Competition between spin-orbit coupling and magnetic exchange splitting in Ca₂RuO₄

Guo-Qiang Liu

Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

The layered perovskite Ca₂RuO₄ has attracted considerable interest owing to its complicated electronic structures. Ca₂RuO₄ is antiferromagnetic insulating below 110 K, and paramagnetic insulating from 110 K to 357 K. Under external pressure, Ca₂RuO₄ undergoes an antiferromagnetic ferromagnetic transition at 0.5 GPa. Surprisingly, the observed ferromagnetic moment M=0.4 μ_B/Ru is much smaller than the expected value of 2 μ_B/Ru . In this work, the magnetic properties of Ca₂RuO₄ are investigated by using the density functional calculations including the spin-orbit coupling and Coulomb repulsion. It is found that the low moment state originates in a Coulomb-enhanced spin-orbit splitting, which strongly suppresses the spin-moment. A simple formula is provided to discuss the competition between the spin-orbit coupling and magnetic exchange splitting. The electronic structures of Ca₂RuO₄, including the antiferromagnetic insulating, paramagnetic insulating, and ferromagnetic metallic, can be consistently explained within this competitive picture.