Gutzwiller Theory of Band Magnetism in LaOFeAs

Tobias Schickling,¹ Florian Gebhard,¹ Jörg Bünemann,² Lilia Boeri,³ Ole K. Andersen,³ and Werner Weber⁴

¹Department of Physics and Materials Science Center, Philipps Universität, 35032 Marburg, Germany ²Institut für Physik, BTU Cottbus, P.O. Box 101344, 03013 Cottbus, Germany

³Max-Planck-Institute for Solid-State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany ⁴Theoretische Physik II, Technische Universität Dortmund, Otto-Hahn-Straße 4, 44227 Dortmund, Germany (Received 5 September 2011; published 19 January 2012)

We use the Gutzwiller variational theory to calculate the ground-state phase diagram and quasiparticle bands of LaOFeAs. The Fe3d-As4p Wannier-orbital basis obtained from density-functional theory defines the band part of our eight-band Hubbard model. The full atomic interaction between the electrons in the iron orbitals is parametrized by the Hubbard interaction U and an average Hund's-rule interaction J. We reproduce the experimentally observed small ordered magnetic moment over a large region of (U, J)parameter space. The magnetically ordered phase is a stripe spin-density wave of quasiparticles.