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1.1 Introduction
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The electrical charge is quantized in the elementary quantum —e carried by single electrons. In

mesoscopic systems at sufficient low temperature, this discrete elementary charge can give rise

to peculiar electrostatic effects. With achieving the ability of making small devices on the scale



of less than few hundred nanometers, devices based on single-electron charging effects have been
proposed and realized in the last 15 years.

After a brief introduction to the concepts of Coulomb blockade and single-electron charging, some
device concepts for applications are presented, but also arrangements for studying basic physics
of electrical transport relevant for molecular electronics are discussed. The presented picture for
electrical transport through conducting mesoscopic particles (‘island’) by single-electron tun-
neling breaks down if correlated electron tunneling takes place. Under certain circumstances,
correlated electron tunneling leads even to the conductance of a one-dimensional channel al-

though Coulomb blockade is expected.

For historical reviews, further readings and other approaches to the topic of single-electron
devices, the articles [1-8] are recommended. Especially for superconducting devices not treated
here, we refer to [9, 10], for proposal of using single-electron devices as qubits to [11] (quantum

dots as islands), [12] (superconducting devices).

1.2 Single-Electron Charging Energy and Coulomb Blockade Ef-
fect

Fig. 1.1 shows an arrangement of an electrically uncharged metal island embedded in a dielec-
tric medium and surrounded by other metal electrodes which are electrically connected. By
transfering a single electron from the electrodes to the island, the island is charged negative to
g = —e and positive image charges ¢1, g2 spread over the electrodes (see Fig.1.1b). Note, the
overall charge of the system compensates to zero: —e + g1 + g2 = 0. Similarly, by transfering an
electron from the electrically uncharged island to the electrodes, the island is charged positive
and negative image charges are induced on the surrounding electrodes (see Fig.1.1c). The ar-
rangement resembles a capacitor configuration with the capacitance Cx; where the island reflects

one electrode of this capacitor and the others form all together the counter electrode. For both

charge configurations (¢ = —e and g = e), the electrostatic energy E¢
2
e
Ec = 1.1
©7 20y (1.1)

is stored in the arrangement. The quantity F¢ is usually denoted as single-electron charging
energy'. This energy is required for the separation of a single electron from its positive counter
charge spread over the other conductors. It is the electrostatic energy barrier felt by the single

electron moving onto or from the electrically neutral island.

Usually this energy E¢ is not noticeable since the island size and therefore Cy. is large. However,
for Cx; < 10~!® F which corresponds? to the ‘self-capacitance’ Cs, = 4mepe R of a metallic sphere
with radius R < 1 ym embedded in a dielectric medium with ¢ = 10, E¢ exceeds the thermal
energy kpT at T = 4 K. For Cx < 3 - 1078 F which is fulfilled for R < 2.8 nm, even kpT at
room temperature (7" = 300 K) is exceeded. From this, we have to conclude that the single-
electron charging energy FE¢ is of importance to describe single-electron movements in systems

from mesoscopic size down to atomic size.

!Sometimes [2] the quantity e?/Cyx is denoted by the same name.
2Counter electrode at infinite distance.
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Fig. 1.1: (a) A metal island embedded between electrodes which are electrically connected. Transfering
an electron onto the island (b) or taking off the electron from the island (c) charges the capacitor formed
by the island and the electrodes.

A simple two-terminal arrangement for discussing the consequence is shown in Fig.1.2a. A
small island is embedded between two lead electrodes denoted as source S and drain D. Thin
insulators separate the island from the two leads. These layers should be thin enough that —
due to quantum mechanics — tunneling of electrons through the insulator layers is possible, thick
enough that it is plausible to describe single electrons in the system as being localized either on
the metal island or the lead electrodes. Since the metal island is almost isolated, the total charge
on the metal electrodes is considered as being quantized in the elementary charge e. Due to
Ec which is required for recharging the island by a single electron entering or leaving, electrical
transport is suppressed around Vpg = 0 if Ec > kT (Coulomb blockade effect of electrical

transport).

With increasing the bias voltage Vpg > 0, the electrostatic energy barriers for adding an electron

from source

C
AES_H = Ec — € C_D VDS (1.2)
%

and the electrostatic energy barrier for an electron leaving to drain
Cpb
AEi ,p=FEc+e C_z Vps — e Vps (13)

are reduced as a consequence of the applied voltage Vpg (The respective capacitance circuit is
given in Fig. 1.2b). Similar happens for Vg < 0. The suppression of current is finally overcome

for

(th) _ . € (&
V >V = min P — .
| DS‘ — DS 1 (208’ 2C > ’ (]‘ 4)

and the drain-source current |Ipg| rises rapidly with increasing |Vpg|. If Ec > kT, for such
a two-terminal device a non-linear current-voltage characteristic with threshold values lying

symmetrically around Vpg = 0 is obtained.

1.3 Concept of a Single-Electron Transistor (SET)

Instead of overcoming the Coulomb blockade by increasing Vpg, a gate electrode G with variable

gate-voltage Vg can be added to the arrangement (see Fig. 1.3a). With increasing gate voltage
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Fig. 1.2: (a) Two-terminal arrangement for discussing the Coulomb blockade effect in electrical transport.
(b) The respective capacitance circuit. Note Cx = Cs + Cp. (c) Sketch of the expected non-linear
Ins(Vbs) characteristic with energy schemes for distinct Vpg values reflecting the energetical position of
the Fermi levels of the island for charge states ¢ = —e and ¢ = e relatively to the Fermi level of source
and drain.

Vs, the electrostatic potential of the island is shifted due to the capacitance circuit sketched
in Fig.1.3b. With positive going Vgg, negative charge is accumulated on the island — not in a
continuous but in a step-like manner as sketched in Fig. 1.3c (single-electron charging). The first
electron is charged at Vgg = V((;tsh) when the electrostatic energy for an electron on the island is

lowered just compensating for Ec, i.e.,

Co

Ves =0 (1.5)
CE GS—VY, .

leading to the threshold voltage

EC . (&
eCq/Cs  2CG

th
v — (1.6)
At this gate-voltage value, the charge state of the island fluctuates by e. Applying a small
drain-source voltage Vpg, a directed current is measured between source and drain — carried by

single electrons passing one after the other the island.

What about charging the electrically neutral island by AN electrons from the source lead? The
electrostatic energy stored in such a charge configuration (¢ = —AN e) — under the condition

that Vps and Vgg are fixed — is given by

O ) (AN (1.7)

Ca
E AN: = —AN — —
eist (AN; Vs, Vbs) e (Cz Vas + s Vbs 20
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Fig. 1.3: (a) Three-terminal arrangement of a single-electron transistor. (b) The respective capacitance
circuit. Note Cy = Cs + Cp + Cg. (c) With increasing gate voltage Vs, electrons are accumulated on
the island. Whenever the charge state can energetically fluctuate by e, i.e., the energy for two charge
states is degenerate, current Ipg flows for small applied Vpg through the island, leading to a periodically
modulated Ing(Vgs)-characteristic — the Coulomb blockade oscillations. For distinct Vg values, the
respective energy schemes are given.

The first term describes the potential energy of AN electrons at the electrostatic potential which
is found due to the capacitance divider at the electrically neutral island. The second term takes
into account the work which has to be done to separate the charge ¢ = —AN e from its counter

charge spread over the electrodes source S, drain D and gate G.
Having already charged the island with AN electrons, the next electron ‘AN + 1’ moving from

source to the charged island feels at fixed applied Vgg and Vpg the electrostatic energy difference

AFEs1(AN +1;Vas, Vps) = Eest (AN +1; Vas, Vbs) — Fest (AN; Vas, Vbs)

2 C C
= (AN—F%);—E—eC—;;VGS_eC—];VDs. (1.8)

Similarly, having AN electrons on the island, the electron ‘AN’ feels for moving towards drain

the electrostatic energy difference

AE,p(AN;Vas, Vbs) = PFEast(AN —1;Vas, Vbs) — e Vbs — Eeist (AN; Vs, Vbs)

2
= —(AN—%)e—E+eC—§VGS—e(1——D) Vps - (1.9)

It contains the final electrostatic energy —e Vpg of the electron on the drain site.

The energy differences Eest (An; Vas, Vbs) — Eest (An—1; Vgs, Vps) withn € {--- ,N—-1, NN +



1,---} define an energy ladder with fixed energy level spacing 2 Ec = €?/Cy, which shifts linearly
with Vps and Vgg: For given Vpg and Vg the level ‘An’ reflects the energetical position of the
Fermi level on the island relatively to the Fermi levels of the two leads if the island is charged
to ¢ = —Ane. The relative position of this energy ladder are given for distinct parameters
(Vas; Vbs = 0) in the energy schemes of Fig. 1.3c. In thermodynamic equilibrium, An = ANg
additional electrons are trapped on the island if

for Vpg >0 AFs ,i(ANg + 1;Vgs, Vps) > 0 and AE1,p(ANg;Vas, Vbs) > 0, (1.10)
for Vpg <0 AF1,s5(ANg; Vas, Vps) > 0 and AEp_1(ANg + 1;Vas, Vps) > 0. (1.11)

Whenever AEg ,1 = 0 or AE1_,p = 0, the charge state of the island can fluctuate by e. Applying
a small drain-source voltage Vpg, a directed current is measured between source and drain. With

changing the gate voltage Vggs at small Vpg, the current is modulated with the gate voltage period

AVgs = C% (1.12)

as sketched in Fig. 1.3c. This characteristic is denoted as Coulomb blockade oscillations (CBOs).
Since the current is carried by single electrons passing the island one-by-one, the three-terminal

device with such a characteristic is named single-electron transistor (SET) [13,14].

Evaluating (1.10) and (1.11) allows to define transport regions for a single-electron transistor as
a function of the drain-source voltage Vpg and the gate voltage Vgs. The result is sketched in
Fig.1.4: Light grey shaded are the regions of Coulomb blockade (fulfilling (1.10) and (1.11)) at
low temperature where the electron number is fixed. Fluctuations by only one electron charge
—e are possible in the adjacent regions. These are the regions of single-electron tunneling since
there the electrons are passing the island one after the other. Along the gate voltage axis
with Vpg =~ 0, the Coulomb blockade oscillations are obtained. With further increasing |Vpg|,
more and more charge configurations become energetically possible. For distinct parameter
configurations (Vpg, Vas), the respective energy scheme are depicted. For the metal single-
electron transistor, the transport characteristics are periodic in Vgg: With each gate voltage
change AVgs = e/Cq, the same electrostatic energy barriers for recharging the island are

present — only with one electron more trapped on the island.

The borderlines between Coloumb blockade and single-electron tunneling regime have the slopes

dVGS CD dVGS CE - CD
=—— and =

dVps AEs_,1=0 Ca dVps AE,p=0 Ca

(1.13)

Note, these relations are valid for the special choice of the source electrode as the reference

electrode for all applied voltages.

One should also realize that the notation of the two different transport regions of a single-
electron transistor — Coulomb blockade and single-electron tunneling regime — as a function of
Vps and Vs are obtained due to energy considerations. Multi-electron transport is predicted
at higher |Vpg| values where regions of more than two charge states could coexist. However,
SETs with strongly asymmetric tunnel barriers also show single-electron transport at these
higher |Vpg| values: An electron leaving via the thicker tunnel barrier is almost immediately

replaced by an electron tunneling through the thinner tunnel barrier; for opposite drain-source
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Fig. 1.4: Transport regions of a single-electron transistor as a function of Vpg and Vgg. This pattern is
usually referred to as ‘diamond-like’.

voltage an electron entering the island via the thicker tunnel barrier leaves usually faster via
the thinner barrier than another electron can enter via the thicker barrier. The dynamics of the
system restrict the charge fluctuations on the island to e. Under such conditions the current Ipg
increases in a step-like manner with increasing |Vpg| whenever another charge state has become
energetically available, i.e., a boundary line in Fig. 1.4 is crossed with increasing |Vpg|- The
so-called Coulomb-staircase characteristic in Ing(Vpg) is obtained [15].

1.4 Examples for the Realization of Single-Electron Transistors

Two examples for the realization of a single-electron transistor are discussed in this section.
First, a device made from metal is shown to demonstrate that small metal islands indeed offer
transport characteristics dominated by Coulomb blockade and single-electron charging effects
although more than 10° electrons are actually present in the condcution band of the island. In
contrast, as the second realization, a SET made from a semiconductor material is presented. It
contains a quantum dot as the island with a small number of trapped electrons (about 10 to 20)
and a discrete excitation spectrum, and even allows the in-situ control over the tunnel coupling

between island and leads. Due to their in-situ tunability, such quantum dot systems can act as



model systems for studying basic phenomena in electrical transport through single molecules or
atoms embedded between lead electrodes.

Other arrangements and realizations of single-electron transistors are presented within this

school (for instance, vertical quantum dot devices by K.M. Indlekofer).

1.4.1 Single-Electron Transistor Made from Metal

An example for a metal single-electron transistor made from aluminum is shown in ‘Cross Section
1’ of Fig. 1.5a and as a scanning-electron microscope image in Fig. 1.5b. The devices is fabricated
by using a two-angle evaporation technique also used to fabricate the first SET [16]: With
electron-beam lithography, a two-layer organic resist is patterned resulting in openings to the

substrate with large undercut (see ‘Cross Section 2’). In vacuum, aluminum layers are evaporated
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Fig. 1.5: SET made from metal: (a) Fabrication process (see text). (b) Scanning electron microscope
image. (c) Coulomb-blockade oscillations. (d) Ips(Vbs,Vas) characteristics measured at T = 0.1K.
(from Y.Y.Wei, J. Hiils et al., MPI-FKF)



twice under different angles through the openings onto the substrate. By an in-situ oxidation
between first and second evaporation process, a thin aluminum oxide of few nanometers is formed
on the first aluminum layer. The resist is lifted off and a metal structure remains on the
substrate. Due to the two different evaporation angles, the metal patterns of the first and
second evaporation process are slightly shifted against each other leading to an overlap in certain
regions. In the overlap regions, the thin aluminum oxide acts as tunnel barriers between both
aluminum layers, whereas the uncovered aluminum is unavoidable oxidized further in air. The
island has a length of 1 ym and a width of 0.1 um. The overlap region defining the tunnel
barriers towards the leads are 0.1 ym by 0.1 ym in size. Coulomb blockade oscillations measured
on this device at T' = 0.1 K for Vpg = 80 4V are shown in Fig. 1.5c. As the gate electrode, a
conductive layer in the substrate 86 nm below the surface is used. Due to the small size of the
device, the total capacitance Cx, — dominated by the overlap regions of the tunnel junctions —
is small leading to E¢ ~ 0.1 meV. In Fig. 1.5d the measured Ing(Vps, Vigs) characteristics of a
similar metal single-electron transistor (E¢ slightly smaller) are shown. Clearly the Coulomb

blockade regions are visible. Beyond the respective threshold in Vpg, the current Ipg increases.

1.4.2 Single-Electron Transistor Containing a Quantum Dot as Island

Quantum dots or zero-dimensional electron systems are objects where electrons are confined in a
small enclosure allowing the single electron only certain eigenvalues for its energy due to the wave
character of electrons as quantum mechanical particles. As sketched in Fig. 1.6, with decreasing
the size of the island, the quasi-continuous single-particle energy spectrum (like that of a metal)
turns into a discrete one (like that of an atom) if the deBroglie wavelength Ap = h/\/2mer of
an electron at the Fermi energy ep of the respective bulk material becomes comparable to the

island diameter D.

A realization of a single-electron transistor with a quantum dot as island is shown in Fig. 1.7
— denoted as split-gate quantum dot system: Base is a GaAs/Alj33Gage7As heterostructure
containing a two-dimensional electron system at the GaAs/AlGaAs heterojunction interface 86

% quantum dot

lsland ¢ bu 'art|f|’§?l‘ atom’

£ JAYS

_ = B —— = |=
€F=(%)2 D>> A D> Ae D= A
2m —_h .
Ae = S:m=0.98m,
_2n {2me .
FoAe ] GaAs: m=0.07 m,

Fig. 1.6: Enclosing electrons to a smaller space, only certain eigenvalues for their kinetic energy become
possible (Sketch!). Spatial enclosures with a discrete single-particle spectrum are denoted as quantum
dots.



nm below the surface. In GaAs, the effective mass of an electron in the conduction band is
rather small, m = 0.07 mq where my is the free electron mass. Therefore, single-particle energy
level spacing Ae of several meV are achieved for GaAs islands of few tens of nanometers — large
enough to be resolved at low temperature (kg7' = 1 meV at 7' = 12 K). To define the quantum
dot system, metallic gates were deposited on top of a mesa remained after partially etching the
surface of the heterostructure. The 2DES is electrically contacted by alloying metal at certain
regions of the mesa. The diameter of the area between the tips of the gate fingers is about
0.35 pm. With applying negative voltages to the gate electrodes, the 2DES is divided in parts,
defining the quantum dot of about 0.2 ym in diameter between the gate fingers, coupled by tunnel
barriers to parts of the 2DES acting as source and drain leads. In addition to these topgates, a
metallic backgate electrode on the reverse side of the undoped substrate (0.5 mm thick) is used
to change the electrostatic potential of the quantum dot by changing the applied voltage Vgs.
In Fig.1.7b, a typical curve of the conductance I'ng/Vpg versus the backgate voltage for small
drain-source voltage (Vps = 5 V) is shown — the Coulomb blockade oscillations (7' = 0.1 K).
In contrast to the CBO characteristic shown for the metal single-electron transistor, the peak
heights are strongly modulated and the peak distances are not exactly periodic. Both effects
are even emphasized by applying a magnetic field as shown in Fig. 1.7c. This indicates that the
character of the electronic states of the quantum dot — changed by the magnetic field — affects

the electrical transport.

1.5 Quantum Dot as an Interacting N-Electron System: an Ar-
tifical Atom with Tunable Properties

Obviously the electrostatic model is not sufficient, i.e., the description has to be extended. A
better approach is to ask which is the energy necessary for adding an electron into a given
confining potential (defined by gate electrodes with electrostatic potentials {V;}, material com-
position and fixed charges due to donors and acceptors) when already the number N of electrons
is present. To answer this, N and N + 1 electrons have to be treated quantum-mechanically as
interacting N and N + 1 electron systems in the confining potential. A Hamiltonian H (n; {V;})

of n electrons modeling the electrostatics of realistic quantum dots has the form [17]

n;{Vi}) Z P Ze@ext rs; {Vi}) + 3 Z Z e” G(7s,Ts) (1.14)

s=1 g'=1
s'#£s

where p; and 75 denote the momentum and position operator for electron s, respectively. The
quantity G(7,7') is the electrostatic Green’s function for describing the electrostatics of the
system without the presence of the n electrons [17]. The physical meaning of ¢ G(7,7’) is the
electrostatic potential contribution at position 7 caused by a point charge g located at 7' in the
given arrangement. In particular, it describes the electrostatic electron-electron interaction in
the quantum dot taking into account the electrostatic screening effect by the electrodes and the
dielectric medium. Comparing (1.14) with (1.7), it becomes clear that the effective interaction
(last term in (1.14)) is responsible for the Coulomb blockade effect in quantum dots. The
confining potential @yt (7; {V;}) is given by the fixed charge distribution, the arrangement of the

10
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Fig. 1.7: SET with quantum dot as island: (a) Metallic gates on top of a GaAs-AlGaAs heterostructure
are used to define a quantum dot system by partially electrostatically depleting a two-dimensional electron
system (2DES). (b) Coulomb blockade oscillations as a function of the backgate voltage Vas. (c) Coulomb
blockade oscillations Ips(Vps) for different magnetic fields applied in parallel to the plane of the 2DES.
(d) Differential conductance dIpg/dVpg in greyscale as a function of Vpg and Vgg. (from J. Weis et al.,
MPI-FKF)

electrodes and conduction band offsets due to the use of different materials (see Fig. 1.8a). It is
independent of the electron number confined in the quantum dot. The electrostatic contributions
t0 eyt (7; {Vi}) can all be expressed by G(7,7') [17]. One should note that the confining potential
depends linearly on the electrostatic potentials {V;} of the electrodes, i.e., the electrostatic
potential at position 7 is linearly shifted with changing V;, i.e.,

et (75 {Vi}) o ) 0i(7) Vi (1.15)

K3

where the quantity «;(7) reflects the fraction of image charge induced by a point charge at

position 7 in the arrangment on electrode 1.

11
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By solving the Schrodinger equation
H(n; {Vi}) [n, 1; {Vi}) = B(n,; {Vi}) [n, ; {Vi}) (1.16)

a total energy spectrum E(n,l;{V;}) for the confined n-electron system is obtained for a cer-
tain set of applied voltages {V;}. For convenience, the index [ represents a set of quantum
numbers that characterizes the different n-electron states |n,l; {V;}) starting from [ = 0 for the

groundstate, and numbering the excited states unambiguously further with increasing energy
E(n, 1;{Vi}).

Looking at the Hamiltonian (1.14), it becomes clear why quantum dots have sometimes been
denoted as artifical atoms [19,20] with tunable properties: The confining potential for electrons
in an atom (the Coulomb potential of the bare nucleus) is replaced by ®ex:(7;{Vi}). The pure
Coulomb interaction between electrons in atoms has to be replaced by e? G(7,7') if electrostatic

12



screening due to the dielectric medium or surrounding electrodes is present. In principle, both
Dyt (75 {V;}) and G(7,7') can be designed to purpose.

In a very popular model — the Constant Interaction Model (CIM) [15,21] — the total energy
E(n;{Vi}) is written as

ne)

( 2
2Cx

n
E(n; {Vi}) 2255—71626%‘/;4- —ne - const (1.17)
s=1 i
where ¢, is the eigenenergy of the single electron ‘s’ in the (effective) confining potential of
the quantum dot. Due to Pauli’s principle, single-particle states are sequentially occupied with
increasing electron number n and the electron-electron interaction is treated by the constant
Cy. This description is not generally valid: One should note that — different to atoms — in
quantum dots usually the electron-electron interaction is dominating the electronic properties
and not the quantization effect on the kinetic energy due to the confining of the electrons. The
total energy spectrum becomes complex as shown as an example in Fig. 1.8b. The electrons in
the quantum dot feel each other and behave correlated (which is an exciting subject on its own

(see for recent review [22])).

1.6 Transport Spectroscopy on Quantum Dot Systems

Having N electrons confined, they will end up in the groundstate | N, 0; {V;}) at low temperature.
The minimum in energy required for adding another electron to the system is achieved when
ending in the groundstate [N + 1,0;{V;}) of the N + 1 electron system. The energy ladder

p(n;{Vi}) = E(n,0;{Vi}) — E(n —1,0;{Vi}) , n€{---,N-1LN,N +1,---} (1.18)

gives for fixed potentials {V;} by its position relatively to the electrochemical potentials (Fermi
levels) us and pp of source and drain the energy barriers for recharging the quantum dot by
a single electron. Under circumstances this energy ladder is linearly shifted with changing one
of the applied voltages Vgs and Vpg: The characteristic ‘diamond-like’ transport regions of
a single-electron transistor as shown in Fig.1.4 are recovered — although not that regular in
size. The boundaries between the different charge states in the Vpg vs. Vgg are obtained with

ps — pp = e Vpg from

p(n;{Vi}) =pus and p(n;{V;})=pp with ne{-- N-1,NN+1,---}. (1.19)

In Fig. 1.7d, the differential conductance dIpg/dVpg of the quantum dot system is shown mea-
sured as a function of Vpg and Vps. In the linear greyscale plot, white regions correspond to
dIpg/dVps < —0.1uS and black ones to dIpg/dVps > 2uS. Positive peaks in the differen-
tial conductance indicate a step-like increase in the current Ing with increasing |Vpg|, negative
ones a step-like decrease. Clearly the Coulomb-blockade regions are identified. In the adjacent
single-electron tunneling regions, additional peaks in the differential conductance are observed
indicating the opening of other transport channels although the charge state of the quantum
dot can only fluctuate by one elementary charge. These can be attributed to electrical transport

using in competition excited states of the quantum dot system [23-26].
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Fig. 1.9: (a) Fictitious total energy spectra of N and N + 1 electrons confined in the quantum dot.
Bold are the groundstate energies. (b) Plot of the transition energies E(n, k; {V;}) — E(n — 1,1;{V;}) as
energy levels. Energy levels representing differences between groundstate energies are bold and marked
the respectiven € {---,N =1, N,N +1,---}. (b) Threshold lines for additional channels extracted from
(a). Whether all are visible depends in detail on (quasi-)selection rules and the dynamic of the system.

What is the link between the total energy spectra of n and n+ 1 electron systems and that what
is seen in the single-electron tunneling regime (‘transport spectrum’)? In Fig. 1.9a, the fictitious
total energy spectra for N and N + 1 electrons are given which lead to the energy ladder defined
by the transistion energies E(N + 1, k;{V;}) — E(N,[;{V;}) and plotted in Fig. 1.9b. It includes
the transition energy u(N;{V;}) = E(N +1,0;{V;}) — E(N,0; {V;}) between the groundstates.
With changing a gate voltage Vgs or the drain-source voltage Vpg, the energy ladder is shifted,
i.e., these levels come in resonance with ug or up for certain (Vgs, Vpg) values,

E(N + Lk {Vi}) — E(N,1;{Vi}) =ps or E(N+1,K;{V;}) - E(N,I;{V;}) = pp (1.20)

By this, an additional transport channel might be opened on source or drain side, respectively.
However, it requires that the electron system of the quantum dot is not captured in one of the
groundstates and remains there, but allows for fluctuations between N and N + 1, i.e., besides
(1.20) at the same time

ps > (N +1:{V;}) > pup  (Vbs >0) or up > u(N+1L;{Vi}) >pus (Vbs <0) (1.21)

has to be fulfilled. Condition (1.20) defines for diverse [ and k (I’ and k') threshold lines for
additional transport channels in the Vgg versus Vpg plane. Fulfilling this requirement, the
transition |[N + 1;k) — |N;1) (|N;I") = |N + 1; k")) might be usable for transport at these {V;}
if the initial state |[N +1; k) (JN;1")) for this transition is reached regularly via other transitions.
It leads to the pattern depicted in Fig. 1.9b.

With decreasing the size of a quantum dot, the single-particle eigenenergy spacing Ae = ¢; —¢;
increases and might even exceed the electron charging energy Ec due to the electron-electron

interaction on the quantum dot: The single-electron charging energy — being a consequence of
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Fig. 1.10: For increasing the ratio Ae/Eq, the energy level scheme shows less transition energies. There-
fore less additional transport channels due to (single-particle-)excitations of the quantum dot are expected
in the single-electron tunneling regime.

the unscreened electron-electron interaction on the island — scales like Ec o« 1/eD with the
island diameter D. The level spacing in a parabolic confining potential (taken as the simplest
example) scales like Ae = hwy = h?/(2m D?). As shown in Fig.1.10, with increasing ratio
Ae/Ec, the Coulomb blockade regions in the (Vgs, Vps) plane vary more and more in size with
the electron number, and a less number of additional channels due to transitions to excited
states occur in the single-electron tunneling regime.?

In a first approach, the dynamics of electron transport can be described by tunneling rates
included in a master equation ansatz. The rate is proportional to the tunneling probability
for an electron leading to the transition |N + 1;k) — |N;I) (|N;I') — |N + 1;&)). Obviously
such a transition is weighted by the strength of the spatial overlap of the wavefunction of the
quantum dot and the respective reservoir. However, such a transition might also obey certain
(quasi-)selection rules due to spin conservation or correlation effects of the n-electron system in
the quantum dot [27-31]. Therefore, the properties of the N + 1 and N-electron state are of
importance. It might even occur that the occupation of certain excited states blocks the electron
transport through the quantum dot [24] — as visible by the negative differential conductance in
Fig. 1.7d.

3This should be understood as a trend. Indeed, low lying excitations might be possible in a correlated electron
system.
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1.7 Summarizing the Conditions for Coulomb Blockade

To summarize, the Coulomb blockade effect is observable in electrical transport through small

islands if

e the single-electron charging energy exceeds significantly the thermal energy,

p(N + 1;{Vi}) — u(N;{Vi})

9 > kT (Ec > kpT) , (1.22)

e the applied drain-source voltage Vpg is not too large,

e[Vps| <u(N +1;{Vi}) —u(N;{Vi})  (e|Vps| <2Ec), (1.23)

e the tunnel coupling to the leads is small, i.e., the island can be considered as (quasi-
)isolated. Due to Heisenberg’s uncertainty relation, the dwell time 7y of an electron on
the island has to be so long that the uncertainty Aey =~ h/7y for the energy of an electron

on the island does not exceed the single-electron charging energy, i.e.,

TH > 2h
T W(N+15{V)) — p(N; (Vi)

(ra > h/Ec) . (1.24)

This is usually achieved if the tunnel barriers to the lead electrodes have a conductance
which is much less than e?/h ~ (26kQ) ! - the conductance of a ballistic (one-mode)

one-dimensional channel.

Since the Coulomb blockade is based on an electrostatic effect, Coulomb blockade and single-

electron charging effect can be observed for tunneling through quasi-isolated

e mesoscopic metal islands,

e mesoscopic superconducting islands,
e mesoscopic quantum dots,

e molecules and atom clusters, and

e bounded electron states to impurities.

Several examples will be given in the course of this school.

Depending on the confined electron number, size and effective mass of the electrons, quantum
dots resemble in one limit metal-like islands, in the other limit they mimic atom-like properties.
Furthermore, the electronic structure of quantum dots can be affected by an applied magnetic
field which allows to study the character and degeneracy of electronic states and its influence on
electrical transport. Due to their tunability, such quantum dot systems have been used as model
systems for investigating interacting N-electron systems and for approaching an understanding

of electrical transport through single molecules or single atoms weakly coupled to leads.
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1.8 Some Applications of Single-Electron Transistors

1.8.1 SET as a Voltage Signal Amplifier

The single-electron transistor can be used to amplify a voltage signal. Biasing the SET with
a constant current Ipg as shown in Fig.1.11, the voltage Vps drops between the source and
drain contact which depends in its magnitude on the applied gate voltage Vgs. Contour lines of
constant current Ipg are obtained in the Vpg vs. Vgg plane parallel to the borderlines defining
the different transport regions of the SET as sketched in Fig.1.4: A change dVgs causes due to
(1.13) the change

CG CG
dVps = —— dW dVps = ———— dVgs . 1.25
ps=-g dVas  or s =5 ¢, dVos (1.25)
The voltage signal dVgg is amplified in dVpg if
dV;
‘ DS >1, (1.26)
dVas Ipg=const

i.e., voltage gain is present. For the SET this can only be obtained for the gate voltage regime
where the first relation of (1.25) is valid. That means Cg > Cp [32]. Thus the capacitive
coupling of the SET island to the gate electrode where the voltage signal is applied has to be
chosen larger than the capacitive coupling to the drain electrode where the output voltage dVpg
arises. The same can be expressed more general in other words: The SET has to be designed
in such a way that the electron charge added to the island induces a larger fraction ag of its

image charge on the gate electrode than ap on the drain electrode,

and ap = & for metal SETs. (1.27)

ag > ap where ag = ~G
Cz; CE

This is at least required to obtain a voltage gain described by relation (1.26).

V, | e & const Ce
Gate DS DS Cs Cp

Ves . ¢

Fig. 1.11: SET as voltage signal amplifier.

1.8.2 SET as an Electrometer Sensitive to a Fraction of the Elementary
Charge

The electrostatic potential of electrons on the SET island might not only be changed by voltages
applied to adjacent electrodes, but also by putting a charge close to the SET island. As sketched
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in Fig. 1.12, adding a negative (positive) charge @ shifts the CBO characteristic towards positive
(negative) values of Vizg. How sensitive is the single-electron transistor to charges? If the charge
@ = £e would be added directly to the island, then the CBO characteristic is shifted by one
period along the gate voltage axis. In this sense, the SET is a highly sensitive electrometer
which is even able to detect easily a fraction of the elementary charge e by the change in its
characteristics if the charge is added closely to the island [33]. SETs have been demonstated as
electrometers with a charge sensitivity down to 8 - 107 ¢/+/Hz at 10 Hz [34]. Incorporating the
SET into a radio-frequency resonance circuit — denoted as RF-SET [35] — fast charge fluctuations
are detectable (1.2-107°e/+/Hz at 1.1 MHz). This high charge sensitivity offers on one hand a
ultrasensitive electrometer, on the other hand it is a disadvantage for applications where a stable
and reproducible SET characteristic is required for a large number of SET devices — like in very-
large scale integration (VLSI) of digital circuits. Telegraph noise due to charge fluctuations in

the SET surroundings makes them almost useless for this purpose.

Vps~ 0
| Q=0
Vss ¢ Gate ISand DS /
Source Drain
/ . / e
Vps Ips ‘ // | v
Q Ves s >

Fig. 1.12: SET as ultrasensitive electrometer.

1.8.3 SET as an Electrostatic Sensor in a Scanning Probe Microscope

The sensitivity of a single-electron transistor to the electrostatic environment can be used to
measure chemical potential variations of conducting materials affected by external parameters
[36]. A SET can even be incorporated into a scanning probe microscope [37]: As sketched in
Fig.1.13, a SET is fabricated on a microscopic glass tip which is then scanned over a substrate.
Monitoring the changes in the SET characteristics as a function of position, the SET can be
used as a local probe for the local electrostatic potential variations along the substrate surface.
With reducing the distance d between SET and substrate, the capacitance between substrate
and SET island reduces roughly like 1/d. Therefore the CBOs, observed as a function of the
voltage applied to the substrate, decrease in their periodicity, squeezing to a fix point on the
substrate-SET voltage axis just compensating for the instrinsic contact voltage between SET and
substrate. Such an SET on a scanning tip can be considered as an alternative to a scanning force
microscope running in the Kelvin probe mode [38] where the local electrostatic force between

tip and substrate is minimized by tuning the substrate-tip voltage.

1.8.4 SET as a Current Rectifier

As shown in Fig. 1.4, the capacitance ratios —Cp/Cq and (Cx, — Cp)/Cq are responsible for the
slopes of the boundary lines between Coulomb blockade and single-electron transport regions in
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Fig. 1.13: SET as electrostatic sensor on a tip of a scanning probe microscope.

Vlgtsh) at fixed Vg lie usually asymmetrically

the Vgs vs. Vps plane. Therefore, threshold values
with respect to Vpg = 0. Therefore, SETs display a non-linear Ing(Vpg) characteristics which is
tunable by Vgs. Due to the non-linearity of such devices around Vpg = 0, frequency mixing of
ac voltage signals is possible around Vpg = 0. Especially a rectification process can occur: An
applied ac bias voltage Vpg(t) results in a time-averaged net dc current [39]. Depending on the
ratio Cp/Cl;, three different behaviours are expected (see Fig. 1.14): In the case of Cp/Cx > %,
for a fixed ac bias modulation with |Vpg(t)| < e/Csx, the sequence in the dc current polarity
is zero/positive/negative/zero with increasing Vgg from one Coulomb blockade region to the
next. In the case Cp/Cs < i the sequence is zero/negative/positive/zero. Ounly in the case

Cp/Cx, = %, the net current is basically zero over the whole Vg range.

1.9 The SET for Very-Large Scale Integration (VLSI) of Digital

Circuits?

Carrying the current by electrons passing the island one-by-one and being switched on and
off by the elementary charge, the single-electron transistor can be considered as the ultimate
transistor. Dealing with the smallest amount of charge, it has been suggested with presenting
the concept of a SET in the mid 1980 s that integrated circuits based on SETs would lead to

lowest power consumption.

It was already pointed out, the sensitivity of a SET on single-electron charge fluctuations is a
strong disadvantage in this context [40]. Despite of this, the question arises: Is the SET concep-
tionally a severe candidate for replacing the MOSFET (Metal-Oxide-Semiconductor Field-Effect
Transistor) which is used nowadays as the electronic switch in digital circuits? Both transistor
concepts belong to the same class of electrostatically controlled switches and obey therefore
the same electrostatic requirements for being a good switch for this application. The answer is

basically ‘no’ [40,41] which will be further explained in the following.

The overall power dissipation is a severe problem of nowadays microprocessor chips. The only
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Fig. 1.14: SET as a potential-controlled current rectifier.

known concept for logical circuits, fulfilling the requirement of reliable computation [42] and
thereby strongly suppressing the standby power dissipation, is based on two complementary
working switches (see Fig.1.15). It has lead to what is known as CMOS technology. Single-
electron transistors can be biased to different working points and then act complementary (one
turns on and the other off, controlled by the same voltage signal) [43]. However the circuit
concept requires that the transistors have voltage gain. This is hardly to achieve for a single-
electron transistor working at room temperature: The island size has to be only few nanometers
to reach the high single-electron charging energy, and at the same time the island has to be
coupled capacitively stronger to the gate electrode than to the leads (ag > ap)!

The voltage swing AV defines the difference in the voltage levels representing logic ‘0’ and ‘1°.
These are almost given by the positive and negative supply terminals denoted by ‘0’ and ‘Vpp’
in Fig. 1.15. The voltage AV drops as the drain-source voltage over the transistor (see Fig. 1.15¢
and d): The ‘on’-current driven through the transistor determines the speed by which the logic
gates can switch. The ‘off’-current is a leakage causing power dissipation even when the circuit
is not doing useful computation (static condition). VLSI requires typically Ion/Iog > 10® for

fulfilling the required performance.

A switch based on tuning an energy barrier electrostatically via a gate voltage leads to the

superior characteristic

Ion aceAVgs
T eXp (1.28)
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Fig. 1.15: (a), (b) Circuits for logic gates using complementary working switches ‘n’ and ‘p’ . (c) To keep
the stand-by power dissipation small under static condition, the leakage current I,¢ has to be small. (d)
Fast charging and discharging of the output node requires a large I,y,.

The ratio between ‘on’ and ‘off’ current depends exponentially on the gate voltage swing AVgs
which is at the same time AV — the difference between the voltage levels representing the logic
‘0’ and ‘1’ state. The quantity ag is limited by 0 < ag < 1 and gives the fraction of image
charge which is induced on the controlling gate electrode by a charge in the channel of the

electrostatic switch.

MOSFETS offer such an exponential characteristic where ag is close to one. Actually this elec-
trostatic requirement (ag — 1) is mainly the reason why MOSFET have to shrink in all spatial
dimensions, and therefore the gate oxide of a 0.1 ym MOSFET has been reduced already to 4
nm thickness! For SETs working at room temperature, again, the request on the electrostatics

ag close to one is hardly to achieve.

MOSFETS offer for the ‘on’-current 0.5 mA per pm channel width — a value which has remained
constant over the last decades. Conceptionally, SETs are limited in their capability in driving
a current since electrons are passing the island one-by-one. To have a large I,,, the dwell time
of an electron on the island has to be short. Therefore, the tunnel coupling has to be enhanced
which leads to a stronger leakage I g in the ‘off’-state. The ratio I,,/I,¢ cannot follow an
exponential dependence on the gate voltage which make SETs worse: For a certain ‘on’-current
— required for recharging the connections and the inputs of the following logic gates —, the ‘off’-
current gets too high. This might be compensated by increasing AV which again requires that
the single-electron charging energy is enlarged, i.e., the island size has to be shrinked even more.
We have to state [41]: Single-electron transistor circuits cannot fulfill the expectation of low

power dissipation at reasonable speed performance.

Note, these electrostatic constraints are also valid for using molecules as islands as long as their
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switching mechanism is purely based on tuning an energy barrier electrostatically. In conclusion,
to overcome the severe problems of VLSI, either new circuit design concepts are required — which
have not been invented up to now — or a switch has to be found which offers ag > 1. Here
is indeed potential for molecules if the switching of the electrical path is controlled by the

conformation change of the molecule, induced by an applied electrical field.

1.10 Charge-Stability Diagram of Two-Island Devices

Up to now we have considered only devices with one island embedded between electrodes of
defined electrostatic potentials. Examples for two-island arrangements are depicted in Fig. 1.16.
Both islands are directly or indirectly connected via tunnel barriers to electrodes. Without a
capacitive coupling, the islands do not feel each other. Therefore, in the ideal case, two gate
electrode can be used to control independently the charge state of the two islands. As a function
of the two gate voltages Va1,s and Vo s, the charge configuration of the two-island arrangement
is stable within rectangular regions (indicated by dashed lines in Fig. 1.16). Allowing capacitive
interaction between both islands, the gate voltage variations shifts the electrostatic potentials
of both islands, and the charge states of the islands affect each other. The charge stability
diagram divides under such a capacitive coupling between the islands into a honeycomb pattern
as depicted in Fig. 1.16.

All the two-island arrangements depicted in Fig. 1.16 have this charge stability diagram. Which
of these borderlines between the stable regions are actually seen in electrical transport depends
on how source and drain electrodes are connected. For the arrangement (I), for instance, only

the triple points are visible.

By using quantum dots as islands, molecule-like states can be formed [44,45] by increasing the

tunnel coupling between these ‘artifical atoms’. The charge stability diagram pattern deviates
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Fig. 1.16: Charge stability diagram valid for the two-island arrangements (I) to (IV) for Vps = 0 —
denoted as ‘honeycomb’ pattern.
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at the triple points.

1.11 Single-Electron Turnstile and Single-Electron Pump

Having control over single electrons, why not creating a device which transfers a single electron
within a cycle — controlled by external ac voltage signals — from source to drain? The current

passing such a device is determined by the cycle frequency f,
Ins=ef. (1.29)

Such a devices would allow to define a current standard and to close the quantum metrological
triangle [1,13] depicted in Fig. 1.17a: Three basic physical quantities — current I, voltage V and
frequency f — are linked by three fundamental effects — the Josphson effect connects V' with f,
the quantum Hall effect V' with I, and perhaps a single-electron device obeying (1.29) connects
I with f. Closing this triangle would allow to represent their units with higher precision and

even to check whether the fundamental relations given in Fig. 1.17 are indeed valid.

(@) Quantum Metrological Triangle (D) Single-Electron Turnstile

V [Voli] I

Josephson Quantum Hall ¢ &————
Effect Effect Vos

(V= (h2e) | [v=(hled)1] ] open closed
T e+
. =X

[Hertz] ~Single Electron  [Ampere]
Charging Effect

\/
A

closed closed

&l o Il
(C) single-Electron Pump i |

i closed open

11 ]
| Vo Ve W*W ‘

[ ¢
Gate 1 D D Gate 2
V(Gatel),

I | |
Sz o~

V(Gate2)

”ISD T Tme
NN

Fig. 1.17: (a) Quantum Metrological Triangle. (b) Single-electron turnstile. (¢) Single-electron pump.
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One version of such a single-electron device is sketched in Fig. 1.17b denoted as single-electron
turnstile: The tunnel barriers of a single-electron transistor are tuned similarly to the cycle which
the gates of a water lock have to follow to transfer a ship between two water levels through the
lock. The Coulomb blockade effect ensures that the island is charged each cycle only with one
electron. Such a turnstile with tunable tunnel barriers has been realized by using a split-gate

quantum dot [46].

Another version of such a single-electron device obeying (1.29) is shown in Fig. 1.17a: By chang-
ing the gate voltages in time in the way sketched in Fig. 1.17c, one electron is transfered within
such a cycle via the islands from source and drain. These phase-locked variations of the gate volt-
ages decribe a path which encircles one triple point in the charge stability diagram of Fig. 1.16.

The two-terminal arrangement of Fig. 1.17c behaves as a single-electron pump [47].

Two islands are enough to perform single-electron pumping. However, several islands in series
are required to obtain a high accuracy: Correlated tunneling (co-tunneling) of electrons through
the device has to be suppressed because such processes lead to a leakage. Correlated electron
tunneling is the topic of section 1.13. An accuracy of Alps/Ips ~ 1078 has been achieved
[48] in single-electron pumps with seven islands in series, i.e., one electron is missed within 108
cycles. Unfortunately the current which is driven through a single pump is too small (f about

few MHz) for allowing to close the quantum metrological triangle.

Another approach [49, 50] uses surface acoustic waves (SAW) to confine electrons which then
have to pass — traveling with this SAW — a small contriction. In another proposal, a certain

amount of electrons is shuttled mechanically between source and drain [51].

1.12 Single-Electron Devices as Primary Thermometer

One-dimensional arrays of M small metal islands of almost same size and tunnel junctions offer
at low temperature a pronounced nonlinear Ing(Vps) characteristic which is rather similar to
the one of the single-island arrangement shown in Fig.1.2. With increasing the temperature
to T > Ec/kp, thermal fluctuations diminish the Coulomb blockade effect and the Ing(Vps)

M Idlands

A

Vi
T (M+1) 5.439... VX/

12

Fig. 1.18: Primary thermometer.
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characteristic becomes more and more linear with increasing 7. The deviation is still seen close
to Vpg = 0 which is better resolved by measuring the differential conductance dIps/dVps as a
function of Vpg: As shown in Fig. 1.18, a dip is visible around Vpg = 0. Based on rate equations
it can be shown [52, 53] that the depth of the dip scales like E¢/3kpT, whereas the full-width
V12 at half of the dip depth is described by

6Vl/2

This allows to use such an array as a primary thermometer since V} /o does not depend on the
device parameters except of the number M of islands. It has turned out that slight variations
in the device parameters (island size and tunnel junction) do not significantly affect the validity
of (1.30). Such thermometers are nowadays commercially available products (from Nanoway,
Finland). The measurable temperature range depends on the single-electron charging energy
Ec which can be designed by the junction and island size. Such single-electron devices might
be able to replace established temperature standards used at low temperature, i.e., in the range
of few milliKelvin to few tens of Kelvin. Two-dimensional arrays of small islands show similar
behaviour [53].

1.13 Breakdown of the Single-Electron Tunneling Picture

In the limit of weak tunnel coupling and at low but finite temperature, the dynamics of single-
electron transport is usually described by temperature-dependent rate equations [15,18,21, 54]
revealing the basic features of Coulomb blockade and single-electron tunneling. By this approach,
only processes involving a tunneling event of an electron through one of the barriers are taken
into account. This does not work in the case of strong tunnel coupling and — as pointed out in

Section 1.14 — sometimes even not in the weak tunnel coupling regime.

Besides thermally induced fluctuations in the number of electrons on the island, quantum fluc-
tuations occur and become stronger with increasing the tunnel coupling to the lead electrodes.
Simple examples for this are so-called co-tunneling events (Fig. 1.19) [55]: An electron from one
of the leads occupies the island while at the same time another electron leaves the island to one of
the leads. Since the charge state on the island is not changed by this correlated tunneling event,
no single-electron charging energy has to be paid. Even in the Coulomb blockade regime, this
leads to a net current flow between source and drain for |Vpg| > 0. The charge state of the island
is only virtually changed. Under finite Vpg bias, the electron system confined in the quantum
dot can even be excited by such correlated tunnel processes (inelastic cotunneling). Important
to note, transport channels due to correlated tunneling are opened at certain threshold values of
Vbs, independent of Vg (see Fig. 1.19). This distinguishes them from transport channels opened
for single-electron transport. Opening such a cotunneling channel leads to a step-like change in
the differential conductance dIps/dVps with increasing |Vpg|. Elastic cotunneling, which uses
the transition between the groundstates |n,0) and |n 4+ 1,0) as the intermediate transition, can
already occur at Vpg = 0.

This virtual occupation leads effectively to a broadening of the energy levels depicted in the

energy schemes for the quantum dot. Usually these correlated tunneling processes can be treated
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Fig. 1.19: Cotunneling as the simplest correlated tunneling event: Adding an electron while at the same
time an electron leaves the island allows electron transport between source and drain even in the Coulomb
blockade regime. Transport channels due to cotunneling open at positions in |Vpg| > 0 (independent of
Vas) which are given by the energy difference leading to an excitation of electron system confined in the
quantum dot. Such an excitation in the quantum dot can also be taken away by cotunneling.

a small contribution. However, this is not always true as shown in the following.

1.14 Kondo Effect in Single Quantum Dot Systems

Fig.1.20b shows the differential conductance dIpg/dVps through a small quantum dot
(Fig. 1.20a) as a function of Vpg and Vg. For the case of weak tunnel coupling to both leads, the
Coulomb blockade region is well resolved. With increasing the tunnel coupling while keeping
the temperature, the Coulomb blockade region is no longer well defined, but the remarkable
feature is the appearance of a peak in the differential conductance at Vpg = 0 over the whole
Coulomb blockade regime [56-59]. It becomes stronger with increasing the tunnel coupling,
but disappears with increasing the temperature (Fig. 1.20c). It means that the quantum dot is
highly conductive at low temperature and less conductive at high temperature. Important to
note, the position of this zero-bias anomaly remains unaffected by Vg, although the electronic
states of the dot are shifted by Vgs, which indicates that the island is effectively not charged,
i.e., that correlated electron tunneling is here of importance. It has been observed [60] that
even the conductance 2e2/h is reached for this zero-bias anomaly. Zero-bias anomalies are not

observed for all Coulomb blockade regions, i.e., certain requirements have to be fulfilled.

Predicted in 1988 [61,62] and experimentally demonstrated in 1998 [56], the interpretation of
this zero-bias anomaly is based on the so-called Anderson impurity model [63]. The model has
been used to describe the Kondo effect observed at low temperature in the resistivity of metal
slightly doped with magnetic impurities. The (extended) Anderson impurity model is depicted in
Fig.1.21: A spin-degenerate localized electron state is tunnel coupled to two electron reservoirs.

Its energy lies below the Fermi level of the reservoirs, i.e., it is always occupied by an electron
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Fig. 1.20: (a) Sketch of the experimental arrangement of a single quantum dot defined in a two-dimensional
electron system by electrostatic depletion. (b) Differential conductance as a function of the drain-source
voltage and the gate voltage for different tunnel coupling to the leads. A zero-bias anomaly — identified as
a Kondo peak — develops at Vps = 0 within the Coulomb blockade region. (¢) Temperature dependence
of the Kondo peak taken in the middle of a Coulomb blockade region (from another sample). (from
J.Schmid et al., MPI-FKF)

with spin-up or spin-down. Occupation of the localized state by two electrons at the same time is
suppressed due to the electron-electron interaction U = 2FE ¢ on the island. Solving this problem,
it turns out that correlated electron tunneling of lowest order (cotunneling) is not enough to
descibe the transport through such an island: The electronic state of the island hybridizes with

the electronic states of the leads forming a spin-singlet state, although the energy level of this
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(Extended) Anderson Quantum Dot System
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Fig. 1.21: The Anderson impurity model in comparison to the energy scheme of a quantum dot system
with (spin-)degenerate groundstate. (a) Solving the model for low temperature, a resonance at the Fermi
level is found which disappears at higher temperature (see (b)). (c¢) At low temperature, the Coulomb
blockade disappears in the respective CBO valley but recovers at higher temperature.

localized state is deep below the Fermi level of the reservoirs. At low temperature, even a small
tunnel coupling to the leads causes correlated tunneling of electrons permanently flipping the
spin state of the island. This leads to an effective density of state on the site of the impurity
pinned to the Fermi level of the reservoirs (see Fig.1.21). Electron transport is possible around
Vps = 0. The weaker the tunnel coupling and the deeper the impurity level, the lower the
temperature has to be to observe this Kondo effect. The reference scale is given by the so-called
Kondo temperature Tk

vIU  (er — o) (U + €0 — €r)

exp |— i (1.31)

kpTx =

where the energy I' describes the broading of the energy level due to the tunnel coupling of
the impurity (quantum dot) state to the leads, and ep — g¢ the energetical distance of the level
on the impurity site to the Fermi level of the reservoirs. A large U — basically given by the
electron-electron interaction — and large I' enlarges the Kondo temperature, i.e., the Kondo

effect is observed at higher temperature.
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Magnetic field dependent measurements reveal that spin-degeneracy usually is responsible for
the Kondo effect in quantum dot systems. Suggested by the Constant Interaction Model, at
the beginning the Kondo effect has been expected only for an odd number of electron on the
quantum dot (odd-even parity effect). However, it can also be observed for even electron numbers
[59,64,65]. The electronic structure of a quantum dot is more complex than assumed by the
CIM.

1.15 Two Electrostatically Coupled Single-Electron Transistors:
More than the Sum of Two

The Anderson impurity model describes two separate electron systems labeled by an index which
is usually identified with the spin quantum number (see Fig. 1.22a). The only interaction between
both ’spin’ electron systems happens on the impurity (quantum dot) site: Occupation by two
electrons at the same time is suppressed due to the Coulomb interaction on this site. Interpreting
the 'spin’ index of the Anderson impurity model as the index distinguishing between two spatially
separated electron systems, another realization of the Anderson impurity model becomes feasible
[66]: a system consisting of electrostatically coupled quantum dots with separate leads to each
quantum dot (see Fig. 1.22a). The mapping works [66] if (1) an energetical degeneracy is present
in occupying either the upper or the lower quantum dot, (2) the groundstate of each quantum

dot is not degenerate, excited states are energetically well separated.

An experimental setup to implement this arrangement is shown in Fig. 1.22b: By etching the
pattern shown as an SEM image into a GaAs-AlGaAs heterostructure containing two 2DESs
separated by a insulating 40 nm thick AlGaAs barrier, two strongly electrostatically coupled
quantum dots are formed. By alloying metal contacts and by using top and back gates for locally

depleting the upper or lower 2DES, the quantum dots are separately contacted.

In Fig. 1.22¢, the conductance through the upper quantum dot is shown as a function of the
gate voltages V; o and Vg (see Fig. 1.22b). A honeycomb-like structure is visible which reflects
strong electrostatic interaction between both quantum dots. Along the lines marked by ’a’,
single-electron tunneling occurs through the upper quantum dot. Along the lines marked by ’c’,
single-electron fluctuations are possible for the lower quantum dot, but not visible in the current
through the upper quantum dot. Along the lines marked by ’b’, current through the upper
quantum dot is detected — although not expected within the single-electron tunneling picture
for electrostatically coupled quantum dots. Along such lines, an energy degeneracy of having
an additional electron either on the upper or lower quantum dot exists — one prerequisite of the
Anderson model. Due to the predictions for the Anderson model, we expect to see a peak in
the differential conductance versus drain-source voltage at the positions along the lines marked
by ’b’. Such a trace taken in the middle of a line 'b’ is shown in Fig. 1.22d. Th observed peak
indicates [67] that a simple co-tunneling process — adding an electron in the upper quantum dot
while at the same time taking off an electron from the lower quantum dot (and vice versa) —
is not enough to explain the electron transport. Correlated tunneling processes of higher order

have to be taken into account — Kondo physics is present.

In conclusion, closely packed single-electron transistors with atom-like islands might show not
only electrostatic interaction but might form also a correlated quantum mechanical state mak-
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Fig. 1.22: (a) Scheme of the (extended) Anderson impurity model - top: two systems of different spin
orientation, bottom: two spatially separated systems. In both cases, the systems interact only electro-
statically on the QD site(s). (b) Sketch of the experimental setup of two quantum dots with separate
leads. At top, a scanning electron microscope image of the etched pattern defining two quantum dots
on top of each other. (¢) Conductance through the upper quantum dot versus two gate voltages. (d)
Differential conductance versus drain-source voltage taken in the middle of a line marked by b’ in (c).
As expected from the analogy to the Anderson impurity model, a zero-bias anomaly is observed. (from

U. Wilhelm et al., MPI-FKF)

ing them highly conductive in the regime where at higher temperature (beyond the Kondo

temperature of the arrangement) Coulomb blockade is observed.
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