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Spin-orbital coupling: The study of orbital degeneracy in transition metal oxides is motivated, e.g., by the
large variety of spin-charge-orbital ordered phases, the possible control of the orbital degree of freedom at
interfaces and heterostructures, the switching from orbital ordered to metallic phases in applied magnetic fields,
and the colossal magnetoresistance. The rather complex interplay of orbital and spin degrees of freedom can be
formulated in terms of spin-orbital exchange models, whichare derived from more general multi-band Hubbard
models. A particularly challenging system that stimulateda number of studies is the one-dimensional (1D)
spin-orbital model with free coupling parametersx andy:

H = J
∑

j=1

(

~Sj · ~Sj+1 + x
) (

~Tj · ~Tj+1 + y
)

, (1)

where~Sj and ~Tj represent the spin and orbital pseudospin degrees of freedom (here we considerS = 1 and
T = 1

2 ). On the one hand, this model already contains the full complexity of the interplay of the different degrees
of freedom, orbital (T ) and spin (S). It also allows one to attack the problem with special toolsparticularly
designed for 1D models. On the other hand, this model reflectsto a certain extent generic aspects of the physics of
orbital degenerate Mott insulators in three dimension, namely for phases with quasi-1D correlations. An example
is theC-AF phase in cubic vanadates, YVO3 or LaVO3, that reveals strong orbital fluctuations accompanied by
ferromagnetic (FM) spin order along thec cubic axis. In the case of vanadates,J > 0 and ~Sj (~Tj) represent
S = 1 spin (t2g orbital) degrees of freedom, respectively. While the Hamiltonian of these compounds is more
complex, Eq. (1) captures nevertheless certain essential features, as for example the amazing orbital-Peierls
instability towards a phase with alternating orbital singlets coupled to modulated FM exchange (stronger and
weaker) spin-couplings along thec axis.

Dimerized spin-orbital chains:Figure 1 shows (a) the phase diagram and (b) the order parameters of the spin-
orbital chain (1). The most remarkable feature is the reentrant behavior of the dimerization and the absence of
dimerization at zero temperature. In our study the quartic coupling terms,(~Sj · ~Sj+1)(~Tj · ~Tj+1), are treated
by a mean-field decoupling of the spin- and orbital degrees offreedom. The temperature dependence of spin
correlations is analyzed by a modified spin wave theory and the XY part of the orbital interaction is treated by
Jordan-Wigner theory [1].
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Figure 1: (a) Phase diagram of spin-orbital chain (1) forx = 1 as function of temperatureT and coupling constanty
reflecting a spin-orbital dimerized phase at finiteT , and (b) reentrant behavior of the dimerization of the spin-orbital chain
calculated in a mean-field theory forx = 1, y = 0.14 and positiveJ > 0. The dimerization parametersδS (δτ ) acting
on the spin (orbital) degrees of freedom, respectively, arefinite only in an intermediate temperature range determinedby
temperaturesT1 andT2. It is important to note that the dimerization in the spin sector is induced by the dimerization in the
orbital sector and vice versa and does not require a couplingto the lattice as in the Peierls effect.

Peierls dimerization of ferromagnetic Heisenberg chains:For the understanding of the reentrant behavior in Fig.
1(b) it is useful to consider the FM (J < 0) spin-Peierls problem. The Hamiltonian can be written as

H = J
N
∑

j=1

{1 + (−1)jδ} ~Sj · ~Sj+1 + Eel , (2)
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Figure 2:Comparison of phase diagrams of FM (J < 0)
and AFM (J > 0) spin-1/2 Heisenberg chains in the plane
determined by temperature and elastic force constantK
[2]. The well-known AFM spin-Peierls transition, from the
undimerized (UAFM) to the dimerized (DAFM) phase, oc-
curs for any coupling strength (dash-dotted line). In con-
trast, the FM chain behaves differently and dimerizes (DFM

phase) only for sufficently weak force constantsK < Kc ≃
0.12|J |. Moreover, the FM case shows reentrant behavior
and dimerization at zero temperature is ruled out. The tri-
critical point (TCP) separates first and second order behav-
ior. Insets show the order parameterδ(T ) for: (a) the FM
chain atK/|J | = 0.1, and (b) the AFM chain forK/J = 2.

whereδ is the dimensionles dimerization (order) parameter andEel =
1
2NKδ

2 is the elastic energy determined
by the force constantK. The FM case withJ < 0 is very distinct from the well-known antiferromagnetic
(AFM) spin-Peierls chain (J > 0) as seen from the phase diagrams in Figure 2, which summarizes our results
obtained by transfer-matrix renormalization group (TMRG)calculations for both cases [2,3]. In the AFM case
the dimerization occurs always, i.e., for any valueK/J > 0, whereas in the FM case we find the reentrant
behavior as for the spin-orbital chain. Moreover, we observe the FM dimerized phaseDFM only for sufficiently
small force constantsK/|J |.

The AFM chain dimerizes because the alternation of the AFM correlations leads to a lowering of magnetic
energy, which overcompensates the increase of elastic energyEel. In the FM ground state, however, there are
no quantum fluctuations and the FM correlations are saturated. Thus alternation of spin correlations is ruled out.
At finite temperature, however, thermal fluctuations weakenthese correlations and at the same time allow for the
dimerization when the coupling to the lattice is not too strong.

Entanglement of spin-orbital excitations and von Neumann entropy spectra:In general, spin-orbital systems
contain entangled states. Here we investigate entanglement in the 1D spin-orbital model (1) forS = 1

2 . In
general, a many-body quantum system can be subdivided intoA andB parts and the entanglement entropy is
then given by the von Neumann entropy (vNE),SvN = −TrA{ρA log2 ρA}, whereρA = TrB{ρ} is the reduced
density matrix of the subspaceA andρ is the full density matrix. In the case of the 1D spin-orbitalmodel
(1) we associate subsystem A with spin and B with orbital degrees of freedom. Results for the vNE,SvN, are
shown in Figure 3. It vanishes for ground states which can be factorized into the spin and orbital part, i.e.,
|ψ〉 = |ψS〉 ⊗ |ψT 〉. In the case of the 1D spin-orbital model (1) withJ < 0 this applies to the ground states of
phases I, II and IV where at least one component is a fully polarized (FM or ferro-orbital) state.

Then a natural question arises: What does this imply for the excited states? If we start from a ground state with
disentangled spin- and orbital-degrees of freedom, for instance from the phase I, are the spin-orbital excitations
entangled or not? To investigate the degree of entanglementof spin-orbital excited states, we introduce the vNE
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Figure 3: Spin-orbital entanglement entropySvN

in the ground state of the 1D spin-orbital chain
(1) for J < 0 as function ofx andy. The phase
boundaries indicated by dashed lines have been
determined by calculating the fidelity susceptibility
[4]. The two-site spin-orbital configurations (see
box) indicate the prevailing correlations in phases
I-IV, respectively. The only spin-orbital entangled
ground states with AFM spin and alternating orbital
correlations are found in phase III.
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Figure 4: The von Neumann entropy spectral functionSvN(Q,ω) displays the entanglement of the lowest spin-orbital
excitations in phase I [4], i.e., in a phase where the ground state itself is disentangled and spin and orbital degrees of freedom
can be factorized!SvN (Q,ω) is calculated for a 1D spin-orbital chain (1) of 400 sites, for: (a) x = y = 1/4 and (b)
x = y = 1/2. The spectra show a continuum of spin-orbital excitations (between dashed-dotted lines); in addition one
finds: (i) a bound state below the continuum (dashed line), and (ii) a sharp spin-orbital resonance inside the continuum in
the highly symmetric 1D SU(4) model (x = y = 1/4). In contrast, in case (b) one recognizes a damping of the spin-orbital
resonance, while the bound state below the continuum survives but is closer to the continuum.

spectral function in the Lehmann representation [4],

SvN(Q,ω) = −
∑

n

Tr{ρ(µ)s log2 ρ
(µ)
s }δ {ω − ωn(Q)} , (3)

where(µ) = (Q,ωn) denote momentum and excitation energy, andρ
(µ)
s = Tro|Ψn(Q)〉〈Ψn(Q)| is the spin

density matrix obtained by tracing out the orbital degrees of freedom.

Figure 4 gives two examples (x = y = 1/4 andx = y = 1/2) of the von Neumann spectral function (3)
for phase I of the 1D spin-orbital chain (1), i.e., for the ground state with coexisting FM spin and ferro-orbital
correlations. We focus here on the elementary excitations in the Hilbert space with one spin and one orbital flip,
repectively. The spectra are characterized by three distinct types of excitations: (i) the spin-orbital continuum
with energies,

Ω(Q, q) = ωs

(

Q

2
− q

)

+ ωt

(

Q

2
+ q

)

, (4)

whereωs(Q) =
(

1
4 + y

)

(1 − cosQ) andωt(Q) =
(

1
4 + x

)

(1 − cosQ) are the elementary spin- and orbital-
excitations (i.e., spin waves and orbitons) at momentumQ; (ii) the spin-orbital excitonic bound state (BS) with
energyωBS(Q), and (iii) a spin-orbital resonanceωSOR(Q) which is degenerate withωs(Q) andωt(Q) at the
SU(4) pointx = y = 1/4, Figure 4(a). Interestingly, all excitations have finite entanglement entropy and
in general spin-orbital bound states are strongly entangled states. In particular, the SOR atx = y = 1/4 is
maximally entangled,SvN = log2 L whereL is the length of the system. From this we may conclude that a
system, which is disentangled atT = 0, will become entangled at finite temperatures.

The entanglement spectral functionSvN(Q,ω) has a similar form as any other dynamical spin- or charge-
correlation function. There is, however, an important difference — as there is no direct probe for the von
Neumann entropy of a state, the spin-orbital entanglement spectra can be calculated but cannot be measured
directly. On the other hand, we have shown [4] that the intensity distribution of certain resonant inelastic x-ray
scattering (RIXS) spectra of spin-orbital excitations in fact probe qualitatively spin-orbital entanglement.
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