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Topological band theory
� BCS Superconductors are similar to insulators 

� Superconducting gap plays the role of insulating gap 

� Similar to TI, there are various different topological 
superconductors with robust surface states 

� T-breaking superconductor (Moore&Read 2000), T-
invariant superconductor (
�������	��������Schnyder et al 
	����������������� 

From topological insulators to topological 
superconductors 
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Fermi liquid (normal state) Superconducting state 

2��

normal stateTwo band structures are equivalent if they can be continuously !
deformed into one another without closing the energy gap !
and without breaking the symmetries of the band structure.

topological invariant (e.g. Chern no):

        — particle-hole symmetry, time-reversal symmetry!
        — reflection symmetry, rotation symmetry, etc.
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homotopy

ν = # kx (1)

∆±
k

= ∆s ± ∆t |dk| (2)

∆s > ∆t ∆s ∼ ∆t ν = ±1 for ∆t > ∆s (3)

and

π3[U(2)] = q(k) :∈ U(2) (4)

Lattice BdG HBdG

h(k) = εkσ0 + αgk · σ (5)

∆(k) = (∆sσ0 + ∆tdk · σ) iσy (6)

hex Iy ≃
e

!

∫ kF,−

kF,+

dky

2π
sgn

[

∑

µ

Hµ
exρ

µ
1 (0, ky)

]

(

− t sin ky + λ
Lx/2
∑

n=1

ρx
n(0, ky) cos ky

)

.(7)

and

jn,ky = −t sin ky

(

c†nky↑
cnky↑ + c†nky↓

cnky↓

)

(8)

+ λ cos ky

(

c†nky↓cnky↑ + c†nky↑cnky↓

)

(9)

The contribution j(1)
n,ky

corresponds to nearest-neighbor hopping, whereas j(2)
n,ky

is due to
SOC. We calculate the expectation value of the edge current at zero temperature from
the spectrum El,ky and the wavefunctions

∣

∣ψl,ky

〉

of H(10)
ky

,
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∑
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We observe that the current operators presence of the superconducting gaps or the edge;
these only enter through the eigenstates |ψl,ky⟩.

Momentum dependent topological number:

∝
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ξ±
k

= εk ± α |gk|(14)

gap

— band insulator: EF between conduction and valence bands
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Bloch theorem
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— superconductor: band structure of Bogoliubov quasiparticles

• Topological equivalence:

• Consider band structure with a gap: 

Berry curvature

• Bulk-boundary correspondence:

. symmetries to consider:

. top. equivalence classes distinguished by:

|nZ| = #gapless edge states (or surface states)

nZ =
i

2⇡

Z
F dk 2 Z

filled 
states

crystal momentum



Reflection symmetry

— zero-energy states on surfaces that !
      are left invariant under the mirror symmetry

R�1H(�k
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, k
y

, k
z

)R = H(k
x

, k
y

, k
z

)

R = s
x

=) H(0, ky, kz)R�RH(0, ky, kz) = 0

 — project                        onto eigenspaces of     :  

 Consider reflection R:

x

y

z
x ! �x

with

 mirror Chern number:
k
x

= 0

 Bulk-boundary correspondence:

Mirror plane

Berry curvature in       eigenspace

 — w.l.o.g.: eigenvalues of  R 2 {�1,+1}

±

R H±(ky, kz)H(0, ky, kz)

Teo, Fu, Kane PRB ‘08

n±
M =

1

4⇡

Z

2DBZ

F± d2k

— total Chern number:

— mirror Chern number: nM = n+
M � n�

M

nM = n+
M + n�

M



2.! Classification of topological  
! ! ! insulators and superconductors  
! ! ! with reflection symmetry

Mirror plane



Global symmetries: Ten symmetry classes

“Bott clock”

— Non-spatial symmetries: symmetries that act locally in real space

- sublattice:

- time-reversal:
- particle-hole:

TH(k)T�1 = +H(�k); T 2 = ±1

SH(k)S�1 = �H(k); S / TP

Periodic Table of Topological Insulators and Superconductors
Anti-Unitary Symmetries :

-Time Reversal :   

-Particle -Hole  :

Unitary (chiral) symmetry :  

1 ()()1 2  ;    HH � �������� kk
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1 ()() HH � �������� kk ;   

Real
K-theory

Complex
K-theory

Bott Periodicity d����

Altland-
Zirnbauer
Random 
Matrix
Classes

Kitaev, 2008
Schnyder, Ryu, Furusaki, Ludwig 2008

8 antiunitary symmetry classes

ten symmetry!
classes
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Symmetry dim
Class T P S 1 2 3
A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z
AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0
DIII -1 1 1 Z2 Z2 Z
AII -1 0 0 0 Z2 Z2

CII -1 -1 1 Z 0 Z2

C 0 -1 0 0 Z 0
CI 1 -1 1 0 0 Z

Table 1: Periodic table of topological insulators and superconductors. The ten symmetry classes
are defined in terms of the presence or absence of time-reversal symmetry (T ), particle-hole sym-
metry (C), and chiral symmetry (S). The presence and absence of symmetries is denoted by “±1”
and “0”, respectively, with “+1” or “-1” specifying whether the antiunitary operator implementing the
symmetry at the level of the single-particle Hamiltonian squares to “+1” or “-1”. The symbols Z
and Z2 indicate that the topologically distinct phases within a given symmetry class of topologi-
cal insulators (superconductors) are characterized by an integer invariant (Z), or a binary quantity
(Z2), respectively. The topological classifications show a regular pattern as a function of symmetry
class and spatial dimension.

2.2.1 Classification of topological insulators and superconductors

Together with Prof. Ludwig from UC Santa Barbara, Prof. Furusaki from RIKEN, and
Dr. Ryu from UC Berkeley, I have shown in 2008 that the notion of topological order
can be generalized to systems with different discrete symmetries than those discussed
in Sec. 2.1. Indeed, we found that there is a unified mathematical framework, which pro-
vides a complete and exhaustive classification of topologically ordered phases of gapped
free fermion systems in terms of discrete symmetries and spatial dimension [?, ?, ?]. A
summary of this classification scheme is presented in Table 1. The first column in this
table lists all possible “symmetry classes” of non-interacting single-particle Hamiltonians.
There are precisely ten distinct classes, which are identical to those discussed by Altland
and Zirnbauer in the context of random matrix theory [?,?]. The symmetry classes are
defined in terms of the presence or absence of time-reversal symmetry T = ±1, particle-
hole symmetry C = ±1, and the combined symmetry S = T � C, which is called “chiral”
symmetry. The result of this classification scheme is that in each spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, three of
which are characterized by an integer topological invariant (denoted by Z in Table 1),
while the remaining two possess a binary topological quantity (denoted by Z2). Since this
classification scheme shows a regular pattern as a function of symmetry class and spa-
tial dimension [?], it is is now commonly referred to as the “periodic table” of topological
insulators and superconductors.

The topologically ordered states discussed in Sec. 2.1 are all included in the periodic
table: The quantum Hall state belongs to class A (d = 2; no symmetry), the spin-orbit
induced topological insulators are members of class AII (d = 2, 3; T = �1), the spinless
px + ipy superconductor is in class D (d = 2; C = +1), and the B phase of 3He belongs
to class DIII (d = 3; T = �1, C = +1). However, by means of this classification scheme
we also predicted new topological phases of matter. That is, there are entries in the
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Classification of reflection symmetry protected topological materials

Reflection symmetry + non-spatial symmetries (TRS, PHS, SLS)

8

TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.
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invariants only protect Fermi surfaces of dimension zero (d
FS

= 0) at high-symmetry points of the Brillouin
zone.

b
Fermi surfaces located within the mirror plane but away from high symmetry points cannot be protected by a Z

2

or MZ
2

topological invariant. Nevertheless, the system can exhibit gapless surface states that are protected by a Z
2

or MZ
2

topological
invariant.

c
For gapless topological materials the presence of translation symmetry is always assumed. Hence, there is no distinction
between TZ

2

and Z
2

for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-

over, we need to distinguish how the Fermi surface (nodal
line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by

27 classes

 Classification of reflection symmetric topological materials  
     depends on:

27 symmetry classes

• whether R commutes or anti-commutes with TRS, PHS, SLS

)

effective symmetry class shifts !
by two on “Bott clock”

R� : R anti-commutes with T (C or S)

R+ : R commutes with T (C or S) (i) 

same symmetries as full Hamiltonian

 Symmetries of                       :          

H(k)

H±(ky, kz)
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Classification of reflection symmetry protected 
topological insulators and superconductors

R� : R anti-commutes with T (C or S)
R+ : R commutes with T (C or S)
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TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.
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for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

Chiu, Yao, Ryu, PRB 2013;  Morimoto, Furusaki PRB 2013; Chiu, Schnyder PRB 2014;

“Bott cube” 41

t = 0

t = 1 t = 2

t = 3

FIG. 10 (Color online) The 27 symmetry classes with reflec-
tion symmetry can be visualized as the extension of the Bott
clock.

acterized by a Z
2

invariant, nd�1

k1=0(⇡) = ±1, the mirror
Z
2

invariant MZ
2

is defined by

nMZ2
= 1 � ��nd�1

k1=0

� nd�1

k1=⇡

�� , (4.9)

with nk1=0(⇡)d�1 2 {+1, �1}. A nontrivial value (�1) of
these mirror indices indicates the appearance of Dirac or
Majorana boundary modes at reflection symmetric sur-
faces, i.e., at surfaces that are perpendicular to the reflec-
tion hyperplane x

1

= 0. At surfaces that break reflection
symmetry, however, the boundary modes are in general
gapped.

(iii) TZ
2

invariant: In symmetry classes where R anti-
commutes with the TR and PH operators (R

�

and R
��

in Table VIII), the second descendant Z
2

invariants are
well defined only in the presence of translation symmetry.
That is, boundary modes of these phases can be gapped
out by density-wave type perturbations, which preserve
reflection and AZ symmetries but break translation sym-
metry. Hence, these topological states are protected by
a combination of reflection, translation, and AZ antiuni-
tary symmetries.

(iv) MZ�Z and MZ
2

�Z
2

invariants: In some cases,
topological properties of reflection symmetric insulators
(SCs) with chiral symmetry are described both by a
global Z or Z

2

invariant and a mirror index MZ or MZ
2

,
which are independent of each other. At boundaries
which are perpendicular to the mirror plane the number
of protected gapless states is given by max {|nZ| , |nMZ|}
(Chiu et al., 2013), where nZ denotes the global Z invari-
ant, whereas nMZ is the mirror Z invariant.

Before discussing the gapless surface modes of crys-
talline materials, let us note that the classification of
reflection-symmetric TIs and TSCs (Table VIII) can
be generalized to any order-two symmetry (Z

2

symme-
try) and, moreover, to include the presence of topolog-
ical defects (cf. Sec. III.C.2). The generalized classifi-

cation can be inferred from K-groups labeled by 6 in-
tegers K(s, t, d, d

k

, D, D
k

), where d
k

(D
k

) is the num-
ber of momentum (spatial) coordinates that are flipped
by the Z

2

operation, s denotes the AZ symmetry class,
t = 0, 1, 2, 3 labels the reflection Bott clock (Fig. 10),
and (d, D) are the dimensions of the defect Hamilto-
nian. It was shown by Shiozaki and Sato, 2014 that
the generalized classification follows from the relation
K(s, t, d, d

k

, D, D
k

) = K(s�d+D, t�d
k

+D
k

, 0, 0, 0, 0).
For reflection symmetric TIs and SCs, we have d

k

= 1,
D

k

= 0, and D = 0, which reproduces Table VIII.

a. Bulk-boundary correspondence in topological crystalline

systems While protected gapless modes always exist at
any boundary in TIs/TSCs in AZ symmetry classes, this
is not the case in topological crystalline materials; pro-
tected gapless modes do not exist at boundaries that
are not invariant under spatial symmetries, although
their absence does not indicate the trivial bulk topol-
ogy. Complementary to studying boundary modes in
physical Hamiltonians, studying gapless boundary modes
in the entanglement Hamiltonian or in the entanglement
spectrum is a generic way to distinguish the topology of
topological (crystalline) materials (Chang et al., 2014;
Fidkowski, 2010; Ryu and Hatsugai, 2006). For exam-
ple, for TIs/TSCs protected by inversion symmetry, for
which there is no boundary that respects the inversion,
and hence there is no protected gapless boundary mode
in physical Hamiltonians, stable gapless boundary modes
in the entanglement spectrum indicate the nontriviality
of the bulk topology (Hughes et al., 2011; Turner et al.,
2012, 2010).

Another di↵erence between the boundary modes of
crystalline TIs/TSCs and those of ordinary TIs/TSCs
exists with regard to disorder. While the surface modes
of TIs/TSCs with AZ symmetries are robust to spatial
disorder (Sec. III.F), the protection of the gapless sur-
face modes of topological crystalline materials relies cru-
cially on spatial symmetries, which typically are broken
by disorder. However, the gapless surface modes of crys-
talline TIs/TSCs may evade Anderson localization when
disorder respects the spatial symmetries on average. For
example, the weak TIs in class AII in d = 3 rely on the
existence of lattice translation symmetries. Once trans-
lational symmetry is not imposed, the surfaces of weak
TIs can be gapped out by charge density wave, which
preserves TRS. However, when translation symmetry is
respected on average, the surface states do not Anderson
localize (Diez et al., 2014; Fulga et al., 2014; Mong et al.,
2012; Obuse et al., 2014; Ringel et al., 2012). Similarly,
for class AII+R

�

in d = 3, the surface modes are de-
localized when TRS is strictly preserved and reflection
symmetry is preserved on average (Fu and Kane, 2012),
even though the number of surface Dirac cones is even.
For symmetry classes other than AII+R

�

, the presence
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TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection sym. class d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R

+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0
a
Z
2

and MZ
2

invariants only protect Fermi surfaces of dimension zero (d
FS

= 0) at high-symmetry points of the Brillouin
zone.

b
Fermi surfaces located within the mirror plane but away from high symmetry points cannot be protected by a Z

2

or MZ
2

topological invariant. Nevertheless, the system can exhibit gapless surface states that are protected by a Z
2

or MZ
2

topological invariant.
c

For gapless topological materials the presence of translation symmetry is always assumed. Hence, there is no distinction
between TZ

2

and Z
2

for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

? For which symmetry class and dimension is 
there a topological insulator/superconductor!
protected by reflection symmetry?

Chiu, Yao, Ryu, PRB 2013;  Morimoto, Furusaki PRB 2013; Chiu, Schnyder PRB 2014;



Symmetries and Dirac Hamiltonians
Dirac Hamiltonian in spatial dimension     :d H(k) =

dX

i=1

ki�i +m�0

• Gamma matrices       obey: �i

• TRS, PHS, chiral symmetry and reflection (                     ) lead to the conditions:

?

{�i, �j} = 2�ij i = 0, 1, . . . , d

[�0, T ] = 0 {�i 6=0, T} = 0

{�0, C} = 0 [�i 6=0, C] = 0
{�i, S} = 0

• Topological phase transition as a function of mass term 

n=1 n=0

m�0

m < 0 m > 0
are there extra symmetry preserving mass terms !
that connect the two phases without gap closing?

M�d+1

NO: YES:
{�d+1, �i} = 0 i = 0, 1, · · · 2

E± = ±

vuutm2 +
dX

i=1

kdi

E± = ±

vuutm2 +M2 +
dX

i=1

kdi

topologically trivialtopologically non-trivial

k1 ! �k1

[�i 6=1, R] = 0

{�1, R} = 0
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TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection sym. class d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R

+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0
a
Z
2

and MZ
2

invariants only protect Fermi surfaces of dimension zero (d
FS

= 0) at high-symmetry points of the Brillouin
zone.

b
Fermi surfaces located within the mirror plane but away from high symmetry points cannot be protected by a Z

2

or MZ
2

topological invariant. Nevertheless, the system can exhibit gapless surface states that are protected by a Z
2

or MZ
2

topological invariant.
c

For gapless topological materials the presence of translation symmetry is always assumed. Hence, there is no distinction
between TZ

2

and Z
2

for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

SnTe, Ca3PbO, Sr3PbO

Chiu, Yao, Ryu, PRB 2013;  Morimoto, Furusaki PRB 2013



SnTe is a reflection symmetry protected TI 

— Time-reversal:

Hsieh, Fu, et al. 2012

H = "(k)�
z

+ v(sin k
x

s
y

� sin k
y

s
x

)⌦ �
x

+ v
z

sin k
z

�
y

(si : spin; �i : orbitals)

 Effective low-energy Hamiltonian:

x ! �x

 Symmetries:

(class AII)T = isyK

— Reflection (                ): 

T�1H(�k)T = +H(k) T 2 = �1

R�1H(�k
x

, k
y

, k
z

)R = H(k
x

, k
y

, k
z

) with R = s
x

 — project           onto eigenspaces of R: ( i.e., s
x

= ±1)H(k)

H±(ky, kz) = "k�z

⌥ v sin k
y

�
x

+ v
z

sin k
z

�
y

= m±(k) · ~�

Particle-hole symmetry: with C = �
x

KC�1H±(�k)C = �H±(�k)

R anti-commutes with T : TRT�1
= �R

class AII class D

R�

Tanaka, Ando, et al., 2012, 2013

Sn Te
Reflection plane
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 Effective Hamiltonian within mirror plane: Tanaka, Ando, et al., Nat. Phys. 2012, 2013
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Berry curvature

nM = (n+ � n�)• Mirror Chern number:

the other one163) reported by a group at Princeton University
was not published; the Princeton group performed new
measurements, and a paper containing new data were
submitted in August and published in November.164)

Among the first two published papers, the one by Tanaka
et al.62) reported straightforward confirmation of the predic-
tion in SnTe, and the observed surface state with the double
Dirac-cone structure (Fig. 11) was in good qualitative
agreement with the theory; they also showed that the cousin
material PbTe does not present any surface state. The other
one by Dziawa et al.162) reported the TCI phase in
Pb0:77Sn0:23Se, which shows a transition to a trivial phase
upon increasing the temperature. The work by Xu et al.
published later164) reported a TCI phase in Pb0:6Sn0:4Te and
a trivial phase in Pb0:8Sn0:2Te, together with spin-resolved
ARPES data showing helical polarization on each of the

double Dirac cones. A more recent paper by Tanaka et al.165)

nailed down that the topological phase transition in Pb1!x-
SnxTe occurs at xc ’ 0:25; furthermore, they found that the
separation between the two Dirac cones near the !X points
systematically narrows when x is reduced toward xc, but they
never merge before the transition eliminates them.

In passing, the mirror Chern number nM can also be used
for TR-invariant 3D TIs to further classify them.88) For
example, Bi1!xSbx is a TI with Z2 invariant (1;111), and it
can have nM ¼ #1. The sign of nM is called mirror
chirality, which is related to the sign of the g factor. The first
experimental work that addressed this additional topological
property in a TI was the spin-resolved ARPES done by
Nishide et al.,40) who elucidated that the mirror chirality is
!1 in Bi1!xSbx.

The discovery of TCIs significantly widened the scope of
topological materials. Already, detailed topological classifi-
cation schemes for all point-group symmetries have been
proposed,166) and also the mirror topology has been
expanded to superconductors.167–169) Experimentally, eluci-
dating the interplay between Z2 topology and mirror
topology in materials like SnTe under uniaxial strain would
be an interesting issue.

5. How to Confirm TI Materials

In this section, I briefly summarize the possible experi-
mental procedures to confirm whether a material is a TI or
not. In the case of 2D TIs, one needs to probe the existence
of helical 1D edge state, which is possible only through
quantum transport experiments using nano-fabricated device
structures. The existence of the edge state can be seen
through conductance quantization in the insulating re-
gime.31) Also, the helical spin polarization of the edge state
may be detected by transport experiments using spin Hall
effect.70)

For 3D TIs, the simplest and the most convincing is to
observe the Dirac cone by ARPES experiments. To firm up
the identification of a TI, one should employ spin-resolved
ARPES to confirm that the Dirac cone is non-degenerate and
is helically spin polarized.39,40)

Unfortunately, not all materials are suitable for ARPES,
which requires clean and flat surface that is usually obtained
by cleaving single crystals. When single crystals are not
available or the material does not cleave well, APRES
becomes difficult. In such a case, one may rely on transport
experiments. Ideally, if the bulk is sufficiently insulating and
the surface carriers have high enough mobility, one would be
able to confirm that the transport is occurring through the
surface and that the surface carriers are Dirac fermions.
The former can be done by looking at the sample-size
dependence of the conductance,108,140–142) and the latter may
be accomplished by elucidating the ! Berry phase in the
quantum oscillations from the surface state.103,104,108,170–173)

(Detailed discussions on the identification of the ! Berry
phase will be given in Sect. 8.3.) It should be emphasized
that confirming the Dirac-fermion nature of the surface
carriers is important, because trivial accumulation layer or
inversion layer that may form on the surface of an insulator
may also give rise to surface-dominated transport.144)

The Dirac-fermion nature may also be confirmed by STS
experiments in magnetic fields, because massless Dirac

(a) (b)

(c) (d)

(e)

Fig. 11. (Color online) ARPES data on cleaved (001) surface of SnTe.
(a) The bulk BZ and the corresponding (001) surface BZ of SnTe; ", L, X
are the symmetry points in the bulk 3D BZ, whereas !", !X, !M are in the
surface 2D BZ. The (110) mirror plane is indicated by the shaded area. Note
that two L points [e.g., L1 and L2 in panel (a)] are projected to the same !X
point. (b) ARPES intensity mapping in the surface BZ at EF measured with
h" ¼ 21:2 eV at 30K. (c) Near-EF ARPES intensity as a function of the
wave vector and the binding energy measured along the cut which is nearly
parallel to the !X– !M direction and is crossing the !#2 point [one of the red
arrows in panel (b)]. (d) Near-EF ARPES intensity along the !"– !X cut
[yellow arrow in panel (b)]. (e) Schematic 2D band dispersions near EF

concluded from the data in panels (c) and (d) depicting the characteristic
double Dirac-cone structure. Taken from Ref. 62.
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Figure 1 |Dirac-like band dispersion in SnTe. a, The bulk Brillouin zone (red lines) and the corresponding (001) surface Brillouin zone (blue lines). The
(110) mirror plane is indicated by the green shaded area. b, ARPES intensity mapping at EF at T = 30 K for SnTe plotted as a function of the 2D wave vector
measured with the He 1 line (hv = 21.2 eV); this intensity is obtained by integrating the spectra within ±10 meV of EF. c,d, Near-EF ARPES intensity
measured at h⌫ = 21.2 eV as a function of the wave vector and EB along the cut crossing the ¯31 and ¯32 point (red arrows in b), respectively. e,f, Energy
distribution curves (e) along the ¯0¯X cut (yellow arrow in b) measured at h⌫ = 21.2 eV, and the corresponding intensity plot (f). The dashed lines in e are a
guide to the eyes to trace the band dispersion. g–j, ARPES intensity measured at T = 30 K with various photon energies across the cut crossing the ¯32

point (green arrow in b). k, The same as in g but measured at T = 130 K. The ARPES intensity is divided by the Fermi–Dirac distribution function convoluted
with the instrumental resolution. l, A slice of the bulk Brillouin zone in the (110) plane, together with the momentum points in which the ARPES data for c,d
and g–k were obtained; k

z

values were estimated by using the inner-potential value of 8.5 eV as determined by the normal-emission ARPES measurement.
m, Comparison of the band dispersion for various photon energies extracted by tracking the peak position of momentum distribution curves obtained along
the green arrow in b; error bars are shown for the data at h⌫ = 92, 83, and 21.2 eV, and they reflect the uncertainties originating from the momentum
resolution and the standard deviation in the peak positions of momentum distribution curves. The h⌫ = 83 eV data are particularly broad at high EB, which
is partly due to a mixing of the bulk band.

of the sample (chemical potential was located ⇠0.5 eV lower when
compared with our data). Furthermore, a downward band bending,
possibly due to a loss of Te atoms on cleaving, was obviously taking
place near the surface (Supplementary Information), which further
worked in our favour.

As shown in Fig. 1k, the ARPES data at T = 130K divided
by the Fermi–Dirac distribution function indicate that the left-
and right-hand side dispersion branches actually merge into a

single peak above EF. The Dirac-point energy is estimated to be
0.05 eV above EF from a linear extrapolation of the two dispersion
branches (Fig. 1m) that were determined from the peak positions in
the momentum distribution curves; furthermore, the Dirac band
velocities extracted from the dispersions are 4.5 and 3.0 eVÅ, for
the left- and right-hand side branches, respectively. One can see in
Fig. 1m that the band dispersion exhibits no discernible changewith
temperature (compare the 30K and 130Kdata for h⌫ =92 eV).
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Figure 2.5: (a) Momentum path in the cubic Brillouin zone on which the band

structure is calculated. (b) Positions of the Dirac points in the entire Brillouin

zone.

at the Fermi energy, the Fermi energy must be at the Dirac point in order to maintain the

charge stoichiometric condition. Due to the cubic symmetry of the crystal, existence of

a Dirac point on the �–X line implies that there exist six symmetrically equivalent Dirac

points in the whole Brillouin zone. Specifically, six Dirac points are located at (k
0

, 0, 0),

(�k
0

, 0, 0), (0, k
0

, 0), (0,�k
0

, 0), (0, 0, k
0

), and (0, 0,�k
0

). These positions of Dirac points

in the Brillouin zone are schematically shown in Fig. 2.5(b). In the case of Ca
3

PbO, we

have k
0

= 0.11875.

The magnified view of the band structure on the �–X line is plotted in Fig. 2.6 with

the irreducible representations of the bands. Note that each k-point on the �–X line has

C
4v

symmetry, while the �-point has O
h

symmetry. In Fig. 2.6, the notations in ref. 62

are used to label the irreducible representations. At the �-point, even parity states (�+

7

and �+

8

) come from the Ca 3d orbitals and the odd parity states (��
6

and ��
8

) from

the Pb 6p orbitals. Then, we can see from Fig. 2.6 that the top of p-bands is located

above the bottom of d-bands. Another important point is that both bands forming the

Dirac electron belong to the same irreducible representation �
7

. This is the reason why

a small gap appears at the Dirac point. When two bands are in the same irreducible

representation, a band repulsion (anticrossing) occurs in general.

In order to check whether the Dirac electron is really formed, three-dimensional (3d)

plot of the dispersion relations around the Dirac point at (k
0

, 0, 0) on the k
x

–k
y

plane

with several k
z

is shown in Figs. 2.7(a)–2.7(c). For k
z

= 0 [Fig. 2.7(a)], the calculated

dispersion shows a conical structure, which is characteristic for Dirac electrons. We can

see that the Dirac electron in this material has slightly tilted and anisotropic dispersion.

Figures 2.7(b) and 2.7(c) show that the size of the gap between the lower and upper

bands becomes larger as k
z

is increased from zero. This behavior confirms the three-

dimensionality of the dispersion of the discovered Dirac electron. As is pointed out before,

a small mass gap exists even for k
z

= 0 case. Figures 2.7(d)–2.7(f) shows the dispersion
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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where indices ↵ and ↵0 run through 1 to 12, representing the 12 basis orbitals in the order

listed in eq. (3.1). Here, the matrix elements are transformed by attaching momentum-

dependent phase factors to the basis orbitals as |p
x,y,z

�i ! ei(kx+k

y

+k

z

)/2|p
x,y,z

�i, |d
1

�i !
eikx/2|d

1

�i, |d
2

�i ! eiky/2|d
2

�i, and |d
3

�i ! eikz/2|d
3

�i. This transformation is performed

in order to make the matrix elements having simple forms. The transformed basis and

matrix elements are used hereafter. Then E
↵↵

0(k) can be expressed in a 12⇥12 matrix

form as

Êk =

 

ˆ̃Epp

k + �̂k
ˆ̃Epd

k

( ˆ̃Epd

k )† ˆ̃Edd

k

!

, (3.4)

where

ˆ̃Eqq

0

k =

 

Êqq

0

k 0̂

0̂ Êqq

0

k

!

(q, q0 = p, d) (3.5)

and

�̂k = �̂(0) + �̂(1)

k . (3.6)

Note that ˆ̃Eqq

0

k and �̂k are 6⇥6 matrices while Êqq

0

k is a 3⇥3 matrix.

3.1.3 Detailed Description of the Matrix Elements

Spin-orbit coupling In the following, we explicitly show the matrix elements. Let us

start from �̂k = �̂(0) + �̂(1)

k . Here, �̂(0) represents the standard L · S coupling on the Pb
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mainly come from Pb 6p orbitals. Finally, highly entangled bands above the Fermi energy

mainly come from Ca 3d orbitals. Remember that there are three Ca atoms in a unit

cell and there are 15 Ca 3d orbitals as a consequence. Since the Pb 6p orbital originated

bands (p-bands) lie below the Fermi energy, the expected configuration Ca2+
3

Pb4�O2� is

actually realized. However, the top of p-bands is located above the bottom of the Ca 3d

bands (d-bands). In other words, Pb 6p shell is not completely filled. Later it turns out

that the overlapping of the top of p-bands and the bottom of d-bands is crucial for the

emergence of Dirac electron in this material.
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Figure 2.4: DOS (a-d) and the band structure (e) of Ca
3

PbO obtained in the

first-principles calculation. (a) shows the total and partial DOS for each atom,

and (b-d) show the partial DOS for each atom decomposed into components

with s, p, and d orbital like symmetry. In (e), the position of Dirac point

is marked with an arrow. Note that the energy is measured from the Fermi

energy.

As a result of the overlap between the p-bands and d-bands, two bands cross the Fermi

energy. In Fig. 2.4(e), we can see that two bands approach the Fermi energy on the �–

X line. Then, a Dirac electron is formed from these two bands at the point indicated

by an arrow in Fig. 2.4(e). Note that there actually exists a very small gap of about

15 meV at the marked point. This point will be discussed soon later. As can be seen

from Fig. 2.4(e), a Dirac point, which is defined as a center of linear dispersion of Dirac

electron, exists exactly at the Fermi energy, remarkably. Since there are no other bands

22

 Orbital character of bands:

+ SOC opens up bulk gap of ~10 meV
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Figure 2.5: (a) Momentum path in the cubic Brillouin zone on which the band

structure is calculated. (b) Positions of the Dirac points in the entire Brillouin

zone.

at the Fermi energy, the Fermi energy must be at the Dirac point in order to maintain the

charge stoichiometric condition. Due to the cubic symmetry of the crystal, existence of

a Dirac point on the �–X line implies that there exist six symmetrically equivalent Dirac

points in the whole Brillouin zone. Specifically, six Dirac points are located at (k
0

, 0, 0),

(�k
0

, 0, 0), (0, k
0

, 0), (0,�k
0

, 0), (0, 0, k
0

), and (0, 0,�k
0

). These positions of Dirac points

in the Brillouin zone are schematically shown in Fig. 2.5(b). In the case of Ca
3

PbO, we

have k
0

= 0.11875.

The magnified view of the band structure on the �–X line is plotted in Fig. 2.6 with

the irreducible representations of the bands. Note that each k-point on the �–X line has

C
4v

symmetry, while the �-point has O
h

symmetry. In Fig. 2.6, the notations in ref. 62

are used to label the irreducible representations. At the �-point, even parity states (�+

7

and �+

8

) come from the Ca 3d orbitals and the odd parity states (��
6

and ��
8

) from

the Pb 6p orbitals. Then, we can see from Fig. 2.6 that the top of p-bands is located

above the bottom of d-bands. Another important point is that both bands forming the

Dirac electron belong to the same irreducible representation �
7

. This is the reason why

a small gap appears at the Dirac point. When two bands are in the same irreducible

representation, a band repulsion (anticrossing) occurs in general.

In order to check whether the Dirac electron is really formed, three-dimensional (3d)

plot of the dispersion relations around the Dirac point at (k
0

, 0, 0) on the k
x

–k
y

plane

with several k
z

is shown in Figs. 2.7(a)–2.7(c). For k
z

= 0 [Fig. 2.7(a)], the calculated

dispersion shows a conical structure, which is characteristic for Dirac electrons. We can

see that the Dirac electron in this material has slightly tilted and anisotropic dispersion.

Figures 2.7(b) and 2.7(c) show that the size of the gap between the lower and upper

bands becomes larger as k
z

is increased from zero. This behavior confirms the three-

dimensionality of the dispersion of the discovered Dirac electron. As is pointed out before,

a small mass gap exists even for k
z

= 0 case. Figures 2.7(d)–2.7(f) shows the dispersion
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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By further analysis, we prove that the low-energy
effective Hamiltonian is in fact a Dirac Hamiltonian by
applying an appropriate basis transformation and by
expanding the matrix elements with respect to the momen-
tum measured from one of the Dirac points. It is worth
noting that not only the Hamiltonian but also the basis wave
functions of the low-energy effective model are explicitly
obtained. These basis wave functions play the role of
pseudospins in the Dirac model. The mechanism of the
emergence of the Dirac electron in this material was clarified
in our previous paper.14) We explain this mechanism quite
briefly in this paper for completeness of discussions.
Conditions of the emergence of Dirac electrons in general
situations were argued before.20,21)

We will also discuss the mass term of the Dirac
Hamiltonian in this material, which was only briefly
mentioned in our previous paper.14) In particular, the roles
of the spin–orbit coupling and orbitals other than Pb-p and
Ca-dx2!y2 orbitals are explained. We will also explain the
relation between Ca3PbO and a topological insulator, and
show that Ca3PbO is not a topological insulator. Finally, the
surface band structures of Ca3PbO are studied using the
constructed tight-binding model. It is found that there exist
nontrivial surface bands that are nondegenerate and cannot
be explained as bulk states projected onto the surface
Brillouin zone.

This paper is organized as follows. Section 2 is used to
describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
term is also discussed. In x5, we discuss the topological
properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
WIEN2k package,22) in which the full-potential augmented-
plane-wave method is implemented. The crystal parameters
required in the calculation are taken from experimental
results.23) Figure 1 shows the crystal structure of Ca3PbO.
The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,

it should be noted that previous theoretical works showed
that the optimized lattice constants for Ca3PbO and its
family obtained in the first-principles calculation agree well
with the experimental data,28,29) indicating the consistency
between theory and experiments.

Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.

Fig. 1. (Color online) Crystal structure of Ca3PbO.
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Brillouin zone.
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describe details of the method used for calculation. In x3,
the orbital weight distributions on the obtained bands are
analyzed and a tight-binding model is constructed. Section 4
is devoted to analyzing the obtained tight-binding model
and proving that its low-energy part is actually described by
a Dirac Hamiltonian. At the end of x4, the origin of the mass
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properties and the surface band structures. The paper is
summarized in x6.

2. First-Principles Calculation

The band structure calculation is carried out using the
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required in the calculation are taken from experimental
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The Perdew–Burke–Ernzerhof generalized-gradient approx-
imation24) is used for the exchange–correlation functional.
The parameter choice of ðRKmax; GmaxÞ ¼ ð9:0; 14:0Þ is
used,25,26) while the radii of the spherical atomic regions
for Ca, Pb, and O are chosen to be 2.28, 2.50, and 2.28 (a.u.),
respectively. Two hundred and twenty momentum points
in the irreducible Brillouin zone, which are equivalent to
20% 20% 20 momentum points in the full Brillouin zone,
are employed in the self-consistent cycle in the present
calculation. The spin–orbit coupling is taken into account
within the spherical atomic region of each atom via a
second-variational step.27)

We have verified that changes in the parameters stated
above (RKmax, Gmax, radii of spherical atomic regions, and
the number of momentum points) do not modify the results
in this paper such as the appearance of the Dirac-type
dispersion in the vicinity of the Fermi energy. Although
experimental crystal parameters are used in the calculation,
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Special care should be taken in the treatment of the spin–
orbit coupling. Namely, we should be careful in applying the
second-variational step to heavy elements such as Pb in
which the spin–orbit coupling is expected to be strong.27)

However, we do not consider this to be a serious problem in
our calculation. One of the reasons is that only the state with
the total angular momentum J ¼ 3=2 is important for the
Dirac electron in this material, as will be explained later,
while the second-variational step mainly causes problems
for the J ¼ 1=2 state.27) Another reason is that the band
structure does not change (except for unimportant points)
even if we use the pseudopotential method30) with a fully
relativistic pseudopotential for the Pb atom, in which the
spin–orbit coupling is treated more accurately than in the
second-variational step.

3. Construction of the Tight-Binding Model

3.1 Orbital character of each band
The obtained band structure of Ca3PbO is presented in

Fig. 2 together with the orbital weight distributions for the
Ca d3z2!r2 , dxy, dx2!y2 , dzx=yz, and Pb p orbitals. As is shown
in ref. 14, a Dirac electron appears on the !–X line, and the
Dirac point is marked by an arrow in Fig. 2(a). The
appearance of a Dirac point on the !–X line implies that
there are six Dirac points in the whole Brillouin zone due to
the cubic symmetry of this material. In other words, Dirac
points are found at ðk0; 0; 0Þ, ð!k0; 0; 0Þ, ð0; k0; 0Þ, ð0;!k0; 0Þ,
ð0; 0; k0Þ, and ð0; 0;!k0Þ. Although it is difficult to see in the
presented energy scale, a very small gap exists at the Fermi
energy, and the emerging Dirac electron is actually massive
with a very small mass. The magnitude of the mass gap is
about 15meV.14)

Before discussing the orbital weight distributions, we
explain the symmetry of the local environment of each atom.
The local environment of the Ca atom has a tetragonal
symmetry with its tetragonal axis directed along the line
connecting the Ca and O atoms (see Fig. 1). The tetragonal
axis directions of the three Ca sites in the unit cell are
different from each other. Thus, it is convenient to introduce
local coordinates for each Ca atom, whose definitions are
illustrated in Fig. 3(a). Using these local coordinates, the Ca-
3d orbitals can be classified into four groups, i.e., d3z2!r2 , dxy,
dx2!y2 , and dzx=yz, reflecting the local tetragonal symmetry.
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A Fermi surface in a semimetal (or a nodal line in a superconductor) 
is topologically stable if there does not exist any symmetry preserving 
mass term that opens up a full gap in the spectrum.
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Classification of reflection symmetric semimetals and nodal SCs
Reflection symmetry + global symmetries (TRS, PHS, SLS)

 Classification of reflection symmetric topological semimetals 
      and superconductors depends on:

27 symmetry classes )
!
•  how Fermi surface transforms under reflection and global symmetries 

R
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•  whether      commutes or anti-commutes with TRS, PHS, SLS
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(ii) Fermi surface is only !
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(iii) Fermi surface is not invariant  
under reflection & global sym.
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Chiu, Schnyder, PRB 2014
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TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d� d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. ??(a)] and
away from high-symmetry points of the Brillouin zone [Fig. ??(b)], respectively.

Reflection sym. class p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7
R A MZ 0 MZ 0 MZ 0 MZ 0
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+
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2

or MZ
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classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. ??(a) and Table ??], (ii)
Fermi surfaces are invariant under reflection, but transform
pairwise into each other by the global antiunitary symmetries
[Fig. ??(b) and Table ??], and (iii) different Fermi surfaces
are pairwise related to each other by both reflection and non-
spatial symmetries [Fig. ??(c) and Table ??].

Our derivation of these classification schemes, which are
presented in Tables ?? and ??, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

p = d� dFS
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in d dimensions
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in d+1 dimensions
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FIG. 1. Crystal structure and electronic bands of Ca3P2.
(a) Crystal structure of Ca3P2, which contains two planes
with three Ca atoms (blue) and three P atoms (red) that are
separated by interstitial Ca atoms (black). The gray dashed
lines indicate the unit cell. (b) Top and side view of the crys-
tal structure. The P-p

x

and Ca-d
z

2 orbitals included in the
tight-binding model are shown schematically. (c) Calculated
electronic band structure of Ca3P2. The weights of the P-p

x

and Ca-d
z

2 orbitals that are located within the layers are indi-
cated by the width of the corresponding band. (d) Fermi ring
of Ca3P2 as obtained from the tight-binding model, Eq. (2.2).
The bulk and surface Brillouin zones are outlined by the green
and black lines, respectively.

cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
the Ca-d

z

2 and P-p
x

orbitals that are located within the
layers [Fig. 1(c)]. The other orbitals of the in-plane atoms
(Ca-d

xy

, Ca-d
xz

, Ca-d
yz

, Ca-d
x

2�y

2 , P-p
y

, and P-p
z

), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z

2

and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

| ↵

k i =
1p
N

X

R

eik·(R+s↵) |�↵

Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure

H(k) =

✓
HCaCa HCaP

HPCa HPP

◆
, H

ij

=

✓
hll

ij

hlu
ij

hul
ij

huu
ij

◆
, (2.3)

where the sub-blocks hmn

ij

with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll
ij

)

and (hlu
ij

, hul
ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = EF ± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca3P2. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T = K,
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cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
the Ca-d

z

2 and P-p
x

orbitals that are located within the
layers [Fig. 1(c)]. The other orbitals of the in-plane atoms
(Ca-d

xy

, Ca-d
xz

, Ca-d
yz

, Ca-d
x

2�y

2 , P-p
y

, and P-p
z

), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z

2

and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor

| ↵

k i =
1p
N

X

R

eik·(R+s↵) |�↵

Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure

H(k) =

✓
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H
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PP
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ij

=

✓
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where the sub-blocks hmn

ij

with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll

ij

)

and (hlu

ij

, hul

ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = E

F

± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca

3

P
2

. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T = K,
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cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
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), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
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and the six P-p
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orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor
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Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure
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where the sub-blocks hmn
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with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu
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, hll
ij

)

and (hlu
ij

, hul
ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = EF ± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca3P2. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T = K,
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cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
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), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
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and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor
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Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �

ki =
X

R

eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure

H(k) =
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=
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where the sub-blocks hmn

ij

with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu

ij

, hll
ij

)

and (hlu
ij

, hul
ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = EF ± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca3P2. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d
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2 and P-p
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orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.
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As we will see in the following sections, time-reversal,
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play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
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cell [Fig. 1(b)]. With these definitions, we find that the
bands close to the Fermi energy mainly originate from
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), as
well as all the orbitals of the Ca interstitials, contribute
insignificantly to the low-energy bands and can be ne-
glected for the construction of the tight-binding model.

Guided by these observations, we use the six Ca-d
z
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and the six P-p
x

orbitals that are located within the
two layers as a basis set for the low-energy-tight binding
model. Hence, the tight-binding Hamiltonian is defined
in terms of a twelve-component Bloch spinor
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Ri , (2.1)

where ↵ is the orbital index, R denotes the lattice vec-
tors, and s

↵

represents the position vectors of the six

Ca (↵ = 1, . . . , 6) and the six P sites (↵ = 7, . . . 12), as
specified in Figs. 1(a) and 1(b). For completeness, the
numerical values of the position vectors s

↵

are given in
Table I of Appendix A. At this stage of the discussion,
we ignore the spin degree of freedom of the Bloch spinor,
since spin-orbit coupling is negligibly small for the light
elements Ca and P. Using the spinor (2.1), we construct
the matrix elements of the Bloch Hamiltonian as

H↵�(k) = h ↵

k |H| �
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eik·(R+s↵�s�)t↵�

R , (2.2)

where t↵�

R is the hopping amplitude from orbital ↵ in
the unit cell at the origin to orbital � in the unit cell
at position R. To simplify the form of the matrix el-
ements (2.2), we absorb a momentum dependent phase
factor in the definition of the basis orbitals, i.e., we let
| ↵

k i ! eik·s↵ | ↵

k i. We observe that Hamiltonian (2.2)
has a nested block structure

H(k) =
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where the sub-blocks hmn
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with fixed i, j 2 {Ca,P} and
fixed m, n 2 {l, u} are 3 ⇥ 3 matrices. The outer blocks
H

ij

represent hopping processes among and between the
Ca and P orbitals, whereas the inner blocks (huu
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, hll
ij

)

and (hlu
ij

, hul
ij

) describe intralyer and interlayer hoppings,
respectively. The detailed form of the matrix elements
hmn

ij

is specified in Appendix A1, where we also de-
scribe how the hopping parameter values are determined
from a maximally localized Wannier function (MLWF)
method [57, 58].

In Fig. 1(d) we plot the energy isosurface of Hamil-
tonian (2.2) at E = EF ± 20 meV, which shows that
the tight-binding model correctly captures the fourfold
degenerate Dirac ring of Ca3P2. Comparing the first-
principle band structure of Fig. 1(c) with the tight-
binding bands displayed in Fig. 2, we find that the tight-
binding model closely reproduces the bands with dom-
inant Ca-d

z

2 and P-p
x

orbital character. In particular,
the linear dispersion close to the Dirac ring agrees well
with the first-principle results.

1. Symmetries

As we will see in the following sections, time-reversal,
inversion, reflection, and SU(2) spin-rotation symmetry
play a crucial role for the protection of the Dirac ring.
Let us therefore discuss how these symmetries act on the
tight-binding Hamiltonian.

First of all, since we did not include the spin degree
of freedom in Eq. (2.2), the tight-binding model is fully
SU(2) spin-rotation invariant. That is, our model is di-
agonal in spin space with Hamiltonian (2.2) represent-
ing the diagonal element. As a consequence, the time-
reversal operator is simply given by the identity matrix
times the complex conjugation operator K, i.e., T = K, T 2 = +1
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FIG. 2. Band structure of the tight-binding model. Pan-
els (a) and (b) show the energy bands of Hamiltonian (2.2)
along high-symmetry lines within the mirror planes k

z

= 0
and k

z

= ⇡, respectively [cf. Fig. 1(d)] . The reflection eigen-
values of the bands are indicated by color, with blue and red
corresponding to R = +1 and R = �1, respectively. [Why
are the bands degenerate in the right panel?]

which acts on the Hamiltonian as T�1H(�k)T = H(k).
Hence, Hamiltonian (2.2) belongs to symmetry class AI,
since T 2 = +1. According to the classification of Ref. 3
Fermi rings in this symmetry class are unstable in the ab-
sence of lattice symmetries. However, as we will discuss
below, reflection symmetry or a combination of inversion
with time-reversal symmetry can produce a topological
protection of the Dirac ring.

The two layers of the crystal structure of Ca3P2, in-
dicated in green and brown in Fig. 1(a), are reflection
planes. For brevity, we only discuss the lower reflec-
tion plane [colored in green in Fig. 1(a)], but the fol-
lowing analysis also holds, mutatis mutandis, for the up-
per plane. The invariance of the tight-binding Hamilto-
nian (2.2) under reflection about the lower plane implies

R�1(k
z

)H(k
x

, k
y

,�k
z

)R(k
z

) = H(k
x

, k
y

, k
z

), (2.4a)

with the k
z

-dependent reflection operator

R(k
z

) = ⌧
z

⌦ ei

kz
2 (⇢z�⇢0)c ⌦ 3⇥3

= ⌧
z

⌦
✓
1 0
0 e+ikzc

◆
⌦ 3⇥3, (2.4b)

where c is the length of the lattice vector along the (001)
direction. [*Check definition of mirror operator*] Here,
the two sets of Pauli matrices ⌧

↵

and ⇢
↵

describe the
orbital (Ca-d

z

2 , P-p
x

) and the layer (l, u) degrees of free-
dom, respectively. The form of the reflection operator
R(k

z

) follows from the observations that (i) the P-p
x

or-
bitals are odd under reflection, while the Ca-d

z

2 orbitals
are even; and (ii) the mirror symmetry maps the orbitals
in the upper layer to the next Brillouin zone, which gives
rise to the phase factor e+ikzc. Finally, we find that the
tight-binding model is also inversion symmetric. That is,
Hamiltonian (2.2) satisfies

I�1H(�k)I = H(k), (2.5)

with the spatial inversion operator I = ⌧0 ⌦ ⇢
x

⌦ 3⇥3.

B. Topological protection of the Fermi ring

Let us now discuss how reflection symmetry (2.4) leads
to the topological protection of the Dirac ring. First,
we observe that for k within the reflection plane k

z

=
0, ⇡ the mirror operator R(k

z

) commutes with Hamilto-
nian (2.2), i.e., [R(k

z

), H(k
x

, k
y

, k
z

)] = 0 for k
z

= 0, ⇡.
Therefore, it is possible to block-diagonalize H(k) within
the mirror planes with respect to R. That is, each eigen-
state of H(k) belongs to either the eigenspace of the re-
flection operator with eigenvalue R = +1
or the one with eigenvalue R = �1
Block diagonalize; hybridization prohibited
Since at k

z

= 0 is an fixed point under reflection
symmetry, the Hamiltonian commutes with the reflection
symmetry operator [H(k

z

= 0), R] = 0.
occupied states (i.e., the number of negative-energy

states) at k = (0,ky ) in the eigenspace of R with
eignevalue 1.
we focus on the eigenspace of the reflection operator

with eigenvalue R = +1
Furthermore, R2 = leads to that the eigenvalues of

R is ±1. The topological number N
MZ is defined by

the number of the states in one of the eigenspaces (say
R = 1). In our tight-binding model, we compute the
eigenvalues of R for each energy band at k

z

= 0 as shown
in fig. 3 (b) so the topological number is given by the
number of the occupied band corresponding to R = 1

N0
MZ =

⇢
1, inside the ring
0, outside the ring

. (2.6)

The topological number change occurs at the location
of the ring where the band cross is present. The occu-
pied band of R = 1 switches to R = �1. The reflection
symmetry prevents the hybridization of these two bands
since the coupling term does not commute with R. The
change of N

MZ leads to the protection of the bulk Fermi
rings. The topological number is somehow related to the
presence of the surface modes in (001) and (001̄) surfaces,
which will be discussed as follow.
Alternatively, the line node could be protected by in-

version. This will be discussed in Section gha in terms of
the low-energy continuum model.

C. Surface states and Berry phase

We study the surface state in Ca3P2 based on the con-
structed tight-binding model. In Fig. ??, we show the
band structure of a slab of 60 unit cells with the surface
pointing to the (001) direction. We can see the outline
of the shaded bands agrees with the bulk band struc-
ture and a nearly flat surface states connects the Fermi
ring. The surface band mimics a drumhead structure and
shows up in the interior of the ring. We also use an iter-
ative method to obtain the local density of states at the
surface in Fig. ??, which confirms the surface nature of
the nearly flat band.

(SOC small, spin degree can be neglected)

Chan, Chiu, Chou, Schnyder, arXiv:1510.02759



— eigenstates of      are in the eigenspace of either                 or 

z ! �z

Ca

P

R�1H(k
x

, k
y

,�k
z

)R = H(k
x

, k
y

, k
z

)

 within mirror planes                   :

— eigenstates of       are simultaneous eigenstates of RH

 Mirror invariant: 

mirror plane

4

A  L  H A 
−3

−2

−1

0

1

2

3

4

En
er

gy
 (e

V)

 

 

R=1
R=−1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Γ M K Γ

Be
rry

 p
ha

se
 (π

)

FIG. 3. (Color online) (a) Band structure of Ca3P2 in a (001) slab geometry. �̄ (b) Surface density of states for Ca3P2. �̄ (c)
Band structure within the kz = 0 plane. Red corresponds to R = �1, blue to R = +1. (d) Band structure within the kz = ⇡
plane. (e) Ugly

between these two types of the invariants can be written
is in a simple form

(Nk=0
MZ +Nk=⇡

MZ )⇡ = P1 (mod 2⇡) (2.10)

Unfortunately, in our case R
k

in quote the equation is
k-dependent so that @R has to be computed to confirm
the relation between N

MZ and the Berry phase. obtain
the value of @R = 3⇡ from Yang-hong’s numerics and
Nk=⇡

MZ = 3 as shown in fig. 3 (d). By Eq. (2.9), we have
an alternative way to obtain the same value of the Berry
phase.

However, the ⇡ Berry phase, which leads to the pres-
ence of the surface modes, does not explain that end sur-
face modes end up at the bulk Fermi ring. Weyl node
discussion needed

III. LOW-ENERGY THEORY OF CA3P2

In the presence of a Dirac line, SU(2) symmetry for
spin-1/2 is required for the protection of the Dirac line.
Furthermore, reflection symmetry can protect the Dirac
line and lock it in the mirror plane. Even when reflec-
tion symmetry is broken, inversion symmetry and TRS
is su�cient to protect the Dirac line. The Hamiltonian
of a simple Dirac line is written as use the 1st or 2nd
quantization

ĤDirac =
X

✓,k,kz

c†k,kz

⇥
(k2 � k20)⌧z�0 + k

z

⌧
y

�0

⇤
ck,kz

, (3.1)

H = (k2
r

� k20)⌧z�0 + k
z

⌧
y

�0, (3.2)

where k = (k cos ✓, k sin ✓, 0) and ⌧
↵

and �
↵

describe or-
bital(atom) and spin degree freedom respectively. The
Fermi ring located at k

z

= 0 and k2
x

+ k2
y

= k20. TRS,
reflection symmetry and inversion symmetry are pre-
served with the symmetry operators Tk!�k = ⌧0�y

K,
R

kz!�kz = ⌧
z

�
z

, Pk!�k = ⌧
z

�
z

. To have the stable
Dirac line, SU(2) in spin is necessary to forbid hybridiza-
tion of the two spins so that the Hamiltonian can be
written as in spinless case

H = (k2
r

� k20)⌧z + k
z

⌧
y

(3.3)

with the symmetry operators r = ⌧
z

, p = ⌧
z

, and t =
⌧0K.

IV. TOPOLOGICAL FEATURES

A. Topological invariants of Dirac rings

Consider only reflection symmetry then the Hamilto-
nian belongs to class A+R with p = 2 described by MZ
invariant, which is determined by the number of the oc-
cupied states in one of the eigenspaces of r, (say r = 1).

N
MZ(kr) =

⇢
1, |k

r

| < k0
0, |k

r

| > k0
. (4.1)

The Fermi ring located at k
r

= k0 is protected by the
di↵erence of N

MZ. Even without reflection symmetry, in-
version symmetry and TRS also stabilize the Fermi ring
since ⌧

x

, which is the only term gapping the ring, is for-
bidden by those symmetries. The ring is not locked at

R = +1

R = �1

�k0+k0

Topological nodal line: Mirror invariant

see also: Burkov, Hook, Balents PRB 11
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Low-energy effective theory for Ca3P2

— reflection:

 low-energy effective Hamiltonian:

 symmetry operators:
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even in k

— time-reversal: — inversion: 

 Gap-opening term       is symmetry forbidden:
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FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡

�⇡

X

Ej<0

hu
kz,j

|@
kz |ukz,j

idk
z

(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)
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The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
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MZei@R = eiP1 , (2.8)

where @R = i
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. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)
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The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator
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0
MZ+N
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. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k
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and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)
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face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
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Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)
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The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.
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only k
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ring indicates the change of N
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The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only
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Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
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E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

5

k
x

k
y

E

FIG. 3. Drumhead surface states and Berry phase. (a) Sur-
face band structure of Ca3P2 as obtained from the tight-
binding model (2.2) for the (001) surface in slab geometry.
(b) Momentum-resolved surface density of states of Hamilto-
nian (2.2) for the (001) surface. Bright yellow and dark blue
correspond to high and low density, respectively. (c) Vari-
ation of the Berry phase (2.7) of Hamiltonian (2.2) along
high-symmetry lines of the (001) surface Brillouin zone [see
Fig. 1(d)]. (d) Surface spectrum of the low-energy e↵ective
model (3.2) for the (001) face as a function of surface mo-
menta k

x

and k

y

. The bulk states with reflection eigenvalues
R = +1 and R = �1 are colored in blue and red, respectively.
The drumhead surface state is indicated by the green area.
[*Add label “(d)”. Add numbers to k

x

, k

y

, and E axes in
lower right panel *]

Semi-infinite slab. computed using iterative Greens
function.

The presence and absence of the surface modes on
the z-direction surfaces are determined by Berry phase
(charge polarization)

P1 = �i

Z
⇡

�⇡

X

Ej<0

hu
kz,j

|@
kz |ukz,j

idk
z

(2.7)

The integral path we choose is along k
z

with k
x

, k
y

fixed. The system along the integral path can be ef-
fectively treated as a 1D inversion-symmetric topological
insulator. Berry phase, of which the value is either 0 or
⇡, is quantized by inversion symmetry even if inversion
symmetry operator is k

z

-dependent. The non-zero value
indicates the 1d insulator is polarized so (n+1/2)e charge
accumulates on the edges. The polarization leads to the
presence of the surface modes.[12] In our spinless Ca3P2

model, ⇡ Berry phase inside the ring is in agreement with
the presence of the surface modes and the zero value of
Berry phase outside the ring indicates the absence of the
surface modes.

Cite Vanderbilt and King-Smith [59], give formula for
surface charge polarization.

D. Relation between Berry phase
and mirror invariant

Although the Berry phase and NZ independently char-
acterize the two di↵erent physical features, they are
deeply related by the reflection symmetry operator

(�1)N
0
MZ+N

⇡
MZei@R = eiP1 , (2.8)

where @R = i
R

⇡

0

P
Ej<0huk,j

|R†
k

(@
k

R
k

)|u
k,j

idk and k ⌘
k

z

. Appendix A shows the proof of this relation in details.
In general, reflection symmetry operator, which might be
k-dependent, is written as R

k

. In the previous works[51,
60], only k-independent reflection symmetry operator is
considered; the relation between these two types of the
invariants can be written is in a simple form

(N0
MZ + N⇡

MZ)⇡ = P1 (mod 2⇡) (2.9)

Unfortunately, the k-independent assumption is not al-
ways faithfully describing most of realistic lattice sys-
tems. For example, in our case R

k

in quote the equa-
tion is k-dependent so that @R has to be computed to
confirm the relation between N

MZ and the Berry phase.
obtain We obtain the value of @R is 3⇡ for any k

x

and
k

y

from the tight-binding Hamiltonian cite Hamiltonian
equation and N⇡

MZ = 3 as shown in fig. 3 (d). Therefore,
computing N0

MZ + N⇡

MZ can also show the value of the
Berry phase by Eq. (2.8). For spinful system @R can be
ignored.

In generic reflection systems, @R is k
x

, k
y

-independent
when the reflection is along z. The reason is reflection
symmetry operation, which is symmorphic, depends on
only k

z

. Hence, the location of reflection protected Fermi
ring indicates the change of N

MZ. At the same loca-
tion the Berry phase changes due to the constant @R.
The di↵erence is that the Berry phase is described by Z2

number (0, ⇡) whereas N
MZ is an integer. That is, only

the change of N
MZ is able to capture multiple protected

Fermi rings at the same location. On the other hand, the
presence and absence of surface modes, which correspond
to ⇡ and 0 Berry phase, exhibits Z2 behavior analogue
to edge states of Z2 topological insulators.

[*Mention all symmetries that lead to quantization of
Berry phase*]

E. Weyl nodes

The nodal line can be viewed as a continuum of Weyl
nodes. [* Should this be called Dirac nodes instead
of Weyl nodes?*] Since the nodal line is protected by
mirror-symmetry, to isolate the Weyl nodes, we can add
a mirror-symmetry breaking term, which opens up gap
everywhere in the Fermi ring except for two points. For
this purpose, we introduce a term coupling Ca1 and P3

h k,1|H| k,9i = 0.2 sin(k · r), (2.10a)

Surface spectrum

—  P(kk) quantized to ⇡ ) stable line node

— In Ca3P2 Berry phase is quantized due to:

(i) reflection symmetry

(ii) inversion + time-reversal symmetry

z ! �z

)
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FIG. 2. Band structure of the tight-binding model. Pan-
els (a) and (b) show the energy bands of Hamiltonian (2.2)
along high-symmetry lines within the mirror planes k

z

= 0
and k

z

= ⇡, respectively [cf. Fig. 1(d)] . The reflection eigen-
values of the bands are indicated by color, with blue and red
corresponding to R = +1 and R = �1, respectively. [Why
are the bands degenerate in the right panel?]

which acts on the Hamiltonian as T�1H(�k)T = H(k).
Hence, Hamiltonian (2.2) belongs to symmetry class AI,
since T 2 = +1. According to the classification of Ref. 3
Fermi rings in this symmetry class are unstable in the ab-
sence of lattice symmetries. However, as we will discuss
below, reflection symmetry or a combination of inversion
with time-reversal symmetry can produce a topological
protection of the Dirac ring.

The two layers of the crystal structure of Ca3P2, in-
dicated in green and brown in Fig. 1(a), are reflection
planes. For brevity, we only discuss the lower reflec-
tion plane [colored in green in Fig. 1(a)], but the fol-
lowing analysis also holds, mutatis mutandis, for the up-
per plane. The invariance of the tight-binding Hamilto-
nian (2.2) under reflection about the lower plane implies

R�1(k
z

)H(k
x

, k
y

,�k
z

)R(k
z

) = H(k
x

, k
y

, k
z

), (2.4a)

with the k
z

-dependent reflection operator

R(k
z

) = ⌧
z

⌦ ei

kz
2 (⇢z�⇢0)c ⌦ 3⇥3

= ⌧
z

⌦
✓
1 0
0 e+ikzc

◆
⌦ 3⇥3, (2.4b)

where c is the length of the lattice vector along the (001)
direction. [*Check definition of mirror operator*] Here,
the two sets of Pauli matrices ⌧

↵

and ⇢
↵

describe the
orbital (Ca-d

z

2 , P-p
x

) and the layer (l, u) degrees of free-
dom, respectively. The form of the reflection operator
R(k

z

) follows from the observations that (i) the P-p
x

or-
bitals are odd under reflection, while the Ca-d

z

2 orbitals
are even; and (ii) the mirror symmetry maps the orbitals
in the upper layer to the next Brillouin zone, which gives
rise to the phase factor e+ikzc. Finally, we find that the
tight-binding model is also inversion symmetric. That is,
Hamiltonian (2.2) satisfies

I�1H(�k)I = H(k), (2.5)

with the spatial inversion operator I = ⌧0 ⌦ ⇢
x

⌦ 3⇥3.

B. Topological protection of the Fermi ring

Let us now discuss how reflection symmetry (2.4) leads
to the topological protection of the Dirac ring. First,
we observe that for k within the reflection plane k

z

=
0, ⇡ the mirror operator R(k

z

) commutes with Hamilto-
nian (2.2), i.e., [R(k

z

), H(k
x

, k
y

, k
z

)] = 0 for k
z

= 0, ⇡.
Therefore, it is possible to block-diagonalize H(k) within
the mirror planes with respect to R. That is, each eigen-
state of H(k) belongs to either the eigenspace of the re-
flection operator with eigenvalue R = +1
or the one with eigenvalue R = �1
Block diagonalize; hybridization prohibited
Since at k

z

= 0 is an fixed point under reflection
symmetry, the Hamiltonian commutes with the reflection
symmetry operator [H(k

z

= 0), R] = 0.
occupied states (i.e., the number of negative-energy

states) at k = (0,ky ) in the eigenspace of R with
eignevalue 1.
we focus on the eigenspace of the reflection operator

with eigenvalue R = +1
where k here denotes the in-plane momentum.
Furthermore, R2 = leads to that the eigenvalues of

R is ±1. The topological number N
MZ is defined by

the number of the states in one of the eigenspaces (say
R = 1). In our tight-binding model, we compute the
eigenvalues of R for each energy band at k

z

= 0 as shown
in fig. 3 (b) so the topological number is given by the
number of the occupied band corresponding to R = 1

N0
MZ =

⇢
1, inside the ring
0, outside the ring

. (2.6)

The topological number change occurs at the location
of the ring where the band cross is present. The occu-
pied band of R = 1 switches to R = �1. The reflection
symmetry prevents the hybridization of these two bands
since the coupling term does not commute with R. The
change of N

MZ leads to the protection of the bulk Fermi
rings. The topological number is somehow related to the
presence of the surface modes in (001) and (001̄) surfaces,
which will be discussed as follow.
Alternatively, the line node could be protected by in-

version. This will be discussed in Section gha in terms of
the low-energy continuum model.

C. Surface states and Berry phase

We study the surface state in Ca3P2 based on the con-
structed tight-binding model. In Fig. ??, we show the
band structure of a slab of 60 unit cells with the surface
pointing to the (001) direction. We can see the outline
of the shaded bands agrees with the bulk band struc-
ture and a nearly flat surface states connects the Fermi
ring. The surface band mimics a drumhead structure and
shows up in the interior of the ring. We also use an iter-
ative method to obtain the local density of states at the
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FIG. 2. Band structure of the tight-binding model. Pan-
els (a) and (b) show the energy bands of Hamiltonian (2.2)
along high-symmetry lines within the mirror planes k

z

= 0
and k

z

= ⇡, respectively [cf. Fig. 1(d)] . The reflection eigen-
values of the bands are indicated by color, with blue and red
corresponding to R = +1 and R = �1, respectively. [Why
are the bands degenerate in the right panel?]

which acts on the Hamiltonian as T�1H(�k)T = H(k).
Hence, Hamiltonian (2.2) belongs to symmetry class AI,
since T 2 = +1. According to the classification of Ref. 3
Fermi rings in this symmetry class are unstable in the ab-
sence of lattice symmetries. However, as we will discuss
below, reflection symmetry or a combination of inversion
with time-reversal symmetry can produce a topological
protection of the Dirac ring.

The two layers of the crystal structure of Ca3P2, in-
dicated in green and brown in Fig. 1(a), are reflection
planes. For brevity, we only discuss the lower reflec-
tion plane [colored in green in Fig. 1(a)], but the fol-
lowing analysis also holds, mutatis mutandis, for the up-
per plane. The invariance of the tight-binding Hamilto-
nian (2.2) under reflection about the lower plane implies

R�1(k
z

)H(k
x

, k
y

,�k
z

)R(k
z

) = H(k
x

, k
y

, k
z

), (2.4a)

with the k
z

-dependent reflection operator

R(k
z

) = ⌧
z

⌦ ei

kz
2 (⇢z�⇢0)c ⌦ 3⇥3

= ⌧
z

⌦
✓
1 0
0 e+ikzc

◆
⌦ 3⇥3, (2.4b)

where c is the length of the lattice vector along the (001)
direction. [*Check definition of mirror operator*] Here,
the two sets of Pauli matrices ⌧

↵

and ⇢
↵

describe the
orbital (Ca-d

z

2 , P-p
x

) and the layer (l, u) degrees of free-
dom, respectively. The form of the reflection operator
R(k

z

) follows from the observations that (i) the P-p
x

or-
bitals are odd under reflection, while the Ca-d

z

2 orbitals
are even; and (ii) the mirror symmetry maps the orbitals
in the upper layer to the next Brillouin zone, which gives
rise to the phase factor e+ikzc. Finally, we find that the
tight-binding model is also inversion symmetric. That is,
Hamiltonian (2.2) satisfies

I�1H(�k)I = H(k), (2.5)

with the spatial inversion operator I = ⌧0 ⌦ ⇢
x

⌦ 3⇥3.

B. Topological protection of the Fermi ring

Let us now discuss how reflection symmetry (2.4) leads
to the topological protection of the Dirac ring. First,
we observe that for k within the reflection plane k

z

=
0, ⇡ the mirror operator R(k

z

) commutes with Hamilto-
nian (2.2), i.e., [R(k

z

), H(k
x

, k
y

, k
z

)] = 0 for k
z

= 0, ⇡.
Therefore, it is possible to block-diagonalize H(k) within
the mirror planes with respect to R. That is, each eigen-
state of H(k) belongs to either the eigenspace of the re-
flection operator with eigenvalue R = +1
or the one with eigenvalue R = �1
Block diagonalize; hybridization prohibited
Since at k

z

= 0 is an fixed point under reflection
symmetry, the Hamiltonian commutes with the reflection
symmetry operator [H(k

z

= 0), R] = 0.
occupied states (i.e., the number of negative-energy

states) at k = (0,ky ) in the eigenspace of R with
eignevalue 1.
we focus on the eigenspace of the reflection operator

with eigenvalue R = +1
where k here denotes the in-plane momentum.
Furthermore, R2 = leads to that the eigenvalues of

R is ±1. The topological number N
MZ is defined by

the number of the states in one of the eigenspaces (say
R = 1). In our tight-binding model, we compute the
eigenvalues of R for each energy band at k

z

= 0 as shown
in fig. 3 (b) so the topological number is given by the
number of the occupied band corresponding to R = 1

N0
MZ =

⇢
1, inside the ring
0, outside the ring

. (2.6)

The topological number change occurs at the location
of the ring where the band cross is present. The occu-
pied band of R = 1 switches to R = �1. The reflection
symmetry prevents the hybridization of these two bands
since the coupling term does not commute with R. The
change of N

MZ leads to the protection of the bulk Fermi
rings. The topological number is somehow related to the
presence of the surface modes in (001) and (001̄) surfaces,
which will be discussed as follow.
Alternatively, the line node could be protected by in-

version. This will be discussed in Section gha in terms of
the low-energy continuum model.

C. Surface states and Berry phase

We study the surface state in Ca3P2 based on the con-
structed tight-binding model. In Fig. ??, we show the
band structure of a slab of 60 unit cells with the surface
pointing to the (001) direction. We can see the outline
of the shaded bands agrees with the bulk band struc-
ture and a nearly flat surface states connects the Fermi
ring. The surface band mimics a drumhead structure and
shows up in the interior of the ring. We also use an iter-
ative method to obtain the local density of states at the

(�1)n
+,0
occ

(k)+n+,⇡
occ

(k)ei@R = eiP(k)

with @R = i
X

j2filled

Z ⇡

0

D
u(j)
kz

���R†
kz

(@kzRkz )
���u(j)

kz

E
dkz

— mirror invariants are easier to compute  !
     than Berry phase

— for Ca3P2:

) relation holds
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0 |k| > k
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Fermi surface only !
invariant under reflection

(ii) p = d� dFS 8

TABLE II. Classification of reflection symmetry protected topological insulators and fully gapped superconductors,? ? ? as well as of Fermi
surfaces and nodal points/lines in reflection symmetry protected semimetals and nodal superconductors, respectively. The first row specifies
the spatial dimension d of reflection symmetry protected topological insulators and fully gapped superconductors, while the second and third
rows indicate the codimension p = d � d

FS

of the reflection symmetric Fermi surfaces (nodal lines) at high-symmetry points [Fig. 3(a)] and
away from high-symmetry points of the Brillouin zone [Fig. 3(b)], respectively.

Reflection sym. class p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1
R A MZ 0 MZ 0 MZ 0 MZ 0
R

+

AIII 0 MZ 0 MZ 0 MZ 0 MZ
R� AIII MZ� Z 0 MZ� Z 0 MZ� Z 0 MZ� Z 0

R

+

,R
++

AI MZ 0 0 0 2MZ 0 MZ
2

MZ
2

BDI MZ
2

MZ 0 0 0 2MZ 0 MZ
2

D MZ
2

MZ
2

MZ 0 0 0 2MZ 0
DIII 0 MZ

2

MZ
2

MZ 0 0 0 2MZ
AII 2MZ 0 MZ

2

MZ
2

MZ 0 0 0
CII 0 2MZ 0 MZ

2

MZ
2

MZ 0 0
C 0 0 2MZ 0 MZ

2

MZ
2

MZ 0
CI 0 0 0 2MZ 0 MZ

2

MZ
2

MZ

R�,R��

AI 0 0 2MZ 0 TZ
2

Z
2

MZ 0
BDI 0 0 0 2MZ 0 TZ

2

Z
2

MZ
D MZ 0 0 0 2MZ 0 TZ

2

Z
2

DIII Z
2

MZ 0 0 0 2MZ 0 TZ
2

AII TZ
2

Z
2

MZ 0 0 0 2MZ 0
CII 0 TZ

2

Z
2

MZ 0 0 0 2MZ
C 2MZ 0 TZ

2

Z
2

MZ 0 0 0
CI 0 2MZ 0 TZ

2

Z
2

MZ 0 0
R�+

BDI, CII 2Z 0 2MZ 0 2Z 0 2MZ 0
R

+� DIII, CI 2MZ 0 2Z 0 2MZ 0 2Z 0
R

+� BDI MZ� Z 0 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

R�+

DIII MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0 2MZ� 2Z 0
R

+� CII 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0 0 0
R�+

CI 0 0 2MZ� 2Z 0 MZ
2

� Z
2

MZ
2

� Z
2

MZ� Z 0
a
Z
2

and MZ
2

invariants only protect Fermi surfaces of dimension zero (d
FS

= 0) at high-symmetry points of the Brillouin
zone.

b
Fermi surfaces located within the mirror plane but away from high symmetry points cannot be protected by a Z

2

or MZ
2

topological invariant. Nevertheless, the system can exhibit gapless surface states that are protected by a Z
2

or MZ
2

topological invariant.
c

For gapless topological materials the presence of translation symmetry is always assumed. Hence, there is no distinction
between TZ

2

and Z
2

for gapless topological materials.

classification of reflection symmetric semimetals and nodal
superconductors.

IV. CLASSIFICATION OF REFLECTION SYMMETRY
PROTECTED GAPLESS TOPOLOGICAL MATERIALS

Having discussed the classification of fully gapped re-
flection symmetric topological materials, we are now ready
to classify reflection symmetric topological semimetals and
nodal superconductors. As for fully gapped systems, reflec-
tion symmetries lead to an enrichment of the ten-fold clas-
sification of topological semimetals (nodal superconductors)
with new topological phases. The classification depends on
the codimension p = d � d

FS

of the Fermi surface (nodal
line/point) and on whether the reflection operator R commutes
or anticommutes with the nonspatial symmetries. More-
over, we need to distinguish how the Fermi surface (nodal

line/point) transforms under the mirror reflection and nonspa-
tial symmetries. There are three different cases to be con-
sidered: (i) The Fermi surface is invariant under both reflec-
tion and global symmetries [Fig. 3(a) and Table II], (ii) Fermi
surfaces are invariant under reflection, but transform pairwise
into each other by the global antiunitary symmetries [Fig. 3(b)
and Table II], and (iii) different Fermi surfaces are pairwise
related to each other by both reflection and nonspatial sym-
metries [Fig. 3(c) and Table III].

Our derivation of these classification schemes, which are
presented in Tables II and III, relies primarily on the so-called
minimal Dirac-matrix Hamiltonian method.? ? This method
is based on considering reflection symmetric Dirac-matrix
Hamiltonians with the smallest possible matrix dimension for
a given symmetry class of the ten-fold way. The topologi-
cal properties of the Fermi surfaces (nodal lines) described by
these Dirac-matrix Hamiltonians is then determined by the ex-
istence or non-existence of symmetry-preserving mass terms

Classification of reflection symmetric semimetals and nodal SCs

Chiu, Schnyder!
PRB 90, 205136 (2014)

graphene

classification of Fermi  
points with            a!

in d dimensions
dFS = 0

classification of fully gapped !
topological materials!
in d-1 dimensions
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Fermi surface not invariant  
under reflection & global symmetries

(iii)

)

• consider combined symmetries, e.g.: 

Fermi surface is invariant under combined symmetry

12

TABLE III. Classification of Fermi points and superconducting point nodes of reflection symmetric semimetals and nodal superconductors,
respectively, where the Fermi points (point nodes) are located outside the mirror plane [see Fig. ??(c)]. The first row indicates the spatial
dimension d of the semimetal (nodal superconductor). The prefix “C” indicates that the corresponding topological invariant is defined in terms
of the combined symmetries ˜

T and/or ˜

C [see Eq. (??)] on a (d� 1)-dimensional plane which is perpendicular to the k

1

axis [blue line/plane
in Fig. ??(c)]. The Z- and Z

2

-type invariants, on the other hand, are identical to the ones of the original ten-fold classification in the absence
of mirror symmetry (cf. Table I) and are defined on (d� 1)-dimensional hyperspheres surrounding the Fermi point.

Reflection sym. class d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8
R A Z 0 Z 0 Z 0 Z 0
R

+

AIII 0 Z 0 Z 0 Z 0 Z

R

+

,R
++

AI Z 0 0 0 2Z 0 CZ
2

CZ
2

BDI CZ
2

Z 0 0 0 2Z 0 CZ
2

D CZ
2

CZ
2

Z 0 0 0 2Z 0
DIII 0 CZ

2

CZ
2

Z 0 0 0 2Z
AII 2Z 0 CZ

2

CZ
2

Z 0 0 0
CII 0 2Z 0 CZ

2

CZ
2

Z 0 0
C 0 0 2Z 0 CZ

2

CZ
2

Z 0
CI 0 0 0 2Z 0 CZ

2

CZ
2

Z

R�,R��

AI 2Z 0 CZ
2

0 2Z 0 0 0
BDI 0 2Z 0 CZ

2

0 2Z 0 0
D 0 0 2Z 0 CZ

2

0 2Z 0
DIII 0 0 0 2Z 0 CZ

2

0 2Z
AII 2Z 0 0 0 2Z 0 CZ

2

0
CII 0 2Z 0 0 0 2Z 0 CZ

2

C CZ
2

0 2Z 0 0 0 2Z 0
CI 0 CZ

2

0 2Z 0 0 0 2Z
R

+� CI CZ
2

0 0 0 0 0 0 CZ
2

R�+

BDI 0 CZ
2

CZ
2

0 0 0 0 0
R

+� DIII 0 0 0 CZ
2

CZ
2

0 0 0
R�+

CII 0 0 0 0 0 CZ
2

CZ
2

0
R� AIII 0 0 0 0 0 0 0 0
R�+

DIII, CI 0 0 0 0 0 0 0 0
R

+� BDI, CII 0 0 0 0 0 0 0 0

mirror plane is reduced in the following way

DIII ! AII, CI ! AI, BDI ! D, CII ! C. (31b)

By a similar logic as above, we find by use of Eq. (??) and
Table I that, e.g., for three-dimensional systems, the following
invariants can be defined within the mirror planes (fixed k

1

=
0, ⇡) or within planes with fixed k

1

6= 0, ⇡

d = 3 DIII CI BDI CII
mirror plane Z

2

0 Z Z
(k

1

6= 0, ⇡) - plane 0 0 Z
2

0

As before we find that only the “weaker” of these two types
of invariants leads to a protection of the Fermi point (cf. Ap-
pendix ??). Extending these arguments to other dimensions
gives the classification of Table ??.

4. AIII with R�, DIII & CI with R�+

, and BDI & CII with R

+�

Finally, we consider class AIII with R�-type reflection
symmetry, class DIII & CI with R�+

-type reflection symme-
try, and class BDI & CII with R

+�-type reflection symmetry.
Repeating the steps of the previous subsection, we find that

for, e.g., three-dimensional systems the following invariants
can be defined within the mirror plane and within planes with
fixed k

1

6= 0, ⇡

d = 3 AIII DIII CI BDI CII
mirror plane Z Z 0 2Z Z

2

(k
1

6= 0, ⇡) - plane 0 0 0 0 Z
2

,

which suggests that Fermi points in three-dimensional sys-
tems with class CII symmetries are protected by a Z

2

-type
invariant. However, this is in contradiction with the re-
sult obtained from the Dirac-matrix Hamiltonian approach,
which shows that all Fermi points have trivial topology (Ap-
pendix ??). It turns out that even though some nontrivial Z

2

-
type invariants can in principle be defined, these invariants do
not protect Fermi points outside the mirror plane. We con-
clude that Fermi points outside the mirror plane in class AIII
with R�-type reflection symmetry, class DIII & CI with R�+

-
type reflection symmetry, and class BDI & CII with R

+�-type
reflection symmetry have trivial topology in all spatial dimen-
sions (Table ??).

eT�1H(k
x

,�k̃) eT = +H(k
x

, k̃)

eT = RT

Classification of reflection symmetric semimetals and nodal SCs

Chiu, Schnyder!
PRB 90, 205136 (2014)
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Mirror plane

• Topological classification schemes:  
 

(i) bring order to the growing zoo of topological materials 
 

(ii) give guidance for the search and design of new topological states 
 

(iii) link the properties of the surface states to the bulk wave function topology

• Candidate materials for topological matter:!
- Anti-perovskites: Ca3PbO, Sr3PbO, Ba3PbO (class AII with        )!
 

- Dirac semi-metals with rotation symmetry: Cd3As2, Na3Bi (class DIII with          ) 
 

- Nodal ring protected by reflections symmetry: Ca3P2, PbTaSe2 (class A with R )!
 

- Non-centrosymmetric SCs: CePt3Si, CeIrSi3, CeRhSi3 (class DIII )!!
- Chiral d-wave SC: SrPtAs (class C)!!
- etc.!!

R�

R��

Review articles: arXiv:1505.03535; J. Phys.: Condens. Matter 27, 243201 (2015)


