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Spin-orbital coupling: The study of orbital degeneracy in transition metal oxidesnbtivated, e.g., by the
large variety of spin-charge-orbital ordered phases, thesiple control of the orbital degree of freedom at
interfaces and heterostructures, the switching from akbitdered to metallic phases in applied magnetic fields,
and the colossal magnetoresistance. The rather comptplay of orbital and spin degrees of freedom can be
formulated in terms of spin-orbital exchange models, wiaighderived from more general multi-band Hubbard
models. A particularly challenging system that stimulaéedumber of studies is the one-dimensional (1D)
spin-orbital model with free coupling parameterandy:
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Wheregj andfj represent the spin and orbital pseudospin degrees of fire¢kere we considef = 1 and
T= %). On the one hand, this model already contains the full cerigyl of the interplay of the different degrees
of freedom, orbital ') and spin §). It also allows one to attack the problem with special tqusticularly
designed for 1D models. On the other hand, this model refieetsertain extent generic aspects of the physics of
orbital degenerate Mott insulators in three dimension,elgfior phases with quasi-1D correlations. An example
is theC-AF phase in cubic vanadates, YYOr LaVO;, that reveals strong orbital fluctuations accompanied by
ferromagnetic (FM) spin order along tlkecubic axis. In the case of vanadatgs;> 0 and §j (fj) represent

S = 1 spin (2, orbital) degrees of freedom, respectively. While the Hemmilan of these compounds is more
complex, Eq. (1) captures nevertheless certain essentiflires, as for example the amazing orbital-Peierls
instability towards a phase with alternating orbital setglcoupled to modulated FM exchange (stronger and
weaker) spin-couplings along thexis.

Dimerized spin-orbital chainskigure 1 shows (a) the phase diagram and (b) the order pageyadtthe spin-
orbital chain (1). The most remarkable feature is the resmtoehavior of the dimerization and the absence of
dimerization at zero temperature. In our study the quadigpting terms,(gj . §j+1)(ﬂ . fjﬂ), are treated

by a mean-field decoupling of the spin- and orbital degredsegidom. The temperature dependence of spin
correlations is analyzed by a modified spin wave theory aadtti part of the orbital interaction is treated by
Jordan-Wigner theory [1].
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Figure 1: (a) Phase diagram of spin-orbital chain (1) for= 1 as function of temperatur& and coupling constanj
reflecting a spin-orbital dimerized phase at firiiteand (b) reentrant behavior of the dimerization of the spinital chain
calculated in a mean-field theory fer= 1, y = 0.14 and positiveJ > 0. The dimerization parametefs () acting
on the spin (orbital) degrees of freedom, respectively,fiaite only in an intermediate temperature range determined
temperature§’ andT;. It is important to note that the dimerization in the spintsecs induced by the dimerization in the
orbital sector and vice versa and does not require a couditite lattice as in the Peierls effect.

Peierls dimerization of ferromagnetic Heisenberg chaifisr the understanding of the reentrant behavior in Fig.
1(b) it is useful to consider the FM/(< 0) spin-Peierls problem. The Hamiltonian can be written as

N
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Figure 2: Comparison of phase diagrams of FM & 0)
and AFM (J > 0) spin-1/2 Heisenberg chains in the plane
T determined by temperature and elastic force constant
) T T/ 1 [2]. The well-known AFM spin-Peierls transition, from the
N, ] undimerized UarwMm) to the dimerized Darn) phase, oc-
N, 1 curs for any coupling strength (dash-dotted line). In con-
TSl - UAFM _ trast, the FM chain behaves differently and dimerizesy;
e phase) only for sufficently weak force constahAts< K. ~
Dpy #7CP Daen T - 0.12|J|. Moreover, the FM case shows reentrant behavior
, and dimerization at zero temperature is ruled out. The tri-
- 1 critical point (TCP) separates first and second order behav-
0'2 : (')3 : ! : ior. Insets show the order parametéf’) for: (a) the FM
¢ KM ' ' chain atk/|.J| = 0.1, and (b) the AFM chain fof/J = 2.
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whered is the dimensionles dimerization (order) parameter Bpd= %NK(SQ is the elastic energy determined
by the force constank’. The FM case with/ < 0 is very distinct from the well-known antiferromagnetic
(AFM) spin-Peierls chainf > 0) as seen from the phase diagrams in Figure 2, which summsayizeresults
obtained by transfer-matrix renormalization group (TMRf@)culations for both cases [2,3]. In the AFM case
the dimerization occurs always, i.e., for any valli¢.J > 0, whereas in the FM case we find the reentrant
behavior as for the spin-orbital chain. Moreover, we obséne FM dimerized phas@gy; only for sufficiently
small force constant&’/|.J|.

The AFM chain dimerizes because the alternation of the AFktetations leads to a lowering of magnetic
energy, which overcompensates the increase of elastige®igr. In the FM ground state, however, there are
no quantum fluctuations and the FM correlations are satliraieus alternation of spin correlations is ruled out.
At finite temperature, however, thermal fluctuations weakese correlations and at the same time allow for the
dimerization when the coupling to the lattice is not too str0

Entanglement of spin-orbital excitations and von Neumamtnopy spectra:In general, spin-orbital systems
1

contain entangled states. Here we investigate entangteméme 1D spin-orbital model (1) fof = 5 . In
general, a many-body quantum system can be subdivideddirsiod B parts and the entanglement entropy is
then given by the von Neumann entropy (VNE)x = —Tra{palog, pa}, whereps = Trp{p} is the reduced
density matrix of the subspacé andp is the full density matrix. In the case of the 1D spin-orbitabdel
(1) we associate subsystem A with spin and B with orbital degrof freedom. Results for the VNE,n, are
shown in Figure 3. It vanishes for ground states which canab®fized into the spin and orbital part, i.e.,
[¥) = |¢s) @ |¥r). In the case of the 1D spin-orbital model (1) with< 0 this applies to the ground states of

phases |, Il and IV where at least one componentis a fullyrpmd (FM or ferro-orbital) state.

Then a natural question arises: What does this imply for Xie@edl states? If we start from a ground state with
disentangled spin- and orbital-degrees of freedom, fdaite from the phase I, are the spin-orbital excitations
entangled or not? To investigate the degree of entanglenfisptn-orbital excited states, we introduce the vNE
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Uf Figure 3: Spin-orbital entanglement entrog,
Lo in the ground state of the 1D spin-orbital chain
' (1) for J < 0 as function ofx andy. The phase
boundaries indicated by dashed lines have been
L oo determined by calculating the fidelity susceptibility
L, [4]. The two-site spin-orbital configurations (see
/ box) indicate the prevailing correlations in phases
o . I-1V, respectively. The only spin-orbital entangled
ground states with AFM spin and alternating orbital
correlations are found in phase IIl.




Figure 4: The von Neumann entropy spectral functiSiy (Q,w) displays the entanglement of the lowest spin-orbital
excitations in phase | [4], i.e., in a phase where the grotete gself is disentangled and spin and orbital degreeseefiom
can be factorized!S, ~(Q,w) is calculated for a 1D spin-orbital chain (1) of 400 sites; fa) x = y = 1/4 and (b)

x = y = 1/2. The spectra show a continuum of spin-orbital excitatidretWeen dashed-dotted lines); in addition one
finds: ¢) a bound state below the continuum (dashed line), aida(sharp spin-orbital resonance inside the continuum in
the highly symmetric 1D SU(4) modek (= y = 1/4). In contrast, in case (b) one recognizes a damping of thechital
resonance, while the bound state below the continuum ss\iut is closer to the continuum.

spectral function in the Lehmann representation [4],

SN(Q,w) = =Y Tr{pl log, p{"}6 {w — wn(Q)}, €)

where (i) = (Q,w,) denote momentum and excitation energy, afitl = T, |, (Q)) (¥, (Q)| is the spin
density matrix obtained by tracing out the orbital degrefdssdom.

Figure 4 gives two examples (= y = 1/4 andz = y = 1/2) of the von Neumann spectral function (3)
for phase | of the 1D spin-orbital chain (1), i.e., for thegnd state with coexisting FM spin and ferro-orbital
correlations. We focus here on the elementary excitatiotisd Hilbert space with one spin and one orbital flip,
repectively. The spectra are characterized by three didiypes of excitations: (i) the spin-orbital continuum

with energies,

wherew,(Q) = (1 +y) (1 — cos Q) andw(Q) = (1 + ) (1 — cos Q) are the elementary spin- and orbital-
excitations (i.e., spin waves and orbitons) at momentyr(ii) the spin-orbital excitonic bound state (BS) with
energywps (@), and (iii) a spin-orbital resonaneg;or (Q) which is degenerate with, (Q) andw;(Q) at the
SU(4) pointa = y = 1/4, Figure 4(a). Interestingly, all excitations have finiteaglement entropy and

in general spin-orbital bound states are strongly entahgiates. In particular, the SORat= y = 1/4 is
maximally entangledS,y = log, L whereL is the length of the system. From this we may conclude that a
system, which is disentangled’&t= 0, will become entangled at finite temperatures.

The entanglement spectral functidhn(Q,w) has a similar form as any other dynamical spin- or charge-
correlation function. There is, however, an importantet#ince — as there is no direct probe for the von
Neumann entropy of a state, the spin-orbital entanglenpdtsa can be calculated but cannot be measured
directly. On the other hand, we have shown [4] that the intgmiéstribution of certain resonant inelastic x-ray
scattering (RIXS) spectra of spin-orbital excitationsantfprobe qualitatively spin-orbital entanglement.
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