Phase transitions of LaTiO₃ under pressure

I. Efthimiopoulos¹, I. Loa¹, S. Karmakar¹, X. Wang¹, K. Syassen^{1*}, and M. Hanfland² ¹Max Planck Institute für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart,

Germany

²European Synchrotron Radiation Facility, F-38043 Grenoble, France *E-mail:K.Syassen@fkf.mpg.de

The family of Ti-based RTiO₃ compounds, where R stands for a rare-earth ion, crystallize in the GdFeO₃-type perovskite structure (SG *Pnma*, *Z*=4) at ambient conditions [1]. They all have a single electron in the t_{2g} orbitals of the Ti 3*d* shell (Ti³⁺) and are all Mott insulators [2,3]. Upon decreasing the ionic radius in the rare-earth series from La to Y, the structural distortions increase and, consequently, the one-electron bandwidth gets smaller [2,3]. LaTiO₃ exhibits the smallest structural distortions among the series and, concomitantly, has the smallest optical band gap ($E_g \sim 0.1 \text{ eV}$ [1]). The latter implies that LaTiO₃ is on the verge of an insulator-to-metal transition. Indeed, previous high-pressure mid-infrared reflectivity investigations [4] detected the onset of an insulator-to-metal transition above 10 GPa.

The pressure-induced metallization motivated us to perform high-pressure x-ray diffraction (XRD) and Raman studies on LaTiO₃ in order to detect the response of the structure and the lattice dynamics. From our XRD study, we observe an *isostructural* transition taking place at ~10 GPa which coincides with the metallization of the compound. Upon further compression, the orthorhombic *Pnma* phase transforms into a tetragonal *I4/mcm* structure above 30 GPa. High-pressure Raman studies at ambient and low temperatures are consistent with the XRD results. We have observed an unusual enhancement of the Raman intensity upon entering the metallic state; a possible explanation of this peculiar behavior in terms of electronic correlations is offered.

References

- [1] D. A. Crandles, T. Timusk, J. D. Garrett, and J. E. Greedan, Phys. C 201, 407 (1992).
- [2] M. Mochizuki and M. Imada, New J. Phys. 6, 154 (2004) and references therein.
- [3] E. Pavarini, A Yamasaki, J Nuss, and O K Andersen, New J. Phys. 7, 188 (2005) and references therein.
- [4] I. Loa, X.Wang, K. Syassen, M. Hanand, T. Lorenz, H. Roth, and Y.-L. Mathis (unpublished).