i>in</i><br>symm | <i>varian</i><br>etries | t |                                        | p :                                   | = d -                                |                                    |                              |                                         |                                         |                              |  |  |  |
|-------------------------------------------------------------------------------|------------------------|-------------------------|---|----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------|------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|--|--|--|
| classification of Formula $points$ with $d_{\rm FS}$ in ${\rm d}$ dimension   | ermi<br>= 0<br>s       |                         |   | clas                                   | sificatic<br>topolog<br>in <b>d+1</b> | on of <i>ful</i><br>ical ma<br>dimen | <i>ly gapp</i><br>terials<br>sions | ed                           |                                         |                                         |                              |  |  |  |
| at high-sym point $T = C = S$ $n-1$ $n-2$ $n-3$ $n-4$ $n-5$ $n-6$ $n-7$ $n-8$ |                        |                         |   |                                        |                                       |                                      |                                    |                              |                                         |                                         |                              |  |  |  |
| at high-sym. point                                                            | T                      | C                       | S | <i>p</i> =1                            | p=2                                   | p=3                                  | p=4                                | p=5                          | p=6                                     | p=7                                     | <i>p</i> =8                  |  |  |  |
| A                                                                             | 0                      | 0                       | 0 | $\mathbb{Z}$                           | 0                                     | $\mathbb{Z}$                         | 0                                  | $\mathbb{Z}$                 | 0                                       | $\mathbb{Z}$                            | 0                            |  |  |  |
| AIII                                                                          | 0                      | 0                       | 1 | 0                                      | $\mathbb{Z}$                          | 0                                    | $\mathbb{Z}$                       | 0                            | $\mathbb{Z}$                            | 0                                       | $\mathbb{Z}$                 |  |  |  |
| AI                                                                            | +1                     | 0                       | 0 | 0                                      | 0                                     | $2\mathbb{Z}$                        | 0                                  | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$            | $\mathbb{Z}$                            | 0                            |  |  |  |
| BDI                                                                           | +1                     | +1                      | 1 | 0                                      | 0                                     | 0                                    | $2\mathbb{Z}$                      | 0                            | $\mathbb{Z}_2^{\overline{\dagger}, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$            | $\mathbb{Z}$                 |  |  |  |
| D                                                                             | 0                      | +1                      | 0 | Z                                      | 0                                     | 0                                    | 0                                  | $2\mathbb{Z}$                | 0                                       | $\mathbb{Z}_2^{\overline{\dagger}, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ |  |  |  |
| DIII                                                                          | -1                     | +1                      | 1 | $\mathbb{Z}_2^{\dagger, \S}$           | $\mathbb{Z}$                          | 0                                    | 0                                  | 0                            | $2\mathbb{Z}$                           | $\frac{2}{0}$                           | $\mathbb{Z}_2^{\dagger, \S}$ |  |  |  |
| AII                                                                           | -1                     | 0                       | 0 | $\mathbb{Z}_2^{\overline{\dagger},\$}$ | $\mathbb{Z}_2^{\dagger, \S}$          | $\mathbb{Z}$                         | 0                                  | 0                            | 0                                       | $2\mathbb{Z}$                           | $\overline{0}$               |  |  |  |
| $\operatorname{CII}$                                                          | -1                     | -1                      | 1 |                                        | $\mathbb{Z}_2^{ar{f}, \S}$            | $\mathbb{Z}_2^{\dagger, \S}$         | $\mathbb Z$                        | 0                            | 0                                       | 0                                       | $2\mathbb{Z}$                |  |  |  |
| $\mathbf{C}$                                                                  | 0                      | -1                      | 0 | $2\mathbb{Z}$                          | $\overline{0}$                        | $\mathbb{Z}_2^{ar{f}, \S}$           | $\mathbb{Z}_2^{\dagger, \S}$       | $\mathbb{Z}$                 | 0                                       | 0                                       | 0                            |  |  |  |
| $\operatorname{CI}$                                                           | +1                     | -1                      | 1 | 0                                      | $2\mathbb{Z}$                         | $\frac{2}{0}$                        | $\mathbb{Z}_2^{\bar{\dagger}, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                            | 0                                       | 0                            |  |  |  |

Zhao, Wang, PRL 2013



Fermi surfaces *pairwise related* by global global symmetries

$$p = d - d_{\rm FS}$$

classification of Fermi points with  $d_{\rm FS}=0$  in **d** dimensions



classification of *fully gapped* topological materials in **d-1** dimensions



| off high-sym. point | T  | C  | S | <i>p</i> =1                  | p=2                          | p=3                          | p=4                          | p=5                          | p=6                          | p=7                          | p=8                          |
|---------------------|----|----|---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| A                   | 0  | 0  | 0 | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            |
| AIII                | 0  | 0  | 1 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 |
| AI                  | +1 | 0  | 0 | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ |
| BDI                 | +1 | +1 | 1 | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ |
| D                   | 0  | +1 | 0 | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            |
| DIII                | -1 | +1 | 1 | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                |
| AII                 | -1 | 0  | 0 | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            | 0                            |
| CII                 | -1 | -1 | 1 | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                            |
|                     | 0  | -1 | 0 | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            |
| CI                  | +1 | -1 | 1 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 |

Zhao, Wang, PRL 2013

Matsuura, Schnyder, et al. NJP 2013 Chiu, Schnyder PRB 2014



Fermi surfaces *pairwise related* by global global symmetries

$$p = d - d_{\rm FS}$$

classification of Fermi points with  $d_{\rm FS}=0$  in **d** dimensions



classification of *fully gapped* topological materials in **d-1** dimensions



| off high-sym. point | T  | C  | S | <i>p</i> =1                  | p=2                          | p=3                          | p=4                          | Weyls                                   | semi-m                       | netal                        | p=8                          |
|---------------------|----|----|---|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------|------------------------------|------------------------------|------------------------------|
| A                   | 0  | 0  | 0 | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                            | 0                            | $\mathbb{Z}$                 | 0                            |
| AIII                | 0  | 0  | 1 | 0                            | $\mathbb{Z}$                 |                              | Ľ                            | NCS                                     | $\mathbb{Z}$                 | 0                            | $\mathbb{Z}$                 |
| AI                  | +1 | 0  | 0 | $\mathbb{Z}$                 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                           | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ |
| BDI                 | +1 | +1 | 1 | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | æ                            | Weyl                                    | superc                       | conduc                       | ctor §                       |
| D                   | 0  | +1 | 0 | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            | 0                                       | 0                            | $2\mathbb{Z}$                | 0                            |
| DIII                | -1 | +1 | 1 | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                                       | 0                            | 0                            | $2\mathbb{Z}$                |
| AII                 | -1 | 0  | 0 | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | 77,                                     | Ο                            | 0                            | 0                            |
| CII                 | -1 | -1 | 1 | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\dagger,\$}$  | chiral                                  | d-wav                        | ve SC                        | 0                            |
|                     | 0  | -1 | 0 | 0                            | 0                            | $2\mathbb{Z}$                | 0                            | $\mathbb{Z}_2^{\overline{\dagger}, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 | 0                            |
| CI                  | +1 | -1 | 1 | 0                            | 0                            | 0                            | $2\mathbb{Z}$                | 0                                       | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}_2^{\dagger, \S}$ | $\mathbb{Z}$                 |