Tuning the Eu valence in $EuPd_3B_x$: pressure versus valence electron count a combined computational and experimental study

M. Schmitt¹, R. Gumeniuk¹, A. Trapananti², G. Aquilanti³, C. Strohm², K. Meier¹,

U. Schwarz¹, M. Hanfland², W. Schnelle¹, A. Leithe-Jasper¹, <u>H. Rosner¹</u>

¹MPI CPfS Dresden, Germany ²ESRF Grenoble, France and ³ Sincrotrone Triest, Italy

Abstract

In a joint theoretical and experimental study we investigate the pressure dependence of the Eu valence in EuPd₃B_x ($0 \le x \le 1$). Density functional band structure calculations are combined with x-ray absorption and x-ray diffraction measurements under hydrostatic pressures up to 30 GPa. It is observed that the heterogenous mixed-valence state of Eu in EuPd₃B_x ($x \ge 0.2$) can be suppressed partially in this pressure range. From the complementary measurements we conclude that the valence change in EuPd₃B_x is mainly driven by the number of additional valence electrons due to the insertion of boron, whereas the volume change is a secondary effect. A similar valence change of Eu in Eu_{1-x}La_xPd₃ is predicted for $x \ge 0.4$, in line with the suggested electron count scenario.