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Abstract. We present results of magnetic torque calculations using the fully relativistic spin-polarized
Korringa-Kohn-Rostoker approach applied to small Co and Fe clusters deposited on the Pt(111) surface.
From the magnetic torque one can derive amongst others the magnetic anisotropy energy (MAE). It was
found that this approach is numerically much more stable and also computationally less demanding than
using the magnetic force theorem that allows to calculate the MAE directly. Although structural relaxation
effects were not included our results correspond reasonably well to recent experimental data.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 75.30.Et Exchange and superexchange interactions – 75.75.+a Magnetic properties of
nanostructures

1 Introduction

In recent years, low-dimensional magnetic nanostructures
on surfaces have been the subject of intense experimen-
tal and theoretical research activities which are driven by
fundamental as well as practical interests. One of the cen-
tral questions for potential future applications is how the
spin-orbit coupling (SOC) induces specific magnetic prop-
erties such as orbital magnetic moments and magnetic
anisotropy. Another interesting issue is its influence on the
exchange coupling. Hereby, it is especially important to
understand how these properties evolve from single mag-
netic adatoms to submonolayer magnetic particles. This
very prominent role of SOC for such systems is also re-
flected in recent reviews [1] as well as theoretical work [2].

A system which has been intensively investigated ex-
perimentally [3–10] as well as theoretically [11–15] in re-
cent years is Co/Pt(111) (used here as a short notation
for Co clusters or nanostructures, respectively, deposited
on a Pt(111) substrate) as this is a prototype to study the
requirements on new high-density magnetic storage mate-
rials. Earlier theoretical works studied only rather small
Co clusters or Co chains on Pt(111) [11–14], whereas only
recently first qualitative results and trends based on a pa-
rameterised tight-binding approach were published for de-
posited structures of up to 37 Co atoms [15]. In our earlier
works [11–13] on the Co/Pt(111) system we already de-
scribed the evolution of the spin and orbital moments as
well as the exchange coupling for small clusters. What has
been missing so far, for a complete picture of the magnetic
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behaviour is the magnetic anisotropy energy (MAE) for
such systems. In principle, calculations of the MAE are
possible by applying the magnetic force theorem or by de-
termining the total energies as a function of the magneti-
sation direction. However, it turned out that these pro-
cedures are rather delicate when dealing with deposited
clusters and one needs to take great care when taking band
or total energy differences. Therefore, we implemented a
method to calculate the magnetic torque directly from the
electronic structure. Calculating the magnetic torque for
a sequence of directions of the magnetisation then gives
access to the MAE.

In this present work we show first results for mag-
netic torque calculations of the already well investigated
Co adatoms and dimers deposited on Pt(111) and com-
pare them with their Fe analogues. These investigations
are complemented by calculations for decorated clusters
that allow to optimize the MAE. Our theoretical results
are then used to simulate magnetisation curves of an en-
semble of Fen (n = 1, 2, 3) clusters on Pt(111), that are
compared to recent experimental results.

2 Computational details

The calculations for the investigated cluster systems were
done within the framework of spin density functional the-
ory using the local spin density approximation (LSDA)
with the parameterization given by Vosko, Wilk and
Nusair for the exchange and correlation potential [16]. The
electronic structure is determined in a fully relativistic way
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on the basis of the Dirac equation for spin-polarised po-
tentials which is solved using the Korringa-Kohn-Rostoker
(KKR) multiple scattering formalism [17,18]. This proce-
dure consists of two steps. First the Pt(111) host surface
is calculated self-consistently with the tight binding (TB)
version of the KKR method using layers of empty sites
to represent the vacuum region. This step is then followed
by treating the deposited clusters as a perturbation to the
clean surface with the Green’s function for the new sys-
tem being obtained by solving the corresponding Dyson
equation. This scheme is described in more detail in earlier
publications [12,13].

In all calculations the cluster atoms were assumed to
occupy ideal lattice sites in the first vacuum layer and
no effects of structure relaxation were included. There-
fore, our results contain a systematic error and are strictly
spoken not directly comparable with experimental data.
Nevertheless, it could be shown already in earlier work [11,
13,14] on deposited clusters that this approach is capable
of reproducing systematic trends as well as achieving a
reasonable quantitative agreement with values found in
experiment.

The αû-component of the torque vector T
(n̂)
αû on the

magnetic moments oriented along the direction n̂ was cal-
culated with an expression based on Lloyd’s formula and
perturbation theory [19]

T (n̂)
αû

= − 1
π

∫
dE fFD(E)

× Im i
∑

i

tr(τ (n̂)
ii [(û · Ĵ)ti

(n̂)−1 − ti
(n̂)−1

(û · Ĵ)]). (1)

Here fFD is the Fermi distribution function, û is the di-
rection of the torque vector and Ĵ is the total angular
momentum operator. Finally, the matrices ti

(n̂) and τ
(n̂)
ii

are the single site t-matrix and the site diagonal scatter-
ing path operator, respectively, where i (used as an index)
labels the atomic sites. As the calculations are done as-
suming the temperature T = 0 K the Fermi distribution
function is replaced by the theta function Θ(EF −E) with
EF being the Fermi energy. For all results shown below,
the energy integral

∫
dE occurring in equation (1) was cal-

culated on a rectangular complex energy mesh containing
64 points, while using an angular momentum expansion
up to lmax = 2 for all the occurring matrices.

Equation (1) uses the analytic derivative of the en-
ergy with respect to a rotation angle. We found that this
approach is numerically much more robust than taking
the differences between band or total energies. The disad-
vantage, however, is that the magnetic anisotropy energy,
defined as the difference E(n̂, n̂0) of the energy for two
orientations of the magnetisation, n̂ and n̂0, respectively,
has to be determined by a corresponding path integral:

E(n̂, n̂0) =
∫ n̂

n̂0

T (n̂)dn̂. (2)

Developing E(n̂, n̂0) in spherical harmonics up to second
order and taking into account the symmetry of the investi-
gated cluster substrate systems, one finds for example for

Fig. 1. Structures
of the investigated
systems: the cluster
atoms occupy ideal
lattice sites of the un-
derlying Pt(111) sub-
strate.

Table 1. Spin and orbital moments per atom of the investi-
gated systems with magnetisation along the z-axis, i.e. perpen-
dicular to the surface. For the mixed cluster the value refers to
the component underlined.

Co1 Fe1 Co2 Fe2 FeCo FeCo
µspin (µB) 2.27 3.49 2.15 3.33 2.12 3.38
µorb (µB) 0.60 0.77 0.44 0.24 0.39 0.26

a cluster having C2v-symmetry with respect to its spatial
structure, i.e. ignoring the orientation n̂ of the magneti-
sation [20]:

E(θ, φ) = E0 + K2,1 cos 2θ + K2,2(1 − cos 2θ) cos 2φ

+ K2,3 sin 2θ sin φ. (3)

Using a corresponding expression for the torque it is
straight forward to deal with the integral occurring in
equation (2). The evaluation of the anisotropy constants
Kn,m occurring in this equation can then be determined
in a rather easy way by determining the torque for cer-
tain orientations n̂ i.e. at angles (θ, φ) of the magnetic
moments (see below).

3 Results and discussion

The structure of the investigated Co and Fe monomers and
dimers are shown together with the underlying Pt(111)
substrate in Figure 1. As the ad- or cluster atoms, re-
spectively occupy regular lattice sites correspondingly to
the substrate the resulting cluster/substrate system has
C3v- and C2v-symmetry, respectively. Comparing the re-
sulting spin and orbital magnetic moments of Co and Fe
in Table 1 one notices that the spin magnetic moments
for Fe are in general about 1.5 times larger than for Co.
For both transition metals the dimer formation has only
a minor impact on their spin magnetic moments when
compared to the single adatoms. The orbital moments,
however, show a more interesting behaviour. Here we find
already a substantial quenching when going from single
adatoms to the corresponding pure i.e. unmixed dimers.
This effect seems to be much more pronounced in the
case of Fe where the orbital magnetic moment of a Fe2

dimer atom reduces to about one third of the monomer
value compared to only three quarters in the case of Co.
The corresponding values for the mixed dimer differ only
slightly from those of Co2 and Fe2, respectively. The dif-
ferent behaviour of the orbital moment for Co and Fe is
also reflected in their anisotropies (see below). A further
increase in cluster size leads usually (depending also on
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Fig. 2. Torque component Tθ(θ, φ) for Co1 (top) and Fe1 (bot-
tom) at θ = π/4 as a function of the azimuth angle φ (in fact
−Tθ(θ, φ) = ∂E/∂θ is shown — see text). The dashed line
shows the same results including the substrate effect.

the cluster shape) to a rapid and monotonous decay of
spin and orbital magnetic moments approaching rapidly
the values of a monolayer. Obviously, this effect is caused
by the increase in bandwidth of Fe and Co d-states upon
increase of cluster size, while the differences observed for
Fe and Co clusters are related to the different occupation
of the Fe and Co d-bands.

Figure 2 shows the dependence of the θ-component of
the magnetic torque Tθ(θ, φ) = −∂E/∂θ on the azimuth
angle φ for Co and Fe monomers at θ = π/4. As Tθ(θ, φ)
is found to be negative here as well as for the following
we show always ∂E/∂θ = −Tθ(θ, φ). The positive sign
of ∂E/∂θ for all angles φ implies that the torque forces
the magnetisation to the z-axis. This means that the sys-
tem’s easy axis points out of plane along ẑ. One can see
that the threefold symmetry imposed by the underlying
Pt substrate is directly reflected by the small oscillations
of Tθ with the azimuth angle φ.

This also demonstrates the high sensitivity of our im-
plementation. The curves show no numerical noise even
for an energy resolution below 0.1 meV. As the φ depen-
dence of Tθ is so small when compared to its absolute value
the adatoms almost behave like perfect uniaxial magnets.
In this case the anisotropy constants K can be extracted
from the minima of Tθ(θ, φ). For the single adatoms this
gives then 4.76 meV for Co and 8.79 meV for Fe. Figure 2
also shows the influence of the induced anisotropy coming
from the Pt substrate atoms. This induced MAE is about
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Fig. 3. Top panel: torque component Tθ(θ, φ) for Co2 (circles),
Fe2 (squares) and the FeCo dimer (thick line) for θ = π/4.
Lower panel: φ dependence of the average orbital moments for
all three dimers at θ = π/2.

−30 µeV for Fe and even smaller in the case of Co. In fact
it seems to be negligible for very small Co clusters com-
posed of only few atoms. For larger two-dimensional Co
clusters, however, we found that this induced anisotropy
becomes more important with increasing cluster size and
can rise to the same order of magnitude as the contribu-
tion coming from the Co atoms themselves.

The results of the torque calculations for the three
different investigated dimers are shown in the top panel
of Figure 3. In all cases ∂E/∂θ is again positive, how-
ever, the absolute values are significantly reduced when
compared to the monomers. The φ-dependence of the
θ-component of the torque on the other hand is now much
more pronounced due to the reduced symmetry of the
cluster/substrate system when compared to the monomer
(see Fig. 1). From Figure 3 one can see that E(n̂, ẑ) is
smallest if the magnetic moments are oriented along the
x̂-direction, i.e. along the cluster dimer axis (see Fig. 1).
The lower panel of Figure 3 shows the corresponding φ
dependence of the orbital moments for θ = π/2. One can
see that the oscillations in the orbital moments follow the
oscillations of Tθ in an anticyclic manner. Here it should
be pointed out that the largest values for the orbital mo-
ments are obtained when the magnetisation points along
the z-axis (see Tab. 1). This as well as the behaviour seen
in Figure 3 is in qualitative agreement with the Bruno
and van der Laan anisotropy models [21,22] that relate
the MAE E(n̂, n̂0) to the corresponding anisotropy of the
orbital moment.
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Fig. 4. Top panel: torque component Tφ(θ, φ) of Co2 for θ =
π/2 as a function of φ. Middle panel: MAE ∆E(φ) for θ = π/2
referred to n̂0 =̂ (π/2, φ = 0). The thick line gives calculated
results while the thin line marked by diamonds gives results
based on van der Laan’s model. Lower panel: spin resolved
anisotropy ∆µms

orb(φ) for θ = π/2 referred to n̂0 =̂ (π/2, φ =
0) for spin up and down (triangles up and down, resp.) and
summed up (diamonds).

For the van der Laan model one has

E(n̂, n̂0) = − ξ

4µB
[µ↑

orb(n̂) − µ↓
orb(n̂)]

+
ξ

4µB
[µ↑

orb(n̂0) − µ↓
orb(n̂0)], (4)

where ξ is the appropriate spin-orbit coupling constant
(here for the 3d transition metal Fe or Co, respectively),
and µms

orb(n̂) is the spin projected orbital magnetic moment

y

x

Fig. 5. Structure
of the studied Fe
trimer on Pt(111)
without (left) and
with (right) deco-
ration by three Pt
atoms.

for an orientation of the magnetisation along n̂. If one con-
siders a strong ferromagnet one can ignore the majority
spin contribution in equation (4) leading to the expecta-
tion that the orbital magnetic moment takes its maximum
for the magnetisation oriented along the easy axis. The re-
sults shown in Figures 2 and 3 are obviously in full agree-
ment with this. As Figure 3 shows for the three considered
dimers, also the MAE deduced from the shown torque goes
parallel with the orbital magnetic moment (lower panel)
when φ is varied while θ is kept fixed.

The relation of the MAE and the anisotropy of the
orbital magnetic moment has been studied in more detail
by calculating the φ-component of the torque for θ fixed
to π/2, i.e. for the magnetisation forced to lie in the sur-
face xy-plane. As one notes from the results given in Fig-
ure 4, the variation of the torque is again quite pronounced
and reflects the C2v-symmetry of the dimer/substrate sys-
tem. Integrating the torque component with respect to φ
(see Eq. (2)) one is led to the MAE ∆E((π/2, φ), (π/2, φ))
shown in the middle panel of Figure 4, that again shows
that the energy is at its minimum if the magnetisation
lies along the dimer axis. The corresponding anisotropy
∆µorb(φ) is given in the lower panel of Figure 4 in a spin-
polarized way. As one notes the majority contribution to
∆µorb(φ) = µorb(π/2, φ) − µorb(π/2, 0) is very small and
negligible. This is a consequence of the nearly complete
filling of the majority spin d-band of the Co-atoms, i.e.
their strong ferromagnetic behaviour. As a consequence,
one has not to distinguish between Bruno’s and van der
Laan’s models. Using the relation given in equation (4) to-
gether with the spin orbit coupling strength ξ = 85 meV
for Co [23] one is lead to the estimate for the MAE ∆E(φ)
in the middle panel represented by the curve marked
by diamonds. Obviously, the qualitative behaviour of the
MAE is properly reproduced with a reasonable quantita-
tive agreement.

Figures 2 and 3 show that going from a monomer to a
dimer the MAE is drastically reduced. This goes on with
increasing cluster size, although there is some influence of
the cluster shape [4]. As one notes, the decrease of the
MAE is much more pronounced for Fe than for Co. For
the mixed FeCo cluster, however, the MAE is quite high.
This indicates that by a suitable combination of atoms one
may optimize the MAE while keeping the magnetisation
high. In fact, there are already a number of experimental
studies done along this line. Here, we show results for the
impact on the properties of a Fe trimer on Pt(111) due to
a decoration with Pt atoms.

Figure 5 shows the corresponding structure of the in-
vestigated cluster/substrate systems. The resulting spin
and orbital magnetic moments are given in Table 2. As
one notes, the moments of the Fe atoms are again quite
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Table 2. Spin and orbital moments per atom of the Fe3 and
Fe3Pt3 clusters on Pt(111) for the magnetisation along the
z-axis, i.e. perpendicular to the surface. The values refer to the
component underlined. The last two columns give results for
the Pt-substrate atoms having one or two Fe atoms as nearest
neighbours, resp., in case of Fe3Pt3.

Fe3 Fe3Pt3 Fe3Pt3 Pt(1) Pt(2)
µspin (µB) 3.20 3.16 0.21 0.09 0.11
µorb (µB) 0.16 0.09 0.08 0.02 0.02

high as for the mono- and dimer. For the spin moment
one finds only a minor influence due to the decorating Pt
atoms. These have also quite an appreciable induced mag-
netic moment. The resulting torque Tθ(θ, φ) for θ = π/4
as a function of the angle φ is shown in Figure 6 (top
panel) for the Fe2-, Fe3- and Fe3Pt3 clusters. As is demon-
strated once more the torque Tθ and with this also the
MAE is strongly reduced going from the dimer to the
trimer. Adding the decoration, however, the high MAE
of the dimer is recovered. As the inner Fe3 cluster of the
Fe3Pt3 cluster is now surrounded by neighbouring atoms
the variation of the MAE with φ is strongly reduced when
compared with the dimer.

As one would expect, the MAE of the decorated trimer
Fe3Pt3 is dominated by its Fe contribution. This can be
seen in the middle panel of Figure 6 where apart from
the total MAE per Fe-atom the averaged contribution
of a Fe-atom is shown. Nevertheless, there is an appre-
ciable contribution coming from the decorating Pt atoms
as well. This has to be ascribed on the one-hand side to
their appreciable induced magnetic moment (see Tab. 2)
and on the other side to their large spin-orbit coupling
(ξPt = 710 meV to be compared with ξFe = 65 meV).
Apart from the contribution of the decorating Pt atoms
there is a noteworthy contribution from the neighbouring
Pt-substrate atoms as well. As can be seen in the lower
panel of Figure 6 this amounts to about 5% of the total
torque or MAE, respectively.

The results for the undecorated Fen clusters (n =
1, 2, 3) shown in the lower panel of Figure 2 and the top
panel of Figure 6 allows us to make contact to our cor-
responding (so far unpublished) experimental investiga-
tions. The sample preparation technique used within these
investigations is described in reference [24] and led to an
ensemble of Fen clusters that was dominated by clusters
of size n = 1–3 with their statistical weight determined to
be wn = 0.53, 0.54 and 0.33% (for the details of the eval-
uation procedure used for small clusters see e.g. Ref. [7]).
Figure 7 shows the magnetisation curves M(B) measured
for this cluster ensemble at T = 6 K for an orientation
of the external magnetic field B along the easy axis (ẑ)
and at an angle θ =̂ 65◦ with respect to this axis. With
the theoretical magnetic moments and the anisotropy pa-
rameters for the Fen clusters available the magnetisation
curves M(B) can be simulated by means of the so-called
Langevin formula [4]. This way the thermal average of
the z-component mnz(B, T ) of the moment mn of an Fen
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Fig. 6. Top panel: torque component Tθ(θ, φ) for Fe2 (cir-
cles), Fe3 (triangles) and Pt3Fe3 (squares) for θ = π/4 as a
function of the azimuth angle φ. Middle panel: torque compo-
nent Tθ(θ, φ) per Fe atom for Pt3Fe3 at θ = π/4 as a function
of φ: total (full squares) including the substrate contribution,
contribution of a Fe atom (triangle) and a cluster Pt atom
(circles). Lower panel: total torque component Tθ(θ, φ) per Fe
atom for Pt3Fe3 at θ = π/4 as a function of the azimuth angle
φ with (full squares) and without (open squares) the substrate
contribution.

cluster can be expressed by:

mnz(B, T ) =

∫ π

0
sin θdθe−E(B,T,θ)/kT mn cos θ∫ π

0
sin θdθe−E(B,T,θ)/kT

. (5)

For the simulation the energy E(B, T, θ) was assumed to
consist of its Zeeman and anisotropy contributions

E(B, T, θ) = Bmn cos θ + Kn
1 sin2 θ (6)
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Fig. 7. Experimental magnetisation curves M(B) (dots) of
an ensemble if Fen clusters on Pt(111) measured at T = 6 K
for an orientation of the magnetic field M(B) along the easy
axis ẑ (θ = 0◦) and rotated by θ = 65◦ with respect to that.
The full lines give corresponding theoretical results obtained
on the basis of the calculated properties of Fen clusters and
the Langevin formula given in equation (5). The dashed line is
obtained by including Fe4 clusters in the simulation.

where for the later one an uniaxial behaviour has been
assumed. The corresponding anisotropy constant Kn

1 has
been deduced from the results for the MAE shown above.
Adding the magnetisation curves for the Fen clusters
weighted by their statistical weight wn one is lead to the
full lines shown in Figure 7. The additional dashed lines
stem from a second simulation done including tetramers.
This indicates that a certain amount of larger Fe clusters
are formed during the preparation process as expected by
statistics.

The good agreement of the simulated curves with ex-
periment obviously demonstrates that the complex mag-
netic properties of transition metal clusters can indeed be
understood and described without adjustable parameters
on the basis of the approach used here. It also shows that
inclusion of relaxation effects when calculating the cluster
properties should only slightly modify the numerical re-
sults. Nevertheless, corresponding numerical works are in
progress to determine the influence of lattice relaxations.

4 Conclusion

We have presented results for the magnetic anisotropy of
various Co/Pt(111) and Fe/Pt(111) cluster/substrate sys-
tems calculated by the fully relativistic KKR-approach. It
was demonstrated that calculating the magnetic torque
instead of the magnetic anisotropy energy directly, is nu-
merically very robust and reliable. This is in particular
reflected by the accuracy achieved for the dependency of
the torque on the azimuth angle φ as well as the results
for the substrate contribution.

As in previous work it was found that increasing the
cluster size leads in general to a rapid decrease of the
MAE. However, it could be shown that by suitable forma-
tion of compound clusters this drop can be compensated.
In fact, the combination of an element with large magnetic

moments with one having large spin-orbit coupling seems
to be a promising approach.

Finally, it could be demonstrated that using the calcu-
lated cluster properties the results of experimental mag-
netisation curves could be reproduced in a very satisfying
way confirming the adequateness of our approach as well
as the interpretation of the experimental findings.

We acknowledge support by the Deutsche Forschungsgemein-
schaft within the Schwerpunktprogramm 1153 Cluster in Kon-
takt mit Oberflächen: Elektronenstruktur und Magnetismus.
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