
Screening and transport in narrow quantum Hall systems

As a consequence of the singular Landau density of states, screening in an inhomogeneous two-dimensional
electron system (2DES) subject to a strong perpendicular magnetic fieldB is, at low temperatureT , extremely
nonlinear. The system splits into "compressible" regions,in which screening is nearly perfect and the electron
distribution arranges so that, withinkBT , a Landau level is pinned to the electrochemical potentialµ⋆, and into
"incompressible" regions in between, in whichµ⋆ falls into a gap between adjacent Landau levels, so that there
the Landau-level filling factorν has a fixed integer value and, therefore, the electron density is constant [1-3].
Within an incompressible strip (IS) no elastic scattering is possible (since there are no states at the Fermi level),
so that the longitudinal and the Hall resistivity there havethe values of the free electron system with the same
integer filling factor, i.e., in the limitT → 0 resultsρℓ = 0 andρH = h/(νe2), respectively. In a narrow Hall
bar, where the 2D electron density decreases monotonously from a maximum in the center to zero at the edges,
ISs of finite width exist in certain intervals of the magneticfield B. If an imposed current leads to a stationary
non-equilibrium state of the 2DES, according to the thermodynamic principle of minimum entropy production
the current density concentrates on these ISs, where the current flows dissipationless. A quasi-local Ohmic
transport theory, which in a homogeneous 2DES describes theShubnikov-de Haas oscillations, combined with
a self-consistent screening theory, describes the integerquantized Hall effect (IQHE) in narrow Hall bars, and
the plateaus of the IQHE appear as theB-intervals in which sufficiently wide ISs exist [4-6]. Early[7] and more
recent scanning force microscope measurements in the groupof J. Weis confirm the predictions of this theory,
and it is of great interest to investigate its further predictions, limitations, and possible extensions.
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Figure 1: (a) Current density along and (b) normalized
Hall potential across a Hall bar containing a 2DES with
translation invariance iny-direction and lateral confine-
ment inx-direction due to metallic gates in the half-
planesz = 0, x < −d andz = 0, x > d = 1.5µm.
The imposed currentI = 1µA and the magnetic field
B = 7T are fixed. At higher temperature,T & 30K,
the current density is proportional to the electron den-
sity, and the Hall potential varies linearly across the
2DES. With decreasingT , the current density concen-
trates more and more around the stripes with local fill-
ing factorν(x) = 2, where incompressible stripes (ISs)
form. In the limitT → 0 all the imposed current flows
dissipationless through, and the total Hall voltage drops
across these ISs. Nonlinear feedback leads to strong
asymmetries.
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