Topological materials with reflection symmetry

Andreas P. Schnyder

Max Planck Institute for Solid State Research, Stuttgart

September 29th, 2015

in collaboration with:

C.-K. Chiu, Y.-H. Chan, M. Y. Chou, Y. Nohara, A. Yaresko

KITP Workshop Ismatter 2015

Outline

- 1. Introduction
 - Topological equivalence
 - Mirror reflection symmetry

2. Reflection symmetry protected TIs and SCs

- Classification of reflection symmetric TIs and SCs
- Examples: SnTe, Ca₃PbO, Sr₃PbO

3. Reflection symmetry protected semimetals and nodal superconductors

- Classification schemes
- Examples: Ca₃P₂, PbTaSe₂
- 4. Conclusions & Outlook

Topological band theory

• Consider band structure with a gap:

 $H(\mathbf{k}) |u_n(\mathbf{k})\rangle = E_n(\mathbf{k}) |u_n(\mathbf{k})\rangle$

- *band insulator*: E_F between conduction and valence bands
- *superconductor*: band structure of Bogoliubov quasiparticles
- **Topological equivalence:**

Two band structures are equivalent if they can be continuously deformed into one another without closing the energy gap and without breaking the symmetries of the band structure.

\triangleright symmetries to consider:

- particle-hole symmetry, time-reversal symmetry
- reflection symmetry, rotation symmetry, etc.

topological invariant (e.g. Chern no): $n_{\mathbb{Z}} = \frac{i}{2\pi} \int \mathcal{F} d\mathbf{k} \in \mathbb{Z}$ \triangleright top. equivalence classes distinguished by:

• Bulk-boundary correspondence:

 $|n_{\mathbb{Z}}| = \#$ gapless edge states (or surface states)

states

Reflection symmetry

Consider reflection R: $x \to -x$

$$\label{eq:relation} \begin{split} R^{-1}\mathcal{H}(-k_x,k_y,k_z)R &= \mathcal{H}(k_x,k_y,k_z) \\ \text{with} \quad R = s_x \end{split}$$

— w.l.o.g.: eigenvalues of $R \in \{-1, +1\}$

mirror Chern number:

 $k_x = 0 \implies \mathcal{H}(0, k_y, k_z)R - R\mathcal{H}(0, k_y, k_z) = 0$

– project $\mathcal{H}(0,k_y,k_z)$ onto eigenspaces of $R\colon \mathcal{H}_{\pm}(k_y,k_z)$

$$n_{\mathcal{M}}^{\pm} = \frac{1}{4\pi} \int_{2\mathrm{D}\,\mathrm{BZ}} \mathcal{F}_{\pm} d^{2}\mathbf{k}$$
Berry curvature in \pm eigenspace

- total Chern number: $n_{\mathcal{M}} = n_{\mathcal{M}}^+ + n_{\mathcal{M}}^-$

— mirror Chern number:
$$n_{\mathcal{M}} = n_{\mathcal{M}}^+ - n_{\mathcal{M}}^-$$

Bulk-boundary correspondence:

 zero-energy states on surfaces that are left invariant under the mirror symmetry

Teo, Fu, Kane PRB '08

Classification of topological insulators and superconductors with reflection symmetry

Global symmetries: Ten symmetry classes

- Non-spatial symmetries: symmetries that act *locally* in real space

- time-reversal:
- particle-hole:
- sublattice:

ten symmetry classes

Classification of reflection symmetry protected topological materials

Reflection symmetry + non-spatial symmetries (TRS, PHS, SLS)

- Symmetries of $\mathcal{H}_{\pm}(k_y,k_z)$:
 - (i) R_+ : R commutes with T (C or S)
- same symmetries as full Hamiltonian $\; \mathcal{H}(\mathbf{k}) \;$
 - (ii) R_{-} : R anti-commutes with T (C or S)
- effective symmetry class shifts by two on "Bott clock"

- Classification of reflection symmetric topological materials depends on:
 - $\bullet\,$ whether R commutes or anti-commutes with TRS, PHS, SLS
 - \Rightarrow 27 symmetry classes

27 classes

R	A
R_+	AIII
R_{-}	AIII
	AI
	BDI
	D
R_{\perp}, R_{\perp}	DIII
-• - ,-•	AII
	CII
	C
	CI
	AI
	BDI
	D
R_{R}	DIII
	AII
	CII
	C
	CI
R_{-+}	BDI, CII
R_{+-}	DIII, CI
R_{+-}	BDI
R_{-+}	DIII
R_{+-}	CII
R_{-+}	CI

Classification of reflection symmetry protected topological insulators and superconductors

- R_+ : R commutes with T (C or S)
- R_{-} : R anti-commutes with T (C or S)

Chiu, Yao, Ryu, PRB 2013; Morimoto, Furusaki PRB 2013; Chiu, Schnyder PRB 2014;

Classification of reflection symmetry protected topological insulators and superconductors

- R_+ : R commutes with T (C or S)
- R_{-} : R anti-commutes with T (C or S)

Reflection	sym. class					
R	A					
R_+	AIII					
R_{-}	AIII					
	AI					
	BDI					
	D					
R. R.	DIII					
ι_+, ι_{++}	$R_{++} = AIII \\ AIII \\ AIII \\ AII \\ BDI \\ D \\ D \\ D \\ D \\ D \\ D \\ C \\ C$					
	C					
	CI					
	AI					
	BDI					
	D					
R R	DIII					
10-,10	AII					
	CII					
	C					
	CI					
R_{-+}	BDI, CII					
R_{+-}	DIII, CI					
R_{+-}	BDI					
R_{-+}	DIII					
R_{+-}	CII					
R_{-+}	CI					

For which symmetry class and dimension is there a topological insulator/superconductor protected by reflection symmetry?

Chiu, Yao, Ryu, PRB 2013; Morimoto, Furusaki PRB 2013; Chiu, Schnyder PRB 2014;

Symmetries and Dirac Hamiltonians

Dirac Hamiltonian in spatial dimension d: $\mathcal{H}(k) = \sum_{i=1}^{a} k_i \gamma_i + m \gamma_0$ $E_{\pm} = \pm \sqrt{m^2 + \sum_{i=1}^{d} k_i^d}$

• Gamma matrices γ_i obey: $\{\gamma_i, \gamma_j\} = 2\delta_{ij}$ $i = 0, 1, \dots, d$

• TRS, PHS, chiral symmetry and reflection ($k_1
ightarrow -k_1$) lead to the conditions:

$$[\gamma_0, T] = 0 \qquad \{\gamma_{i \neq 0}, T\} = 0 \qquad \{\gamma_i, S\} = 0 \qquad \{\gamma_1, R\} = 0 \\ \{\gamma_0, C\} = 0 \qquad [\gamma_{i \neq 0}, C] = 0 \qquad \{\gamma_i, S\} = 0 \qquad [\gamma_{i \neq 1}, R] = 0$$

• Topological phase transition as a function of mass term $m\gamma_0$

 $\ref{eq:constraint}$ are there extra symmetry preserving mass terms $M\gamma_{d+1}$ that connect the two phases without gap closing?

$$\{\gamma_{d+1}, \gamma_i\} = 0 \quad i = 0, 1, \dots 2$$

$$E_{\pm} = \pm \sqrt{m^2 + M^2 + \sum_{i=1}^{a} k_i^d}$$

$$E_{\pm} = \pm \sqrt{m^2 + M^2 + \sum_{i=1}^{a} k_i^d}$$

Classification of reflection symmetry protected topological insulators and superconductors

- R_+ : R commutes with T (C or S)
- R_{-} : R anti-commutes with T (C or S)

Reflection	sym. class	<i>d</i> =1	<i>d</i> =2	<i>d</i> =3	<i>d</i> =4	<i>d</i> =5	<i>d</i> =6	<i>d</i> =7	<i>d</i> =8
R	А	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
$ $ n_+, n_{++}	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	С	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
	D	$M\mathbb{Z}$	0	0			PhO	\mathbb{Z}_2	
	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	6	31 00	$T\mathbb{Z}_2$		
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	С	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

Chiu, Yao, Ryu, PRB 2013; Morimoto, Furusaki PRB 2013

SnTe is a reflection symmetry protected TI

Effective low-energy Hamiltonian:

Hsieh, Fu, et al. 2012

SnTe is a reflection symmetry protected TI

Effective Hamiltonian within mirror plane:

Tanaka, Ando, et al., Nat. Phys. 2012, 2013

Berry curvature

- Mirror Chern number: $n_{\mathcal{M}} = (n_+ n_-)$
- Bulk-boundary correspondence:

 $|n_{\mathcal{M}}| = \#$ Dirac cone surface states for SnTe: $n_{\mathcal{M}} = 2$

Ca₃PbO is a reflection symmetry protected TI

[after Kariyado and Ogata]

Ca₃PbO is a reflection symmetry protected TI

Anti-perovskites: Ca₃PbO, Sr₃PbO Kariyado & Ogata JPSJ '12

Hsieh, Fu et al., PRB '14

Symmetries:

- Time-reversal:
$$T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k})$$

 $T = is_y\mathcal{K}$ $T^2 = -1$

- two reflection symmetries : R_1 and R_2 $R_1^{-1}\mathcal{H}(-k_x, k_y, k_z)R_1 = \mathcal{H}(k_x, k_y, k_z)$

Ca₃PbO is a reflection symmetry protected TI

Anti-perovskites: Ca₃PbO, Sr₃PbO

Kariyado & Ogata JPSJ '12 Hsieh, Fu et al., PRB '14

- Symmetries:
 - Time-reversal: $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k})$ $T = is_y\mathcal{K}$ $T^2 = -1$
 - two reflection symmetries : R_1 and R_2 $R_1^{-1}\mathcal{H}(-k_x, k_y, k_z)R_1 = \mathcal{H}(k_x, k_y, k_z)$ $R_2^{-1}\mathcal{H}(-k_y, -k_x, k_z)R_2 = \mathcal{H}(k_x, k_y, k_z)$ R_j anti-commutes with T: $TR_jT^{-1} = -R_j$

Ca

Pb

()

- Topological invariants:
 - two mirror Chern numbers: $n_{\mathcal{M}_1}, n_{\mathcal{M}_2}$
 - for Ca₃PbO, Sr₃PbO: $n_{M_1} = -2, n_{M_2} = +2$

 $\implies 2 \times 2$ Dirac cone surface states Chiu, Nohara, Chan, Schnyder, in preparation

Reflection symmetry protected topological semimetals and nodal superconductors

A Fermi surface in a semimetal (or a nodal line in a superconductor) is topologically stable if there does not exist any symmetry preserving mass term that opens up a full gap in the spectrum.

Reflection symmetry protected topological semimetals and nodal SCs

- How about topology of reflection symmetric semimetals and nodal superconductors?
- Problem: Global topological number ill-defined (no gap!)
- **Solution:** (assume translational symmetry)

topological number

Define momentum-dependent topological number
$$W_{\mathcal{C}}^{\pm} = \frac{1}{2\pi} \oint_{\mathcal{C}} \omega_{\pm}(\mathbf{k}) dk_l$$

reflection plane

Classification of reflection symmetric semimetals and nodal SCs

Reflection symmetry + global symmetries (TRS, PHS, SLS)

Chiu, Schnyder, PRB 2014

- Classification of reflection symmetric topological semimetals and superconductors depends on:
 - whether R commutes or anti-commutes with TRS, PHS, SLS

\Rightarrow 27 symmetry classes

- co-dimension $p = d d_{\rm FS}$ of Fermi surface ($d_{\rm FS}$: dimension of Fermi surface)
- how Fermi surface transforms under reflection and global symmetries

Gapless Dirac Hamiltonians

(i) Nodal point is *invariant* under non-spatial symmetries

$$\mathcal{H}(k) = \sum_{i=1}^{d} k_i \gamma_i \qquad \qquad E_{\pm} = \pm \sqrt{\sum_{i=1}^{d} k_i^2}$$

 $\ref{eq:product}$ are there symmetry preserving mass terms $M\gamma_{d+1}$ that open up a gap in the spectrum?

$$\{\gamma_{d+1}, \gamma_i\} = 0 \quad i = 0, 1, \dots 2$$

$$E_{\pm} = \pm \sqrt{M^2 + \sum_{i=1}^d k_i^2}$$

YES: topologically trivial

– to distinguish between \mathbb{Z}_2 and \mathbb{Z} classification consider doubled version of Hamiltonian

(ii) & (iii) Nodal points pairwise related by non-spatial symmetries

$$\mathcal{H}(k) = \sum_{i=1}^{p-1} \sin k_i \gamma_i + \left(1 - p + \sum_{i=1}^p \cos k_i\right) \gamma_0$$

– nodal superconductor with (d - p)-dimensional node

Classification of reflection symmetric semimetals and nodal SCs

Reflection symmetry + global symmetries (TRS, PHS, SLS)

Chiu, Schnyder, PRB 2014

- Classification of reflection symmetric topological semimetals and superconductors depends on:
 - whether R commutes or anti-commutes with TRS, PHS, SLS
 - \Rightarrow 27 symmetry classes
 - co-dimension $p = d d_{\rm FS}$ of Fermi surface ($d_{\rm FS}$: dimension of Fermi surface)
 - how Fermi surface transforms under reflection and global symmetries

Classification of reflection symmetric semimetals and nodal SCs

Fermi surface invariant under reflection and global symmetries

$$p = d - d_{\rm FS}$$

classification of *Fermi* points with $d_{\rm FS}=0$ in **d** dimensions

classification of *fully gapped* topological materials in **d+1** dimensions

Reflection sym. class		<i>p</i> =8	<i>p</i> =1	<i>p</i> =2	<i>p</i> =3	<i>p</i> =4	<i>p</i> =5	<i>p</i> =6	<i>p</i> =7
R	A	$M\mathbb{Z}$	0		0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$		MIL	CapPo	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0		0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
D. D.	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
11+,11++	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	C	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
R_,R	D	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2
	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	C	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
$ R_{+-}$	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

Chiu, Schnyder PRB 90, 205136 (2014)

- L. Xie, L. Schoop, R. Cava, et. al., APL Mat. 3, 083602 (2015)
- Band structure:

P px • P px • Ca dz² · Ca dz² · Ca dz² · Ca dz² · Ca dz²

charge balanced: $Ca^{2+} - P^{3-}$

- Orbital character of bands near E_F: (6 Ca atoms, 6 P atoms)
 - Ca: d_{z^2} orbitals from 6 Ca atoms
 - P: p_x orbitals from 6 P atoms

Crystal structure P6₃/mcm

Topological nodal lines in Ca₃P₂

L. Xie, L. Schoop, R. Cava, et. al., APL Mat. 3, 083602 (2015)

Band structure:

 Orbital character of bands near E_F: (6 Ca atoms, 6 P atoms)

Ca: d_{z^2} orbitals from 6 Ca atoms

P: p_x orbitals from 6 P atoms

(-)

Tight-binding Hamiltonian for Ca₃P₂

Tight-binding Hamiltonian (SOC small, spin degree can be neglected) Ca: d_{z^2} orbitals from 6 Ca atoms

P: p_x orbitals from 6 P atoms

$$H(\mathbf{k}) = \begin{pmatrix} \mathbf{H}_{\mathrm{CaCa}} & \mathbf{H}_{\mathrm{CaP}} \\ \mathbf{H}_{\mathrm{PCa}} & \mathbf{H}_{\mathrm{PP}} \end{pmatrix} \quad H_{ij} = \begin{pmatrix} h_{ij}^{\mathrm{ll}} & h_{ij}^{\mathrm{lu}} \\ h_{ij}^{\mathrm{ul}} & h_{ij}^{\mathrm{uu}} \end{pmatrix}$$

Symmetries:

- Time-reversal: $T = \mathbb{1}\mathcal{K}$ $T^2 = +1 \implies \text{class AI}$

$$- \text{Reflection} (z \to -z): \\ R^{-1}\mathcal{H}(k_x, k_y, -k_z)R = \mathcal{H}(k_x, k_y, k_z) \qquad R(\mathbf{k}) = \begin{pmatrix} 1_{3\times 3} & 0 & 0 & 0\\ 0 & 1_{3\times 3}e^{-ik_z} & 0 & 0\\ 0 & 0 & -1_{3\times 3} & 0\\ 0 & 0 & 0 & -1_{3\times 3}e^{-ik_z} \end{pmatrix}$$
$$- \text{Inversion} (\mathbf{r} \to -\mathbf{r}):$$

/ **L** J.

 $I^{-1}H(-\mathbf{k})I = H(\mathbf{k}) \qquad I = \tau_0 \otimes \rho_x \otimes \mathbb{1}_{3 \times 3}$

Chan, Chiu, Chou, Schnyder, arXiv:1510.02759

Topological nodal line: Mirror invariant

Reflection $(z \rightarrow -z)$:

$$R^{-1}\mathcal{H}(k_x, k_y, -k_z)R = \mathcal{H}(k_x, k_y, k_z)$$

- ► within mirror planes $k_z = 0, \pi$: [H, R] = 0
- Ca P P mirror plane
- eigenstates of ${\cal H}\,$ are simultaneous eigenstates of R
- eigenstates of ${\cal H}$ are in the eigenspace of either R=+1 or R=-1

Low-energy effective theory for Ca₃P₂

- reflection: $R = \tau_z$ - time-reversal: $T = \tau_0 \mathcal{K}$ - inversion: $I = \tau_z$

Sap-opening term τ_x is symmetry forbidden:

- breaks reflection symmetry: $R^{-1}\tau_x R = -\tau_x$
- breaks inversion + TRS: $(IT)^{-1}\tau_x IT = -\tau_x$
- \triangleright Z versus Z₂ classification:

 $H_{\text{eff}}(\mathbf{k}) \otimes \sigma_0 = (k_{\parallel}^2 - k_0^2)\tau_z \otimes \sigma_0 + k_z\tau_y \otimes \sigma_0 + f(\mathbf{k})\tau_0 \otimes \sigma_0$

- consider gap opening term $\hat{m} = \tau_x \otimes \sigma_y$:
 - (IT)-symmetric:

 $(\tau_z \otimes \sigma_0 \mathcal{K})^{-1} \hat{m} (\tau_z \otimes \sigma_0 \mathcal{K}) = \hat{m} \quad \Rightarrow \mathbb{Z}_2 \text{ classification}$

• but breaks R:

 $(\tau_z \otimes \sigma_0)^{-1} \hat{m} (\tau_z \otimes \sigma_0) \neq \hat{m} \qquad \Rightarrow \mathbb{Z}$ classification

 \Rightarrow nodal line is stable

Drumhead surface state and Berry phase

Nearly flat surface states connecting Dirac ring

Drumhead surface state and Berry phase

Relation between Berry phase and mirror invariant

$$(-1)^{n_{\rm occ}^{+,0}(k) + n_{\rm occ}^{+,\pi}(k)} e^{i\partial R} = e^{i\mathcal{P}(k)}$$

with
$$\partial R = i \sum_{j \in \text{filled}} \int_0^\pi \left\langle u_{k_z}^{(j)} \right| R_{k_z}^\dagger \left(\partial_{k_z} R_{k_z} \right) \left| u_{k_z}^{(j)} \right\rangle dk_z$$

- mirror invariants are easier to compute than Berry phase
- for Ca_3P_2 :

$$n_{\rm occ}^{+,0}(k) = \begin{cases} 1 & |k| < k_0 \\ 0 & |k| > k_0 \end{cases}$$

$$n_{\rm occ}^{+,\pi}(k) = 3 \quad \forall k \qquad \partial R = 3$$

 \Rightarrow relation holds

(b)

Energy (eV)

Chan, Chiu, Chou, Schnyder, arXiv:1510.02759

Classification of reflection symmetric semimetals and nodal SCs

(ii) Fermi surface only invariant under reflection

$$p = d - d_{\rm FS}$$

classification of *Fermi* points with $d_{\rm FS}=0$ in **d** dimensions

classification of *fully gapped* topological materials in **d-1** dimensions

Reflection sym. class		<i>p</i> =2	<i>p</i> =3	<i>p</i> =4	<i>p</i> =5	<i>p</i> =6	<i>p</i> =7	<i>p</i> =8	<i>p</i> =1
R	А	ML	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0
R_+	AIII	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$	0	$M\mathbb{Z}$
R_{-}	AIII	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0	$M\mathbb{Z}\oplus\mathbb{Z}$	0
	AI	$M\mathbb{Z}$		0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$
	BDI	№I Ш2	M.Z.	aranhe	ne)	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$
	D	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	graphic		0	0	$2M\mathbb{Z}$	0
	DIII	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
$ $ ^{$I\iota_+,I\iota_++$}	AII	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0	0
	CII	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0	0
	С	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$	0
	CI	0	0	0	$2M\mathbb{Z}$	0	$M\mathbb{Z}_2$	$M\mathbb{Z}_2$	$M\mathbb{Z}$
	AI	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0
	BDI	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$
R_,R	D	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2
	DIII	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$
	AII	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$	0
	CII	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0	$2M\mathbb{Z}$
	С	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0	0
	CI	0	$2M\mathbb{Z}$	0	$T\mathbb{Z}_2$	\mathbb{Z}_2	$M\mathbb{Z}$	0	0
R_{-+}	BDI, CII	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0
R_{+-}	DIII, CI	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0	$2M\mathbb{Z}$	0	$2\mathbb{Z}$	0
R_{+-}	BDI	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$
R_{-+}	DIII	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0
R_{+-}	CII	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0	0	0
R_{-+}	CI	0	0	$2M\mathbb{Z}\oplus 2\mathbb{Z}$	0	$M\mathbb{Z}_2 \oplus \mathbb{Z}_2$	$M\mathbb{Z}_2\oplus\mathbb{Z}_2$	$M\mathbb{Z}\oplus\mathbb{Z}$	0

Chiu, Schnyder PRB 90, 205136 (2014)

Classification of reflection symmetric semimetals and nodal SCs

- (iii) Fermi surface not invariant under reflection & global symmetries
 - consider combined symmetries, e.g.: $\widetilde{T} = RT$ $\widetilde{T}^{-1}H(k_x, -\tilde{\mathbf{k}})\widetilde{T} = +H(k_x, \tilde{\mathbf{k}})$

 \implies Fermi surface is invariant under combined symmetry

Reflection	sym. class	<i>d</i> =1	<i>d</i> =2	<i>d</i> =3	<i>d</i> =4	<i>d</i> =5	<i>d</i> =6	<i>d</i> =7	<i>d</i> =8
R	А	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
R_+	AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$
	BDI	$C\mathbb{Z}_2$	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$
	D	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
R. R.	DIII	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
10+,10++	AII	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	\mathbb{Z}	0	0	0
	CII	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	\mathbb{Z}	0	0
	C	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	\mathbb{Z}	0
	CI	0	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	\mathbb{Z}
	AI	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	0	$2\mathbb{Z}$	0	0	0
	BDI	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	0	$2\mathbb{Z}$	0	0
	D	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	0	$2\mathbb{Z}$	0
	DIII	0	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	0	$2\mathbb{Z}$
	AII	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$	0
	CII	0	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$	0	$C\mathbb{Z}_2$
	C	$C\mathbb{Z}_2$	0	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$	0
	CI	0	$C\mathbb{Z}_2$	0	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$
R_{+-}	CI	$C\mathbb{Z}_2$	0	0	0	0	0	0	$C\mathbb{Z}_2$
$ R_{-+}$	BDI	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	0	0	0	0	0
$ R_{+-}$	DIII	0	0	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	0	0	0
R_{-+}	CII	0	0	0	0	0	$C\mathbb{Z}_2$	$C\mathbb{Z}_2$	0

Chiu, Schnyder PRB 90, 205136 (2014)

Conclusions and Outlook

- Topological classification schemes:
 - (i) bring order to the growing zoo of topological materials
 - (ii) give guidance for the search and design of new topological states
 - (iii) link the properties of the surface states to the bulk wave function topology

Review articles: arXiv:1505.03535; J. Phys.: Condens. Matter 27, 243201 (2015)

- Candidate materials for topological matter:
 - Anti-perovskites: Ca₃PbO, Sr₃PbO, Ba₃PbO (class All with R_{-})
 - Dirac semi-metals with *rotation symmetry*: Cd₃As₂, Na₃Bi (class DIII with R_{--})
 - Nodal ring protected by reflections symmetry: Ca₃P₂, PbTaSe₂ (class A with R)
 - Non-centrosymmetric SCs: CePt₃Si, CeIrSi₃, CeRhSi₃ (class DIII)
 - Chiral d-wave SC: SrPtAs (class C)
 - etc.